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Abstract

Transformers have achieved remarkable success in a wide range of natural language1

processing and computer vision applications. However, the representation capacity2

of a deep transformer model is degraded due to the over-smoothing issue in which3

the token representations become identical when the model’s depth grows. In this4

work, we show that self-attention layers in transformers minimize a functional5

which promotes smoothness, thereby causing token uniformity. We then propose6

a novel regularizer that penalizes the norm of the difference between the smooth7

output tokens from self-attention and the input tokens to preserve the fidelity of8

the tokens. Minimizing the resulting regularized energy functional, we derive9

the Neural Transformer with a Regularized Nonlocal Functional (NeuTRENO),10

a novel class of transformer models that can mitigate the over-smoothing issue.11

We empirically demonstrate the advantages of NeuTRENO over the baseline12

transformers and state-of-the-art methods in reducing the over-smoothing of token13

representations on various practical tasks, including object classification, image14

segmentation, and language modeling.15

1 Introduction16

Transformer models [50] have achieved substantial success in natural language processing [15, 1, 12,17

9, 37, 3, 5, 13], reinforcement learning [8, 24], computer vision [17, 30, 48, 38, 34, 2, 31, 59, 22], and18

other practical applications [39, 25, 58, 21, 54]. Transformers also excel at transferring knowledge19

from pre-trained models to new tasks, even when limited supervision is available [35, 36, 15, 57, 29].20

At the heart of transformers lies the self-attention mechanism, which computes a weighted average of21

token representations within a sequence. These weights are determined based on the similarity scores22

between pairs of tokens, determining their relative importance in the sequence [10, 33, 28]. This23

flexibility in capturing diverse syntactic and semantic relationships has been identified as a crucial24

factor contributing to the success of transformers [46, 51, 11, 52, 23].25

1.1 Background: Self-Attention26

For a given input sequence X := [x(1), · · · ,x(N)]⊤ ∈ RN×Dx of N feature vectors, self-attention27

transforms X into the output sequence H in the following two steps:28

Step 1. The input sequence X is projected into the query matrix Q, the key matrix K, and the value29

matrix V via three linear transformations30

Q = XW⊤
Q;K = XW⊤

K ;V = XW⊤
V , (1)

where WQ,WK ∈ RDqk×Dx , and WV ∈ RD×Dx are the weight matrices. We denote Q :=31

[q(1), . . . , q(N)]⊤,K := [k(1), . . . ,k(N)]⊤, and V := [v(1), . . . ,v(N)]⊤, where the vectors32

q(i),k(i), and v(i), for i = 1, . . . , N are the query, key, and value vectors, respectively.33

Step 2. The output sequence U := [u(1), . . . ,u(N)]⊤ ∈ RN×Dqk is then computed as follows34

U = softmax
(
QK⊤/

√
Dqk

)
V := AV, (2)
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Figure 1: The cosine similarity between tokens representations across layers of NeuTRENO DeiT vs. the
baseline DeiT models on the Imagenet classification and ADE20K image segmentation tasks. In both tasks, the
DeiT baseline suffers from over-smoothing as tokens become similar to identical when the model gets deeper. In
contrast, tokens in NeuTRENO models are significantly more diverse, suggesting a reduction in over-smoothing.
Further details regarding this analysis can be found in Appendix E.

where the softmax function is applied to each row of the matrix QK⊤/
√
Dqk. The matrix A :=35

softmax
(

QK⊤√
Dqk

)
∈ RN×N and its component aij for i, j = 1, · · · , N are called the attention36

matrix and attention scores, respectively. For each query vector q(i) for i = 1, · · · , N , an equivalent37

form of Eqn. (2) to compute the output vector u(i) is given by38

u(i) =

N∑
j=1

softmax
(
q(i)⊤k(j)/

√
Dqk

)
v(j). (3)

The self-attention computed by Eqn. (2) and (3) is refered as softmax attention. In our work, we refer39

to a transformer that uses softmax attention as a softmax transformer.40

1.2 Over-smoothing in Transformers41

Despite their remarkable success, deep transformer-based models have been observed to suffer from42

the over-smoothing issue, in which all token representations become identical when more layers43

are added to the models [44, 53, 16]. This over-smoothing phenomenon, also known as the “token44

uniformity” problem, significantly limits the representation capacity of transformers. To illustrate45

this phenomenon, we examine the average cosine similarity between pairs of token representations46

across different layers in a softmax transformer trained for the Imagenet object classification and47

ADK20 image segmentation tasks [61]. As depicted in Fig. 1, in both tasks, this cosine similarity48

between tokens increases as the models become deeper. Particularly, in the last two layers, the cosine49

similarity scores are approximately 0.9, indicating a high degree of similarity among tokens.50

1.3 Contribution51

We develop a nonlocal variational denoising framework for self-attention, providing insights into the52

over-smoothing phenomenon in transformers. In particular, by viewing self-attention as a gradient53

descent step toward minimizing a nonlocal functional that penalizes high-frequency noise in the54

signal, we uncover the diffusive nature of self-attention, which explains the over-smoothing issue of55

transformers. Motivated by this understanding, we propose the Neural Transformer with a Regularized56

Nonlocal Functional (NeuTRENO), a novel class of transformers designed to mitigate over-smoothing.57

NeuTRENO is derived by optimizing a regularized nonlocal functional, which includes an additional58

convex fidelity term. This fidelity term penalizes the norm of the difference between the smooth59

output tokens from self-attention and the input tokens, thereby reducing the over-smoothing effect.60

Our contribution is three-fold.61

1. We develop a nonlocal variational denoising framework for self-attention and shed light on62

the over-smoothing issue that hampers the representation capacity of transformers.63

2. We develop NeuTRENO, a novel class of transformers that are capable of alleviating the64

over-smoothing issue.65

3. We theoretically prove that transformers with softmax self-attention are prone to over-66

smoothing while NeuTRENO can avoid this issue.67
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We empirically demonstrate the benefits of NeuTRENO on various large-scale applications, including68

the ImageNet object classification, ADE20K image segmentation, and WikiText-103 language69

modeling tasks.70

Organization: We organize our paper as follows: in Section 2, we develop a nonlocal variational71

denoising framework for self-attention and provide an explanation for the over-smoothing issue in72

transformer-based models. In section 3, we propose NeuTRENO, and present a theoretical result73

that guarantees NeuTRENO’s capability of mitigating over-smoothing. In Section 4, we empirically74

validate the benefits of NeuTRENO. We discuss the related work in Section 6. Finally, we conclude75

our main contributions and remarks. Further results, details, and proofs are provided in the Appendix.76

2 A Nonlocal Variational Denoising Framework for Self-attention77

We first consider the output matrix U := [u(1), · · · ,u(N)]⊤ ∈ RN×D in self-attention as given by78

Eqn. 2 in Section 1.1. Let Ω ⊂ R, x ∈ Ω, and u(x) := [u1(x), . . . , uD(x)]T be a real vector-valued79

function, u : Ω → RD, u ∈ L2(Ω). The output matrix U in self-attention discretizes the function80

u(x) on a 1-D grid. In the context of signal/image denoising, U can be considered as the desired81

clean signal, and u(x) is its corresponding intensity function denoting the signal values at the position82

x ∈ Ω. We further let the observed intensity function f(x) denote the values of the observed noisy83

signal at x ∈ Ω, f : Ω → RD, f ∈ L2(Ω). For example, f(x) can be given as84

f(x) = u(x) + n(x), (4)
where n is the additive noise. We wish to reconstruct u(x) from f(x). Following the variational85

denoising method proposed in [19] and [20], the denoised image u(x) can be obtained by minimizing86

the following regularized functional with respect to u:87

E(u,f) = J(u) +G(u,f) (5)

=
1

2

∫
Ω×Ω

∥u(x)− u(y)∥22k(x, y)dxdy +
λ

2

∫
Ω

∥u(x)− f(x)∥22dx.

Here, J(u) = 1
2

∫
Ω×Ω

∥u(x)− u(y)∥22k(x, y)dxdy is a nonlocal functional of weighted differences.88

The weights k(x, y) represent the affinity between signal values at positions x and y. For example,89

for images, k(x, y) captures the proximity between pixels x and y in the image. J(u) works as a90

regularizer. Minimizing J(u) promotes the smoothness of u and penalizes high-frequency noise in91

the signal. Adding the convex fidelity term G(u,f) = λ
2

∫
Ω
∥u(x) − f(x)∥22dx to the functional92

J(u) allows the denoised signal u(x) to preserve relevant information in the observed noisy signal93

f(x). The regularized functional E(u,f) can be considered as an energy functional.94

2.1 Self-attention as a Gradient Descent Step to Minimize the Nonlocal Functional J95

We show that self-attention is equivalent to taking a gradient descent step toward minimizing the96

functional J(u) in the energy functional E(u,f). We expand J(u) as follows97

J(u) =
1

2

∫
Ω×Ω

D∑
j=1

(uj(x)− uj(y))
2k(x, y)dxdy (6)

The gradient of J with respect to u is then given by98

∇uJ(u) =

[
∂J

∂u1
,
∂J

∂u2
, . . . ,

∂J

∂uD

]T
. (7)

The partial derivative ∂J/∂uj , j = 1, 2, . . . , D, is defined through its dot product with an arbitrary99

function hj ∈ L2(Ω) as follows100

∂J

∂uj
· hj(x) =

d

dτ
J(uj + τhj)

∣∣
τ=0

=
1

2

(
d

dτ

∫
Ω×Ω

(uj(x)− uj(y) + τhj(x)− τhj(y))
2k(x, y)dxdy

) ∣∣∣∣
τ=0

=

(∫
Ω×Ω

(uj(x)− uj(y) + τhj(x)− τhj(y))(hj(x)− hj(y))k(x, y)dxdy

) ∣∣∣∣
τ=0

=

∫
Ω×Ω

(uj(x)− uj(y))(hj(x)− hj(y))k(x, y)dxdy

=

∫
Ω×Ω

(uj(x)− uj(y))hj(x)k(x, y)dxdy −
∫
Ω×Ω

(uj(x)− uj(y))hj(y)k(x, y)dxdy

3



Applying a change of variables (x, y) → (y, x) to the second term of the above integral, we have101

∂J

∂uj
· hj(x) =

∫
Ω×Ω

(uj(x)− uj(y))hj(x)k(x, y)dxdy −
∫
Ω×Ω

(uj(y)− uj(x))hj(x)k(y, x)dxdy

=

∫
Ω×Ω

(uj(x)− uj(y)(k(x, y) + k(y, x))dyhj(x)dx

Thus, the Frechet derivative of J with respect to uj is given by102

∂J

∂uj
=

∫
Ω

(uj(x)− uj(y)(k(x, y) + k(y, x))dy. (8)

Substituting the formula for ∂J/∂uj in Eqn. 8 into Eqn. 7 for ∇uJ(u)(x), we obtain the following103

gradient flow104

du(x, t)

dt
= −∇uJ(u) =

∫
Ω

(
u(y, t)− u(x, t)

)(
k(x, y) + k(y, x)

)
dy, (9)

where t is the time variable we introduce to capture the dynamics of u when gradient descent is applied105

to minimize J(u). Let v(x) := [v1(x), . . . , vD(x)]T be a real vector-valued function, v : Ω → RD,106

v ∈ L2(Ω). We discretize v(x) on a 1-D grid to attain the value vectors v(1), . . . ,v(N) ∈ RD,107

which form the value matrix V := [v(1), · · · ,v(N)]⊤ ∈ RN×D in self-attention as defined in108

Eqn. 2. We initialize u at t = 0 with v(x), i.e., u(x, 0) = v(x).109

Self-attention is an Euler Discretization of the Gradient Flow Given in 9. We discretize the gradi-110

ent flow in Eqn. 9 using the Euler method [18] with step size ∆t(x) = 1/
∫
Ω

(
k(x, y) + k(y, x)

)
dy111

and obtain the following update112

u(x,∆t(x)) = u(x, 0) + ∆t(x)

∫
Ω

(
u(y, 0)− u(x, 0)

)(
k(x, y) + k(y, x)

)
dy

=

∫
Ω

(
k(x, y) + k(y, x)

)
u(y, 0)∫

Ω

(
k(x, y′) + k(y′, x)

)
dy′

dy =

∫
Ω

K(x, y)v(y)∫
Ω
K(x, y′)dy′

dy. (10)

Here, K(x, y) := k(x, y)+k(y, x) is a symmetric kernel and u(y, 0) = v(y) since u is initialized at113

t = 0 with v as aforementioned. Let k(x) := [k1(x), . . . , kDqk
(x)]T be a real vector-valued function,114

k : Ω → RDqk , k ∈ L2(Ω). Similar to u(x) and v(x), we can discretize k(x) on a 1-D grid to attain115

the key vectors k(1), . . . ,k(N) ∈ RDqk , which form the key matrix K := [k(1), · · · ,k(N)]⊤ ∈116

RN×Dqk in self-attention as defined in Eqn. 2. We choose K(x, y) = exp
(
k(x)Tk(y)/

√
Dqk

)
and117

rewrite Eqn. 10 as follows118

u(x,∆t(x)) =

∫
Ω

exp
(
k(x)Tk(y)/

√
Dqk

)∫
Ω
exp
(
k(x)Tk(y′)/

√
Dqk

)
dy′

v(y)dy. (11)

Estimating the integrals in Eqn. 11 via Monte-Carlo approximation using the key vectors119

k(1), . . . ,k(N) ∈ RDqk and and value vectors v(1), . . . ,v(N) ∈ RD, we obtain120

u(x,∆t(x)) ≈
N∑
j=1

exp
(
k(x)Tk(j)/

√
Dqk

)∑N
j′=1 exp

(
k(x)Tk(j′)/

√
Dqk

)v(j). (12)

Discretizing u(x,∆t(x)) on another 1-D grid, we attain121

u(i) ≈
N∑
j=1

exp
(
k(i)Tk(j)/

√
Dqk

)∑N
j′=1 exp

(
k(i)Tk(j′)/

√
Dqk

)v(j)
=

N∑
j=1

softmax
(
k(i)⊤k(j)/

√
Dqk

)
v(j), i = 1, . . . , N. (13)

Comparing Eqn. 13 and Eqn. 3, we observe that Eqn. 13 implement a symmetric self-attention, in122

which the query matrix Q and the key matrix K are the same, i.e. WQ = WK where WQ and123

WK are the linear projections that map the input sequence X into Q and K as given in Eqn. 1. This124

symmetry of the attention scores is desirable in some image processing tasks due to the symmetric125

similarities between pixels, but can be relaxed for other tasks. To break the symmetry of attention126

scores in Eqn. 13, we replace the key vectors k(i) by the query vectors q(i), i = 1, . . . , N , to obtain127

the exact formula of self-attention given by Eqn. 3. The following theorem summarizes our results:128
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Theorem 1 (Self-attention as a Gradient Descent Step to Minimize a Nonlocal Functional). Given129

the nonlocal functional J(u) = 1
2

∫
Ω×Ω

∥u(x) − u(y)∥22k(x, y)dxdy of a vector-valued function130

u : Ω → RD, u ∈ L2(Ω), and let K(x, y) := k(x, y)+ k(y, x) = exp
(
k(x)Tk(y)/

√
Dqk

)
, where131

k : Ω → RDqk , k ∈ L2(Ω). Then, taking a gradient descent step on u at time t = 0, where132

u(x, 0) = v(x), with an adaptive step size ∆t(x) :=
1∫

Ω

(
k(x, y) + k(y, x)

)
dy

to minimize J is133

equivalent to updating u via a symmetric self-attention134

u(x,∆t(x)) =

N∑
j=1

softmax
(
k(x)⊤k(j)/

√
Dqk

)
v(j),

which results in135

u(i) =

N∑
j=1

softmax
(
k(i)⊤k(j)/

√
Dqk

)
v(j), i = 1, . . . , N. (14)

Here, u(n), v(n), and u(n), n = 1, . . . , N , are the key, value, and output vectors in self-attention,136

respectively. Breaking the symmetry of the attention scores by replacing k(i) with q(i), i = 1, . . . , N ,137

in Eqn. 14, we obtain the exact formula of self-attention138

u(i) =
N∑
j=1

softmax
(
q(i)⊤k(j)/

√
Dqk

)
v(j), i = 1, . . . , N.

Remark 1. In Eqn. 9, the change in u at position x is proportional to the sum of differences between139

u(x) and u at other position in the domain Ω. In particular, when u(x) is smaller or larger than the140

values at other positions, it will increase or decrease, respectively. This is analogous to a diffusion141

process in which particles or substances move from high-concentration to low-concentration regions.142

It has been proved that a diffusion process converges to a saturating state in which the concentrations143

at all positions are the same. This suggests that u(x) tends to suffer from the over-smoothing issue.144

2.2 Random Walk Analysis of Over-smoothing145

The diffusion process and random walk are closely related concepts, as diffusion can be seen as146

a collective behavior of numerous random walks performed by individual particles or molecules.147

Inspired by the analogy between the dynamics of u in Eqn 9 and a diffusion process, as well as the148

relationship between diffusion process and random walk, in this section, we show the connection149

between the evolution of u and a random walk. By adopting a random walk perspective on graph150

neural network [47], we demonstrate that u(x) under the dynamics given in Eqn 9 suffers from151

over-smoothing.152

153

Recall from the gradient flow in Eqn 9, by using Euler method discretization, after k update steps154

starting from the initial u(x, 0) = v(x), with adaptive stepsize ∆t = 1/

∫
Ω

(
k(x, y) + k(y, x)

)
dy,155

we obtain the following156

u(x, k∆t(x)) =

∫
Ω

K(x, y)u(y, (k − 1)∆t(x))∫
Ω
K(x, y′)dy′

dy. (15)

Discretizing u(x, k∆t(x)) and using Monte-Carlo approximation for the integrals in 15 , we attain157

u(k)(i) =

N∑
j=1

Aiju
(k−1)(j) (16)

where Aij is computed using the keys and queries as either softmax
(
k(i)⊤k(j)/

√
Dqk

)
or158

softmax
(
q(i)⊤k(j)/

√
Dqk

)
. Let {B(k)(i)}k∈K be a random walk on {v(i)}Ni=1 as defined:159

B(0)(i) = v(i)

P(B(k+1)(l) = v(j)|B(k)(l) = v(i)) = Aij

(17)

where B(k)(n) is the random value of a k-step walk, starts at node n, and v(n) is the initial value160

at node n, respectively, for n = 1, 2, . . . , N . The transition probability A is defined as above. To161

investigate the connection between the update process of u and the random walk defined in 17, we162

show that, for i = 1, 2, . . . , N , after k update steps as in 16, with initial value u(0)(i) = v(i), u(i)(k)163

equals to the expected value of the k-step walk, starting at node i:164
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Lemma 1. Let u(k)(i) defined in 16 and {B(k)(i)}k∈K is the random walk defined by 17. Then165

u(k)(i) = E[B(k)(i)]. (18)

We next present the Lemma 2 which is necessary to show the convergence of u(k)(i).166

Lemma 2. The random walk B(k)(i) in 17 with the transition matrix A either be167

Aij = softmax
(
k(i)⊤k(j)/

√
Dqk

)
or Aij = softmax

(
q(i)⊤k(j)/

√
Dqk

)
, has a unique sta-168

tionary distribution πππ = [π1, π2, . . . , πN ] such that πi := P (B(k)(j) = v(i)), for i, j = 1, 2, . . . , N ,169 ∑N
i=1 πi = 1, and πππT = πππTA.170

171

If Aij = softmax
(
k(i)⊤k(j)/

√
Dqk

)
, the stationary distribution is:172

πππ =

(
d1∑N
j=1 dj

,
d2∑N
j=1 dj

, . . . ,
dn∑N
j=1 dj

)
, (19)

where di =
∑N

j=1 exp
(
k(i)⊤k(j)/

√
Dqk

)
, k(1),k(2), . . . ,k(N) are the key vectos.173

174

In general, πi can be found by finding the left eigenvector of A corresponding to the domi-175

nant eigenvalue 1.176

From the Lemma 1 and Lemma 2, we see that, for all i = 1, 2, . . . , N ,177

u(k)(i) = E[B(k)(i)] =

N∑
j=1

v(j)P(B(k−1)(i) = v(j)) →
N∑
j=1

πjv(j) =: v̄. (20)

as k → ∞. This shows that when k increases, u(i)(k) converges to a constant vector, indicating that178

u(x), under the dynamic in 9, suffers from over-smoothing.179

3 NeuTRENO: Mitigating the Over-smoothing in Transformers via180

Minimizing a Regularized Functional181

In Section 2.1, we have shown that self-attention implicitly performs a gradient descent step to182

minimize the nonlocal functional J(u) in Eqn. 5, which results in the diffusive characteristics of u183

and causes the over-smoothing phenomenon in transformers, as proved in Section 2.2. Fortunately,184

our objective is not to minimize J(u) but the energy/regularized functional E(u,f) defined by185

Eqn. 5. This regularized functional consists of not only J(u) but also the convex fidelity term186

G(u,f) = λ
2

∫
Ω
∥u(x)− f(x)∥22dx. This fidelity term aims to preserve the relevant information in187

the observed noisy signal f(x) by penalizing solution u(x) that deviates significantly from f(x),188

thereby mitigating the effects of over-smoothing caused by minimizing J(u).189

In this section, we will derive our Neural Transformer with a Regularized Nonlocal Functional190

(NeuTRENO) by minimizing the regularized functional E(u,f). We then provide a theoretical result191

to prove that NeuTRENO does not suffer from over-smoothing. Recall from Eqn. 5 that E(u,f) is192

given by193

E(u,f) = J(u) +G(u,f) = J(u) +
λ

2

∫
Ω

D∑
j=1

(uj(x)− fj(x))
2dx

Following a similar derivation as in Section 2.1 (see Appendix C for the detailed derivation), we194

obtain the following gradient flow when minimizing E(u,f) using gradient descent195

du(x, t)

dt
= −∇uE(u,f) = −∇uJ(u)− λ

(
u(x)− f(x)

)
, (21)

NeuTRENO-attention is an Euler Discretization of the Gradient Flow Given in 21. Following196

the similar derivation in Section 2.1, we discretize the gradient flow in Eqn. 21 using the Euler197

method [18] with step size ∆t(x) = 1/
∫
Ω

(
k(x, y) + k(y, x)

)
dy and initializing u at t = 0 with198

v(x), i.e., u(x, 0) = v(x). Choosing λ = λ̃/∆t(x), we obtain the following update199

u(x,∆t(x)) = u(x, 0)−∆t(x)∇uJ − λ∆t(x)
(
u(x, 0)− f(x)

)
=

∫
Ω

K(x, y)v(y)∫
Ω
K(x, y′)dy′

dy + λ̃
(
f(x)− v(x)

)
. (22)
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Figure 2: Our proposed NeuTRENO model adds a proportion of the difference between the values of the first
and that of the current layer to the self-attention’s output at each layer.

We choose the observed noisy signal f(x) = v0(x) where v0(x) is v(x) at the first layer in the200

transformer model. The update in Eqn. 22 becomes201

u(x,∆t(x)) =

∫
Ω

K(x, y)v(y)∫
Ω
K(x, y′)dy′

dy + λ̃
(
v0(x)− v(x)

)
. (23)

Applying the Monte-Carlo method to approximate the integrals in Eqn. 23 and discretizing202

u(x,∆t(x)), v(x), and v0(x) on a 1-D grid, we attain the following new formula for calculat-203

ing symmetric self-attention:204

u(i) =

N∑
j=1

softmax
(
k(i)⊤k(j)/

√
Dqk

)
v(j) + λ̃(v0(i)− v(i)), i = 1, . . . , N. (24)

Its corresponding asymmetric self-attention is obtained by replacing the key vectors k(i) with the205

query vectors q(i), i = 1, . . . , N , and given by206

u(i) =

N∑
j=1

softmax
(
q(i)⊤k(j)/

√
Dqk

)
v(j) + λ̃(v0(i)− v(i)), i = 1, . . . , N. (25)

Leveraging Eqn. 25, we define the Neural Transformer with a Regularized Nonlocal Functional207

(NeuTRENO) as follows.208

Definition 1 (Neural Transformer with a Regularized Nonlocal Functional (NeuTRENO)). Given a209

set of key and value vectors {kℓ(j),vℓ(j)}Nj=1 in each layer ℓ, ℓ = 1, . . . , L, for each query vector210

qℓ(i), i = 1, . . . , N , in the same layer, the self-attention unit at layer ℓ in a Neural Transformer with211

a Regularized Nonlocal Functional (NeuTRENO) computes the corresponding output vector uℓ(i) of212

the query qℓ(i) by the following attention formula:213

uℓ(i) =

N∑
j=1

softmax
(
qℓ(i)⊤kℓ(j)/

√
Dqk

)
vℓ(j) + λ̃(v0(i)− vℓ(i)), i = 1, . . . , N. (26)

where v0(1), . . .v0(N) ∈ RD are the value vectors in the first layer of NeuTRENO.214

Fig. 2 illustrates the architecture of NeuTRENO.215

Proposition 1. The evolution of u(x) under the dynamic in 21 does not converge to a constant vector.216

Proposition 1 indicates that our NeuTRENO mitigates the over-smoothing issue, suggesting the217

benefit of our method.218

4 Experimental Results219

In this section, we empirically demonstrate the advantages of our proposed NeuTRENO approach220

across various tasks, including ImageNet classification [14], ADE20K image segmentation [61],221

and language modeling on the WikiText-103 [32]. Our aim to show: (i) NeuTRENO significantly222

outperforms the transformer baseline with softmax-attention defined in 2 across various tasks;223

moreover, NeuTRENO surpass FeatScale, a vision transformer that addresses over-smoothing,224

combining NeuTRENO with FeatScale is beneficial; (ii) the advantages of incorporating our proposed225

method with pre-trained models. We also demonstrate the benefits of our NeuTRENO in the symmetry226

setting and we point to Appendix D for the results. Throughout our experiments, we compare the227

performance of our proposed models with baselines of the same configuration. For additional details228

regarding datasets, models, and training procedures, please refer to Appendix A.229
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Table 1: Top-1 and Top-5 accuracy (%) of NeuTRENO DeiT vs. DeiT on the ImageNet benchmark. We also
present the performance of adapting NeuTRENO to the pre-trained DeiT baseline, NeuTRENO Adaptation. In
addition, we compare NeuTRENO with FeatScale [53] and incorporate our method with FeatScale model.

Model/Metric Top-1 Acc (%) Top-5 Acc (%)

Softmax DeiT 72.17 91.02
NeuTRENO-DeiT 73.01 91.56
NeuTRENO Adaptation 72.63 91.38
DeiT + FeatScale 72.346 91.22
NeuTRENO DeiT + FeatScale 73.23 91.73

Table 2: Single-scale (SS) MIoU and multi-scale MIoU (MS) of the NeuTRENO DeiT vs. the DeiT on the
ADE20K image segmentation.

Model/Metric SS MIoU MS MIoU (%)

Softmax DeiT 35.72 36.68
NeuTRENO DeiT 37.24 38.06

Table 3: Test and valid perplexity (Test PPL and Valid PPL) on WikiText-103 of NeuTRENO compared to the
softmax transformer. Our proposed method achieves a significantly better performance PPL than the baseline.

Method/Metric Valid PPL Test PPL
Softmax Transformer 33.15 34.29
NeuTRENO 32.60 33.70

Object classification on ImageNet. To demonstrate the advantage of our NeuTRENO method, we230

compare it with the DeiT baseline [48] on the ImageNet image classification task. Our NeuTRENO231

DeiT surpasses the DeiT baseline, as shown in Table 1. Notably, our NeuTRENO DeiT achieves232

significantly higher performance in terms of both Top-1 Accuracy and Top-5 Accuracy. We also233

compare our method with FeatScale [53], a vision transformer model addressing over-smoothing (see234

Table 1). Our NeuTRENO significantly outperforms FeatScale, and combining NeuTRENO with235

FeatScale leads to substantial improvements. These results confirm the benefits of our model.236

Image Segmentation on ADE20K dataset. To further validate the advantages of our proposed237

methods, we compare the performance of the Segmenter models [45] using the NeuTRENO DeiT238

and DeiT backbones the on ADE20K image segmentation task [60], as shown in Table 2. The results239

demonstrate the substantial performance improvements achieved by utilizing the NeuTRENO DeiT240

backbone over the DeiT backbone, in terms of both single-scale (SS) MIoU and multi-scale (MS)241

MIoU metrics. These results strongly emphasize the effectiveness of our NeuTRENO approach in242

enhancing image segmentation performance.243

Language Model on WikiText-103. In addition to computer vision tasks, we also evaluate the effec-244

tiveness of our model on a large-scale natural language processing application, specifically language245

modeling on WikiText-103. Our NeuTRENO language model demonstrates better performance in246

terms of both test perplexity and valid perplexity when compared to the softmax transformer language247

model [56]. These findings, combined with the results obtained across various tasks, empirically248

confirm the significant benefits of our NeuTRENO models.249

Combine with pre-trained models. Furthermore, our proposed method is also beneficial to combine250

with pre-trained models. To empirically demonstrate that we incorporate NeuTRENO with pre-trained251

DeiT and fine-tune on the ImageNet dataset with one-third number of epochs that are used in training.252

The result is presented in Table 1, showing that combined with our method improves both the Top-1253

and Top-5 accuracies of the pre-trained models.254

5 Empirical Analysis255

Applying Softmax-Attention Reduces the functional J(u). We present evidence supporting that256

the employment of softmax attention minimizes the functional J(u). Initially, we observe that257

the average cosine similarity between the numerical approximation of ∇uJ(u) using symmetric258

or asymmetric kernel K(x, y) for both the trained Sym-DeiT (using symmetric self-attention 14)259

and DeiT models, closed 1, as shown in Table 4. This suggests that reversing the direction of the260

asymmetric approximation effectively decreases J(u). Considering that softmax attention takes steps261

in this reversed direction numerically, its application leads to a reduction in J(u). This is further262

substantiated by Fig. 3, which demonstrates a decrease in J(u) as the depth of the trained DeiT263

increases when softmax attention is employed. More details of this analysis are in Appendix E264

8



Layer Layer

Train Test

Figure 3: The average value of functional J(u) over 1000 training (Left) samples and test (Right) samples.
When softmax attention is applied, the functional decreases as the depth of the trained DeiT increases.
Table 4: The average cosine similarity between the numerical approximation of ∇J(u)(x) using symmetric
or asymmetric kernel K(x, y), for the trained Sym-DeiT and softmax DeiT models. The metric is evaluated
on 1000 training and 1000 test data samples. The average score close to 1 shows a strong alignment between
symmetric and asymmetric gradient approximations, suggesting that reversing the direction of the asymmetric
approximation effectively reduces the functional J(u).

Model Training data Test data

Sym-DeiT 0.982 0.976
Softmax DeiT 0.973 0.964

Over-smoothing Analysis. We empirically illustrate the effectiveness of NeuTRENOs in mitigating265

the over-smoothing problem in transformers. Fig. 1 compares the cosine similarity between token266

representations across layers for both NeuTRENO and softmax baseline models, specifically focusing267

on the Imagenet classification task (Left) and ADE20K image segmentation (Right). The token268

features extracted by NeuTRENOs exhibit significantly lower similarity, particularly in the final layers.269

This finding highlights the ability of NeuTRENOs to address the over-smoothing issue and improve270

the diversity of token representations. We provide more details of this analysis in Appendix E.271

6 Related Work272

Over-smoothing in Transformers. Over-smoothing in deep transformers has been observed in273

various domain and applications from natural language processing [44] to computer vision [53, 16].274

Although this issue substantially limits the representation capacity of the models, causes redundancy,275

and deteriorates models’ performance, research addressing the issue is limited. [44] observes the276

phenomenon in BERT [15], a deep language model, and explores over-smoothing through the graph277

perspective. The work utilizes hierarchical fusion strategies by preserving the output of self-attention278

through all layers, which is memory costly. On the other hand, [53, 16] investigate over-smoothing279

in the image domain through the lens of Fourier spectrum, showing that self-attentions are low-pass280

filters, retaining only low-frequency, causing over-smoothed outputs. Our work is an orthogonal281

explanation of the previous work, providing a variational perspective of the phenomenon and deriving282

the novel NeuTRENO method to overcome over-smoothing.283

Nonlocal Functionals for Image Processing. Total variation [40] is well-known as an image-284

denoising technique. It denoises a noisy image by solving a constraint optimization problem. The285

method is also related to PDE-flow-based image-denoising techniques [20], namely isotropic and286

anisotropic diffusion [55] models. The method is edge preserving, meaning to avoid over-blurring287

egdes’ information [6]. Nonlocal functionals [26, 20] is considered as an extension of total variation288

to a nonlocal scale. Nonlocal functional and the edge preservation property are the motivation of our289

work to explain and overcome over-smoothing in transformers.290

7 Concluding Remarks291

In this paper, we establish a nonlocal variational denoising framework for self-attention. From this292

variational perspective, we explain over-smoothing in self-attention, which hinders the representation293

capacity of transformer models. We also derive the novel Neural Transformer with a Regularized294

Nonlocal Functional (NeuTRENO) to alleviate the over-smoothing. We empirically verify the benefits295

of NeuTRENO with a wide range of large-scale applications including ImageNet object classification,296

ADE20K object segmentation, and WikiText-103 language modeling. A limitation of our paper297

is that the robustness of NeuTRENO to perturbed data has not been addressed. It is interesting to298

explore if regularized nonlocal functional can also help improve the robustness of transformer models.299

We leave this exciting research idea as future work.300
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Supplement to “Mitigating Over-smoothing in Transformers via480

Regularized Nonlocal Functionals”481

We made a typo in Proposition 1 in the main text submission. We provide the corrected version of482

Proposition 1 below and in the main text above.483

Proposition 1. The evolution of u(x) under the dynamic in 21 does not converge to a constant vector.484

The proof for Proposition 1 is given in Appendix B.3.485

We also made a typo in Fig. 2 in our main text submission. The outputs of self-attention in that figure486

should be u1, u2, and u3 instead of h1, h2, and h3. We have corrected this typo in the main text487

above.488

489
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reproduce our experimental results is included in our Supplementary Material submission.515
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A.1 Image Classification on Imagenet516

Datasets and Metrics. The ImageNet dataset [14, 41] comprises 1.28 million training images and517

50, 000 validation images, encompassing the classification of 1000 categories. The evaluation metrics518

used for performance assessment are the top-1 and top-5 accuracies.519

Models and Baselines. Our baseline model is the DeiT-tiny model [48], which consists of520

12 transformer layers, 3 attention heads per layer, and a model dimension of 192. For model521

setting and setting and configuration, we follow [48]. Their implementation is available at522

https://github.com/facebookresearch/deit. The λ̃ used for our NeuTRENO method is 0.6.523

A.2 Image Segmentation on ADK20 dataset524

Datasets and Metrics. The ADE20K dataset is recognized for its inclusion of challenging scenes525

with fine-grained labels, making it one of the most demanding semantic segmentation datasets. The526

training set consists of 20,210 images encompassing 150 semantic classes. Additionally, there are527

2,000 images in the validation set and 3,352 images in the test set. This in task the Single-scale mean528

Intersection over Union (SS mIoU) and the Multi-scale (MS mIoU).529

Models and baselines. The training configuration and setting for our models are followed by [45].530

The baseline model is finetuned with the pretrained DeiT-tiny backbone while our segmenter model531

used the pretrained NeuTRENO DeiT-tiny, with λ̃ = 0.6.532

A.3 Language Modeling on WikiText-103533

Datasets and Metrics. The WikiText-103 dataset consists of articles extracted from Wikipedia534

and is specifically designed to capture long contextual dependencies. The training set comprises535

approximately 28, 000 articles, totaling 103 million running words. Each article contains text blocks536

consisting of approximately 3, 600 words. The validation and test sets contain 218, 000 and 246, 000537

running words, respectively, with each set consisting of 60 articles and approximately 268, 000 words.538

Our experiment follows the standard setting [32, 42], which involves dividing the training data into539

independent long segments of L words. For evaluation, we employ a batch size of 1 and process540

the text sequence using a sliding window of size L. When computing perplexity (PPL), we consider541

only the last position, except for the first segment where all positions are evaluated, following the542

approach in [1, 42].543

Models and baselines. For our language modeling implementation, we rely on the publicly available544

code https://github.com/IDSIA/lmtool-fwp developed by [42]. In our experiments, we set the dimen-545

sions of keys, values, and queries to 128, while the training and evaluation context length is set to546

256. In this experiment, λ̃ = 0.4 yields the best performance of NeuTRENO language model.547

B Technical Proofs548

B.1 Proof of Lemma 1549

For all i = 1, . . . , N , we have E[B(0)(i)] = v(i). Assume that E[B(k)(i)] = u(k)(i), then550

E[B(k+1)(i)] =

N∑
j=1

v(j)P(B(k+1)(i) = v(j))

=

N∑
j=1

v(j)

N∑
l=1

P(B(k+1)(i) = v(j)|B(1)(i) = v(l))P(B(1)(i) = v(l))

=

N∑
j=1

vj

N∑
l=1

P(B(k)(l) = v(j))P(B(1)(i) = v(l)|B(0)(i) = v(i))

=

N∑
j=1

v(j)

N∑
l=1

AilP(B(k)(l) = v(j))

=

N∑
l=1

AilE[B(k)(l)] =

N∑
l=1

Ailu
(k)(l)

= u(k+1)(i).

Thus, by induction, we obtain the conclusion of the lemma.551
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B.2 Proof of Lemma 2552

Since the transition matrix A ∈ RN×N is right-stochastic, its largest eigenvalue is 1 (see Theorem553

4.1 in [4]). Also, A is a regular positive matrix since its elements are positive. Thus, the Perron-554

Frebenius theorem [7] implies the existence of a unique probability distribution πππ, which is a positive555

left eigenvector of the transition matrix A associated with its largest eigenvalue 1. In particular, in556

the case of symmetricity constraint, πππ can be chosen as follows557

πππ =

(
d1∑N
j=1 dj

,
d2∑N
j=1 dj

, . . . ,
dn∑N
j=1 dj

)
,

where di =
∑N

j=1 exp
(
k(i)⊤k(j)/

√
Dqk

)
. It is easy to see that558

N∑
i=1

πiAij =

N∑
i=1

di∑N
l=1 dl

exp
(
k(i)⊤k(j)/

√
Dqk

)
di

=

∑N
i=1

(
exp
(
k(i)⊤k(j)/

√
Dqk

))
∑N

l=1 dl

=
dj∑N
l=1 dl

= πj .

As a consequence, πππ must be the unique stationary distribution of the random walk {B(k)(i)}k∈K .559

This concludes the proof.560

B.3 Proof of Proposition 1561

Recall from the gradient flow in Eqn 21, by using the method of Euler discretization, af-562

ter k update steps starting from the initial u(x, 0) = v(x) with adaptive stepsize ∆t =563

1/
∫
Ω

(
k(x, y) + k(y, x)

)
dy and by choosing λ = λ̃/∆t(x), we obtain the following564

u(x, k∆t(x)) = u(x, (k − 1)∆t(x))−∆t(x)∇uJ − λ∆t(x)
(
u(x, (k − 1)∆t(x))− f(x)

)
=

∫
Ω

K(x, y)u(y, (k − 1)∆t(x))∫
Ω
K(x, y′)dy′

dy + λ̃
(
f(x)− u(x, (k − 1)∆t(x))

)
. (27)

Discretizing u(x, k∆t(x)) and using Monte-Carlo approximation for the integrals in 27 , we obtain565

u(k)(i) =

N∑
j=1

Aiju
(k−1)(j) + λ̃

(
f(i)− u(k−1)(i)

)
, (28)

where Aij is computed using the keys and queries as either softmax
(
k(i)⊤k(j)/

√
Dqk

)
or566

softmax
(
q(i)⊤k(j)/

√
Dqk

)
.567

568

Suppose that u(k)(i), defined as Eqn. 28, converges to a constant vector ū as k → ∞. We569

have570

571

572 u(k+1)(i)− u(k+1)(j)

=

N∑
l=1

Ailu
(k)(l)−

N∑
l=1

Ajlu
(k)(l) + λ̃(u(k)(j)− u(k)(i)) + λ̃(f(i)− f(j))

=
( N∑
l=1

Ailu
(k)(l)− u(k)(i)

N∑
l=1

Ail

)
−
( N∑
l=1

Ajlu
(k)(l)− u(k)(j)

N∑
l=1

Ajl

)
+ (λ̃− 1)(u(k)(j)− u(k)(i)) + λ̃(f(i)− f(j))

=

N∑
l=1

Ail(u
(k)(l)− u(k)(i))−

N∑
l=1

Ajl(u
(k)(l)− u(k)(j)) + (λ̃− 1)(u(k)(j)− u(k)(i))

+ λ̃(f(i)− f(j))

(29)
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Table 5: Top-1 and Top-5 accuracy (%) of Sym-NeuTRENO DeiT vs. Sym-DeiT on the ImageNet classification
task. The Sym-NeuTRENO DeiT models significantly outperform the Sym-DeiT in terms of accuracy, indicating
the benefit of NeuTRENO method.

Model/Metric Top-1 Acc (%) Top-5 Acc (%)

Sym-DeiT 71.14 90.54
Sym-NeuTRENO DeiT 72.07 91.22

Since u(k)(i) → ū, for i = 1, 2, . . . , N , as k → ∞, we have


(u(k+1)(i)− u(k+1)(j)) → 0

(u(k)(l)− u(k)(i)) → 0

(u(k)(l)− u(k)(j)) → 0

(u(k)(j)− u(k)(i)) → 0

573

as k → ∞. This is a contradiction since while the LHS of 29 approaches 0, its RHS approaches574

λ̃(f(i)− f(j)), which is not 0 in general. Thus, we obtain the conclusion of Proposition 1.575

C Derivation of Gradient of E as Given in Eqn. 21576

Taking the gradient of E(u,f) with respect to u, we obtain577

∇uE = ∇uJ +

[
∂G

∂u1
,
∂G

∂u2
, . . . ,

∂G

∂uD

]T
. (30)

The partial derivative ∂G/∂uj , j = 1, 2, . . . , D, is defined through its dot product with an arbitrary578

function hj ∈ L2(Ω) as follows579

∂G

∂uj
· hj(x) =

d

dτ
G(uj + τhj)

∣∣
τ=0

=
λ

2

(
d

dτ

∫
Ω

(uj(x)− fj(x) + τhj(x))
2dx

) ∣∣∣∣
τ=0

= λ

∫
Ω

(uj(x)− fj(x))hj(x)dx.

Thus, the Frechet derivative of F with respect to uj is given by580

∂G

∂uj
= λ(uj(x)− fj(x)) (31)

Substituting the formula for ∂G/∂uj in Eqn. 31 into Eqn. 30 for ∇uE(u,f), we obtain the following581

gradient flow582

du(x, t)

dt
= −∇vE(u,f) = −∇uJ(u)(x) + λ

(
f(x)− u(x)

)
, (32)

where t is a dummy time variable and −∇uJ(u) is defined as in 9.583

D Results of Symmetric Setting584

In this section, we show that NeuTRENO significantly improves the performance of a symmetric585

transformer baseline, which utilizes symmetric self-attention. We refer to the DeiT with symmetric586

attention, defined in 14, as Sym-DeiT and the Sym-DeiT combined with our NeuTRENO method as587

Sym-NeuTRENO DeiT.588

589

Object classification on Imagenet To further illustrate the advantage of our NeuTRENO590

method, we compare Sym-NeuTRENO DeiT with the Sym-DeiT baseline on the ImageNet image591

classification task. Our Sym-NeuTRENO DeiT outperforms the Sym-DeiT baseline, as shown in592

Table 5. Notably, the Sym-NeuTRENO DeiT achieves higher performance in terms of both top-1593

accuracy and top-5 accuracy than Sym-DeiT baseline. These results further confirm the benefits of594

our proposed NeuTRENO model.595

Image Segmentation on ADE20K dataset We also compare the performance of the Segmenter596

models [45] using the Sym-NeuTRENO DeiT backbone with models using the Sym-DeiT backbone597

on ADE20K image segmentation [60], as shown in Table 6. The results demonstrate the substantial598

performance improvements achieved by utilizing the Sym-NeuTRENO DeiT backbone compared599

to the Sym-DeiT backbone in terms of both single-scale (SS) MIoU and multi-scale (MS) MIoU600

metrics. This result further validates the advantages of our NeuTRENO models in enhancing image601

segmentation performance in the symmetric setting.602
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Table 6: Single-scale (SS) MIoU and multi-scale (MS) MIoU of the Sym-NeuTRENO DeiT vs. Sym-DeiT. The
Sym-NeuTRENO DeiT model is beneficial since they significantly outperform the Sym-DeiT.

Model/Metric SS MIoU MS MIoU (%)

Sym-DeiT 35.18 36.00
Sym-NeuTRENO DeiT 35.68 36.39

Table 7: Top-1 and Top-5 accuracy (%) of NeuTRENO DeiT-small vs. DeiT-small on the ImageNet benchmark.
The NeuTRENO DeiT-small significantly outperform the DeiT-small in terms of accuracy. We also compare
NeuTRENO DeiT-small with DeiT plus FeatScale, a vision transformer model that addresses over-smoothing,
showing the advantage of NeuTRENO. The accuracies reported in [48] for DeiT-small and [53] for DeiT-small
plus FeatScale, respectively, are in parentheses.

Model/Metric Top-1 Acc (%) Top-5 Acc (%)

DeiT-small 79.97 (79.9) 95.05 (95.0)
DeiT-small + FeatScale 79.96 (80.9) 95.06
NeuTRENO DeiT-small 80.68 95.30

E Additional Details on the Empirical Analysis in Section 5603

In this section, we provide the details for the empirical analysis in Section 5.604

E.1 Average Cosine Similarity between Gradient Approximations605

To produce the results in Table 4, we derive the approximation for the gradient ∇uJ(u), from Eqn 9,606

at time t = 0:607

∇uJ(u) =

∫
Ω

(
u(x, 0)− u(y, 0)

)
K(x, y)dy =

∫
Ω

(
v(x)− v(y)

)
K(x, y)dy,

where K(x, y) := k(x, y) + k(y, x). Using Monte-Carlo approximation for the integral and608

choosing K(x, y) = exp
(
k(x)Tk(y)/

√
Dqk

)
, the symmetric approximation of the gradient609

is derived as
∑N

j=1

(
v(i) − v(j)

)
exp
(
k(i)Tk(j)/

√
Dqk

)
. Otherwise, by choosing K(x, y) =610

exp
(
q(x)Tk(y)/

√
Dqk

)
, the assymmetric approximation of the gradient is derived as

∑N
j=1

(
v(i)−611

v(j)
)
exp
(
q(i)Tk(j)/

√
Dqk

)
. In this analysis, we take the dot product between the symmetric and612

asymmetric approximation of the gradient ∇uJ(u) and average these dot products over positions.613

We finally report the average cosine similarity over 1000 training data and 1000 test data, as shown in614

Table 4.615

E.2 Average Value of Function616

In order to report the average value of function J(u) in Fig. 3, we follow the process of computing617

J(u) for 1000 data points for each transformer block. Subsequently, the average value is reported for618

each layer. This procedure is carried out for both the training and test datasets.619

E.3 Over-smoothing Analysis620

The average cosine similarity between all pairs of token’s representations (xi,xj) in a sequence is621

computed as622

1

N(N − 1)

∑
i ̸=j

xT
i xj

∥xi∥2∥xj∥2
.

The result is then averaged over 1000 randomly chosen test data in ImageNet and ADE20K. The623

result is then reported for each layer, as in Fig. 1.624

F Additional Experimental Results625

F.1 Object classification on Imagenet with DeiT-small baseline626

In this section, we show the advantages of our method when we further scale up the model by doubling627

the model dimension and the number of heads compared to that of the DeiT-tiny. In particular, the628

NeuTRENO DeiT-small achieves better results in both Top-1 Accuracy and Top-5 Accuracy, as629

shown in Table 7. Our method also outperforms DeiT plus FeatScale. Here, we did our best to630

reproduce the results of DeiT-small plus FeatScale [53]. In Table 7, we include our reproduced results631

and the results reported in [48] for DeiT-small and [53] for DeiT-small plus FeatScale, respectively.632

F.2 Beyond Softmax-Attention633

We show that NeuTRENO can be combined with other baseline attention mechanisms other than634

softmax attention. In particular, our NeuTRENO significantly improves transformer-based models635
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Table 8: Accuracy of NeuTRENO vs.Kernel Transformerr on the CIFAR-10 dataset [27]. The NeuTRENO
model significantly outperforms the in terms of accuracy.

Model/Metric Accuracy (%)

Kernel Transformer 75.89
NeuTRENO 76.75
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Figure 4: Plot of attention matrices attained from layer [1, 6, 12] of both the pretrained DeiT-tiny baseline (Left)
and the NeuTRENO DeiT-tiny (Right) models, for each head, using a random sample from the Imagenet dataset.

DeiT NeuTRENO DeiT

C
os

in
e 

S
im

ila
rit

y 
of

 A
tte

nt
io

n 
M

at
ric

es
 b

et
w

ee
n 

la
ye

rs

Layer
Figure 5: The average cosine similarity of attention matrices between two successive layers, over 1000 randomly
sampled data, of the trained NeuTRENO DeiT and trained DeiT models on the Imagenet classification task.

with kernel attention [43, 49], on the CIFAR-10 image classification task [27], as shown in Table 8.636

This further confirms the benefits of our model. Here, both models share the same configuration637

regarding training, the model’s size, and the model’s depth (12 layers).638

G Additional Empirical Analysis Results639

This section provides extra empirical analysis to further demonstrate the benefits of NeuTRENO640

models in mitigating over-smoothing.641

G.1 Visualizing Attention Matrices642

Fig. 4 displays the 3-head attention matrices obtained from layer [1, 6, 12] of both the pre-trained643

NeuTRENO DeiT-tiny and the DeiT-tiny baseline models, using a random sample from the ImageNet644

dataset.645

G.2 Head Redundancy between Layers646

NeuTRENO mitigates head redundancy between layers, particularly in the final transformer layers647

where over-smoothing is most pronounced. Fig. 5 shows the average cosine similarity of attention648
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Figure 6: The average cosine similarity between token representations of 12-layer randomly-initialized
NeuTRENO DeiT and DeiT models, on the Imagenet classification task. Here, 1000 data are randomly sampled
for the analysis.

matrices between two successive layers, over 1000 randomly sampled data. The trained NeuTRENO649

DeiT obtains lower cosine similarity than that of the trained DeiT as the model depth increases.650

G.3 NeuTRENO Inherently Mitigates Over-smoothing, even without Training the Models651

Randomly-initialized NeuTRENO DeiT-tiny significantly reduces the average cosine similarity652

between token representations of 12-layer randomly-initialized DeiT-tiny model, as shown in Fig. 6,653

on the Imagenet classification task. This observation highlights the ability of our NeuTRENO models654

in mitigating over-smoothing.655

G.4 Efficiency Analysis656

We report the ratios of the floating-point operations per second (FLOPs), the inference memory, and657

the inference real-time running of NeuTRENO DeiT vs. DeiT per sample on the ImageNet dataset,658

which are 1.00005, 1.000002, 1.00013, respectively. This indicates that the significant gain in the659

performance of NeuTRENO does not come with the cost of efficiency.660
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