
A General Notations

In Tab. 1, we provide a comprehensive summary of the general notations used throughout the paper
to illustrate our framework and clarify the formulation of our methodology.

Table 1: General notations

Datasets

Image I : R3×H×W

i-th image Ii : R3×H×W

Image set in mini-batch Ib : RB×3×H×W

Camera intrinsic matrix K
Coarse projected 3D center (u, v)
Object depth z
Center offset (δu, δv)
3D size dimensions (h,w, l)
Heading direction γ
Number of training images M
Number of objects in Ii N i

Number of objects in entire images L

Sets, States

Task set T = {tc, tu, tv, tδu, tδv, tz, th, tw, tl, tγ} ∋ t
Image index set I = {1, 2, . . . ,M}
object index set in image Ii J = {1, 2, . . . , N i}
Feature maps (hidden state) h : RC×H′×W ′

Per-pixel output maps õT : R|T|×H′×W ′

Object-wise output (prediction) oT : R|T|×Ni

Object descriptor ρ : RC×1×1

Distance metric d(·, ·)
Object descriptor metric space (P, d) ≡ P-space
Object depth metric space (Z, d) ≡ Z-space

Network components, Function

Feature extractor Fθ(·) : R3×H×W → RC×H′×W ′

Task-specific lightweight head Gϕt(·) : RC×H′×W ′ → RH′×W ′

Extract function H(·) : R|T|×H′×W ′ → R|T|×Ni

Quasi-isometry Q(·) : R → RC

B Theoretical analysis

This section provides our theoretical analysis of the proposed (K,B, ϵ)-quasi-isometric loss term,
which leverages the quasi-isometric properties between two metric spaces. This analysis clarifies
how our method alleviates the bottleneck task (i.e., object depth estimation) through mathematical
theorems and empirical observations. Ideally, we aim for the quasi-isometric loss, with real finite
data points on P-space, to function similarly to its continuous counterpart M (a.k.a. True manifold).
Essentially, as the number of object feature data points |P| approach to ∞, we intend for the object
feature set P originating from backbone Fθ to continue to fulfill the revised quasi-isometric properties,
regardless of the particular sample, in a probabilistic sense.

Fig. 2 in our main manuscript presents empirical demonstrations that, when applying the proposed
quasi-isometric loss with adequate weight term λqi, the ratio of property-violated object features
converges to zero. Hence, we suppose that the network trained with quasi-isometric loss consistently
produces the object features that adhere to the revised quasi-isometric properties. Moreover, we
observe that hyperparameters B and ϵ associated with our quasi-isometric loss term should be small
enough as the number of data points in the P-space incrementally approaches infinity. In this section,
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we define the pseudo-geodesic to approximate the geodesic on the true manifold. We further establish
that the feature space, which satisfies the local quasi-isometric properties, also adheres to the global
quasi-isometric properties. Notably, in this context, the distance metric of the P-space is substituted
by the pseudo-geodesic.

B.1 Pseudo-geodesic

The search for the true geodesic on P-space manifold is impeded by the discontinuous finite data
points in the set P, rendering the true manifold unobservable. Therefore, we establish the pseudo-
geodesic Ĝ(ρs, ρt) to approximate the length of the shortest curve between two data points ρs, ρt on
a feature manifold. This pseudo-geodesic is defined by partitioning the interval [zs, zt] ⊂ R, denoted
by P , as follows:

Ĝ(ρs, ρt) =
n∑

i=1

∥ρi−1, ρi∥p,

PP = (ρ0, ρ1, . . . , ρn), PZ = (z0, z1, . . . , zn),

s.t. zs = z0 < z1 < z2 < · · · < zn = zt,

max{|zi−1 − zi| : i = 1, 2, . . . , n} ≤ δ < ϵ,

(1)

where PP is the sequence of data points in |P|-space that corresponds to partition PZ, n is the
number of the pseudo-geodesic PP curve segments, and δ is a sufficiently small scalar that ensures
each curve segment length in PP is smaller than ϵ. Note that PZ is a subset of {z ∈ Z|zs ≤ z ≤ zt},
because pseudo-geodesic should represent the shortest path between ρs and ρt. Given that the mesh
of PZ is less than δ, the pseudo-geodesic should remain close to the true manifold so as δ converges
to zero, thereby approximating the length of the true geodesic. The defined pseudo-geodesic metric
for any arbitrary object feature pair (ρ1, ρ2) in P-space satisfies the properties of a distance metric.

Definition B.1 (Quasi-isometric Properties), Let Q represent a function that maps one metric space
(M1, d1) to another metric space (M2, d2). Q is termed a quasi-isometry from (M1, d1) to (M2, d2)
if there exist constants K ≥ 1, B ≥ 0, and ϵ ≥ 0 such that the following two properties are satisfied:

(i) ∀x1, x2 ∈ M1 : 1
K d1(x1, x2)−B ≤ d2(Q(x1),Q(x2)) ≤ Kd1(x1, x2) +B.

(ii) ∀z ∈ M2 : ∃x ∈ M1 s.t. d2(z,Q(x)) ≤ ϵ.

Definition B.2 (Local Quasi-isometric Properties), Local quasi-isometry refers to a function whereby
any two neighboring points (x1, x2) in the domain set M1 comply with the Definition B.1, with
x2 ∈ Bx1,ϵ. Let Q be a function from one metric space (M1, d1) to another metric space (M2, d2).
Q is considered a quasi-isometry from (M1, d1) to (M2, d2) if there exist constants K ≥ 1, B ≥ 0,
and ϵ ≥ 0 that satisfy the following conditions:

(i) Ux́ = {x ∈ M1|x ∈ Bx́,ϵ}, where x́ ∈ M1.

(ii) ∀x1 ∈ M1, s.t. ∀x2 ∈ Ux1
: 1
K d1(x1, x2)−B ≤ d2(Q(x1),Q(x2)) ≤ Kd1(x1, x2) +B,

(iii) ∀z ∈ M2 : ∃x ∈ M1, s.t. d2(z,Q(x)) ≤ ϵ.

Theorem. Given that B = B′/|P| and B′ ≥ 0, the two metric spaces (Z, |·, ·|) and (P, Ĝ(·, ·)) are
quasi-isometric.

Proof. Let (Z, |·, ·|) and (P, ∥·, ·∥p) be two metric spaces. Assume that for all (zi, zj) ∈ Z× Z and
(ρi, ρj) ∈ P × P, the local quasi-isometric properties defined in Definition B.2 are satisfied. We
need to show that these pairs also satisfy the Definition B.1 when the distance metric of P-space is
the pseudo-geodesic Ĝ. We proceed as follows:

1

K
|zi−1 − zi| −B ≤ ∥ρi−1, ρi∥p ≤ K|zi−1 − zi|+B (by Definition B.2)

Since this inequality holds for all i, summing over all i from 1 to |PZ|, we have
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Figure 1: Example of non-linearity preservation by using local-constraint.

|PZ|∑
i=1

(
1

K
|zi−1 − zi| −B

)
≤

|PZ|∑
i=1

∥ρi−1, ρi∥p ≤
|PZ|∑
i=1

(K|zi−1 − zi|+B)

=⇒
|PZ|∑
i=1

(
1

K
|zi−1 − zi| −B

)
≤ Ĝ(ρs, ρt) ≤

|PZ|∑
i=1

(K|zi−1 − zi|+B) (by Eq. 1)

=⇒ 1

K
|zs − zt| − |PZ|B ≤ Ĝ(ρs, ρt) ≤ K|zs − zt|+ |PZ|B (by Eq. 1)

=⇒ 1

K
|zs − zt| − |P|B ≤ Ĝ(ρs, ρt) ≤ K|zs − zt|+ |P|B (∵ |PZ| ≤ P)

=⇒ 1

K
|zs − zt| −B′ ≤ Ĝ(ρs, ρt) ≤ K|zs − zt|+B′ (∵ B =

B′

|P|
)

=⇒ (Z, |·, ·|) ∼
q.i.

(P, Ĝ(·, ·))

□

The distance metric defined as Ĝ(·, ·) satisfies all axioms of a distance function, and two metric spaces
(Z, |·, ·|), (P, Ĝ(·, ·)) conform to the properties in Definition B.1 with respect to (K,B′, ϵ). This
theorem implies that, by establishing an appropriate B with respect to the number of objects in the
entire dataset, the local quasi-isometric properties roughly preserve the pseudo-geodesic distance as
opposed to the Minkowski distance on P-space. This is analogous to stating that the pseudo-geodesic
between two arbitrary points ρs, ρt on P-space is uniformly close to |zs − zt|.

B.2 Non-linearity preservation

The proposed quasi-isometric loss benefits from the incorporation of a local distance-preserving
condition. This ensures a structured arrangement of the feature manifold while maintaining its
intricate overall shape. For instance, suppose that there is the feature space being modeled by a subset
of the circle manifold, as depicted in Fig. 1-(a). From a depth perspective, this manifold represents a
structured feature space since the distance of all object feature pairs along the geodesic corresponds
closely with depth distance. However, without the local distance-preserving condition, as shown in
Fig. 1-(b), the quasi-isometric loss might erroneously infer that features p4 and p5 violate property
norms.

On the other hand, integrating the local distance-preserving condition denoted by ϵ (Fig. 1) refines
the quasi-isometric loss to only consider neighbor samples. This approach enables a more nuanced
arrangement of the feature manifold while preserving the overall shape and non-linearity of the
original feature space.

In Tab. 2, we report AP3D|R40 for Car, Moderate and errors between the GT and prediction of four
key tasks that determine the location of the 3D bounding box: t ∈ z, (h,w, l), γ, c, independently.

3



Table 2: Performance trade-off between “depth” and “other sub-tasks” with respect to ϵ.
Performance Depth Others

Method
AP3D|R40 ↑ Ez (m) ↓ Edim (m) ↓ ∆γ (rad) ↓ Acc.c (%) ↑

MonoCon 17.84 0.019 0.025 π/371.79 93.15
MonoCon + LSupCR 17.55 (−1.6%) 0.014 (−26.3%) 0.031 (+24.0%) π/312.78 (+18.9%) 91.11 (−2.2%)

MonoCon + Lqi (ϵ = 1) 17.84 (+0.0%) 0.018 (−5.3%) 0.025 (+0.0%) π/371.21 (+0.2%) 93.17 (+0.0%)
MonoCon + Lqi (ϵ = 5) 18.23 (+2.2%) 0.013 (−31.6%) 0.025 (+0.0%) π/372.10 (−0.1%) 93.51 (+0.4%)
MonoCon + Lqi (ϵ = 10) 18.68 (+4.7%) 0.011 (−42.1%) 0.024 (−4.0%) π/368.11 (+1.0%) 93.07 (−0.1%)
MonoCon + Lqi (ϵ = 20) 18.12 (+1.6%) 0.011 (−42.1%) 0.026 (+4.0%) π/366.19 (+1.5%) 92.00 (−1.2%)
MonoCon + Lqi (ϵ = ∞) 16.91 (−0.9%) 0.010 (−47.4%) 0.028 (+12.0%) π/367.92 (+1.1%) 91.83 (−1.4%)

The empirical results illustrate that our method with excessively small or high ϵ would sample a few
objects within a mini-batch, making representation learning infeasible, or harming the non-linearity
of the feature manifold in P-space, respectively.

C More detailed experimental setups

Table 3: Experimental setup of each baseline (horizontal flip: hf, random crop: rc, scaling: s, photometric
distortion: pd, random shifting: rs).

baseline batch epoch image resolution optimizer augmentation type

DID-M3D [7] 16 150 1280×384 Adam [2] hf, rc, s
MonoDLE [6] 16 140 1280×384 Adam hf, rc, s
GUPNet [5] 16 140 1280×384 Adam hf, rc, s

MonoCon [3] 16 200 1248×384 AdamW [4] hf, pd, rs
MonoCon [3](Waymo [8]) 16 50 768x512 AdamW hf, pd, rs

MonoDTR [1] 16 120 1280×288 Adam hf

As mentioned in the paper, our experimental settings are the same as the respective baselines except
for the batch size. We elaborate on the specifics of the experimental setup in Tab. 3. For all baselines,
we use DLA, DLAUp [9] as the backbone and neck, respectively. We impose our quasi-isometric loss
and object-wise depth map loss using the output feature extracted from DLAUp. When computing the
quasi-isometric loss, we first apply a 5x5 average pooling to the output feature prior to the extraction
of the object descriptor. This extracted object descriptor is subsequently utilized to compute the loss.
Regarding the object-wise depth map loss, we abide by the lightweight head structure adopted in
each baseline and introduce an additional head. The output feature derived from DLAUp serves as
the input, and the object-wise depth map is generated as the output. This depth map forms the basis
for the computation of the loss.

D Qualitative results on KITTI dataset

We provide additional qualitative results using the MonoCon and “MonoCon + Ours” as discussed
in Tab. 1 of the main manuscript, utilizing the KITTI validation set. In Fig. 2, we showcase the
predictions of “MonoCon + Ours” in the image view on the left, while on the right, we present the
Bird’s Eye view displaying the predictions of Monocon, “MonoCon + Ours”, and the GT. Generally,
the models employing our method tend to align more closely with the GT.

E Full evaluation results on KITTI test set

Finally, we report the full evaluation results of four baseline models [3, 5–7] on KITTI test set in
Tab. 4-6.
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Table 4: Full evaluation results of Car class on KITTI test set.

Extra data Method Car, AP3D|R40 ↑ Car, APBEV |R40 ↑
Easy Mod. Hard Easy Mod. Hard

LiDAR DID-M3D [7] 24.40 16.29 13.75 32.95 22.76 19.83
DID-M3D + Ours 27.04 (+10.8%) 16.42 (+0.8%) 13.37 (−2.8%) 34.77 (+5.5%) 22.59 (−0.7%) 19.15 (−3.4%)

None

MonoDLE [6] 17.23 12.26 10.29 24.79 18.89 16.00
MonoDLE + Ours 22.11 (+28.3%) 15.30 (+24.8%) 12.72 (+23.6%) 30.28 (+22.1%) 20.99 (+11.1%) 17.73 (+10.8%)

GUPNet [5] 20.11 14.20 11.77 30.29 21.19 18.20
GUPNet + Ours 23.19 (+15.3%) 15.78 (+11.1%) 13.02 (+10.6%) 32.45 (+7.1%) 22.31 (+5.3%) 18.32 (+0.7%)

MonoCon [3] 22.50 16.46 13.95 31.12 22.10 19.00
MonoCon + Ours 23.31 (+3.6%) 16.36 (−0.6%) 13.73 (−1.6%) 32.37 (+4.0%) 22.73 (+2.9%) 19.81 (+4.3%)

Table 5: Full evaluation results of Ped. class on KITTI test set.

Extra data Method Ped, AP3D|R40 ↑ Ped, APBEV |R40 ↑
Easy Mod. Hard Easy Mod. Hard

LiDAR DID-M3D [7] - - - - - -
DID-M3D + Ours 14.41 9.05 8.05 15.70 10.20 8.62

None

MonoDLE [6] 9.64 6.55 5.44 10.73 6.96 6.20
MonoDLE + Ours 11.75 (+21.9%) 7.80 (+19.1%) 6.29 (+15.6%) 12.85 (+19.8%) 8.75 (+25.7%) 7.31 (+17.9%)

GUPNet [5] 14.72 9.53 7.87 - - -
GUPNet + Ours 14.23 (−3.3%) 9.03 (−5.2%) 8.06 (+2.4%) 15.50 10.16 8.65

MonoCon [3] 13.10 8.41 6.94 - - -
MonoCon + Ours 14.90 (+13.7%) 10.28 (+22.2%) 8.70 (+25.4%) 16.29 10.88 9.31

Table 6: Full evaluation results of Cyc. class on KITTI test set.

Extra data Method Cyc, AP3D|R40 ↑ Cyc, APBEV |R40 ↑
Easy Mod. Hard Easy Mod. Hard

LiDAR DID-M3D [7] - - - - - -
DID-M3D + Ours 4.86 3.11 2.97 5.94 4.02 3.55

None

MonoDLE [6] 4.59 2.66 2.45 5.34 3.28 2.83
MonoDLE + Ours 6.02 (+31.2%) 4.12 (+54.9%) 3.42 (+39.6%) 8.33 (+56.0%) 5.64 (+72.0%) 4.83 (+70.7%)

GUPNet [5] 4.18 2.56 2.09 - - -
GUPNet + Ours 5.68 (+35.9%) 3.61 (+41.0%) 3.13 (+49.8%) 6.47 3.85 3.82

MonoCon [3] 2.80 1.92 1.55 - - -
MonoCon + Ours 5.38 (+92.1%) 2.89 (+50.5%) 2.83 (+82.6%) 7.07 4.06 3.85
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Figure 2: Comparison of qualitative results between MonoCon and MonoCon + ours. Yellow circles
highlight accurately estimated parts compared to the MonoCon.
(GT: green, Prediction of MonoCon: blue, Prediction of MonoCon + Ours: red)
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