
Comparing Causal Frameworks: Potential Outcomes,
Structural Models, Graphs, and Abstractions

(Supplement)

These appendices contain demonstrations of the results in the main text as well as additional technical
notes.

A Modeling (§1)

A.1 Preliminaries

Proposition A.1. Uniform RCMs are dense (in the weak subspace topology on counterfactual
distributions1): for anyR, ε > 0, there is aR′ whose distribution is uniform that ε-approximatesR
(in, e.g., the standard metric on counterfactual distributions considered as points in Euclidean space,
or the Lévy-Prohorov metric).

Proof. Follows by density of Q ⊂ R since any RCM with a rational distribution is representable also
by a uniform distribution on units.

Proof of Prop. 1. SupposeR = ⟨U ,V,O, {fYx}Yx∈O, P ⟩ is representable. Then we have an SCM
M = ⟨U,V, {fV }V , P ′⟩ ∈ Muniq inducing its counterfactual distribution on Val(O). For each
u ∈ U , there must be a uu ∈ Val(U) such that P ′(uu) > 0 andMx,uu ⊨ Y = fYx(u) for each
Yx ∈ O. Consider the RCMR′ = ⟨U ,V, {Yx}all Yx , {f ′

Yx
}Yx , P ⟩ where we define f ′

Yx
(u) = fYx(u)

for each Yx ∈ O, and f ′
Yx

= πY (v) for each Yx /∈ O where v is the unique solution such that
Mx,uu ⊨ v. Note thatR′ extendsR by construction, has no proper extension itself, and satisfies
composition and reversibility by the soundness direction of [2, Thm. 3.2], as these principles must
apply toM.

Conversely suppose we have the extensionR′. Then by the completeness direction of the proof of [2,
Thm. 3.2] we can construct an SCMM∈Muniq representingR′ and thus alsoR. Specifically, we
can derive a unique maximal consistent set Γ from the outcomes defined inR′ (unique maximality
is guaranteed since R′ has no proper extension and consistency since R′ meets composition and
reversibility), and from there define the equations ofM.

A.2 Causal Abstraction

In this section we will use the following technical result to decompose constructive partial translations.

Lemma A.1. Suppose τ is a constructive translation of VL to VH and let xL,xH be partial settings
of XL ⊂ VL,XH ⊂ VH respectively. Then τ(xL) = xH iff:

1. For each XH ∈ XH, we have that τXH(θXH) = πXH(xH) where we define θVH = {x ∈
Val(ΠVH) : πXL∩ΠVH

(x) = πXL∩ΠVH
(xL)} for each VH ∈ VH.

2. For each VH /∈ XH, we have that τVH(θVH) = Val(VH).

1See [4, 1] for more detail on this topology and inducing metrics.
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Proof. First we show the “if” direction. It follows easily from 1 that τ(vL) ∈ π−1
XH

(xH) for any
vL ∈ π−1

XL
(xL), and it follows from 2 and 1 that for any vH ∈ π−1

XH
(xH) there is a vL ∈ π−1

XL
(xL)

with τ(vL) = vH (specifically, any extension of xL works).

Now we show the “only if” direction. To show 1: suppose not. Then since θVH is always nonempty
there is some x ∈ Val(ΠXH) such that πXL∩ΠXH

(x) = πXL∩ΠXH
(xL) and τXH(x) ̸= πXH(xH).

But then we cannot have τ(vL) ∈ π−1
XH

(xH) for any vL ∈ π−1
XL

(xL) ∩ π−1
ΠXH

(x), which is nonempty.
To show 2: suppose not. Then there is some vH ∈ Val(VH) such that there is no x ∈ Val(ΠVH)
with πXL∩ΠVH

(x) = πXL∩ΠVH
(xL) and τVH(x) = vH. But then for any vH ∈ π−1

XH
(xH)∩π−1

VH
(vH),

which is nonempty since VH /∈ XH, there cannot be any vL ∈ τ−1(vH) ∩ π−1
XL

(xL), contradicting
that τ(xL) = xH.

Proof of Prop. 2. SupposeH is not effective so there is some {(yj
H)xj

H
}1≤j≤n in its counterfactual

support such that for some k and Y we have that πY (y
k
H) ̸= πY (x

k
H). This means there is some

(yl
L)xl

L
in a counterfactual in the support of L with τ(yl

L) = yk
H and τ(xl

L) = xk
H. By Lem. A.1, 1,

there is no x ∈ Val(ΠY ) such that πYl
L∩ΠY

(x) = πYl
L∩ΠY

(yl
L) and πXl

L∩ΠY
(x) = πXl

L∩ΠY
(xl

L).
This implies that there is some Y ′ ∈ Xl

L ∩Yl
L ∩ΠY such that πY ′(xl

L) ̸= πY ′(yl
L), contradicting

the effectiveness of L.

As for the second claim, by induction it suffices to show this for the case where H′ is identical to
H except that it lacks a single potential outcome Yx. Consider the model L′ formed applying the
mapping

{
(yi

L)xi
L

}
1≤i≤m

7→
{
(ziL)xi

L

}
1≤i≤m

of counterfactuals to L, where ziL = πYi
L\ΠY

(yi
L) if

τ(xi
L) = x and ziL = yi

L otherwise. It follows from Lem. A.1 thatH′ ≺τ L′.

Proof of Thm. 1. Let R be as in Def. 1 and index its potential outcomes O as
{
(Yi)xi

}
1≤i≤n

∪
{(Yn+1)xn+1} where xi ̸= ∅ for any 1 ≤ j ≤ n and xn+1 = ∅; here ∅ represents the empty
intervention on V. We assume that n > 0, since otherwiseR is trivially representable. The potential
response functions ofR are {fYx}Yx .

Define a low-level set of variables VL = {(V, j) : V ∈V
1≤j≤n+1} with Val(V, j) = Val(V ) ∪ {⋆} where

⋆ /∈ Val(V ) for each (V, j) ∈ VL. Define τ as a constructive translation with a partition Π, defined
by ΠV =

{
(V, j)

}
1≤j≤n+1

for each V ∈ V, and τV (pL) = pj iff pL ∈ Val(ΠV ) is such that there
is exactly one j such that π(V,j)(pL) ̸= ⋆, with pj this value. Let

OL =
{
(Y, i)xi

L
: 1≤i≤n
Y ∈Yi

}
∪ {(Y, n+ 1)∅L

: Y ∈ Yn+1} ∪
{
(Y, i)xj

L
:
1≤i,j≤n

i̸=j
Y ∈Yi

}
∪
{
(Y, n+ 1)xi

L
: 1≤i≤n
Y ∈Yn+1

}
∪
{
(Y, i)∅L : 1≤i≤n

Y ∈Yi

}
(A.1)

where for each 1 ≤ i ≤ n, we let Xi
L = {(X, i) : X ∈ Xi} with π(X,i)(x

i
L) = πX(xi) for every

X ∈ Xi, ∅L is an empty intervention on VL, and define a set of potential responses FL = {fL
Zx
}Zx

for each of these outcomes via

fL
Zx

=


fYxi , Zx = (Y, i)xi

L

fYxn+1 , Zx = (Y, n+ 1)∅L

f⋆, otherwise
(A.2)

where f⋆ is a constant function with f⋆(u) = ⋆ for any u ∈ U .

We claim thatRL = ⟨U ,VL,OL, {fL
Zx
}Zx , P ⟩, where U and P are the same as those inR, abstracts

toR and is representable. To show the former, we employ the following result:

Lemma A.2. Let xL ∈ Val(XL) for some XL ⊂ VL and suppose that there is some X ⊂ V and
j ∈ {1, . . . , n+ 1} such that π(V,i)(xL) ̸= ⋆ iff V ∈ X and i = j; suppose further that for each V ,
there is at least one i ∈ {1, . . . , n+ 1} such that (V, i) /∈ XL or π(V,i)(xL) ̸= ⋆. Then τ(xL) = xH

where XH = X and πX(xH) = π(X,i)(xL) for each X ∈ X.

Proof. This follows directly from the construction of τ , in light of Lem. A.1.
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Lem. A.2 implies that τ(∅L) = ∅, τ(xi
L) = xi for each i. Further, for each u ∈ U and i it implies that

τ(yL
i (u)) = yi(u) where yL

i (u) is the partial setting of VL induced byRL for potential outcomes
under xi

L for unit u, viz., by (A.1) and (A.2), that with the projections π(Y,i)(y
L
i (u)) = fYxi (u) for

each Y ∈ Yi, π(Y,j)(y
L
i (u)) = ⋆ for each j ̸= i, Y ∈ Yj ; and yi(u) is the analogue in R, with

πY (yi(u)) = fYxi (u) for Y ∈ Yi. These facts establish that PR
cf = τ∗(P

RL

cf ) so thatR ≺τ RL.

Next we demonstrate that RL is representable by constructing an explicit SCM representation
ML = ⟨{U},VL, {eVL}VL∈VL , P ⟩, where U is an exogenous variable with Val(U) = U , while P
is the same distribution as inR andRL. It will be convenient to set upML so as to be recursive. We
say that anM over endogenous variables V is recursive if there is a total order < on V such that
PaV ⊂ {V ′ ∈ V : V ′ < V } for every V ∈ V. Recursiveness guarantees uniqueness and existence
of solutions under every unit and intervention, regardless of the particular structural functions {fV }V
and merely by virtue of their signatures:

Lemma A.3. IfM is recursive then there is a unique v ∈ Val(V) such thatMx,u ⊨ v for any
x ∈

⋃
X⊂V Val(X), unit u.

Proof. Assume without loss V = {V1, . . . , Vm} with V1 < · · · < Vm and prove by induction, the
inductive hypothesis being that there is a unique v over {V1, . . . , Vj} for j ≤ m, which extends as
πVj+1

(v) = fVj+1

(
u, π{V1,...,Vj}(v)

)
if Vj+1 /∈ X and πVj+1

(x) otherwise.

For the recursive order <, pick any < such that (V, h) < (V ′, h′) for any V, V ′ ∈ V and 1 ≤ h, h′ ≤
n + 1 whenever h < h′, for any 1 ≤ j ≤ n, we have that (X, j) < (Y, j) for any X ∈ Xj \Yj ,
Y ∈ Yj , and (Yl, n + 1) < (Yl′ , n + 1) whenever l < l′, where we fix an arbitrary indexing
{Yl : 1 ≤ l ≤ |Yn+1|} of Yn+1. Let PaVL

= {V ′ ∈ VL : V ′ < VL}, UVL
= U for each VL and

define the structural function e(V,h) by

e(V,h)(u,p) =



fV∅(u), h = n+ 1, V ∈ Yn+1,p is such that π(Yl′ ,n+1)(p) = fV∅(u)

for any l′ such that n+ 1 ≤ l′ < l and
π(V ′,h′)(p) = ⋆ for any other (V ′, h′)

fV
xh
(u), 1 ≤ h ≤ n, V ∈ Yh,

∣∣Xh \Yh
∣∣ > 0,p is such that

π(X,h)(p) = πX(xh) for any
X ∈ Xh \Yh and π(V ′,h′)(p) = ⋆ for any other (V ′, h′)

⋆, otherwise

.

(A.3)
We can find the unique solution ofML under any of our interventions of interest by following these
equations in order:

Lemma A.4 (Solutions ofML). Let x ∈ {xj
L}1≤j≤n ∪ {∅L} and i ∈ U . Then (ML)x, i ⊨ v ∈

Val(VL) where

π(V,h)(v) =


πV (xj) x = xj

L for some j, V ∈ Xj \Yj , h = j

fVxj (i) x = xj
L for some j, V ∈ Yj , h = j

fV∅(i) x = ∅L, h = n+ 1, V ∈ Yn+1

⋆ otherwise

. (A.4)

Proof. Suppose x = xj
L for some j ≤ n. We claim that π(V,k)(v) = ⋆ for any V and k < j. The

only way it could be otherwise is in the second case of (A.3), but since k ̸= j and
∣∣Xk \Yk

∣∣ > 0

there is here at least one (X, k) < (Y k, k) with π(X,k)(v) = ⋆, so that this case in fact cannot apply.
Now for k = j, it is clear by construction of xj

L that π(V,j)(v) = πV (x
j) for each V ∈ Xj \Yj .

For V ∈ Yj , if V ∈ Xj then by effectiveness and the construction of xj
L, we have that π(V,j)(v) =

πV (x
j) = fVxj (i). Otherwise, since Xj ̸= ∅ and given what we have already found about v we fall

into the second case in (A.3). Thus π(V,j)(v) = fVxj (i). For k > j, if k ≤ n then the second case of
(A.3) cannot apply so v extends only by ⋆’s, and if k = n + 1 then since xj ̸= ∅ the first case of
(A.3) likewise cannot apply, and we get only ⋆’s. This gives us precisely the v specified by the first,
second, and fourth cases in (A.4).
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Next suppose x = ∅L. Then π(V,h)(v) = ⋆ for any V and h < n+ 1: it could only be otherwise in
the second case of (A.3) where since

∣∣Xh \Yh
∣∣ > 0 there is here at least one (X,h) < (V, h) with

π(X,h)(v) = ⋆ by the third case of (A.3). Now if h = n+1 then we have π(Y1,n+1)(v) = fV∅(i) by
the first case of (A.3) and (inductively) likewise for Y2, . . . , Y|Yn+1|. For any V /∈ Yn+1, we have
π(V,n+1)(v) = ⋆. We thus obtain exactly the last two cases of (A.4).

To show that pML

cf marginalizes to pRL

cf , because ML and RL are constructed so as to share the
same set of units and distribution over them, it suffices to show that for each i ∈ U we have that
(ML)x, i ⊨ (V, h) = fL

(V,h)x
(i) for every (V, h)x ∈ OL. This is easily seen by inspecting and

comparing (A.4), (A.1), and (A.2).

SUTVA

The following remarks are in the context of the example from the discussion after Def. 9 (see also
that after Thm. 1).

Remark A.1. We show how our framework can model unit-wise treatment assignment and the first
part of SUTVA as making a particular abstraction viable.

Consider a model ⟨{s}, {U, Y, T},O,F, ·⟩ where s is some singleton element and U is an endog-
enized unit variable (so that the exogenous unit set U is trivial in this model), Y encodes survival
with Val(Y ) = {0, 1}, and T is a treatment variable that encodes whether each unit was assigned
to treatment, with Val(T ) =×u∈Val(U)

Val(Y ). The list O contains the 2|Val(U)||Val(U)| potential
responses Yx for each possible x where πT (x) = u ∈×u∈Val(U)

{0, 1} and πU (x) = u ∈ Val(U),
and F maps this to the survival outcome for patient u when the vector u encodes treatment assign-
ments for each patient. Under the above SUTVA assumption, this outcome depends only on the
component πu(u) of πT (x) corresponding to U = u. This means that a constructive abstraction
τ to high-level variables {T ′, Y } where Val(T ′) = Val(U) × {0, 1} with partition Π is viable:
ΠT ′ = {T,U}, ΠY = {Y }, and τ(x) =

(
πU (x), ππU (x)(πT (x))

)
. In turn, given a distribution on

units, we can exogenize them out of T ′, showing that this model is equivalent to the familiar one with
binary treatment and potential outcomes Yt(u).

Remark A.2. We show how to model several alternative ways mentioned by [5] of making the
second part of SUTVA hold.

The first way is for each unit to receive only one treatment level; then the possibility of inconsistency
in abstraction is excluded. Our framework requires that the potential responses are total functions
(with domain the set of units) and therefore that the outcome for each unit and treatment level is
defined; nevertheless, it is possible to redo the analysis from the beginning up to causal abstraction,
modifying Def. 1 to admit partial potential response functions. One would then find that this version
of SUTVA guarantees the viability of the abstraction collapsing all treatment levels.

The second way is to admit stochastic treatments. Suppose we have two treatment levels tri, trj and
some u ∈ U , occurring with probability P (u), for which Ytri(u) ̸= Ytrj (u). Then for any pi, pj ≥ 0
with pi + pj = 1 we can form a new model with tri, trj merged into a single treatment tr, but u
split into two new units ui, uj with respective probabilities piP (u), pjP (u). In this model we define
Ytr(u

i) = Ytri(u), Ytr(u
j) = Ytrj (u), and the violation to the condition in question is removed

since we end up with only a single treatment level tr. Further, the expectation of Ytr conditioned on
drawing ui or uj is equal to the weighted average of Ytri(u) and Ytrj (u). This is really a different
definition in which we mix incompatible outcomes rather than consider them to invalidate the entire
abstraction—study of such a notion may prove fruitful, but is outside the scope of this article.

A final way to make this condition hold is to coarsen the outcome, by, e.g. blurring multiple health
statuses into the binary distinction between surviving and not. This can in fact already be seen in our
framework. Let τ be the abstraction from the running example coarsening treatment levels (values
of T ), τ ′ be that coarsening the outcome (values of Y ), and L be our lowest-level model. Then it is
possible that we have someH′,H for whichH ≺τ H′ ≺τ ′ L, but noH for whichH ≺τ L. In this
sense (by moving to the already coarser modelH′) the second part of SUTVA can be made to hold.
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B Inference (§2)

Proposition B.1. (6), (7), (8) ⊨ LATE = ITT1/ITT2.

Proof. Regarding the encoding of expected values: for any function f : Valcf → R we can define an
expected value Eu(f) =

∑
u∈U P (u)f(O(u)), abbreviated E(f). If f is integer-valued then E(f)

is expressible within our formal language. Thus LATE is equal to a ratio2 of our terms,

LATE = E(Yx+ − Yx− |x+
z+ ∧ x−

z−) =
P(y+x+ ∧ y−x− ∧ x+

z+ ∧ x−
z−)−P(y−x+ ∧ y+x− ∧ x+

z+ ∧ x−
z−)

P(x+
z+ ∧ x−

z−)
.

We show LATE = ITT1/ITT2; (6) shows the second term of ITT2 vanishes, while the first term is the
denominator of LATE, so it suffices to show equality of the numerator and ITT1. All of the following
arithmetic moves rely only on AX. Note that

P(y+z+,Xz+
∧y−z−,Xz−

) =
∑
x,x′

P
(
y+z+,x∧xz+ ∧y−z−,x′ ∧x′

z−

)
=
∑
x,x′

P(y+x ∧xz+ ∧y−x′ ∧x′
z−)

the last equality following from (8) and (7). Any terms for x = x′ vanish by (7) (using also that
P(ϵ) = 0 → P(ϵ ∧ ζ) = 0 is derivable from basic probabilistic logic), the term for x = x− and
x′ = x+ vanishes by (6), and we are left with exactly the first term of the numerator. We can
analogously derive equality of the expressions with negative coefficients.

Proposition B.2. Under representability, ITT1 = E(Yz+ − Yz−).

Proof. We claim that ITT1 = E(Yz+,Xz+
− Yz−,Xz−

) = E(Yz+ − Yz−) and thus that

P
(
y+z+,Xz+

∧ y−z−,Xz−

)
−P

(
y−z+,Xz+

∧ y+z−,Xz−

)
= P(y+z+ ∧ y−z−)−P(y−z+ ∧ y+z−)

under representability. It suffices to show Rep. ⊨ yz,Xz
↔ yz where Rep. stands for representability.

Note that Rep. ⊨ yz,Xz
↔
∨

x,y′ yzx ∧ xz ∧ y′z ↔
∨

x yxz ∧ xz ∧ yz , the last step since (2) ⊨
xz ∧ y′z → y′xz contradicting yxz when y′ ̸= y. Similarly by setting y′ = y, we have Rep. ⊨∨

x yxz ∧ xz ∧ yz ↔
∨

x xz ∧ yz ↔ yz . Note that no additional outcomes are used here except Yz ,
which is necessary to state the result.

Proof of Thm. 2. Soundness is straightforward. For completeness, show that any consistent formula
φ is satisfiable. By the completeness proof for AX [3, Thm. 6] we get a distribution P satisfying
φ over joint valuations Val(Oφ), where Oφ is the set of potential outcomes appearing in φ. To
construct a satisfying modelR, add a unit u that witnesses any o ∈ Val(Oφ) for which P (o) > 0. It
is clear thatR ∈ R(S) since φ is consistent with T(S).

Proof of Cor. 1. Observe that Reff = R(1).

Proof of Thm. 3. Soundness has been shown in prior works [7], and in any case is straightforward
(ERG since each variable can only be a function of its parents in M(G) and cf-sepG since the
functional mechanisms determining unconfounded nodes must be independent; see also Cor. B.1
below for a derivation from d-separation).

Completeness: our proof is a modification of the proof for AX3 in [3, Thm. 6]. We take the same steps
as in that proof, the strategy being to show that any consistent φ is satisfiable, up to and including the
normal form in Lem. 8, except that we use the full set V in place of Vφ (this is possible since V is
finite in our case).

Let C be the set of connected components under the edge relation L9999K of G. Each C ∈ C is a
subset C ⊂ V that is a complete graph under L9999K, by assumption. For each C let

∆C =
{ ∧

C∈C
pC∈Val(PaG

C)

CpC
= cC,pC

:
cC,pC

∈Val(C) for each C∈C,

pC∈Val(PaG
C)

}

2The ratio t1 = t2/t3 is an abbreviation for t1 · t3 = t2 ∈ L. Likewise in Ex. 4.
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be the collection of counterfactuals describing complete functional mechanisms for each C ∈ C. The
notation CpC

= cC,pC
represents the outcome that C = cC,pC

under the intervention pC ; we use
such notation in order to be explicit about the choice of variable C. The below is our analogue of [3,
Lem. 8].

Lemma B.1. Let φ be a conjunction of literals. Then there are polynomial terms {ti, t′i′}i,i′ in the
variables

{
P(δC) :

δC∈∆C
C∈C

}
such that

T(G) ⊢ φ↔
∧

δC∈∆C
C∈C

P(δC) ≥ 0 ∧
∧
C∈C

[ ∑
δC∈∆C

P (δC) = 1
]
∧
∧
i

ti ≥ 0 ∧
∧
i′

t′i′ > 0. (B.1)

Proof. This will follow from the fact that we have the below (B.2) for any δ ∈ ∆sat. Here ∆sat

is the set defined in [3] as the satisfiable subset of complete interventional state descriptions ∆ ={∧
x∈Val(X)

X⊂V

∧
V ∈V Vx = πV (vx) :

vx∈Val(V)
for each x

}
.

T(G) ⊢ P(δ) =
∏
C∈C

P

( ∧
C∈C

pC∈Val(PaG
C)

CpC
= cC,pC

)
(B.2)

where cC,pC
∈ Val(C) for each C is the outcome of C in δ in the outer conjunct corresponding to

x = pC and the inner conjunct corresponding to V = C. To see (B.2), note that for each V ∈ V
we can remove all conjuncts in a δ for any x that do not correspond to a setting pC of the parents
PaGC by ERG and composition, which we can use since SCM is part of T(G). We thereby obtain
P(δ) = P

(∧
V ∈V

p∈PaG
V

Vp = πV (vp)
)

and this gives us the cV,p = πV (vp). Next, we apply cf-sepG

to this expression, giving us the final product in (B.2) factorizing over all C ∈ C.

Now, as in the proof of [3, Thm. 6], the Positivstellensatz shows that consistency of φ implies
there is a real solution to (B.1) for

{
P(δC)

}
δC∈∆C
C∈C

. We construct a model M with diagram G
inducing these probabilities and thereby satisfying φ. Note that any δC ∈ ∆C defines a function
fδC
C : Val(PaGC)→ Val(C) for each C ∈ C via setting fδC

C (pC) to the value C is set to under pC

in δC. We letM = ⟨{UC}C∈C ,V, {fV }V , P ⟩ where P factors as P
(
{uC}C∈C

)
=
∏

C∈C P (uC)

and for any variable C ∈ V with C ∈ C, we define parent sets PaC = PaGC and UC = {UC};
this implies thatM has diagram G (there is a bidirected edge between any C,C ′ in the same C,
and the statement assumes G’s bidirected arcs form a disjoint union of complete graphs). Finally
let Val(UC) = ∆C for each C, and let P (δC) be the probability P(δC) from our solution to (B.1);
define the structural functions by fC(pC , δC) = fδC

C (pC) for each C ∈ C ∈ C. By construction, it
is clear thatM induces exactly the probabilities from our solution to (B.1).

The following definition of d-separation and its extension to mixed diagrams are standard (e.g.,
[6, 8]). In a directed graph D over nodes V, let DeDV = {V ′ ∈ V : V → · · · → V ′} be the set of
descendants of V ∈ V, the transitive closure of parenthood, with V ∈ DeDV .
Definition B.1 (Directed d-separation). Given directed graph D, the nodes X and Y are d-separated
given a set of nodes Z if every path (consisting of arrows of either direction) from X to Y either has
a collider node (to be defined shortly) on the path M such that DeDM ∩ Z = ∅, or a non-collider
node M ′ on the path such that M ′ ∈ Z. A collider is a vertex M on the path such that the path is of
the form X ⇌ · · · → M ← · · · ⇌ Y (the symbol ⇌ denoting an arrow of either direction). The
subsets X, Y of nodes are d-separated given Z if every X ∈ X and Y ∈ Y are d-separated given Z.
Definition B.2 (Mixed d-separation). Given mixed causal diagram G over V, let C be the set of
maximal cliques in G under its edge relation L9999K. Thus every C ∈ C is a subset C ⊂ V of
vertices such that CL9999KC ′ for every C,C ′ ∈ C, and there is no C′ ⊋ C with this property. Then
form the directed graph DG with nodes V ∪ C and edges

{V → V ′ : V, V ′ ∈ V, V → V ′ in G} ∪ {C→ V : C ∈ C, V ∈ V, V ∈ C}.
Finally, given X,Y,Z ⊂ V, we say that X and Y are d-separated in G given Z if the same holds in
DG (according to Def. B.1).
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Corollary B.1. Let d-sepG be an encoding of all the conditional independences implied by the
graphical d-separation criterion over the diagram G (including over counterfactuals, where these
are determined by parallel networks). Then the system T(ERG) + d-sepG + SCM is sound and
complete under the same assumptions as Thm. 3.

Proof. For soundness, see [9] or any standard discussion of d-separation, e.g., that in [7] or [8]. For
completeness, in light of Thm. 3 it suffices to show that any instance of cf-sepG , as in Def. 13, is an
instance of d-sepG . Consider the parallel network G′ with n + n′ copies of G and the two sets of
nodes Y = {(Yi)pi

}1≤i≤n, Y′ = {(Y ′
i )p′

i
}1≤i≤n′ . Since there is no Y ∈ Y, Y ′ ∈ Y′ for which

Y = Y ′ or Y L9999KY ′ in G and all ingoing edges to Y and Y ′ have been severed in G′, the only
possibility for a (direction-agnostic) path between some such Y, Y ′ is a bidirected path of length ≥ 2
or a bidirected path between proper descendants of Y, Y ′. All such paths contain colliders, so that
d-separation delivers the (unconditional) independence (9).
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