
A Organization of the Appendix482

The appendix includes the missing proofs, detailed discussions of some argument in the main body483

and more numerical experiments. We organize the appendix as follows:484

• The proof of infeasibility condition (Theorem 3.2) is provided in Section B.485

• Explanations on conditions derived in Theorem 3.2 are included in Section C.486

• The proof of properties of the proposed model (r)LogSpecT (Proposition 3.4 & 3.6) is given487

in Section D and some additional properties are discussed.488

• The truncated Hausdorff distance based proof details of Theorem 4.1 and Corollary 4.4 are489

given in Section E.490

• Details of L-ADMM and its convergence analysis are in Section F.491

• Additional experiments and discussions on synthetic data are included in Section G.492

B Proof of Theorem 3.2493

Since the linear system (4) has no solution, we know from Farkas’ lemma that the following system494

has solutions:495 
[
Im−1 0 (m−1)(m−2)

2

]
B⊤A⊤

nx < 0(m−1)×1,[
0 (m−1)(m−2)

2 ×(m−1)
I (m−1)(m−2)

2

]
B⊤A⊤

nx ≤ 0 (m−1)(m−2)
2 ×1

.
(11)

Let x∗ ∈ Rm2

be a solution to (11). Denote x+ := max{x∗,0}, x− := max{−x∗,0}. Then, there496

exists c ∈ (0, 1] such that497

B⊤A⊤
n (x+ − x−) + c1⊤

m2(x+ + x−)[1m−1;0 (m−1)(m−2)
2

] ≤ 0.

Define y := −1⊤
m2(x++x−), z := c1⊤

m2(x++x−) and set δ̄ = c. For all δ ∈ [0, δ̄), (x+,x−, y, z)498

is a solution to the following linear system:499 
B⊤A⊤

n (x+ − x−) + z[1m−1;0 (m−1)(m−2)
2

] ≤ 0,

1⊤
m2(x+ + x−) + y ≤ 0,

δy + z > 0,

x+,x−,−y ≥ 0.

Again, from Farkas’ lemma, this implies that the following linear system does not have a solution:500 
AnBs+ t1m2 ≥ 0,

AnBs− t1m2 ≤ 0,

t ≤ δ,[
1m−1 0 (m−1)(m−2)

2

]
s = 1,

(12)

where s ∈ Rm(m−1)/2 and t ∈ R. Since (12) is equivalent to:501 
∥CnS − SCn∥∞,∞ ≤ δ,

(S1)1 = 1,

S ∈ S,
(13)

the above argument indicates that (13) does not have a solution. Suppose rSpecT has a feasible502

solution S′, then503

∥CnS
′ − S′Cn∥∞,∞ ≤ ∥CnS

′ − S′Cn∥F ≤ δ.

Hence, S′ is also a solution to (13). However, (13) does not have a solution. We can conclude that504

rSpecT is infeasible in this case.505
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C Explanations on Sufficient Conditions in Theorem 3.2506

We elaborate more on the infeasibility condition thatAnB has full column rank. An application of507

the condition is Example 3.1. Specifically, we know that in this case,508

B =


0

1

1

0

 and An =

 0 h12 −h12 0
h12 h22 − h11 0 −h12

−h12 0 h11 − h22 h12

0 −h12 h12 0

 .

This implies that509

AnB =

 0
h22 − h11

h11 − h22

0

 .

Hence, when h11 ̸= h22, AnB has full column rank. This means that when δ is small enough (from510

Example 3.1 we know δ̃ =
√
2|h11 − h22|), the model rSpecT is infeasible.511

D Proofs of Properties of (r)LogSpecT512

D.1 Proof of Proposition 3.4513

Since the constraint set S is a cone, it follows that for all γ > 0, γS = S. Then, we know that514

Opt(C, α) = argmin
S∈S,CS=SC

∥S∥1,1 − α1⊤ log(S1)

= γ · argmin
γS∈S,CγS=γSC

∥γS∥1,1 − α1⊤ log(γS1)

= γ · argmin
S∈ 1

γ S,CS=SC

γ∥S∥1,1 − α1⊤ log(S1)

= γ · argmin
S∈S,CS=SC

∥S∥1,1 −
α

γ
1⊤ log(S1)

= γOpt(C, α/γ),

where the third equality is from the basic calculus rule of the logarithm function. Set γ = α and then515

Opt(C, α) = αOpt(C, 1), which completes the proof.516

D.2 Proof of Proposition 3.6517

The proof will be conducted by constructing a feasible solution for rLogSpecT. Recall that An =518

I ⊗ Cn − Cn ⊗ I and the matrix B ∈ Rm2×m(m−1)/2 that maps a non-negative vector to the519

vectorization of a valid adjacency matrix. Let S = min{ δ
∥AnBs∥2

, 1}·mat(Bs) with s ∈ R(m−1)m/2520

being a non-negative vector, where mat(·) is the matricization operator. Note that521

vec(CnS − SCn) = (I ⊗Cn −Cn ⊗ I) vec(S) = Anvec(S).

Then, we know that522

∥CnS − SCn∥F = ∥vec(CnS − SCn)∥2 = min

{
δ

∥AnBs∥2
, 1

}
· ∥AnBs∥2 ≤ δ.

Thus, the given S is a feasible solution for rLogSpecT and it completes the proof.523

D.3 Properties of optimal solutions and values of (r)LogSpecT524

In this section, we further discuss some properties of the optimal solutions/value of the proposed525

models, which are useful for deriving the recovery guarantee. More specifically, we obtain an upper526

bound on the optimal solutions (which may not be unique) independent of the sample size n and the527

inaccuracy parameter δn. Also, a lower bound of optimal values follows.528
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Proposition D.1. The following statements hold:529

• For an optimal solution S∗ (resp. S∗
n) to LogSpecT (resp. rLogSpecT with any given sample530

size n), it follows that531

∥S∗∥1,1 = αm and ∥S∗
n∥1,1 ≤ αm, ∀δn > 0.

• If δn ≥ 2αm∥Cn −C∞∥, then532

αm(1− logα) ≤ f∗
n ≤ f∗, ∀n,

where f∗ (resp. f∗
n) denotes the optimal value of LogSpecT (resp. rLogSpecT).533

For the first statement, let us consider the Karush-Kuhn-Tucker (KKT) conditions of LogSpecT and534

rLogSpecT. Since the LogSpecT is a convex problem and Slater’s condition holds, the KKT conditions535

are necessary and sufficient for the optimality, i.e., there exists (Λ1,Λ2) ∈ Rm×m ×NS(S
∗) such536

that537 
∇S(∥S∗∥1,1 − α1⊤ log(S∗1)) +C∞Λ1 −Λ1C∞ +Λ2 = 0,

C∞S∗ = S∗C∞,

S∗ ∈ S,
(14)

where NS(S
∗) := {N ∈ Rm×m : supX∈S ⟨X − S∗,N⟩ ≤ 0} is the normal cone of S at S∗, and538

∇∥S∗∥1,1 is well-defined since ∥ · ∥1,1 = ⟨·,11⊤⟩ at S∗ ≥ 0, which is differentiable. Taking further539

calculation gives that540

∇∥S∗∥1,1 = 11⊤, (∇S1
⊤ log(S∗1))ij =

1

(S∗1)i
.

Combining this with (14) by taking inner product of both sides with S∗, we obtain that541 ∑
i,j

(S∗)ij − α
∑
i,j

(S∗)ij
(S∗1)i

+ ⟨Λ1,C∞S∗ − S∗C∞⟩+ ⟨Λ2,S
∗⟩ = 0. (15)

From the structure of S and the fact that Λ2 ∈ NS(S
∗), one has that ⟨Λ2,S

∗⟩ = 0. Also, note that542

C∞S∗ = S∗C∞. Hence, the equation (15) can be simplified as the desired result:543

∥S∗∥1,1 =
∑
i,j

(S∗)ij = α
∑
i,j

(S∗)ij
(S∗1)i

= α

m∑
i=1

m∑
j=1

(S∗)ij
(S∗1)i

= αm.

The KKT conditions of rLogSpecT indicate that there exist λ1 ≥ 0, Λ2 ∈ NS(S
∗
n) and Q ∈544

∂∥CnS
∗
n − S∗

nCn∥F (i.e., the subgradient of the function S 7→ ∥CnS − SCn∥F at S∗
n) such that545 

∇S(∥S∗
n∥1,1 − α1⊤ log(S∗

n1)) + λ1Q+Λ2 = 0,

λ1(∥CnS
∗
n − S∗

nCn∥F − δn) = 0,

S∗
n ∈ S.

(16)

Moreover, from the definition of the convex subdifferential we know that 0 ≥ ∥CnS
∗
n − S∗

nCn∥F −546

⟨Q,S∗
n⟩. Thus, after taking inner product of both sides of the equation (16) with S∗

n, it follows that:547

0 =
∑
i,j

(S∗
n)ij − αm+ λ1⟨Q,S∗

n⟩+ ⟨Λ2,S
∗
n⟩

≥
∑
i,j

(S∗
n)ij − αm+ λ1∥CnS

∗
n − S∗

nCn∥F + ⟨Λ2,S
∗
n⟩

=
∑
i,j

(S∗
n)ij − αm+ λ1δn,

which implies that
∑

i,j(S
∗
n)ij ≤ αm− λ1δn ≤ αm. This completes the proof of the first statement.548
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For the second statement, we first prove that v∗n and v∗ are larger than αm(1− logα). Define the549

auxiliary function g : R → R such that g(x) := x − α log x for any x ∈ R+, whose minimum is550

attained at α. Since for any S ∈ S,551

f(S) =

m∑
i=1

g

 m∑
j=1

Sij

 ,

where f is the objective in LogSpecT, it follows that552

f(S) ≥
m∑
i=1

g(α) = αm(1− logα).

This implies that v∗n and v∗ are larger than αm(1− logα). Next, we will show v∗n ≤ v∗. Consider553

any optimal solution S∗ to LogSpecT. We show that it is feasible for rLogSpecT.554

∥CnS
∗ − S∗Cn∥ = ∥CnS

∗ −C∞S∗ + S∗C∞ − S∗Cn∥
≤ 2∥S∗∥1,1∥Cn −C∞∥ ≤ 2αm∥Cn −C∞∥ ≤ δn,

where the equality comes from C∞S∗ = S∗C∞, the first inequality comes from the fact that555

∥XY ∥ ≤ ∥X∥F ∥Y ∥ ≤ ∥X∥1,1∥Y ∥, the second one comes from the first statement and the last556

one is due to δn ≥ 2αm∥Cn − C∞∥. Hence, S∗ is feasible for rLogSpecT, which indicates that557

v∗n ≤ v∗. The proof is completed.558

E Proof of Theorem 4.1 & Corollary 4.4559

E.1 Truncated Hausdorff distance560

In this section, we introduce an advanced technique in optimization that is efficient in analyzing561

the recovery guarantee of robust formulations. Before that, we introduce the concept of truncated562

Hausdorff distance between two sets.563

Definition E.1 (Truncated Hausdorff Distance [28, 6.J]). For any ρ ≥ 0, the truncated Hausdorff564

distance between two sets C and D is defined as:565

d̂ρ(C,D) = max{dist(C ∩ B(0, ρ),D),dist(D ∩ B(0, ρ), C)}.

It turns out that the distance between the optimum of two minimization problems can be bounded566

with the truncated Hausdorff distance of the epigraphs under some conditions. The result is captured567

in the following lemma.568

Lemma E.2 ([28, Theorem 6.56]). Let ρ ∈ [0,∞). Suppose that the extended-real-valued functions569

f, g : Rn → R satisfy570

• inf f, inf g ∈ [−ρ, ρ],571

• argmin f, argmin g ⊆ B(0, ρ).572

Then, it follows that573

| inf f − inf g| ≤ d̂ρ(epi f, epi g).
3 (17)

Suppose further that ε > 2 d̂ρ(epi f, epi g), then one has574

dist(x∗
g, ε- argmin f) ≤ d̂ρ(epi f, epi g), (18)

where ε-argmin f is the ε-suboptimal solution set of f that is defined as ε-argmin f := {x ∈ Rn :575

f(x) ≤ inf f + ε}, and x∗
g is a minimizer of g.576

From the above lemma, we know that if two optimization problems are close enough (in the sense577

of truncated Hausdorff distance), then the optimum of them should be close to each other. Hence,578

in order to apply this result, we need to bound the truncated Hausdorff distance in an explicit way,579

which is solved by the following Kenmochi condition.580

3For a function f : Rn → R, its epigraph is defined as epi f := {(x, y) | y ≥ f(x)}.

16



Lemma E.3 (Kenmochi Condition [28, Proposition 6.58]). Let ρ ∈ [0,∞). Then, for f, g : Rn → R581

with nonempty epigraphs, one has that582

d̂ρ(epi f, epi g) = inf

η > 0 :

inf
B(x,η)

g ≤ max{f(x),−ρ}+ η, ∀x ∈ [f ≤ ρ] ∩ B(0, ρ)

inf
B(x,η)

f ≤ max{g(x),−ρ}+ η, ∀x ∈ [g ≤ ρ] ∩ B(0, ρ)

 ,

where [f ≤ ρ] := {x ∈ Rn : f(x) ≤ ρ}.583

E.2 Proof of Theorem 4.1584

Before presenting the proof, we first introduce the following lemma.585

Lemma E.4 (Hoffman’s Error Bound [11]). Consider the set S := {x ∈ Rn : Ax ≤ b}. There586

exists C > 0 such that for any x ∈ Rn, one has587

dist(x,S) ≤ C · ∥(Ax− b)+∥2.

For the sake of brevity, we denote588

f̄n(S) := ∥S∥1,1 − α1⊤ log(S1) + ιR−(∥CnS − SCn∥F − δn) + ιS(S),

f̄(S) := ∥S∥1,1 − α1⊤ log(S1) + ι{0}(∥C∞S − SC∞∥F ) + ιS(S).

Hence, the optimization problem LogSpecT (resp. rLogSpecT) is equivalent to inf f̄ (resp. inf f̄n).589

Now, we aim to use Lemma E.3 to bound d̂ρ(epi f̄ , epi f̄n). Let S ∈ S ∩ B(0, ρ) satisfy590

f̄(S) ≤ ρ and SC∞ = C∞S.

Then, we know that591

∥SCn −CnS∥F ≤ 2∥S∥F ∥Cn −C∞∥ ≤ 2ρ∥Cn −C∞∥ ≤ δn,

and consequently S is in the domain of f̄n. Then, it follows that for any η > 0, we have592

inf
B(S,η)

f̄n ≤ f̄n(S) = f̄(S) ≤ max{f̄(S),−ρ}, ∀S ∈ [f̄ ≤ ρ] ∩ B(0, ρ). (19)

Before verifying the reverse side of the Kenmochi condition, we first consider the non-emptiness of593

[f̄n ≤ ρ] ∩ B(0, ρ). Since594

δn ≥ 2ρ∥Cn −C∞∥ ≥ 2αm∥Cn −C∞∥,

it follows from Proposition D.1 that ∥S∗
n∥1,1 ≤ αm ≤ ρ and f∗

n ≤ f∗ ≤ ρ, which implies that595

[f̄n ≤ ρ] ∩ B(0, ρ) is nonempty. Let Sn ∈ [f̄n ≤ ρ] ∩ B(0, ρ). Then, one has that596

Sn ∈ S and ∥CnSn − SnCn∥F ≤ δn.

Hence, it follows that597

∥C∞Sn − SnC∞∥ ≤ 2∥Sn∥F ∥C∞ −Cn∥+ ∥CnSn − SnCn∥F ≤ 2ρ∥C∞ −Cn∥+ δn.

Also, note that there exists β > 0 such that (Sn1)i ≥ β for all i ∈ [m] as f̄n ≤ ρ and ∥Sn∥1,1 −598

α1⊤ log(Sn1) → ∞ when Sn → 0. Thus, applying Lemma E.4 to the linear system599

S̃ := {S ∈ Rm×m : SC∞ = C∞S, S ∈ S, (S1)i ≥ β, ∀i ∈ [m]}

yields that there exists c̃ > 0 such that600

dist(Sn, S̃) ≤ c̃ · (2ρ∥C∞ −Cn∥+ δn).

Hence, there exists S̃ in the domain of f̄ such that601

∥Sn − S̃∥F ≤ c̃ · (2ρ∥C∞ −Cn∥+ δn) and (S̃1)i ≥ β, ∀i ∈ [m].

17



Since the function S 7→ ∥S∥1,1 − α1⊤ log(S1) is locally Lipschitz continuous when (S1)i ≥ β,602

there exists L > 0 such that603

f̄(S̃) = ∥S̃∥1,1 − α1⊤ log(S̃1) ≤ ∥Sn∥1,1 − α1⊤ log(Sn1) + L∥Sn − S̃∥F
= f̄n(Sn) + L∥Sn − S̃∥F
≤ f̄n(Sn) + Lc̃ · (2ρ∥C∞ −Cn∥+ δn).

Setting c1 ≥ max{1, L} · c̃, one can obtain that for any Sn ∈ [f̄n ≤ ρ] ∩ B(0, ρ)604

inf
B(Sn,η)

f̄ ≤ f̄(S̃) ≤ f̄n(Sn) + c1 · (2ρ∥C∞ −Cn∥+ δn) ≤ max{f̄n(Sn),−ρ}+ η, (20)

where η := c1 · (2ρ∥C∞ −Cn∥+ δn). Combining inequality (19) and (20), we can conclude that605

d̂ρ(epi f̄ , epi f̄n) ≤ c1 · (2ρ∥C∞ −Cn∥+ δn). (21)

In order to derive the conclusion (i) and (ii), it remains to check the requirements in Lemma E.2.606

Since ρ ≥ αm, the first statement of Proposition D.1 shows that the optimal solutions to inf f̄ and607

inf f̄n lie in B(0, ρ). Since ρ ≥ f∗ and −ρ ≤ αm(1− logα), the second statement of the proposition608

shows that inf f̄ , inf f̄n ∈ [−ρ, ρ]. Hence, applying Lemma E.2 completes the proof of the first two609

statements.610

To prove conclusion (iii), we first make the following two claims:611

(a) S∗
01 is a singleton, whose element is denoted by S∗1,612

(b) For any ε̄ ∈ [0,∞), there exists a δ(ε̄) > 0 such that for all 0 ≤ ε ≤ ε̄ and Sε ∈ S∗
ε , one613

has that614

∥Sε1− S∗1∥2 ≤ δ(ε̄) ·
√
ε. (22)

Granting these and with the help of Theorem 4.1, we can derive that for all S∗
n ∈ Sn,∗615

dist(S∗
n1,S∗

01) = ∥S∗
n1− S∗1∥2 ≤ ∥S∗

n1− S2εn1∥2 + ∥S2εn1− S∗1∥2
≤

√
m dist(S∗

n,S∗
2εn) + ∥S2εn1− S∗1∥2

≤ c̃1εn + c̃2
√
εn,

where c̃1, c̃2 are positive constants, and S2εn ∈ S∗
2εn satisfies ∥S∗

n − S2εn∥F = dist(S∗
n,S∗

2εn)616

(whose existence is guaranteed since S∗
ε is convex and compact). Hence,617

dist(Sn,∗1,S∗
01) ≤ c̃1εn + c̃2

√
εn.

To proceed, it remains to prove the claims. Define an auxiliary function h : Rm → R as h(x) =618 ∑m
i=1 xi − α

∑m
i=1 log xi for each x ∈ Rm

+ . Consider the following optimization problem:619

min
x

h(x)

s.t. x ∈ {S1 ∈ Rm | S that is feasible for LogSpecT}.
(23)

For the sake of brevity, denote the ε-suboptimal solution set of (23) as H∗
ε . In the remaining part, we620

will first show that S∗
ε1 = H∗

ε and then, by the strict convexity of h, the desired two claims hold.621

The first step is to show that the optimal function value of the problem (23) satisfies h∗ = f∗. Since622

it is obvious that x̃ = S∗1 is feasible for (23), h∗ ≤ h(x̃) = f(S∗) = f∗. Suppose to the contrary623

that h∗ < f∗, from the fact that the objective function is coercive and continuous and the feasible set624

is closed, there exists S̃ such that it is feasible for LogSpecT and x∗ = S̃1, where x∗ is an optimal625

solution to (23). Since h∗ = h(x∗) = h(S̃1) = f(S̃), this contradicts the fact that f(S̃) ≥ f∗.626

Hence, h∗ = f∗. Next, we will show that S∗
ε1 = H∗

ε . Consider any ε-suboptimal solution S ∈ S∗
ε ,627

i.e.,628

h(S1) = f(S) ≤ f∗ + ε = h∗ + ε.

Hence, S1 ∈ H∗
ε and it implies that S∗

ε1 ⊆ H∗
ε . On the other hand, for any ε-suboptimal solution629

x ∈ H∗
ε , there exists S that is feasible for LogSpecT such that x = S1. Thus,630

f(S) = h(x) ≤ h∗ + ε = f∗ + ε.
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This implies that S ∈ S∗
ε and consequently H∗

ε ⊆ S∗
ε1. Hence, H∗

ε = S∗
ε1.631

Since h is strictly convex, its optimal solution set H∗
0 is a singleton. Then, S∗

01 = H∗
0 is a singleton,632

which proves the first claim. For the second claim, we know that for any Sε ∈ S∗
ε there exists633

xε ∈ H∗
ε such that634

∥Sε1− S∗1∥2 = ∥xε − x∗∥2, (24)
where x∗ ∈ H∗

0. The coerciveness of h asserts that xε and x∗ are bounded. This together with the635

fact that h is strongly convex on any bounded set, illustrates that there exists µ > 0 such that636

h(xε) ≥ h(x∗) + ⟨∇h(x∗),xε − x∗⟩+ 1

µ
∥xε − x∗∥22 ≥ h(x∗) +

1

µ
∥xε − x∗∥22, (25)

where the second inequality comes from the global optimality of x∗. Combining (24) and (25) gives637

that638

∥Sε1− S∗1∥2 = ∥xε − x∗∥2 ≤
√
µ(h(xε)− h(x∗)) ≤ √

µε.

This completes the proof of the claims.639

E.3 Proof of Corollary 4.4640

Suppose to the contrary that there exists a sequence {S∗
n}n, where the nth element is an optimal641

solution to rLogSpecT with sample size n, such that642

dist(S∗
n,S∗

0 ) ̸→ 0.

From Proposition D.1, we know that {S∗
n}n is bounded, and consequently, has a convergent subse-643

quence. Without loss of generality, we may assume that the sequence itself is convergent and the644

limiting point is S∗. Note that645

∥CnS
∗
n − S∗

nCn∥F ≤ δn, Cn → C∞ and δn → 0.

Hence, C∞S∗ = S∗C∞. This indicates that S∗ is feasible for LogSpecT. Then, from Theorem 4.1,646

we know that f(S∗
n) = f∗

n → f∗, which leads to f(S∗) = f∗ since f(·) = ∥ · ∥1,1 − α1⊤ log(·1) is647

continuous. Together with the fact that S∗ is feasible, we conclude that S∗ is an optimal solution to648

LogSpecT. This further implies that dist(S∗
n,S∗

0 ) → 0, which is a contradiction.649

E.4 Proof of Lemma 4.7650

Recall the generative model (1). Since w follows a sub-Gaussian distribution, it can be shown that651

for every t > 0,652

P(∥x∥2 > t) ≤ P
(
∥w∥2 >

t

∥H(S)∥

)
≤ Ce−v′t2 ,

for some positive constant v′, which means that x also follows a sub-Gaussian distribution. Thus,653

due to the sub-Gaussian property, ∥Cn −C∞∥ can be explictly bounded by the following lemma.654

Lemma E.5 ([39, Proposition 2.1]). Consider sub-Gaussian, identical, independent random vectors655

x1,x2, . . . ,xn ∈ Rm with n > m. Then for all ε > 0, it follows that656

P

(∥∥∥∥∥ 1n
n∑

i=1

xix
⊤
i − E[xx⊤]

∥∥∥∥∥
2

≤ ε

)
≥ 1− 2e2m−lε2n,

for some constant l > 0.657

Setting ε2 = (4/l) log(2n)m/n, Lemma E.5 indicates that with high probability (lower bounded by658

1− n−1),659

∥Cn −C∞∥ ≤ O

(√
log n

n

)
.

F Derivations of L-ADMM and Convergence Analysis660

This section includes the details of L-ADMM for rLogSpecT.661
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F.1 Proof of Proposition 5.1662

Note that the minimization problem (7) is separable for Z and q, and can be split into two subprob-663

lems:664

min
Z∈B(0,δn)

∥CnS
(k) − S(k)Cn +Λ(k)/ρ−Z∥2F , (26)

min
q

−α1⊤ log q + λ
(k)⊤
2 (q − S(k)1) +

ρ

2
∥q − S(k)1∥22. (27)

For problem (26), the optimal solution is the projection of CnS
(k)−S(k)Cn+Λ(k)/ρ onto B(0, δn),665

which is given by666

Z(k+1) = min

{
1,

δn

∥Z̃∥F

}
Z̃ with Z̃ = CnS

(k) − S(k)Cn +Λ(k)/ρ.

For problem (27), the first-order optimality condition gives667

− α1/q + λ
(k)
2 + ρ(q − S(k)1) = 0.

This together with the fact that the objective function is convex implies that668

q(k+1) =
q̃ +

√
q̃2 + 4α/ρ1

2
with q̃ =

1

ρ
(ρS(k)1− λ

(k)
2 ).

F.2 Calculation of ΠS(·)669

The projection of X to S can be calculated via an optimization problem:670

min
S

∥X − S∥2F

s.t. S⊤ = S,

Sii = 0, i = 1, 2, . . . ,m,

Sij ≥ 0, ∀i, j,
which is equivalent to671

min
∑
i<j

(
(Xij − Sij)

2 + (Xji − Sij)
2
)

s.t. Sij ≥ 0, ∀i < j,

Sii = 0, ∀i.
Hence672

(ΠS(X))ij =


1

2
max{0, Xij +Xji}, i ̸= j,

0, i = j.

F.3 Stopping criterion and updating rule of ρ673

We follow the procedures in [3] to update ρ in each iteration. Similarly, we define the primal residual674

and dual residual as follows:675

p(k+1)
res =

√
∥Z(k+1) −CnS(k+1) + S(k+1)Cn∥2F + ∥q(k+1) − S(k+1)1∥22,

d(k+1)
res = ρ(k)

(
Cn(S

(k+1) − S(k))− (S(k+1) − S(k))Cn + 1⊤(S(k+1) − S(k))1
)
.

The aim of updating ρ is to control the decaying speed of pres and dres such that their difference is676

not too large. To this end, we update ρ adaptively following the scheme:677

ρ(k+1) :=


2ρ(k), if p(k+1)

res > 5d(k+1)
res ,

ρ(k)/2, if d(k+1)
res > 5p(k+1)

res ,

ρ(k), otherwise.

When pres and dres are both smaller than the threshold ε = 10−5, we stop the algorithm.678
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F.4 Convergence analysis679

Define D := Diag(1⊤
m, . . . ,1⊤

m) ∈ Rm×m2

. Then, D satisfies Dvec(S) = S1 and ∥D⊤D∥ = m.680

Denote681

Q := τI −D⊤D −A⊤
nAn.

Then the linearized ADMM update (8) of S can be written as:682

min
S

L(S) +
ρ

2
∥vec(S)− vec(S(k))∥Q,

where ∥x∥Q := x⊤Qx. Since τ > m+∥An∥2, we know that Q is positively definite. Consequently,683

by treating (Z, q) as one variable, we can apply Theorem 4.2 in [43] and directly obtain the result.684

G More Experiments and Discussions on Synthetic Data685

To make a fair comparison between rSpecT and rLogSpecT, we test rSpecT on BA graphs with the686

same graph filters and the results are reported in Figure 5. It is obvious that rSpecT fails in these687

cases and cannot benefit from the increase in sample size. This is reasonable since SpecT fails on BA688

graphs as indicated in Figure 1, let alone the approximation formulation rSpecT.689
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Figure 5: Performance of rSpecT on BA graphs.
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Figure 6: rLogSpecT on ER graphs with δn =

20
√

log n/n.
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Figure 7: Effect of Low-Pass Parameter: different performance of graph filters exp(tS) with t
ranging from −2 to 2.

We further test rLogSpecT on ER graphs with different numbers of signals observed. The parameter690

δn is set as 20
√
log n/n and the results are reported in Figure 6. The figure shows that for graph691
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filters that are not high-pass, rLogSpecT can achieve nearly perfect recovery when the sample size is692

large enough. Also, compared with the performance on BA graphs, rLogSpecT works better on ER693

graphs. This observation is in accordance with the conclusion from Figure 1 that LogSpecT performs694

better on ER graphs than BA ones. We further notice that the difference between the low-pass graph695

filter and the high-pass one is huge. To check the conjecture that rLogSpecT generally performs696

better on low-pass graph filters, we choose different graph filters exp(tS) with t ranging from −2697

to 2 and conduct the experiments on ER graphs. When the graph shifting operator is the adjacency698

matrix, the positive low-pass parameter t corresponds to low-pass graph filters and the negative t699

corresponds to the high-pass ones [25, 10]. We omit the case when t = 0 since this filter does not700

contain any graph information (note that exp(0S) = I).701

We then repeat the experiments for 50 times and report the average results in Figure 7. The comparison702

between the performance of low-pass graph filters and high-pass graph filters indicates that the low-703

pass graph filters generally outperforms the high-pass ones. A closer look at the results shows that704

the performance grows faster when the absolute value of t is smaller. And eventually, the graph filter705

with smaller absolute value of t prevails. This observation is interesting since Figure 1 indicates that706

the choice of graph filters has few impacts on the model performance. One explanation is that both707

low-pass graph filters and high-pass graph filters attenuate some frequencies of the graph and the708

larger absolute value of t leads to the more loss of information carried by finite signals.709
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