
Harnessing the Power of Choices in Decision Tree
Learning

Guy Blanc∗

Stanford
gblanc@stanford.edu

Jane Lange∗

MIT
jlange@mit.edu

Chirag Pabbaraju∗

Stanford
cpabbara@stanford.edu

Colin Sullivan∗

Stanford
colins26@stanford.edu

Li-Yang Tan∗

Stanford
lytan@stanford.edu

Mo Tiwari∗

Stanford
motiwari@stanford.edu

Abstract

We propose a simple generalization of standard and empirically successful decision
tree learning algorithms such as ID3, C4.5, and CART. These algorithms, which
have been central to machine learning for decades, are greedy in nature: they grow
a decision tree by iteratively splitting on the best attribute. Our algorithm, Top-k,
considers the k best attributes as possible splits instead of just the single best
attribute.We demonstrate, theoretically and empirically, the power of this simple
generalization. We first prove a greediness hierarchy theorem showing that for every
k ∈ N, Top-(k + 1) can be dramatically more powerful than Top-k: there are data
distributions for which the former achieves accuracy 1− ε, whereas the latter only
achieves accuracy 1

2 + ε. We then show, through extensive experiments, that Top-k
outperforms the two main approaches to decision tree learning: classic greedy
algorithms and more recent “optimal decision tree” algorithms. On one hand, Top-k
consistently enjoys significant accuracy gains over greedy algorithms across a wide
range of benchmarks. On the other hand, Top-k is markedly more scalable than
optimal decision tree algorithms and is able to handle dataset and feature set sizes
that remain far beyond the reach of these algorithms. The code to reproduce our
results is available at: https://github.com/SullivanC19/pydl8.5-topk.

1 Introduction

Decision trees are a fundamental workhorse in machine learning. Their logical and hierarchical
structure makes them easy to understand and their predictions easy to explain. Decision trees are
therefore the most canonical example of an interpretable model: in his influential survey [Bre01b],
Breiman writes “On interpretability, trees rate an A+”; much more recently, the survey [RCC+22]
lists decision tree optimization as the very first of 10 grand challenges for the field of interpretable
machine learning. Decision trees are also central to modern ensemble methods such as random
forests [Bre01a] and XGBoost [CG16], which achieve state-of-the-art accuracy for a wide range of
tasks.

Greedy algorithms such as ID3 [Qui86], C4.5 [Qui93], and CART [BFSO84] have long been the
standard approach to decision tree learning. These algorithms build a decision tree from labeled data
in a top-down manner, growing the tree by iteratively splitting on the “best” attribute as measured
with respect to a certain heuristic function (e.g., information gain). Owing to their simplicity, these

∗Authors ordered alphabetically.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



algorithms are highly efficient and scale gracefully to handle massive datasets and feature set sizes,
and they continue to be widely employed in practice and enjoy significant empirical success. For
the same reasons, these algorithms are also part of the standard curriculum in introductory machine
learning and data science courses.

The trees produced by these greedy algorithms are often reasonably accurate, but can nevertheless
be suboptimal. There has therefore been a separate line of work, which we review in Section 2, on
algorithms that optimize for accuracy and seek to produce optimally accurate decision trees. These
algorithms employ a variety of optimization techniques (including dynamic programming, integer
programming, and SAT solvers) and are completely different from the simple greedy algorithms
discussed above. Since the problem of finding an optimal decision tree has long been known to be
NP-hard [HR76], any algorithm must suffer from the inherent combinatorial explosion when the
instance size becomes sufficiently large (unless P=NP). Therefore, while this line of work has made
great strides in improving the scalability of algorithms for optimal decision trees, dataset and feature
set sizes in the high hundreds and thousands remain out of reach.

This state of affairs raises a natural question:

Can we design decision tree learning algorithms that improve significantly on
the accuracy of classic greedy algorithms and yet inherit their simplicity and
scalability?

In this work, we propose a new approach and make a case that provides a strong affirmative answer
to the question above. Our work also opens up several new avenues for exploration in both the theory
and practice of decision tree learning.

1.1 Our contributions

1.1.1 Top-k: a simple and effective generalization of classic greedy decision tree algorithms

We introduce an easily interpretable greediness parameter to the class of all greedy decision tree
algorithms, a broad class that encompasses ID3, C4.5, and CART. This parameter, k, represents
the number of features that the algorithm considers as candidate splits at each step. Setting k = 1
recovers the fully greedy classical approaches, and increasing k allows the practitioner to produce
more accurate trees at the cost of only a mild training slowdown. The focus of our work is on the
regime where k is a small constant—preserving the efficiency and scalability of greedy algorithms is
a primary objective of our work—although we mention here that by setting k to be the dimension d,
our algorithm produces an optimal tree. Our overall framework can thus be viewed as interpolating
between greedy algorithms at one extreme and “optimal decision tree” algorithms at the other,
precisely the two main and previously disparate approaches to decision tree learning discussed above.

We will now describe our framework. A feature scoring function H takes as input a dataset over d
binary features and a specific feature i ∈ [d], and returns a value quantifying the “desirability” of this
feature as the root of the tree. The greedy algorithm corresponding to H selects as the root of the tree
the feature that has the largest score under H; our generalization will instead consider the k features
with the k highest scores.
Definition 1 (Feature scoring function). A feature scoring function H takes as input a labeled dataset
S over a d-dimensional feature space, a feature i ∈ [d], and returns a score νi ∈ [0, 1].

See Section 3.1 for a discussion of the feature scoring functions that correspond to standard greedy
algorithms ID3, C4.5, and CART. Pseudocode for Top-k is provided in Figure 1. We note that from
the perspective of interpretability, the trained model looks the same regardless of what k is. During
training, the algorithm considers more splits, but only one split is eventually used at each node.

1.1.2 Theoretical results on the power of Top-k

The search space of Top-(k + 1) is larger than that of Top-k, and therefore its training accuracy is
certainly at least as high. The first question we consider is: is the test accuracy of Top-(k + 1) only
marginally better than that of Top-k, or are there examples of data distributions for which even a
single additional choice provably leads to huge gains in test accuracy? Our first main theoretical
result is a sharp greediness hierarchy theorem, showing that this parameter can have dramatic impacts
on accuracy, thereby illustrating its power:

2



Top-k(H, S, h):
Given: A feature scoring function H, a labeled sample set S over d dimensions, and depth

budget h.
Output: Decision tree of depth h that approximately fits S.

1. If h = 0, or if every point in S has the same label, return the constant function with
the best accuracy w.r.t. S.

2. Otherwise, let I ⊆ [d] be the set of k coordinates maximizing H(S, i).
3. For each i ∈ I, let Ti be the tree with

Root = xi

Left subtree = Top-k(H, Sxi=0, h− 1)

Right subtree = Top-k(H, Sxi=1, h− 1),

where Sxi=b is the subset of points in S where xi = b.
4. Return the Ti with maximal accuracy with respect to S among all choices of i ∈ I.

Figure 1: The Top-k algorithm. It can be instantiated with any feature scoring function H, and when
k = 1, recovers standard greedy algorithms such as ID3, C4.5, and CART.

Theorem 1 (Greediness hierarchy theorem). For every ε > 0, k, h ∈ N, there is a data distribution
D and sample size n for which, with high probability over a random sample S ∼ Dn, Top-(k + 1)
achieves at least 1− ε accuracy with a depth budget of h, but Top-k achieves at most 1

2 + ε accuracy
with a depth budget of h.

All of our theoretical results, Theorems 1 to 3, hold whenever the scoring function is an impurity-
based heuristic. This broad class includes the most popular scoring functions (see Section 3.1 for
more details). Theorem 1 is a special case of a more general result that we show: for all k < K, there
are data distributions on which Top-K achieves maximal accuracy gains over Top-k, even if Top-k is
allowed a larger depth budget:

Theorem 2 (Generalization of Theorem 1). For every ε > 0, k,K, h ∈ N where k < K, there
is a data distribution D and sample size n for which, with high probability over a random sample
S ∼ Dn, Top-K achieves at least 1− ε accuracy with a depth budget of h, but Top-k achieves at
most 1

2 + ε accuracy even with a depth budget of h+ (K − k − 1).

The proof of Theorem 2 is simple and highlights the theoretical power of choices. One downside,
though, is that it is based on data distributions that are admittedly somewhat unnatural: the labeling
function has embedded within it a function that is the XOR of certain features, and real-world datasets
are unlikely to exhibit such adversarial structure. To address this, we further prove that the power of
choices is evident even for monotone data distributions. We defer the definition of monotone data
distributions to Section 4.2.

Theorem 3 (Greediness hierarchy theorem for monotone data distributions). For every ε > 0, depth
budget h, K between Ω̃(h) and Õ(h2) and k ≤ K − h, there is a monotone data distribution D and
sample size n for which, with high probability over a random sample S ∼ Dn, Top-K achieves at
least 1 − ε accuracy with a depth budget of h, but Top-k achieves at most 1

2 + ε accuracy with a
depth budget of h.

Many real-world data distributions are monotone in nature, and relatedly, they are a common
assumption and the subject of intensive study in learning theory. Most relevant to this paper,
recent theoretical work has identified monotone data distributions as a broad and natural class for
which classical greedy decision tree algorithms (i.e., Top-1) provably succeed [BLT20b, BLT20a].
Theorem 3 shows that even within this class, increasing the greediness parameter can lead to dramatic
gains in accuracy. Compared to Theorem 2, the proof of Theorem 3 is more technical and involves
the use of concepts from the Fourier analysis of boolean functions [O’D14].

3



We note that a weaker version of Theorem 3 is implicit in prior work: combining [BLT20b, Theorem
7b] and [BLQT21b, Theorem 2] yields the special case of Theorem 3 where K = O(h2) and k = 1.
Theorem 3 is a significant strengthening as it allows for k > 1 and much smaller K − k.

1.1.3 Experimental results on the power of Top-k

We provide extensive empirical validation of the effectiveness of Top-k when trained on on real-world
datasets, and provide an in-depth comparison with both standard greedy algorithms as well as optimal
decision tree algorithms.

We first compare the performance of Top-k for k = 1, 2, 3, 4, 8, 12, 16 (Figure 2), and find that
increasing k does indeed provide a significant increase in test accuracy—in some cases, Top-8 already
achieves accuracy comparable to the test accuracy attained by DL8.5 [ANS20], an optimal decision
tree algorithm. We further show, in Figures 3 and 6, that Top-k inherits the efficiency of popular
greedy algorithms and scales much better than the state-of-the-art optimal decision tree algorithms
MurTree and GOSDT [LZH+20].

Taken as a whole, our experiments demonstrate that Top-k provides a useful middle ground between
greedy and optimal decision tree algorithms: it is significantly more accurate than greedy algorithms,
but still fast enough to be practical on reasonably large datasets. See Section 5 for an in-depth
discussion of our experiments. Finally, we emphasize the benefits afforded by the simplicity of Top-k.
Standard greedy algorithms (i.e. Top-1) are widely employed and easily accessible. Introducing the
parameter k requires modifying only a tiny amount of source code and gives the practitioner a new
lever to control. Our experiments and theoretical results demonstrate the utility of this simple lever.

2 Related work

Provable guarantees and limitations of greedy decision tree algorithms. A long and fruitful
line of work seeks to develop a rigorous understanding of the performances of greedy decision
tree learning algorithms such as ID3, C4.5, and CART and to place their empirical success on
firm theoretical footing [KM96, Kea96, DKM96, BDM19, BDM20, BLT20b, BLT20a, BLQT21a].
These works identify feature and distributional assumptions under which these algorithms provably
succeed; they also highlight the limitations of these algorithms by pointing out settings in which they
provably fail. Our work complements this line of work by showing, theoretically and empirically,
how these algorithms can be further improved with a simple new parameter while preserving their
efficiency and scalability.

The work of [BLQT21b]. Recent work of Blanc, Lange, Qiao, and Tan also highlights the power
of choices in decision tree learning. However, they operate within a stylized theoretical setting.
First, they consider a specific scoring function that is based on a notion of influence of features, and
crucially, computing these scores requires query access to the target function (rather than from random
labeled samples as is the case in practice). Furthermore, their results only hold with respect to the
uniform distribution. These are strong assumptions that limit the practical relevance of their results.
In contrast, a primary focus of this work is to be closely aligned with practice, and in particular, our
framework captures and generalizes the standard greedy algorithms used in practice.

Optimal decision trees. Motivated in part by the surge of interest in interpretable machine learning
and the highly interpretable nature of decision trees, there have been numerous works on learning
optimal decision trees [BD17, VZ17, VZ19, AAV19, ZMP+20, VNP+20, NIPMS18, Ave20, JM20,
NF07, NF10, HRS19, LZH+20, DLH+22]. As mentioned in the introduction, this is an NP-complete
problem [HR76]—indeed, it is NP-hard to find even an approximately optimal decision tree [Sie08,
AH08, ABF+09]. Due to the fundamental intractability of this problem, even highly optimized
versions of algorithms are unlikely to match the scalability of standard greedy algorithms. That said,
these works implement a variety of optimizations that allow them to build optimal decision trees for
many real world datasets when the dataset and feature sizes are in the hundreds and the desired depth
is small (≤ 5).

Finally, another related line of work is that of soft decision trees [IYA12, TAA+19]. These works use
gradient-based methods to learn soft splits at each internal node. We believe that one key advantage
of our work over these soft trees is in interpretability. With Top-k, since the splits are hard (and not

4



soft), to understand the classification of a test point, it is sufficient to look at only one root-to-leaf
path, as opposed to a weighted combination across many.

3 The Top-k algorithm

3.1 Background and context: Impurity-based algorithms

Greedy decision tree learning algorithms like ID3, C4.5 and CART are all instantiations of Top-k
in Figure 1 with k = 1 and an appropriate choice of the feature-scoring function H. Those three
algorithms all used impurity-based heuristics as their feature-scoring function:
Definition 2 (Impurity-based heuristic). An impurity function G : [0, 1] → [0, 1] is a function that is
concave, symmetric about 0.5, and satisfies G(0) = G(1) = 0 and G(0.5) = 1. A feature-scoring
function H is an impurity-based heuristic, if there is some impurity function G for which:

H(S, i) = G
(

E
x,y∼S

[y]

)
− Pr

x,y∼S
[xi = 0] · G

(
E

x,y∼S
[y | xi = 0]

)
− Pr

x,y∼S
[xi = 1] · G

(
E

x,y∼S
[y | xi = 1]

)
where in each of the above, (x,y) are a uniformly random point from within S.

Common examples for the impurity function include the binary entropy function G(p) =
−p log2(p) − (1 − p) log2(1 − p) (used by ID3 and C4.5), the Gini index G(p) = 4p(1 − p)

(used by CART), and the function G(p) = 2
√

p(1− p) (proposed and analyzed in [KM99]). We re-
fer the reader to [KM99] for a theoretical comparison, and [DKM96] for an experimental comparison,
of these impurity-based heuristics.

Our experiments focus on binary entropy being the impurity measure, but our theoretical results apply
to Top-k instantiated with any impurity-based heuristic.

3.2 Basic theoretical properties of the Top-k algorithm

Running time. The key behavioral aspect in which Top-k differs from greedy algorithms is that
it is less greedy when trying to determine which coordinate to query. This naturally increases the
running time of Top-k, but that increase is fairly mild. More concretely, suppose Top-k is run on a
dataset S with n points. We can then easily derive the following bound on the running time of Top-k,
where H(S, i) is assumed to take O(n) time to evaluate (as it does for all impurity-based heuristics).

Claim 3.1. The running time of Top-k(H, S, h) is O((2k)h · nd).

Proof. Let Th be the number of recursive calls made by Top-k(H, S, h). Then, we have the simple
recurrence relation Th = 2kTh−1, where T0 = 1. Solving this recurrence gives Th = (2k)h. Each
recursive call takes O(nd) time, where the bottleneck is scoring each of the d features.

We note that any decision tree algorithm, including fast greedy algorithms such as ID3, C4.5, and
CART, has runtime that scales exponentially with the depth h. The size of a depth-h tree can be 2h,
and this is of course a lower bound on the runtime as the algorithm needs to output such a tree. In
contrast with greedy algorithms (for which k = 1), Top-k incurs an additional kh cost in running
time. As mentioned earlier, in practice, we are primarily concerned with fitting small decision trees
(e.g., h = 5) to the data, as this allows for explainable predictions. In this setting, the additional kh
cost (for small constant k) is inexpensive, as confirmed by our experiments.

The search space of Top-k: We state and prove a simple claim that Top-k returns the best tree
within its search space.
Definition 3 (Search space of Top-k). Given a sample S and integers h, k, we use Tk,h,S to refer
to all trees in the search space of Top-k. Specifically, if h = 0, this contains all trees with a height
of zero (the constant 0 and constant 1 trees). For h ≥ 1, and I ⊆ [d] being the k coordinates with
maximal score, this contains all trees with a root of xi, left subtree in Tk,h−1,Sxi=0

and right subtree
in Tk,h−1,Sxi=1

for some i ∈ I.

5



Lemma 3.2 (Top-k chooses the most accurate tree in its search space). For any sample S and integers
h, k, let T be the output of Top-k with a depth budget of h on S. Then

Pr
x,y∼S

[T (x) = y] = max
T ′∈Tk,h,S

(
Pr

x,y∼S
[T ′(x) = y]

)
.

We refer the reader to Appendix A for the proof of this lemma.

4 Theoretical bounds on the power of choices

We refer the reader to the Appendix B for most of the setup and notation. For now, we briefly mention
a small amount of notation relevant to this section: we use bold font (e.g. x) to denote random
variables. We also use bold font to indicate stochastic functions which output a random variable. For
example,

f(x) :=

{
x with probability 1

2

−x with probability 1
2

is the stochastic function that returns either the identity or its negation with equal probability. To
define the data distributions of Theorems 2 and 3, we will give a distribution over the domain, X and
the stochastic function that provides the label given an element of the domain.

Intuition for proof of greediness hierarchy theorem To construct a distribution which Top-k fits
poorly and Top-(k + 1) fits well, we will partition features into two groups: one group consisting of
features with medium correlation to the labels and another group consisting of features with high
correlation when taken all together but low correlation otherwise. Since the correlation of features in
the former group is larger than that of the latter group unless all features from the latter group are
considered, both algorithms will prioritize features from the former group. However, if the groups are
sized correctly, then Top-(k + 1) will consider splitting on all features from the latter group, whereas
Top-k will not. As a result, Top-(k + 1) will output a decision tree with higher accuracy.

4.1 Proof of Theorem 2

For each depth budget h and search branching factor K, we will define a hard distribution Dh,K

that is learnable to high accuracy by Top-K with a depth of h, but not by Top-k with a depth of h′

for any h′ < h + K − k. This distribution will be over {0, 1}d × {0, 1}, where d = h + K − 1.
The marginal distribution over {0, 1}d is uniform, and the distribution over {0, 1} conditioned on a
setting of the d features is given by the stochastic function fh,K(x). All of the results of this section
(Theorems 2 and 3) hold when the feature scoring function is any impurity-based heuristic.

Description of fh,K(x). Partition x into two sets of variables, x(1) of size h and x(2) of size K−1.
Let fh,K(x) be the randomized function defined as follows:

fh,K(x) =

{
Parh(x

(1)) with probability 1− ε

x
(2)
i ∼ Unif[x(2)] with probability ε,

where Unif[x(2)] denotes the uniform distribution on x(2). Parh(x(1)) is the parity function, whose
formal definition can be found in Appendix B.

The proof of Theorem 2 is divided into two parts. First, we prove that when the data distribution is
Dh,K , Top-K succeeds in building a high accuracy tree with a depth budget of h. Then, we show
that Top-k fails and builds a tree with low accuracy, even given a depth budget of h+ (K − k − 1).

Lemma 4.1 (Top-K succeeds). The accuracy of Top-K with a depth of h on Dh,K is at least 1− ε.

Lemma 4.2 (Top-k fails). The accuracy of Top-k with a depth of h′ on Dh,K is at most (1/2 + ε)
for any h′ < h+K − k.

Proofs of both these lemmas are deferred to Appendix B. Theorem 2 then follows directly from these
two lemmas.

6



4.2 Proof of Theorem 3

In this section, we overview the proof Theorem 3. Some of the proofs are deferred to Appendix B.2.

Before proving Theorem 3, we formalize the concept of monotonicity. For simplicity, we assume the
domain is the Boolean cube, {0, 1}d, and use the partial ordering x ⪯ x′ iff xi ≤ x′

i for each i ∈ [d];
however, the below definition easily extends to the domain being any partially ordered set.
Definition 4 (Monotone). A stochastic function, f : {0, 1}d → {0, 1}, is monotone if, for any
x, x′ ∈ {0, 1}d where x ⪯ x′, E[f(x)] ≤ E[f(x′)]. A data distribution, D over {0, 1}d × {0, 1}
is said to be monotone if the corresponding stochastic function, f(x) returning (y | x = x) where
(x,y) ∼ D, is monotone.

To construct the data distribution of Theorem 3, we will combine monotone functions, Majority and
Tribes, commonly used in the analysis of Boolean functions due to their extremal properties. See
Appendix B.2 for their definitions and useful properties. Let d = h+K − 1, and the distribution
over the domain be uniform over {0, 1}d. Given some x ∈ {0, 1}d, we use x(1) to refer to the first
h coordinates of x and x(2) the other K − 1 coordinates. This data distribution is labeled by the
stochastic function f given below.

f(x) :=

{
Tribesh(x(1)) with probability 1− ε

MajK−1(x
(2)) with probability ε.

Clearly f is monotone as it is the mixture of two monotone functions. Throughout this subsection,
we’ll use Dh,K to refer to the data distribution over {0, 1}d × {0, 1} where to sample (x,y) ∼ D,
we first draw x ∼ {0, 1}d uniformly and then y from f(x). The proof of Theorem 3 is a direct
consequence of the following two Lemmas, both of which we prove in Appendix B.2.
Lemma 4.3 (Top-K succeeds). On the data distribution Dh,K , Top-K with a depth budget of h
achieves at least 1− ε accuracy.
Lemma 4.4 (Top-k fails). On the data distribution Dh,K , Top-k with a depth budget of h achieves at
most 1

2 + ε accuracy.

5 Experiments

Setup for experiments. At all places, the Top-1 tree that we compare to is that given by
scikit-learn [PVG+11], which according to their documentation2, is an optimized version
of CART. We run experiments on a variety of datasets from the UCI Machine Learning Repos-
itory [DG17] (numerical as well as categorical features) having a size in the thousands and having
≈ 50 − 300 features after binarization. There were ≈ 100 datasets meeting these criteria, and we
took a random subset of 20 such datasets. We binarize all the datasets – for categorical datasets, we
convert every categorical feature that can take on (say) ℓ values into ℓ binary features. For numerical
datasets, we sort and compute thresholds for each numerical attribute, so that the total number of
binary features is ≈ 100. A detailed description of the datasets is given in Appendix C.

We build decision trees corresponding to binary entropy as the impurity measure H. In order
to leverage existing engineering optimizations from state-of-the-art optimal decision tree imple-
mentations, we implement the Top-k algorithm given in Figure 1 via simple modifications to the
PyDL8.5 [ANS20, ANS21] codebase3. Details about this are provided in Appendix D. Our imple-
mentation of the Top-k algorithm and other technical details for the experiments are available at
https://github.com/SullivanC19/pydl8.5-topk.

5.1 Key experimental findings

Small increments of k yield significant accuracy gains. Since the search space of Top-k is a
superset of that of Top-1 for any k > 1, the training accuracy of Top-k is guaranteed to be larger.
The primary objective in this experiment is to show that Top-k can outperform Top-1 in terms of test
accuracy as well. Figure 2 shows the results for Top-1 versus Top-k for k = 2, 3, 4, 8, 12, 16, d. Each

2https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
3https://github.com/aia-uclouvain/pydl8.5

7

https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
https://github.com/aia-uclouvain/pydl8.5


3 4 5 6 7 8
Depth

0.825
0.850
0.875
0.900
0.925
0.950
0.975

Te
st

 a
cc

ur
ac

y

nursery

3 4 5 6 7 8
Depth

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

Te
st

 a
cc

ur
ac

y

occupancy-estimation

3 4 5 6 7 8
Depth

0.44

0.46

0.48

0.50

0.52

Te
st

 a
cc

ur
ac

y

ml-prove

3 4 5 6 7 8
Depth

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

artificial-characters

3 4 5 6 7 8
Depth

0.84

0.86

0.88

0.90

Te
st

 a
cc

ur
ac

y

spambase

3 4 5 6 7 8
Depth

0.55

0.60

0.65

0.70

0.75

0.80

Te
st

 a
cc

ur
ac

y

avila

3 4 5 6 7 8
Depth

0.775

0.800

0.825

0.850

0.875

0.900

Te
st

 a
cc

ur
ac

y

dry-bean

3 4 5 6 7 8
Depth

0.78

0.80

0.82

0.84

0.86

Te
st

 a
cc

ur
ac

y

telescope

3 4 5 6 7 8
Depth

0.66

0.68

0.70

0.72

0.74

Te
st

 a
cc

ur
ac

y

connect-4

3 4 5 6 7 8
Depth

0.2

0.3

0.4

0.5

0.6

Te
st

 a
cc

ur
ac

y

letter-recognition

3 4 5 6 7 8
Depth

0.86

0.87

0.88

0.89

0.90

0.91

Te
st

 a
cc

ur
ac

y

miniboone

3 4 5 6 7 8
Depth

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

sensorless-drive-diagnosis

k=1 k=2 k=3 k=4 k=8 k=12 k=16 k=d

Figure 2: Test accuracy comparison between Top-k for various values of k. We can see that Top-
(k + 1) generally obtains higher accuracy than Top-k, and in some cases (e.g., nursery), Top-8/16’s
accuracy is even comparable to the optimal tree (Top-d). Missing points in the plots correspond to
settings that did not terminate within a sufficiently large time limit. All plots are averaged over 10
random train-test splits (except avila and ml-prove that have pre-specified splits) with confidence
intervals plotted for 2 standard deviations.

plot is a different dataset, where on the x-axis, we plot the depth of the learned decision tree, and
on the y-axis, we plot the test accuracy. Note that k = d corresponds to the DL8.5 optimal decision
tree. We can clearly observe that the test accuracy increases as k increases—in some cases, the gain
is > 5% (absolute). Furthermore, for (smaller) datasets like nursery, for which we were able to run
k = d, the accuracy of Top-8/16 is already very close to that of the optimal tree.

Lastly, since Top-k invests more computation towards fitting a better tree on the training set, its
training time is naturally longer than Top-1. However, Figure 6 in Appendix E, which plots the
training time, shows that the slowdown is mild.

Top-k scales much better than optimal decision tree algorithms. Optimal decision tree algo-
rithms suffer from poor runtime scaling. We empirically demonstrate that, in comparison, Top-k has
a significantly better scaling in training time. Our experiments are identical to those in Figures 14
and 15 in the GOSDT paper [LZH+20], where two notions of scalability are considered. In the first
experiment, we fix the number of samples and gradually increase the number of features to train
the decision tree. In the second experiment, we include all the features, but gradually increase the
number of training samples. The dataset we use is the FICO [FGI+18] dataset, which has a total of
1000 samples with 1407 binary features. We plot the training time (in seconds) versus number of
features/samples for optimal decision tree algorithms (MurTree, GOSDT) and Top-k in Figure 3. We
do this for depth = 4, 5, 6 (for GOSDT, the regularization coefficient λ is set to 2−depth). We observe
that the training time for both MurTree and GOSDT increases dramatically compared to Top-k, in
both experiments. In particular, for depth = 5, both MurTree and GOSDT were unable to build a
tree on 300 features within the time limit of 10 minutes, while Top-16 completed execution even
with all 1407 features. Similarly, in the latter experiment, GOSDT/MurTree were unable to build a
depth-5 tree on 150 samples within the time limit, while Top-16 comfortably finished execution even
on 1000 samples. These experiments demonstrates the scalability issues with optimal tree algorithms.
Coupled with the accuracy gains seen in the previous experiment, Top-k can thus be seen as achieving
a more favorable tradeoff between training time and accuracy.

We note, however, that various optimization have been proposed to allow optimal decision tree
algorithms to scale to larger datasets. For example, a more recent version of GOSDT has integrated a
guessing strategy using reference ensembles which guides the binning of continuous features, tree

8



0 200 400 600 800 1000 1200 1400
Number of Features

0

100

200

300

400

500

600

Ti
m

e

Top-1
Top-2
Top-4
Top-8
Top-16
GOSDT
MurTree

(a) Depth = 4

0 200 400 600 800 1000 1200 1400
Number of Features

0

100

200

300

400

500

600

Ti
m

e

Top-1
Top-2
Top-4
Top-8
Top-16
GOSDT
MurTree

(b) Depth = 5

0 200 400 600 800 1000 1200 1400
Number of Features

0

100

200

300

400

500

600

Ti
m

e

Top-1
Top-2
Top-4
Top-8
Top-16
GOSDT
MurTree

(c) Depth = 6

0 200 400 600 800 1000
Number of Samples

0

100

200

300

400

500

600

Ti
m

e

Top-1
Top-2
Top-4
Top-8
Top-16
GOSDT
MurTree

(d) Depth = 4

0 200 400 600 800 1000
Number of Samples

0

100

200

300

400

500

600

Ti
m

e

Top-1
Top-2
Top-4
Top-8
Top-16
GOSDT
MurTree

(e) Depth = 5

0 200 400 600 800 1000
Number of Samples

0

100

200

300

400

500

600

Ti
m

e

Top-1
Top-2
Top-4
Top-8
Top-16
GOSDT
MurTree

(f) Depth = 6

Figure 3: Training time comparison between Top-k and optimal tree algorithms. As the number of
features/samples increases, both GOSDT and MurTree scale poorly compared to Top-k, and beyond
a threshold, do not complete execution within the time limit.

0 5 10 15 20
k

0.78

0.80

0.82

Te
st

/Tr
ai

n 
Ac

cu
ra

cy

car

2 4 6 8 10 12 14
k

0.5

0.6

0.7

0.8

Te
st

/Tr
ai

n 
Ac

cu
ra

cy

hayes-roth

0 5 10 15 20 25
k

0.70

0.72

0.74

0.76

0.78

Te
st

/Tr
ai

n 
Ac

cu
ra

cy

tic-tac-toe

Test Train

Figure 4: Test accuracy plateaus for large k. All runs averaged over 10 random train-test splits with
maximum depth fixed to 3.

size, and search [MZA+]. Many of these optimizations are generally applicable across optimal tree
algorithms and could be combined with Top-k for further improvement in performance.

Increasing k beyond a point does not improve test accuracy. In our experiments above, we ran
Top-k only till k = 16: in Figure 4, we show that increasing k to very large values, which increases
runtime, often does not improve test accuracy, and in some cases, may even hurt due to overfitting.
For 3 datasets – car, hayes-roth and tic-tac-toe – we plot train and test error as a function of k.
Naturally, the train accuracy monotonically increases with k in each plot. However, for both car and
hayes-roth, we can observe that the test accuracy first increases and then plateaus. Interestingly, for
tic-tac-toe, the test accuracy first increases and then decreases as we increase k. These experiments
demonstrate that selecting too large of a k, as optimal decision tree algorithms do, is a waste of
computational resources and can even hurt test accuracy via overfitting.

6 Conclusion

We have shown how popular and empirically successful greedy decision tree learning algorithms
can be improved with the power of choices: our generalization, Top-k, considers the k best features
as candidate splits instead of just the single best one. As our theoretical and empirical results
demonstrate, this simple generalization is powerful and enables significant accuracy gains while
preserving the efficiency and scalability of standard greedy algorithms. Indeed, we find it surprising
that such a simple generalization has not been considered before.

There is much more to be explored and understood, both theoretically and empirically; we list here a
few concrete directions that we find particularly exciting and promising. First, we suspect that power

9



of choices affords more advantages over greedy algorithms than just accuracy gains. For example, an
avenue for future work is to show that the trees grown by Top-k are more robust to noise. Second,
are there principled approaches to the automatic selection of the greediness parameter k? Can the
optimal choice be inferred from a few examples or learned over time? This opens up the possibility
of new connections to machine-learned advice and algorithms with predictions [MV20], an area
that has seen a surge of interest in recent years. Finally, as mentioned in the introduction, standard
greedy decision tree algorithms are at the very heart of modern tree-based ensemble methods such as
XGBoost and random forests. A natural next step is to combine these algorithms with Top-k and
further extend the power of choices to these settings.

Acknowledgements

We thank the NeurIPS reviewers and AC for their detailed and helpful feedback.

Guy and Li-Yang are supported by NSF awards 1942123, 2211237, 2224246 and a Google Research
Scholar award. Jane is supported by NSF Graduate Research Fellowship under Grant No. 2141064,
NSF Awards CCF-2006664, DMS-2022448, and Microsoft. Mo is supported by a Stanford Interdisci-
plinary Graduate Fellowship and a Stanford Data Science Scholarship. Chirag is supported by Moses
Charikar and Greg Valiant’s Simons Investigator Awards.

References
[AAV19] Sina Aghaei, Mohammad Javad Azizi, and Phebe Vayanos. Learning optimal and fair

decision trees for non-discriminative decision-making. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 1418–1426, 2019.

[ABF+09] Misha Alekhnovich, Mark Braverman, Vitaly Feldman, Adam Klivans, and Toniann
Pitassi. The complexity of properly learning simple concept classes. Journal of
Computer & System Sciences, 74(1):16–34, 2009.

[AH08] Micah Adler and Brent Heeringa. Approximating optimal binary decision trees. In
Approximation, Randomization and Combinatorial Optimization. Algorithms and Tech-
niques, pages 1–9. Springer, 2008.

[ANS20] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Learning optimal decision trees using
caching branch-and-bound search. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pages 3146–3153, 2020.

[ANS21] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus. Pydl8. 5: a library for learning
optimal decision trees. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pages 5222–5224, 2021.

[Ave20] Florent Avellaneda. Efficient inference of optimal decision trees. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34, pages 3195–3202, 2020.

[BD17] Dimitris Bertsimas and Jack Dunn. Optimal classification trees. Machine Learning,
106(7):1039–1082, 2017.

[BDM19] Alon Brutzkus, Amit Daniely, and Eran Malach. On the Optimality of Trees Generated
by ID3. ArXiv, abs/1907.05444, 2019.

[BDM20] Alon Brutzkus, Amit Daniely, and Eran Malach. ID3 learns juntas for smoothed product
distributions. In Proceedings of the 33rd Annual Conference on Learning Theory
(COLT), pages 902–915, 2020.

[BFSO84] Leo Breiman, Jerome Friedman, Charles Stone, and Richard Olshen. Classification and
regression trees. Wadsworth International Group, 1984.

[BLQT21a] Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Decision tree heuristics
can fail, even in the smoothed setting. In Mary Wootters and Laura Sanità, editors,
Proceedings of the 25th International Conference on Randomization and Computation
(RANDOM), volume 207, pages 45:1–45:16, 2021.

10



[BLQT21b] Guy Blanc, Jane Lange, Mingda Qiao, and Li-Yang Tan. Properly learning decision
trees in almost polynomial time. In Proceedings of the 62nd IEEE Annual Symposium
on Foundations of Computer Science (FOCS), 2021.

[BLT20a] Guy Blanc, Jane Lange, and Li-Yang Tan. Provable guarantees for decision tree
induction: the agnostic setting. In Proceedings of the 37th International Conference on
Machine Learning (ICML), 2020.

[BLT20b] Guy Blanc, Jane Lange, and Li-Yang Tan. Top-down induction of decision trees:
rigorous guarantees and inherent limitations. In Proceedings of the 11th Innovations in
Theoretical Computer Science Conference (ITCS), volume 151, pages 1–44, 2020.

[Bre01a] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[Bre01b] Leo Breiman. Statistical Modeling: The Two Cultures (with comments and a rejoinder
by the author). Statistical Science, 16(3):199 – 231, 2001.

[CG16] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), pages 785–794, 2016.

[DG17] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[DKM96] Tom Dietterich, Michael Kearns, and Yishay Mansour. Applying the weak learning
framework to understand and improve C4.5. In Proceedings of the 13th International
Conference on Machine Learning (ICML), pages 96–104, 1996.

[DLH+22] Emir Demirović, Anna Lukina, Emmanuel Hebrard, Jeffrey Chan, James Bailey, Christo-
pher Leckie, Kotagiri Ramamohanarao, and Peter J Stuckey. Murtree: Optimal decision
trees via dynamic programming and search. Journal of Machine Learning Research,
23(26):1–47, 2022.

[FGI+18] FICO, Google, Imperial College London, MIT, University of Oxford, UC Irvine, and
UC Berkeley. Explainable Machine Learning Challenge. https://community.fico.
com/s/explainable-machine-learning-challenge, 2018.

[HR76] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees is
np-complete. Information Processing Letters, 5(1):15–17, 1976.

[HRS19] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal sparse decision trees. Advances
in Neural Information Processing Systems, 32, 2019.

[IYA12] Ozan Irsoy, Olcay Taner Yıldız, and Ethem Alpaydın. Soft decision trees. In Proceedings
of the 21st international conference on pattern recognition (ICPR2012), pages 1819–
1822. IEEE, 2012.

[JM20] Mikoláš Janota and António Morgado. SAT-based encodings for optimal decision
trees with explicit paths. In International Conference on Theory and Applications of
Satisfiability Testing, pages 501–518. Springer, 2020.

[Kea96] Michael Kearns. Boosting theory towards practice: recent developments in decision
tree induction and the weak learning framework (invited talk). In Proceedings of the
13th National Conference on Artificial intelligence (AAAI), pages 1337–1339, 1996.

[Kea98] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM (JACM), 45(6):983–1006, 1998.

[KKL88] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions.
In Proceedings of the 29th Annual Symposium on Foundations of Computer Science
(FOCS), pages 68–80, 1988.

11

https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge


[KM96] Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree
learning algorithms. In Proceedings of the 28th Annual Symposium on the Theory of
Computing (STOC), pages 459–468, 1996.

[KM99] Michael Kearns and Yishay Mansour. On the boosting ability of top-down decision tree
learning algorithms. Journal of Computer and System Sciences, 58(1):109–128, 1999.

[LZH+20] Jimmy Lin, Chudi Zhong, Diane Hu, Cynthia Rudin, and Margo Seltzer. Generalized
and scalable optimal sparse decision trees. In International Conference on Machine
Learning, pages 6150–6160. PMLR, 2020.

[MV20] Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. arXiv
preprint arXiv:2006.09123, 2020.

[MZA+] Hayden McTavish, Chudi Zhong, Reto Achermann, Ilias Karimalis, Jacques Chen,
Cynthia Rudin, and Margo Seltzer. Fast sparse decision tree optimization via reference
ensembles. Proceedings of the AAAI Conference on Artificial Intelligence, 36(9).

[NF07] Siegfried Nijssen and Elisa Fromont. Mining optimal decision trees from itemset lattices.
In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 530–539, 2007.

[NF10] Siegfried Nijssen and Elisa Fromont. Optimal constraint-based decision tree induction
from itemset lattices. Data Mining and Knowledge Discovery, 21(1):9–51, 2010.

[NIPMS18] Nina Narodytska, Alexey Ignatiev, Filipe Pereira, and Joao Marques-Silva. Learning
optimal decision trees with sat. In Ijcai, pages 1362–1368, 2018.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[Qui86] Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[Qui93] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[RCC+22] Cynthia Rudin, Chaofan Chen, Zhi Chen, Haiyang Huang, Lesia Semenova, and Chudi
Zhong. Interpretable machine learning: Fundamental principles and 10 grand challenges.
Statistics Surveys, 16:1–85, 2022.

[Sie08] Detlef Sieling. Minimization of decision trees is hard to approximate. Journal of
Computer and System Sciences, 74(3):394–403, 2008. Computational Complexity
2003.

[TAA+19] Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Antonio Criminisi, and Aditya
Nori. Adaptive neural trees. In International Conference on Machine Learning, pages
6166–6175. PMLR, 2019.

[VNP+20] Hélene Verhaeghe, Siegfried Nijssen, Gilles Pesant, Claude-Guy Quimper, and Pierre
Schaus. Learning optimal decision trees using constraint programming. Constraints,
25(3):226–250, 2020.

[VZ17] Sicco Verwer and Yingqian Zhang. Learning decision trees with flexible constraints
and objectives using integer optimization. In International Conference on AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems,
pages 94–103. Springer, 2017.

12



[VZ19] Sicco Verwer and Yingqian Zhang. Learning optimal classification trees using a
binary linear program formulation. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 1625–1632, 2019.

[ZMP+20] Haoran Zhu, Pavankumar Murali, Dzung Phan, Lam Nguyen, and Jayant Kalagnanam.
A scalable MIP-based method for learning optimal multivariate decision trees. Advances
in Neural Information Processing Systems, 33:1771–1781, 2020.

13


	Introduction
	Our contributions
	Top-k: a simple and effective generalization of classic greedy decision tree algorithms
	Theoretical results on the power of Top-k
	Experimental results on the power of Top-k


	Related work
	The Top-k algorithm
	Background and context: Impurity-based algorithms
	Basic theoretical properties of the Top-k algorithm

	Theoretical bounds on the power of choices
	Proof of thm:k-hierarchy-general
	Proof of thm:monotone-hierarchy-intro

	Experiments
	Key experimental findings

	Conclusion

