
PLANNER: Generating Diversified Paragraph via
Latent Language Diffusion Model

Yizhe Zhang, Jiatao Gu, Zhuofeng Wu, Shuangfei Zhai, Josh Susskind, Navdeep Jaitly
Apple

{yizzhang, jgu32, zhuofeng_wu, szhai, jsusskind, njaitly}@apple.com

Abstract

Autoregressive models for text sometimes generate repetitive and low-quality
output because errors accumulate during the steps of generation. This issue is often
attributed to exposure bias – the difference between how a model is trained, and
how it is used during inference. Denoising diffusion models provide an alternative
approach in which a model can revisit and revise its output. However, they can be
computationally expensive and prior efforts on text have led to models that produce
less fluent output compared to autoregressive models, especially for longer text
and paragraphs. In this paper, we propose PLANNER, a model that combines
latent semantic diffusion with autoregressive generation, to generate fluent text
while exercising global control over paragraphs. The model achieves this by
combining an autoregressive “decoding” module with a “planning” module that
uses latent diffusion to generate semantic paragraph embeddings in a coarse-to-fine
manner. The proposed method is evaluated on various conditional generation tasks,
and results on semantic generation, text completion and summarization show its
effectiveness in generating high-quality long-form text in an efficient manner.

1 Introduction

FT (Top-p sampling): Terrible, awful hotel. Horrible, awful hotel. I'm going to the awful hotel. I'll
never get in. What the hell is this hotel? It's awful. I don't like it. Where? It's awful. I think
they have a bathroom there. I'm going to the awful hotel. I'll never get in. I want out of here.
This hotel is horrible. I'm going to the awful hotel. I'll never get in. I want out of here…

FT (Greedy decoding): The hotel was a nightmare. The rooms were filthy, the bathrooms were
filthy, the food was disgusting, the food was disgusting. The food was disgusting. The food was
disgusting. The food was disgusting. The food was disgusting. The food was disgusting.…

Prefix: Horrible hotel. Horrible hotel. Serioulsy, horrible hotel.

Ours (Greedy decoding): Staff was unhelpful. So rude from the front desk. The hotel tried to
lose the reservation of my family which I had with the hotel. This hotel is way overpriced.
Hallways smelled bad. Carpet was disgusting. I'll never go back. I don't recommend the hotel. I
can stay anywhere else!!

1-gram 2-gram 3-gram

The: 100.00% The hotel: 100.00% The hotel was: 100.00%

I: 13.39%
Horrible: 12.20%

The: 8.27%
Terrible: 5.91%

This: 4.33%

Horrible hotel: 12.50%
Terrible hotel: 6.05%

This is: 2.82%
I hate: 1.61%

I mean: 1.61%

Horrible hotel. Horrible: 3.48%
Horrible hotel. I: 2.61%

Terrible hotel. Terrible: 2.17%,
Terrible hotel. Horrible: 1.30%

I could not: 0.87%

I: 10.55%
The: 5.08%
We: 3.52%

Hotel: 2.73%
They: 2.73%

I was: 1.56%
Had to: 1.56%

The room: 1.17%
Dirty and: 1.17%
I called: 1.17%

The room was: 1.18%
The walls were: 0.78%

I was told: 0.78%
I called the: 0.78%

I booked through: 0.78%

Figure 1: Left: With a repetitive prompt, the finetuned GPT-2 large model (774M, FT) is still attracted
to self-reinforced repetition (highlighted text) even under top-p sampling (K=50, p=0.92). Right: the
most frequent first n-grams of the generations for each method, derived from 512 generation roll-outs.
Our proposed method results in a more diversified generation robust to the ill-composed prompt.

Autoregressive models trained with a teacher forcing strategy (Williams & Zipser, 1989) are con-
sidered the gold standard for text generation. However, a significant drawback of this approach is
that it lacks the ability to correct any mistakes made during the generation process which can lead to
errors that accumulate as the generation progresses. Previous work (Ott et al., 2018; Holtzman et al.,
2019; Welleck et al., 2019; Xu et al., 2022) has observed that deterministic decoding methods have a

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

tendency to generate consecutive repetitions at the word, phrase and sentence levels. For example,
with repetitive prompt, the model can enter an absorbing state where it produces repetitive outputs
with higher and higher confidence by self-reinforcing the pattern (Xu et al., 2022) (Fig. 1). Through
our experiments, we have observed that such degeneration is more prevalent in open-ended tasks that
allow the model greater freedom for creativity. Even for large language models, the generation can
drift away from the desired semantics, especially when the model is poorly prompted or has high
initial probabilities (Xu et al., 2022).

Why does using maximum likelihood decoding lead to repetitions during generation which is
significantly different from the training data distribution? One possible explanation for this is
“exposure bias” (Bengio et al., 2015) arising from the discrepancy between the training and inference
phases in the teacher forcing training strategy. During training phase, the model focuses only on
predicting the next token. However, during inference, predicting the next token alone can be myopic
because the model may not have enough foresight to anticipate its impact on future generation. This
can also be seen as the “distribution shift” issue of behavior cloning (de Haan et al., 2019), where
the model is trained to mimic the expert’s actions on the states encountered by the expert in the
training data. However, small differences between the model and the expert can compound over
multiple steps, leading the model to states it never encountered during training, rendering unreliable
and undesirable predictions.

Although many approaches have been proposed to address this issue, such as adversarial models
(Yu et al., 2017; Lamb et al., 2016; Zhang et al., 2017), reinforcement learning (Li et al., 2016b) or
repetition penalties (Xu et al., 2022) , they attempt to improve the global aspects of the generation by
making local adjustments which still follow the autoregressive generation recipe. Diffusion models
provide an alternative solution – the model can revisit and revise its output iteratively, potentially
rendering more global control of the generation in a non-autoregressive manner. However, these text
diffusion models can generate less fluent text compared to autoregressive ones (Gong et al., 2023).
Also, when generating long text, the diffusion process involves multiple passes of the underlying
denoising model over a long generation length, making it computationally expensive. The discrete
nature of text also presents a challenge for diffusion models, which can suffer from “rounding errors”
when converting between the text token and its embedding (Li et al., 2022; Lin et al., 2022).

Instead of performing diffusion on the original text or the corresponding word embeddings, we
propose to apply diffusion techniques to the latent semantic space (Rombach et al., 2022; Lovelace
et al., 2022). To achieve this, we learn a fixed number of continuous semantic tokens that encode
salient information at the paragraph level. These tokens can then be used to reconstruct the original
text. The latent diffusion can be additionally conditioned on an external signal to generate the
semantic tokens. Finally, a decoder maps the obtained semantic tokens back to the raw text space.
This process combines a non-autoregressive semantic diffusion approach with an autoregressive
decoding technique. The semantic diffusion process handles the “planning”, enabling the modification
of semantics in a coarse-to-fine manner, while the decoder handles the “decoding” by translating the
semantics into raw text, with less flexibility in controlling the meaning. We call our proposed method
PLANNER (Paragraph-leveL DiffusioN model for Embedding Representation).

Our contributions include: (i) We propose a latent semantic diffusion model for paragraphs that
incorporates both non-autoregressive semantic diffusion and autoregressive generation. This allows
us to generate fluent text while being able to exercise global control inherited from a diffusion model.(ii) We study the essential requirements for a good latent space for paragraph diffusion models.(iii)We evaluate the effectiveness of our proposed method on various conditional generation tasks.
Thanks to the iterative refinement of desnoising diffusion, our method enjoys less repetitive and more
diverse generation, while maintaining good fluency and relevancy, comparing with autoregressive
and text diffusion baselines (Li et al., 2022; Lin et al., 2022).

2 Preliminary

Diffusion Probabilistic Models The standard diffusion model (DM) (Ho et al., 2020; Song &
Ermon, 2019) learns the data distribution p(x) by gradually denoising a normally distributed variable
in a Markov chain of length T . The diffusion process can be viewed as a continuous-time stochastic
process (Song et al., 2021b; Kingma et al., 2021) where the initial data point x ∈ RN is progressively
corrupted by noise according to a predefined signal-noise schedule {↵t,�t}, resulting in time-

2

dependent corrupted data {xt�t ∈ [0,1],x0 = x}. The transition distribution is given by:

q(xt�xs) =N (xt;↵t�sxs,�
2
t�sI), (1)

where ↵t�s = ↵t�↵s,�
2
t�s = �2

t − ↵2
t�s�2

s , and s < t. When xs = x, the marginal distribution q(xt�x)
is given as q(xt�x) = N (xt;↵tx,�2

t I). The diffusion model relies on a parametric function ✓
optimized to reverse the diffusion process by denoising xt to the clean input x. The model is trained
using a weighted reconstruction loss:

L(✓) = Ext∼q(xt�x),t∼[0,1] �!t ⋅ �F✓(xt, t) −x�22� , (2)

where !t = ↵2
t ��2

t , (s.t. ↵2
t + �2

t = 1) is the signal-to-noise-ratio (SNR) and F✓(⋅) denotes the
backbone denoising function. Sampling from the learned model can be performed using either
ancestral sampling (DDPM) (Ho et al., 2020) or a deterministic DDIM sampler (Song et al., 2021a).
While the DM is capable of generating high-quality samples, the fact that the corrupted data xt shares
the same space as the input x results in inefficient training (Jing et al., 2022) and difficulty in learning
abstract and semantically meaningful latent spaces (Preechakul et al., 2022).

Latent Diffusion Models To improve the efficiency, the Latent Diffusion Model (LDM) (Rombach
et al., 2022) introduces an explicit separation between the compressive and generative learning phases
of training diffusion models. It employs an autoencoding model consisting of an encoder E(⋅) and
a decoder D(⋅) to learn a low-dimensional latent space that is perceptually equivalent to the image
space when decoded, but with reduced computational complexity, while retaining the perceptual
quality of generated samples. The reweighted objective for training LDM is given by:

L(✓) = Ezt∼q(zt�z),z=E(x),t∼[0,1] �!t ⋅ �F✓(zt, t) − z�22� , (3)

where z is obtained from E during training. The generated z can be decoded to image using D.

3 Related Work

Text diffusion models Early attempts on using diffusion models for discrete data used a noising
processes which masked or randomly mutated the discrete tokens (Austin et al., 2021; Hoogeboom
et al., 2021). Recently, Diff-LM (Li et al., 2022) and DiffuSeq (Gong et al., 2023) have instead
used a continuous token embedding space, converting the continuous token embeddings to text via
"rounding". Analog Bits (Chen et al., 2022) converts raw text into a set of bits and models them as
analog bits with a continuous diffusion model. (Lovelace et al., 2022) performed diffusion model on
the contextualized BART embeddings rather than on the word embedding space. (Zhu et al., 2022)
has applied text diffusion to image-captioning and achieved good performance.

However, existing text diffusion models present several issues: (i) The varying length of the input text
necessitates the prediction of additional length or superfluous paddings, and (ii) token generation in
parallel may result in disfluent text and/or frequent repetitions especially when the generation is long.
We instead employ the diffusion model to learn paragraph embeddings that contain fewer fixed-sized
tokens, which allows for computational benefits and improved fluency.

Text Variational Autoencoders Text VAEs (Bowman et al., 2016; Kim et al., 2018; Li et al.,
2020) have been particularly useful for learning a smooth and interpretable representation space, as
well as for generating diverse text. However, one of the challenges is the KL vanishing problem
(Bowman et al., 2016), which results in the decoder disregarding the latent code sampled from the
prior distribution during the inference stage. Our approach can be perceived as to address this issue
by leveraging a more flexible prior distribution to ensure the codes can strongly influence the output
text distribution.

4 PLANNER: A Language Diffusion Model on Paragraph Embeddings

We use latent diffusion to improve the diversity and fluency of paragraphs generated from the model.
Our model comprises two parts (Fig. 2) - a paragraph embedder via variational autoencoder (VAE)
that learns a meaningful and smooth latent space that corresponds to the original text space, and a
diffusion model that generates latent codes corresponding to the semantics of longer text.

3

z(1) … z(k)

x1 x2 x3 … xL

BOS x1 … xL

x1 … xL EOS

Pl
an

Transformer Model

Transformer Model

y1 …

The Bank of Scotland has announced
it is to close 23 branches in Scotland.

The bank announced
the closures … in UK.

zT
(1) zT

(2) … zT
(k)

zt
(1) zt

(2) … zt
(k)

z0
(1) z0

(2) … z0
(k)

<latexit sha1_base64="ZN5pF882Ocw4Yue18VCwNEO6pAE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1kUwWUF+4DpUDJppg3NJENyRyhDP8ONC0Xc+jXu/Bsz7Sy09UDgcM695NwTJoIbcN1vp7Syura+Ud6sbG3v7O5V9w/aRqWashZVQuluSAwTXLIWcBCsm2hG4lCwTji+zf3OE9OGK/kIk4QFMRlKHnFKwEp+LyYwokRkd9N+tebW3RnwMvEKUkMFmv3qV2+gaBozCVQQY3zPTSDIiAZOBZtWeqlhCaFjMmS+pZLEzATZLPIUn1hlgCOl7ZOAZ+rvjYzExkzi0E7mEc2il4v/eX4K0XWQcZmkwCSdfxSlAoPC+f14wDWjICaWEKq5zYrpiGhCwbZUsSV4iycvk/ZZ3busXzyc1xo3RR1ldISO0Sny0BVqoHvURC1EkULP6BW9OeC8OO/Ox3y05BQ7h+gPnM8feaKRZQ==</latexit>

E

<latexit sha1_base64="Mp+fyy1nsKBbBTnrEZouWnT6YhE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1nUhcsK9gHToWTSTBuaSYbkjlCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTAQ34LrfTmlldW19o7xZ2dre2d2r7h+0jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8m/udJ6YNV/IRJgkLYjKUPOKUgJX8XkxgRInI7qb9as2tuzPgZeIVpIYKNPvVr95A0TRmEqggxviem0CQEQ2cCjat9FLDEkLHZMh8SyWJmQmyWeQpPrHKAEdK2ycBz9TfGxmJjZnEoZ3MI5pFLxf/8/wUousg4zJJgUk6/yhKBQaF8/vxgGtGQUwsIVRzmxXTEdGEgm2pYkvwFk9eJu2zundZv3g4rzVuijrK6Agdo1PkoSvUQPeoiVqIIoWe0St6c8B5cd6dj/loySl2DtEfOJ8/eB2RZA==</latexit>D <latexit sha1_base64="Mp+fyy1nsKBbBTnrEZouWnT6YhE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1nUhcsK9gHToWTSTBuaSYbkjlCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTAQ34LrfTmlldW19o7xZ2dre2d2r7h+0jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8m/udJ6YNV/IRJgkLYjKUPOKUgJX8XkxgRInI7qb9as2tuzPgZeIVpIYKNPvVr95A0TRmEqggxviem0CQEQ2cCjat9FLDEkLHZMh8SyWJmQmyWeQpPrHKAEdK2ycBz9TfGxmJjZnEoZ3MI5pFLxf/8/wUousg4zJJgUk6/yhKBQaF8/vxgGtGQUwsIVRzmxXTEdGEgm2pYkvwFk9eJu2zundZv3g4rzVuijrK6Agdo1PkoSvUQPeoiVqIIoWe0St6c8B5cd6dj/loySl2DtEfOJ8/eB2RZA==</latexit>D<latexit sha1_base64="hnLXyj98SyWJxboWlxO2Ayd1ueI=">AAAB63icbVBNS8NAEJ3Ur1q/qh69BIvgqSTi17HoxWMFawttKJvtpl26uwm7E6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvTAQ36HnfTmlldW19o7xZ2dre2d2r7h88mjjVlLVoLGLdCYlhgivWQo6CdRLNiAwFa4fj29xvPzFteKwecJKwQJKh4hGnBHOphyTtV2te3ZvBXSZ+QWpQoNmvfvUGMU0lU0gFMabrewkGGdHIqWDTSi81LCF0TIasa6kikpkgm906dU+sMnCjWNtS6M7U3xMZkcZMZGg7JcGRWfRy8T+vm2J0HWRcJSkyReeLolS4GLv54+6Aa0ZRTCwhVHN7q0tHRBOKNp6KDcFffHmZPJ7V/cv6xf15rXFTxFGGIziGU/DhChpwB01oAYURPMMrvDnSeXHenY95a8kpZg7hD5zPHyRtjlI=</latexit>⌧

<latexit sha1_base64="SRntqChIFQX0ZrLQ9t6sEw4gCh8=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1l040oq2AdMh5JJM21oJhmSO0IZ+hluXCji1q9x59+YaWehrQcCh3PuJeeeMBHcgOt+O6WV1bX1jfJmZWt7Z3evun/QNirVlLWoEkp3Q2KY4JK1gINg3UQzEoeCdcLxbe53npg2XMlHmCQsiMlQ8ohTAlbyezGBESUiu5/2qzW37s6Al4lXkBoq0OxXv3oDRdOYSaCCGON7bgJBRjRwKti00ksNSwgdkyHzLZUkZibIZpGn+MQqAxwpbZ8EPFN/b2QkNmYSh3Yyj2gWvVz8z/NTiK6DjMskBSbp/KMoFRgUzu/HA64ZBTGxhFDNbVZMR0QTCralii3BWzx5mbTP6t5l/eLhvNa4KeoooyN0jE6Rh65QA92hJmohihR6Rq/ozQHnxXl3PuajJafYOUR/4Hz+AIdPkW4=</latexit>

N

<latexit sha1_base64="hWRQEG4MpheRcWzI6MT9D7/bhxA=">AAAB7HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cIbhJIljA76U2GzM4uM7NCXPINXjwo4tUP8ubfOHkcNLGgoajqprsrTAXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6CRTDH2WiES1QqpRcIm+4UZgK1VI41BgMxzeTvzmIyrNE/lgRikGMe1LHnFGjZX8ThiRp2654lbdKcgy8eakAnPUu+WvTi9hWYzSMEG1bntuaoKcKsOZwHGpk2lMKRvSPrYtlTRGHeTTY8fkxCo9EiXKljRkqv6eyGms9SgObWdMzUAvehPxP6+dmeg6yLlMM4OSzRZFmSAmIZPPSY8rZEaMLKFMcXsrYQOqKDM2n5INwVt8eZk0zqreZfXi/rxSu5nHUYQjOIZT8OAKanAHdfCBAYdneIU3RzovzrvzMWstOPOZQ/gD5/MHbtyOdA==</latexit>z

De
co

de

<latexit sha1_base64="sn1u54iz+tC23OLF/1Bz4XZpsvc=">AAAB8nicbVDLSsNAFJ3UV62vqks3g0VwVRLxtSy6cVnBPiAJZTKdtEMnM2HmRiyhn+HGhSJu/Rp3/o3TNgttPXDhcM693HtPlApuwHW/ndLK6tr6RnmzsrW9s7tX3T9oG5VpylpUCaW7ETFMcMlawEGwbqoZSSLBOtHodup3Hpk2XMkHGKcsTMhA8phTAlbygyGBPIhi/DTpVWtu3Z0BLxOvIDVUoNmrfgV9RbOESaCCGON7bgphTjRwKtikEmSGpYSOyID5lkqSMBPms5Mn+MQqfRwrbUsCnqm/J3KSGDNOItuZEBiaRW8q/uf5GcTXYc5lmgGTdL4ozgQGhaf/4z7XjIIYW0Ko5vZWTIdEEwo2pYoNwVt8eZm0z+reZf3i/rzWuCniKKMjdIxOkYeuUAPdoSZqIYoUekav6M0B58V5dz7mrSWnmDlEf+B8/gA/m5E/</latexit>

x̂

Layer Norm

Scale, Shift
Multi-head Attention

Scale

Layer Norm

Scale, Shift

Pointwise FFN

Scale

+

Input

+

yt

t=0.9

Ti
m

e
Em

be
d

t=0.1

<latexit sha1_base64="CnNxxxA7QP/QO43mteXy5rPAC2M=">AAAB+nicbZDLSsNAFIYnXmu9pbp0M1gEF1IS8bYsunFZwV6gCeFkOmmHziRhZqKU2Edx40IRtz6JO9/GaZuFtv4w8PGfczhn/jDlTGnH+baWlldW19ZLG+XNre2dXbuy11JJJgltkoQnshOCopzFtKmZ5rSTSgoi5LQdDm8m9fYDlYol8b0epdQX0I9ZxAhoYwV2xQuphsA9wV4fhDAU2FWn5kyFF8EtoIoKNQL7y+slJBM01oSDUl3XSbWfg9SMcDoue5miKZAh9GnXYAyCKj+fnj7GR8bp4SiR5sUaT93fEzkIpUYiNJ0C9EDN1ybmf7VupqMrP2dxmmkak9miKONYJ3iSA+4xSYnmIwNAJDO3YjIACUSbtMomBHf+y4vQOq25F7Xzu7Nq/bqIo4QO0CE6Ri66RHV0ixqoiQh6RM/oFb1ZT9aL9W59zFqXrGJmH/2R9fkD5duTIg==</latexit>

�1, �1

<latexit sha1_base64="7/ZsPqpsVuPSYDNLsfDOR+B/K5w=">AAAB+nicbZDLSsNAFIZP6q3WW6pLN4NFcCElKd6WRTcuK9gLNCFMppN26EwSZiZKqX0UNy4UceuTuPNtnLZZaOsPAx//OYdz5g9TzpR2nG+rsLK6tr5R3Cxtbe/s7tnl/ZZKMklokyQ8kZ0QK8pZTJuaaU47qaRYhJy2w+HNtN5+oFKxJL7Xo5T6AvdjFjGCtbECu+yFVOOgdoq8PhbCUGBXnKozE1oGN4cK5GoE9pfXS0gmaKwJx0p1XSfV/hhLzQink5KXKZpiMsR92jUYY0GVP56dPkHHxumhKJHmxRrN3N8TYyyUGonQdAqsB2qxNjX/q3UzHV35YxanmaYxmS+KMo50gqY5oB6TlGg+MoCJZOZWRAZYYqJNWiUTgrv45WVo1aruRfX87qxSv87jKMIhHMEJuHAJdbiFBjSBwCM8wyu8WU/Wi/VufcxbC1Y+cwB/ZH3+AOjtkyQ=</latexit>

�2, �2

<latexit sha1_base64="TYeatUROkd5Vo2hLNb2rqcL7+l8=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8cI5gHJEnons8mQ2dl1ZlYIS37CiwdFvPo73vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVlDVoLGLVDlAzwSVrGG4EayeKYRQI1gpGt1O/9cSU5rF8MOOE+REOJA85RWOldhdFMsSe1ytX3Ko7A1kmXk4qkKPeK391+zFNIyYNFah1x3MT42eoDKeCTUrdVLME6QgHrGOpxIhpP5vdOyEnVumTMFa2pCEz9fdEhpHW4yiwnRGaoV70puJ/Xic14bWfcZmkhkk6XxSmgpiYTJ8nfa4YNWJsCVLF7a2EDlEhNTaikg3BW3x5mTTPqt5l9eL+vFK7yeMowhEcwyl4cAU1uIM6NICCgGd4hTfn0Xlx3p2PeWvByWcO4Q+czx+4EY/G</latexit>↵1

<latexit sha1_base64="AtTYu58g3T00zyK/PyOEKQoPqRk=">AAAB73icbVDLSgNBEOz1GeMr6tHLYBA8hd3g6xj04jGCeUCyhN7JbDJkdnadmRXCkp/w4kERr/6ON//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqyho0FrFqB6iZ4JI1DDeCtRPFMAoEawWj26nfemJK81g+mHHC/AgHkoecorFSu4siGWKv2iuV3Yo7A1kmXk7KkKPeK311+zFNIyYNFah1x3MT42eoDKeCTYrdVLME6QgHrGOpxIhpP5vdOyGnVumTMFa2pCEz9fdEhpHW4yiwnRGaoV70puJ/Xic14bWfcZmkhkk6XxSmgpiYTJ8nfa4YNWJsCVLF7a2EDlEhNTaiog3BW3x5mTSrFe+ycnF/Xq7d5HEU4BhO4Aw8uIIa3EEdGkBBwDO8wpvz6Lw4787HvHXFyWeO4A+czx+5lY/H</latexit>↵2

<latexit sha1_base64="VldE8t81YgZnEMFM9Sh4nV05ZTs=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhA8hV3xdQx68RjBPCRZwuzsJBkyM7vM9IphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHeFieAGPe/bWVpeWV1bL2wUN7e2d3ZLe/sNE6easjqNRaxbITFMcMXqyFGwVqIZkaFgzXB4M/Gbj0wbHqt7HCUskKSveI9TglZ66CAXEcuext1S2at4U7iLxM9JGXLUuqWvThTTVDKFVBBj2r6XYJARjZwKNi52UsMSQoekz9qWKiKZCbLpwWP32CqR24u1LYXuVP09kRFpzEiGtlMSHJh5byL+57VT7F0FGVdJikzR2aJeKlyM3cn3bsQ1oyhGlhCqub3VpQOiCUWbUdGG4M+/vEgapxX/onJ+d1auXudxFOAQjuAEfLiEKtxCDepAQcIzvMKbo50X5935mLUuOfnMAfyB8/kDRp2QvA==</latexit>

x̃
<latexit sha1_base64="VldE8t81YgZnEMFM9Sh4nV05ZTs=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhA8hV3xdQx68RjBPCRZwuzsJBkyM7vM9IphyVd48aCIVz/Hm3/jJNmDJhY0FFXddHeFieAGPe/bWVpeWV1bL2wUN7e2d3ZLe/sNE6easjqNRaxbITFMcMXqyFGwVqIZkaFgzXB4M/Gbj0wbHqt7HCUskKSveI9TglZ66CAXEcuext1S2at4U7iLxM9JGXLUuqWvThTTVDKFVBBj2r6XYJARjZwKNi52UsMSQoekz9qWKiKZCbLpwWP32CqR24u1LYXuVP09kRFpzEiGtlMSHJh5byL+57VT7F0FGVdJikzR2aJeKlyM3cn3bsQ1oyhGlhCqub3VpQOiCUWbUdGG4M+/vEgapxX/onJ+d1auXudxFOAQjuAEfLiEKtxCDepAQcIzvMKbo50X5935mLUuOfnMAfyB8/kDRp2QvA==</latexit>

x̃

Variational Paragraph Embedder Latent Diffusion Model

Figure 2: Model overview. Left: a variational paragraph embedder is learned to encode paragraph
into a fixed amount of latent codes. Right: the latent diffusion model based on transformer block is
applied to generate the latent codes. The decoder finally translates them into the text. (BOS: Begin of
Sentence token, EOS: End of Sentence token)

4.1 Learning a Variational Paragraph Embedder

Instead of applying diffusion to tokens directly to generate long text, we propose to learn a set of
latent codes z = {z(1),�, z(k)} ∈ Rk×h, which we call paragraph embeddings, that capture the
semantics in the target text (of length up to 512 tokens), where h denotes the embedding dimension.
These paragraph embeddings have shorter length, such as k = 16, than the original text.

To obtain such embeddings z, we train a transformer-based encoder-decoder model. The architecture
used for the autoencoder is shown in Fig. 2. The encoder E and decoder D construct a bidirectional
mapping between the discrete data space and the latent code space. The paragraph embeddings z are
extracted by taking the first k hidden state vectors of dimension h from the final layer of E , which are
fed into the initial steps of the decoder which is trained to reconstruct the original text. It’s worth
noting that the paragraph embeddings share the same hidden dimension h as the word embeddings,
and forming a manifold in the word embedding space. Pretrained BERT and GPT-2 models are used
to initialize E and D, respectively. The manifold of the learned embeddings ideally possesses several
desirable properties, including low conversion error, local smoothness and distributional smoothness.

Conversion error Ideally, the original input x can be perfectly reconstructed via x̂ = D(z),z =E(x), and modeling the lower-dimensional continuous space p(z) is equivalent to modeling p(x).
However, in practice a loss of information can occur when converting raw text into paragraph
embeddings or when doing the reverse. We assess the conversion loss by computing the BLEU score
(BLEUclean) between the input x and the reconstruction x̂.

Local smoothness To generate target text that is fluent and consistent with the corresponding
paragraph embeddings, it is essential to achieve a certain level of local smoothness in the paragraph
embeddings space. Ideally, a slight variation in the input vector x would not cause a significant
change in the resulting encoded vector E(x). Similarly, a small perturbation in the latent vector z
should not lead to a significant change in the decoded vector D(z). Otherwise, the error accumulated
in the diffusion process when generating z could result in an inaccurate realization of the desired
semantics. To accomplish this, the denoising autoencoder is trained by substituting (Sub) input tokens
with random tokens with probability p. The local smoothness is measured using the BLEU score
(BLEUrobust) between the input x and the denoising output from corrupted input D(E(x̃)), where
x̃ = Sub(x, p = 0.3). The level of injected noise will affect both the conversion error and the local
smoothness, and it is important to strike a balance between the two.

Distributional Smoothness The diffusion model may face difficulty in learning a distribution, p(z),
that is highly multimodal, or has density that are associated with a large Lipchitz constant (i.e., has
abrupt changes). Therefore, we employ a text VAE (Bowman et al., 2016; Li et al., 2020) to encourage
the posterior to take on a form close to a Gaussian distribution. Specifically, we parameterize q(z�x) to
beN (Eµ,E⌫) and maximize the objective L(E ,D;x) = Eq(z�x)[log p(x�z)]−� ⋅KL(q(z�x)��p(z)).
Here Eµ and E⌫ represent the posterior mean and variance predictions of the encoder E , while the

4

hyperparameter � controls the strength of regularization. It is typically set to a small value to alleviate
the notorious posterior collapsing issue (Bowman et al., 2016) in text VAE. To gauge the distributional
smoothness of the paragraph embedding space, we select two examples, x and x′ at random from the
training set and interpolate their embeddings to compute zINT = 1

2E(x) + 1
2E(x′). We then evaluate

the perplexity (PPLint) of the decoded interpolation D(zINT) using a GPT-2 model.

4.2 Planning then Decoding: A Latent Diffusion Model for Paragraph Embeddings

Training phase We now use the learned mean paragraph embeddings z = Eµ(x) to train a
continuous-time latent diffusion model as in Fig. 2 while keeping E and D frozen. We conducted
experiments using two types of conditioning signal: (i) class labels, such as positive or negative
sentiment labels, and (ii) raw text, such as preceding context or the document to be summarized.
For class labels, we learned a label embedding y ∈ Rh to represent each class. For the raw text, we
applied a conditional feature encoder ⌧ to the input and used the hidden states at the last layer as
y ∈ Rc×h, where c represents the number of feature embeddings.

During training, we gradually add noise to z via a cosine scheduler (Ho et al., 2020), and use a
signal prediction scheme as the training objective (Kingma et al., 2021). For our denoising backbone
model F (⋅), we use a transformer block similar to the one in the DiT (Peebles & Xie, 2022) model.
Specifically, we fed y and the time embedding t ∈ Rh into the model through two channels, namely
cross-attention and adaptive layer norm (adaLN) (Peebles & Xie, 2022). For the cross-attention, the
conditional embeddings t and y are concatenated into a sequence of length c + 1. The transformer
block is modified to enable multi-head cross-attention to the conditional embeddings.

For the adaLN, we flattened and projected y to a vector of Rh using a linear projection layer. We
then added the projected y to the time embedding t. Instead of directly learning dimension-wise
scale and shift parameters (� and �) in the standard Layer Norm (LN), these parameters are regressed
from the sum of the embeddings. In addition, dimension-wise scaling parameters ↵ are regressed and
applied immediately before any residual connections within the transformer block. This has been
shown to be efficient and effective in image diffusion models (Peebles & Xie, 2022).

Inference phase During the inference process, we start with random Gaussian embeddings and use
a fixed number of steps T to generate the final z. The resulting embeddings are then used as inputs
for D to generate the text using a deterministic decoding method like greedy decoding 1. We provide
discussion and ablation study on using stochastic decoding in the App. C

We applied the classifier-free guidance (CFG) (Ho & Salimans, 2021) during the inference steps.
After each step, we apply a dynamic thresholding technique that was introduced in Imagen (Saharia
et al., 2022) for post-processing. However, we do not use the rescaling step in Imagen because
rescaling step can completely alter the underlying semantics, as we have not imposed any constraints
to ensure that the generated output remains the same after rescaling the latent code. In contrast, for
Imagen, where the generation takes place in the raw pixel space, rescaling will predominantly retain
the shape information while altering only the contrast and brightness.

5 Experimental Setups

We tested the effectiveness of our model in three different conditional generation tasks including
sentiment-guided generation, long-form text completion, and summarization. The tasks can require
generating text of hundreds of tokens in length, making them suitable to assess model performance.

Datasets For the Sentiment-guided generation task, we used the TripAdvisor dataset provided by
(Li et al., 2014). By exclusively selecting reviews with a rating of 1 or 5 and balancing the two ratings
via subsampling, we acquired 218,509 reviews. For the text completion task, our model was assessed
on two datasets: 1) the aforementioned TripAdvisor review dataset with postprocessing to remove
reviews that are less than 20 or more than 512 tokens, result in 690,862 samples, and 2) one-tenth of
the overall C4 datasets (Raffel et al., 2020), which contains 36.5M samples. For each sample, we
extracted the initial two sentences from a paragraph as source context, and predicted the remainder
of the text as target. The datasets were partitioned into training, validation, and test in the ratios of

1The aim of D is to accurately convert the z into a meaningful text, thus deterministic decoding is desirable.

5

(0.96,0.02,0.02). For the summarization task, we use CNN/DailyMail (Hermann et al., 2015) and
XSum (Narayan et al., 2018).

Automatic Evaluation Metrics Following previous work (Gong et al., 2023), we assess the fluency
of the generation by computing the perplexity (PPL) under a GPT-2 large model. We use Ent-n
(Zhang et al., 2018) and DIST-n (Li et al., 2016a) and self-BLEU (S-BL) (Zhu et al., 2018) to
evaluate lexical diversity. We present DIST-n and Ent-n metrics solely at n = 1 owing to their strong
correlation of the varying n values. We use REP-n to assess the extent of repetition in the generation
following previous work (Welleck et al., 2019; Xu et al., 2022). For relevancy we use standard
metrics following (Gong et al., 2023), including SacreBLEU (BL) (Post, 2018), ROUGE-L (R-L)
(Lin, 2004) and BERTScore (Score) (Zhang et al., 2019). Details are provided in App. F.

AuBLEU: Evaluating Denoising Capability Our proposed model is a latent diffusion model, which
differs from text diffusion models that operate directly on text or text embedding space. To comparing
the denoising ability across different text diffusion models, we introduce a novel metric, named
AuBLEU (AuBL). To compute the AuBLEU score, we first add varying levels of noise to each input
text x by performing diffusion at T different time steps t0 < t1 < � < tT , corresponding to a series of
SNR !t0 > � > !tT . Next, we pass each corrupted input under different ! to the denoising backbone
model and obtain the predicted output x̂i = F (xti). We then compute the BLEU score between
each (x̂i,x) pairs and plot a curve with the x-axis representing ↵2 = !

1+! , where ↵2 is monotonically
increasing with ! and ranges from (0,1), and the y-axis indicating the corresponding BLEU score.
Finally, we compute the area under curve to obtain the AuBLEU score (see App. D for more details).

Model Setups We used the BERT-large and GPT-medium models as initialization for the encoderE and decoder D respectively. The embedding dimension h was 1024, and the number of paragraph
embeddings k was set to 16, as increasing the number did not result in significant improvement in
performance. We provide more analysis on the impact of k in App. A.2 The learning rate was set
to 2e − 4, and � was set to 5e − 6. For the latent diffusion model, the channel size was set to 1024
to match the embedding dimension h, and the number of heads was set to 16 with 28 transformer
layers. The total size of the latent diffusion model was 533M. The feature encoder ⌧ was also jointly
learned, and was initialized with a T5-large encoder. We use DDIM throughout our experiments
as it shows better performance than DDPM. In all our experiments, we use 30 diffusion steps to
generate the final z , which strikes a good balance among the efficiency, diversity and relevance.
In comparison, Diff-LM (Li et al., 2022) and Genie (Lin et al., 2022) report to use 200 steps and
2000 steps respectively to generate high-quality text. We set the CFG weights to be 2 and 5 for text
completion and summarization tasks, respectively, based on generation performance on validation
set. For summarization task, we also incorporate a shift noise scheduler based on (Hoogeboom et al.,
2023). More details, including ablations on DDPM, number of diffusion steps and noise scheduler,
are provided in App. F.

Figure 3: Impact of the proportion of in-
jected noise for learning Paragraph Em-
beddings on XSum dataset. Large substi-
tution noise results in worse BLEUclean
but better BLEUrobust and PPLint.

Baselines We compare our method with several baseline
methods trained under Teacher Forcing scheme, includ-
ing decoder-only Autoregressive LM finetuned on GPT-2
(FT), encoder-decoder (Enc-Dec) transformer model, and
Varitional Information Bottleneck (VIB) (Alemi et al.,
2016). We initialized the FT model using GPT-2 large
(774M), whereas encoder and decoder in the Enc-Dec/VIB
models (695M/697M) are initialized with bert-large and
GPT-medium, respectively. All the considered models are
finetuned on the target datasets. We follow Li et al. (2022)
to report the FT baselines with two decoding strategies,
top-p sampling (K=50, p=0.92) and beam search (beam
width 4), denoted as FT-sample and FT-search. We use
top-p sampling for Enc-Dec/VIB generation. For summa-
rization tasks, we finetune a T5-large model (770M) on
the target datasets as baselines. We also compared two text
diffusion models Diff-LM and Genie using their suggested
configuration from the official repository. More details are
in App. F.

6

6 Results

6.1 Paragraph Representation Learning

It is essential to learn a paragraph embedding space that is both accurate and smooth. To this end,
we examined the effect of various substitution probabilities p to the input tokens x. Our findings,
presented in Fig. 3, reveal that a smaller p results in a lower conversion error, as indicated by a higher
reconstruction BLEU (BLEUclean), albeit at the expense of local smoothness (BLEUrobust) and
distributional smoothness (PPLint). We performed a grid search of p with 0.1 increment based on 512
samples. Empirically, we observed that a weighted score Soverall = 0.5BLEUclean+0.8BLEUrobust−
0.3PPLint correlate well with downstream diffusion performance, leading to fluent and accurate
generation for PLANNER (see App. A for more details). We finally opted for p = 0.3 for most
datasets 2, which strike a balance between conversion error and smoothness.

It is worth noting that there is an inevitable conversion loss, indicated by the fact that the BLEUclean
is between 77 ∼ 87 when generating hundreds of words (App. D). We observd that most of the lexical
mismatch still maintain the similar semantics, with the exception of some name entity swapping.
We show some paragraph reconstruction and denoising examples from our paragraph embedder in
the App. A. We also include examples of interpolated generation from random paragraph pairs in
the App. A. In general the transition of semantics is natural, indicating reasonable distributional
smoothness of the paragraph embedding space.

6.2 Sentiment-Guided Generation

Arch. PPL ACC↑ DIST/ENT↑ S-BL↓ Rep-4↓ Len

FT-sample 20.86 70.2% 0.13/6.154 0.96 5.86% 113
Diff-LM 101.97 83.6% 0.15/5.115 4.05 6.23% 66.2

Ours 51.12 94.9% 0.16/6.360 0.77 2.37% 161

Human 47.94 96.7% 0.17/6.737 0.48 2.17% 157

Table 1: PLANNER achieves high success rate (ACC) and diversity
with less repetion in generating hotel reviews conditioned on sentiment.

For sentiment-guided gen-
eration experiments, fol-
lowing previous works (Li
et al., 2022; Hu et al., 2017;
Keskar et al., 2019), we use
a trained classifier to assess
if the given sentiment is
well-controlled in the gen-
eration. The trained classi-
fier is initialized with BERT-
large and finetuned on the training set, which yields an accuracy of 96.75% on the held-out test set.
The results are provided in in Tab. 1. PLANNER outperforms the baseline approaches in generating
long reviews at higher levels of accuracy. Although PLANNER using a greedy decoding mode is
at least comparable with FT with top-p sampling in terms of diversity, and has lower repetition as
assessed by Rep-4 in generation.

The perplexity of the text generated by PLANNER is close to that of human-written text. We provide
examples of the generated text in App. E. Interestingly, as shown in App. E, with the same random
seed but different controlling sentiment, PLANNER generates text with similar contents but different
sentiments, suggesting the diffusion model may be able to disentangle the semantic space to certain
extent. Unlike the autoregressive generation, the nature of the diffusion model allows the model
to “regret” and iteratively refine on the current generations. In App. B, we demonstrate how the
generation evolves over multiple time steps in a coarse-to-fine manner in PLANNER.

6.3 Long-form Text Completion

We further evaluate our model on the long-form text completion tasks. For text diffusion baseline, we
compared our method with Diff-LM (Li et al., 2022) on hotel review dataset. We could not perform a
comparison on the C4 dataset with Diff-LM due to the significant amount (thousands) of GPU hours
required to train Diff-LM adequately. A Diff-LM running time estimation is available in App. F. The
results are provided in Tab. 2. FT-search performed poorly in this open-ended generation task as its
generation exhibited high repetition levels, consistent with findings in previous research (Holtzman
et al., 2019; Xu et al., 2022). Although our approach also employs a deterministic decoding method,
we observed that it produces text with low Rep-4 metric, signifying that PLANNER is effective in

2except for CNNDM dataset where we use p = 0.5
7

Arch. PPL DIST/ENT↑ S-BL↓ Rep-4↓ BL↑ R-L↑ Score↑ Len AuBL↑
Hotel Review dataset

FT-search 1.87 0.03/4.865 3.50 86.60% 0.62 5.2 0.39 179.51 -
FT-sample 15.51 0.14/6.455 0.88 4.49% 0.78 6.8 0.53 164.50 -
Enc-Dec 33.82 0.18/6.379 0.57 3.25% 0.47 7.3 0.54 94.03

VIB 36.89 0.19/6.481 0.54 3.15% 0.45 7.1 0.54 86.11 -

Diff-LM 178.30 0.13/5.560 3.57 4.54% 0.84 8.8 0.43 175.10 26.16

PLANNER 47.36 0.17/6.602 0.52 1.55% 0.77 7.9 0.55 168.08 38.55
Human 47.60 0.20/7.023 0.60 1.46% - - - 181.29 -

C4 subset dataset

FT-search 1.927 0.07/6.245 0.14 79.54% 0.77 5.2 0.37 154.88 -
FT-sample 12.244 0.25/7.136 0.44 7.01% 1.59 5.9 0.47 122.55 -
Enc-Dec 23.095 0.24/7.077 0.16 2.27% 1.92 7.5 0.5 118.07 -

VIB 19.701 0.24/7.003 0.16 2.62% 1.86 6.8 0.49 113.34 -

PLANNER 61.768 0.28/7.352 0.12 1.67% 2.04 7.7 0.51 111.89 36.77

Human 59.783 0.44/7.381 0.12 1.12% - - - 107.56 -

Table 2: PLANNER enhances the diversity of text generation and minimizes the occurrence of
repetition in open-ended text completion tasks.

reducing repetition through holistic iterative refinement throughout the inference steps in the diffusion
process. Comparing with Diff-LM and other baselines, PLANNER achieved better diversity scores
while maintaining comparable relevance scores. We also observe higher AuBLEU of PLANNER
comparing with Diff-LM, indicating a potentially higher overall denoising strength of PLANNER
(See App. D for more details). Some examples of the generated text are available in the App. E.
We also observed PLANNER exhibits robustness towards prompts that are either repetitive or
ill-composed, where FT failed (Fig. 1, App. G).

Metric Methods Win Tie Loss

Rel.
Ours vs. FT 48.2% 9.2% 42.6% *

Ours vs. VIB 50.7% 10.0% 39.3% **
Ours vs. Human 39.3% 9.3% 51.3% **

Inf.
Ours vs. FT 55.1% 5.7% 39.2% **

Ours vs. VIB 48.7% 8.0% 43.3% *
Ours vs. Human 37.7% 8.7% 53.7% **

Hum.
Ours vs. FT 51.5% 8.4% 40.1% **

Ours vs. VIB 40.0% 19.3% 40.7%
Ours vs. Human 34.3% 17.0% 48.7% **

Table 3: Human evaluation on Relevance (Rel.), In-
formativeness (Inf.), and Human-likeness (Hum.).
Statistical significant results: ** p < 0.001, *
p < 0.01.

We further performed pairwise human evalua-
tion on 300 examples of hotel review generation
from each system on our internal crowd-source
annotation platform. Each pair of text being pre-
sented to 3 judges in random order. The judges
ranked the pairs for relevance, informativeness
and human-like properties using a 3-point Likert-
like scale. Overall judge preferences are shown
in Table 3. A moderate preference can be ob-
served for PLANNER over FT and VIB, except
for human-like between PLANNER and VIB.
We also observe that judges still prefer human
responses over system generations in this task.
Further details, including the human evaluation
template used and interrater agreement analysis,
are provided in the App. H.

6.4 Summarization

We further conducted evaluation on summarization and present the results in Tab. 4. Summarization is
less open-ended than the text completion task, thus a deterministic decoding approach like T5-search
can produce high-quality text. Our evaluation shows that in comparison with T5-sample and Genie
(Lin et al., 2022), PLANNER exhibits comparable Rouge-L scores, while improves other metrics.
PLANNER achieves higher AuBLEU than Genie (See App. D for more details).

Owing to the sampling nature of the diffusion model, PLANNER and Genie yielded lower Rouge-L
scores in comparison with T5-search, with single summary. To align with Genie’s evaluation, we
provide the results with 10 random runs in Tab. 4, where for each document it generates 10 summaries
and the one with the highest Rouge score is used. However, we note that these summaries with

8

best Rouge-L cannot be predetermined without an oracle summary. Comparing with T5-search,
PLANNER generates more diverse and less repetitive summaries. However, the improvement is
less conspicuous comparing with the results observed in open-ended text completion tasks. We show
some generations in the App. E (Tab. 12).

Notably, the generated content may occasionally include hallucinations or errors, especially for name
entities and digits (App. E, Tab. 13). Such occurrences can be attributed to either the conversion errors
in D or errors during the generation of paragraph embeddings, and requires further investigation.

Arch. PPL DIST/ENT↑ S-BL↓ Rep-4↓ BL↑ R-L↑ Score↑ Len AuBL↑
CNN Dailymail dataset

T5-search 58.12 0.11/7.726 0.24 6.69% 7.66 34.48 0.66 45.51 -
T5-sample 67.58 0.11/7.790 0.20 3.50% 5.05 30.15 0.64 48.51 -

Genie 179.9 0.09/7.293 0.24 4.16% 3.22 30.47 0.58 40.94 27.21
Genie(10) 170.6 0.10/7.355 0.24 4.32% 6.48 37.09 0.62 40.81 -

PLANNER 49.21 0.10/8.037 0.15 5.25% 6.92 30.43 0.62 52.33 43.91
PLANNER (10) 49.07 0.10/8.019 0.15 4.96% 11.42 36.81 0.66 53.14 -

Human 49.477 0.12/8.226 0.16 5.63% - - - 51.15 -

XSum dataset

T5-search 29.41 0.12/7.200 0.31 14.83% 6.11 36.08 0.74 18.97 -
T5-sample 36.17 0.13/7.449 0.24 6.47% 3.62 31.18 0.71 20.78 -

Genie 186.7 0.09/6.935 0.28 8.56% 2.38 34.85 0.66 20.44 30.85
Genie(10) 178.2 0.09/6.924 0.30 9.66% 5.06 41.59 0.68 19.97 -

PLANNER 67.94 0.11/7.553 0.21 5.38% 4.84 33.97 0.69 20.04 57.88
PLANNER (10) 67.46 0.11/7.529 0.23 5.82% 11.61 41.23 0.72 19.89 -

Human 37.8 0.13/7.656 0.21 5.56% - - - 21.19 -

Table 4: For summarization task, PLANNER outperform Genie (Lin et al., 2022) in generation
diversity and fluency while maintaining comparable Rouge-L scores. (10) indicates the maximum
results after 10 runs, following (Lin et al., 2022).

6.5 Analysis

Running time We conducted inference time benchmarks of each method on a single Nvidia A100.
For the sentiment-guided generation task, the autoregressive baseline is 5x faster than our method as
the generation for all methods can be batched. For all other tasks, the varying input lengths make
direct batchification for the FT baseline not straightforward. In these scenarios, the latent diffusion
over a fixed number of latent codes offers computational advantages over a naive decoding of the FT
baseline as the latent codes in our method can be conveniently batched.

For the hotel review completion task, the generation of 256 samples took 378 seconds to complete,
including 83 seconds for decoding and 295 seconds for diffusion generation with 30 generation steps.
The unbatched FT baseline took 1,693 seconds to complete 256 generations. Sorting input text by
length and maximally batchifying them as possibley reduce the (batched) FT inference time to 338
seconds. The Diff-LM algorithm required 397 seconds to produce 256 samples using 200 generation
steps, which is comparable to ours. Although our method is slower than the autoregressive ones,
PLANNER enjoys the convenience of arranging input into the same length vectors without further
length bucketing. On the CNN-DM summarization tasks, our method took 8.4 GPU hours to generate
11392 summaries. Genie’s generation took 47.2 GPU hours. XSum gives similar inference running
time benchmark to the results on CNN-DM.

Generations over diffusion steps In App. B we provide generation examples for both summariza-
tion and sentiment-guided generation over different diffusion steps, which progress in a coarse-to-fine
manner. The generation from early time step tends to be less fluent and generic. As the time ap-
proaches 0, the generation becomes more detailed. We presented quantitative results characterizing
the evolution of the metrics over generation steps in App. B, Fig. 5. It revealed a clear trend of
improvement in the majority of the metrics as the generation proceeds. Notably, most hallucinations

9

occur during the late phase when more details are being incorporated. The model may excessively
emphasize certain aspects, resulting in the correct generation being altered to an erroneous one
(App. B, Tab. 10).

7 Conclusion

We present a two-stage latent text diffusion model that uses an autoencoder to condense lengthy
texts into a limited number of paragraph embeddings, and a continous time diffusion model that
learns the distribution of these embeddings. Our proposed model alleviates the issue of repetition and
advances generation diversity across different tasks. Compared to text diffusion models that perform
diffusion solely on token or token embedding space, our method generates fluent text with improved
diversity and reduced repetition. There may be toxicity or fairness issues in the dateset we used that
we have not been able to identify. There are several limitations that warrant further investigation.
Our work relies on an autoregressive decoder for converting latent representation into coherent text.
It is possible to explore the feasibility of non-autoregressive decoders to bolster efficiency while
minimizing conversion errors and hallucination in the generation. Furthermore, the classifier-free
guidance approach results in a discrepancy between training and inference data distribution when
feeding to the diffusion backbone. It would be interesting to investigate a “calibration” strategy for
the latent code to better fit the data distribution during training.

Acknowledgement

We thank Yinfei Yang, Barry Theobald, Zhe Gan, Edouard Grave, David Grangier, Tatiana Likhoma-
nenko, Richard Bai and Ronan Collobert for their critical suggestions and helpful feedback throughout
this project.

10

References
Alexander A Alemi, Ian Fischer, Joshua V Dillon, and Kevin Murphy. Deep variational information bottleneck.

In ICLR, 2016.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured denoising
diffusion models in discrete state-spaces. NeurIPS, 34:17981–17993, 2021.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence prediction
with recurrent neural networks. In NeurIPS, volume 28, 2015.

Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio. Generating
sentences from a continuous space. In CONLL, pp. 10–21, 2016.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using diffusion models
with self-conditioning. arXiv preprint arXiv:2208.04202, 2022.

Pim de Haan, Dinesh Jayaraman, and Sergey Levine. Causal confusion in imitation learning. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information

Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/947018640bf36a2bb609d3557a285329-Paper.pdf.

Shansan Gong, Mukai Li, Jiangtao Feng, Zhiyong Wu, and LingPeng Kong. Diffuseq: Sequence to sequence
text generation with diffusion models. In ICLR, 2023.

Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. Teaching machines to read and comprehend. Advances in neural information processing

systems, 28, 2015.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep

Generative Models and Downstream Applications, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS, volume 33,
2020.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration.
In ICLR, 2019.

Emiel Hoogeboom, Alexey A Gritsenko, Jasmijn Bastings, Ben Poole, Rianne van den Berg, and Tim Salimans.
Autoregressive diffusion models. In ICLR, 2021.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for high resolution
images. arXiv preprint arXiv:2301.11093, 2023.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan Salakhutdinov, and Eric P Xing. Toward controlled generation
of text. In International conference on machine learning, pp. 1587–1596. PMLR, 2017.

Bowen Jing, Gabriele Corso, Renato Berlinghieri, and Tommi Jaakkola. Subspace diffusion generative models. In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings,

Part XXIII, pp. 274–289. Springer, 2022.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney, Caiming Xiong, and Richard Socher. Ctrl: A conditional
transformer language model for controllable generation. arXiv preprint arXiv:1909.05858, 2019.

Yoon Kim, Sam Wiseman, and Alexander M Rush. A tutorial on deep latent variable models of natural language.
arXiv preprint arXiv:1812.06834, 2018.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. NeurIPS, 34:
21696–21707, 2021.

Alex M Lamb, Anirudh Goyal ALIAS PARTH GOYAL, Ying Zhang, Saizheng Zhang, Aaron C Courville, and
Yoshua Bengio. Professor forcing: A new algorithm for training recurrent networks. Advances in neural

information processing systems, 29, 2016.

Chunyuan Li, Xiang Gao, Yuan Li, Baolin Peng, Xiujun Li, Yizhe Zhang, and Jianfeng Gao. Optimus:
Organizing sentences via pre-trained modeling of a latent space. In EMNLP, 2020.

Jiwei Li, Myle Ott, Claire Cardie, and Eduard Hovy. Towards a general rule for identifying deceptive opinion
spam. In ACL, pp. 1566–1576, 2014.

11

https://proceedings.neurips.cc/paper_files/paper/2019/file/947018640bf36a2bb609d3557a285329-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/947018640bf36a2bb609d3557a285329-Paper.pdf

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting objective function
for neural conversation models. In NAACL, 2016a.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. Deep reinforcement learning
for dialogue generation. In EMNLP, pp. 1192–1202, 2016b.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto. Diffusion-lm improves
controllable text generation. NeurIPS, 35:4328–4343, 2022.

Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out,
pp. 74–81, 2004.

Zhenghao Lin, Yeyun Gong, Yelong Shen, Tong Wu, Zhihao Fan, Chen Lin, Weizhu Chen, and Nan Duan.
Genie: Large scale pre-training for text generation with diffusion model. arXiv preprint arXiv:2212.11685,
2022.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekhtman, and Kilian Weinberger. Latent diffusion for
language generation. arXiv preprint arXiv:2212.09462, 2022.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary! topic-
aware convolutional neural networks for extreme summarization. In Proceedings of the 2018 Con-

ference on Empirical Methods in Natural Language Processing, pp. 1797–1807, Brussels, Belgium,
October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1206. URL
https://aclanthology.org/D18-1206.

Myle Ott, Michael Auli, David Grangier, and Marc’Aurelio Ranzato. Analyzing uncertainty in neural machine
translation. In ICML, pp. 3956–3965. PMLR, 2018.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint arXiv:2212.09748,
2022.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference on Machine

Translation: Research Papers, October 2018.

Konpat Preechakul, Nattanat Chatthee, Suttisak Wizadwongsa, and Supasorn Suwajanakorn. Diffusion autoen-
coders: Toward a meaningful and decodable representation. In CVPR, pp. 10619–10629, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. JMLR,
2020. URL http://jmlr.org/papers/v21/20-074.html.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffusion
models with deep language understanding. In NeurIPS, volume 35, pp. 36479–36494, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR, 2021a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution. NeurIPS,
32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In ICLR, 2021b.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston. Neural text
generation with unlikelihood training. arXiv preprint arXiv:1908.04319, 2019.

Ronald J Williams and David Zipser. A learning algorithm for continually running fully recurrent neural
networks. Neural computation, 1(2):270–280, 1989.

Jin Xu, Xiaojiang Liu, Jianhao Yan, Deng Cai, Huayang Li, and Jian Li. Learning to break the loop: Analyzing
and mitigating repetitions for neural text generation. In NeurIPS, 2022.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets with policy
gradient. In AAAI, volume 31, 2017.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating text
generation with bert. In ICLR, 2019.

12

https://aclanthology.org/D18-1206
http://jmlr.org/papers/v21/20-074.html

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo Henao, Dinghan Shen, and Lawrence Carin. Adversarial
feature matching for text generation. In ICML, pp. 4006–4015. PMLR, 2017.

Yizhe Zhang, Michel Galley, Jianfeng Gao, Zhe Gan, Xiujun Li, Chris Brockett, and Bill Dolan. Generating
informative and diverse conversational responses via adversarial information maximization. In NeurIPS,
2018.

Yaoming Zhu, Sidi Lu, Lei Zheng, Jiaxian Guo, Weinan Zhang, Jun Wang, and Yong Yu. Texygen: A
benchmarking platform for text generation models. In The 41st international ACM SIGIR conference on

research & development in information retrieval, pp. 1097–1100, 2018.

Zixin Zhu, Yixuan Wei, Jianfeng Wang, Zhe Gan, Zheng Zhang, Le Wang, Gang Hua, Lijuan Wang, Zicheng
Liu, and Han Hu. Exploring discrete diffusion models for image captioning. arXiv preprint arXiv:2211.11694,
2022.

13

	Introduction
	Preliminary
	Related Work
	PLANNER: A Language Diffusion Model on Paragraph Embeddings
	Learning a Variational Paragraph Embedder
	Planning then Decoding: A Latent Diffusion Model for Paragraph Embeddings

	Experimental Setups
	Results
	Paragraph Representation Learning
	Sentiment-Guided Generation
	Long-form Text Completion
	Summarization
	Analysis

	Conclusion
	Variational Paragraph Embedder
	Selection of substitution rate p
	Selection of number of latent code k
	Reconstruction, denoising and interpolation examples

	Generation from PLANNER across multiple time steps
	PLANNER with stochastic decoding
	Denoising strength comparison
	Generation examples
	Experimental setup
	Metrics
	Model setups
	Text diffusion baseline configurations
	Ablations on DDPM, diffusion steps and noise scheduler

	Text completion with repetitive prompt
	Human evaluation

