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Abstract

The task of tuning regularization coefficients in regularized regression models with
provable guarantees across problem instances still poses a significant challenge
in the literature. This paper investigates the sample complexity of tuning regular-
ization parameters in linear and logistic regressions under ℓ1 and ℓ2-constraints
in the data-driven setting. For the linear regression problem, by more carefully
exploiting the structure of the dual function class, we provide a new upper bound
for the pseudo-dimension of the validation loss function class, which significantly
improves the best-known results on the problem. Remarkably, we also instantiate
the first matching lower bound, proving our results are tight. For tuning the regular-
ization parameters of logistic regression, we introduce a new approach to studying
the learning guarantee via an approximation of the validation loss function class.
We examine the pseudo-dimension of the approximation class and construct a uni-
form error bound between the validation loss function class and its approximation,
which allows us to instantiate the first learning guarantee for the problem of tuning
logistic regression regularization coefficients.

1 Introduction

Regularized linear models, including the Elastic Net [1], and Regularized Logistic Regression
[2, 3, 4], as well as their variants [5, 6, 7], have found widespread use in diverse fields and numerous
application domains. Thanks to their simplicity and interpretability, those methods are popular
choices for controlling model complexity, improving robustness, and preventing overfitting by
selecting relevant features [4, 8, 9]. Moreover, regularized linear models can be adapted to the
non-linear regime using kernel methods [10, 11], significantly expanding their applicability to a wide
range of problems. In typical applications, one needs to solve not only a single regression problem
instance, but several related problems from the same domain. Can we learn how to regularize with
good generalization across the related problem instances?

Suppose we have a regression dataset (X, y) ∈ Rm×p × Ym, where X is a design matrix with
m samples and p features, and y is a target vector. Regularized linear models aim to compute an
estimator β̂(X,y)(λ) by solving the optimization problem

β̂(X,y)(λ) = argmin
β∈Rp

[
l(β, (X, y)) + λ1 ∥β∥1 + λ2 ∥β∥22

]
, (1)

where (λ1, λ2) ∈ R2
≥0 are the regularization coefficients. For instance, if λ ∈ R2

>0, y ∈ Rm,
and l(β, (X, y)) = 1

2∥y − Xβ∥22 (squared-loss function), we get the well-known Elastic Net [1].
On the other hand, if λ ∈ {(λ1, 0), (0, λ2)} for λ1, λ2 > 0, y ∈ {±1}m, and l(β, (X, y)) =
1
m

∑m
i=1 log(1 + exp(−yix

⊤
i β)), we obtain regularized logistic regression.
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In regularized linear models, the parameters λ play a crucial role in controlling the sparsity (ℓ1)
and shrinkage (ℓ2) constraints, and are essential in ensuring better generalization and robustness
[9, 4, 12]. A popular approach in practice is cross-validation, which involves choosing a finite grid
of values of λ and iteratively solving the regression problem for multiple values of λ and evaluating
on held-out validation sets to determine the optimal parameter. Principled techniques with theoretical
guarantees suffer from various limitations, for example require strong assumptions about the original
problem [13], or aim to search the optimal parameter over a discrete subset instead of the whole
continuous domain. Moreover, repeatedly solving the regression problem is particularly inefficient
if we have multiple problem instances from the same problem domain.

In this work, we investigate an alternative setting for tuning regularization parameters, namely
data-driven algorithm design, following the previous line of work by Balcan et al. [14]. Unlike
the traditional approach, which involves considering a single dataset (X, y), in the data-driven
approach, we analyze a collection of datasets or problem instances (X(i), y(i), X

(i)
val , y

(i)
val ) drawn

from an underlying problem distribution D. Our objective is to determine the optimal regularization
parameters λ so that when using the training set (X(i), y(i)) and λ to select a model in Optimization
problem 1, the selected model minimizes loss on the validation set (X(i)

val , y
(i)
val ). As remarked by

Balcan et al. [14], data-driven algorithm design can handle more diverse data generation scenarios in
practice, including cross validation and multitask-learning [15, 16]. We emphasize that the data-driven
setting differs significantly from the standard single dataset setting.

In this paper, we consider the problem of tuning regularization parameters in regularized logistic
regression and the Elastic Net across multiple problem instances. Our contributions are:

• We present an improved upper bound (Theorem 3.3) on the pseudo-dimension for tuning the
Elastic Net regularization parameters across problem instances by establishing a novel structural
result for the validation loss function class (Theorem 3.2). We provide a crucial refinement to the
piecewise structure of this function class established by Balcan et al. [14], by providing a bound
on the number of distinct functional behaviors across the pieces. This enables us to describe the
computation of the validation loss function as a GJ algorithm [17], which yields an upper-bound
of O(p) on the pseudo-dimension, a significant improvement of the prior best bound of O(p2) by
Balcan et al. [14], and a corresponding improvement in the sample complexity (Theorem 3.4).

• Furthermore, we establish the tightness of our result by providing the first asymptotically matching
lower bound of Ω(p) on the pseudo-dimension (Theorem 3.5). It is worth noting that our results
have direct implications for other specialized cases, such as LASSO and Ridge Regression.

• We further extend our results on the Elastic Net to regularized kernel linear regression problem
(Corollary 3.6).

• We propose a novel approach to analyze the problem of tuning regularization parameters in
regularized logistic regression, which involves indirectly investigating an approximation of the
validation loss function class. Using this approach, we instantiate the first learning guarantee for
this problem in the data-driven setting (Theorem 4.4).

1.1 Related work

Model selection for regularized linear models. Extensive research has focused on the selection of
optimal parameters for regularized linear models, including the Elastic Net and regularized logistic
regression. This process usually entails choosing the appropriate regularization coefficients for a given
dataset [18, 19]. Nevertheless, a substantial proportion of this research relies on heuristic approaches
that lack theoretical guarantees [20, 21]. Others have concentrated on creating tuning objectives that
go beyond validation error [22, 23], but with no clearly defined procedures for provably optimizing
them. The conventional method for selecting a tuning regularization parameter is through grid-based
selection, which aims to choose the parameter from a subset, known as a grid, within the parameter
space. While this approach provides certain guarantees [24], it falls short in delivering an optimal
solution across the entire continuous parameter space, particularly when using tuning objectives
that exhibit numerous discontinuities. Additionally, the grid-based technique is highly sensitive to
density, as selecting a grid that is either too dense or too coarse might result in inefficient search or
highly inaccurate solutions. Other guarantees require strong assumptions on the data distribution,
such as sub-Gaussian noise [25, 13]. Some studies focus on evaluating regularized linear models by
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Figure 1: The process of tuning regularization parameter λ across problem instances. Given a set
of N problem instances {P (1), . . . , P (N)} drawn from some problem distribution D, one seeks to
choose the best parameter λ̂ by minimizing the total validation loss

∑N
i=1 h(P

(i);λ).

constructing solution paths [26, 2, 27]. However, it is important to note that these approaches are
primarily computational in nature and do not provide theoretical guarantees.

Data-driven algorithm design. Data-driven algorithms can adapt their internal structure or parame-
ters to problem instances from unknown application-specific distributions. It is proved to be effective
for a variety of combinatorial problems, such as clustering, integer programming, auction design,
and graph-based semi-supervised learning [28, 29, 30, 31]. Balcan et al. [14] recently introduced
a novel approach to tuning regularization parameters in regularized linear regression models, such
as Elastic Net and its variants. They applied data-driven analysis to reveal the underlying discrete
structure of the problem and leveraged a general result from [32] to obtain an upper bound on the
pseudo-dimension of the problem. To provably tune the regularization parameters across problem
instances, they proposed a simple ERM learner and provided sample complexity guarantee for such
learner. However, the general techniques from [32] do not always lead to optimal bounds on the
pseudodimension. Our paper is an example of a problem where these bounds (as derived in [14]) are
sub-optimal, and more specialized techniques due to [31] result in the tighter bounds that we obtain.
Also prior work does not establish any lower bound on the pseudodimension. Furthermore, it should
be noted that their analysis heavily relies on the assumption of having a closed-form representation
of the Elastic Net estimator [27]. This approach may not be applicable in analyzing other regularized
linear models, such as regularized logistic regression, for which we propose an alternative approach.

2 Problem setting

In this section, we provide a formal definition of the problem of tuning regularization parameters
in the Elastic Net and regularized logistic regression (RLR) across multiple problem instances,
which follows the settings by Balcan et al. [14]. Given a problem instance P = (X, y,Xval, yval),
where (X, y) ∈ Rm×p × Ym represents the training dataset with m samples and p features, and
(Xval, yval) ∈ Rm′×p × Ym′

denotes the validation split with m′ samples, we consider the estimator
β̂(X,y)(λ) defined as:

β̂(X,y)(λ) ∈ argmin
β∈Rp

l(β, (X, y)) + ⟨λ,R(β)⟩, (2)

where l(β, (X, y)) represents the objective loss function, λ denotes the regularization coefficients,
and R(β) = (∥β∥1, ∥β∥22) represents the regularization vector function.

For instance, if λ ∈ R2
>0, Y ≡ R, and l(β, (X, y)) = lEN(β, (X, y)) = 1

2m∥y −Xβ∥22, we get the
well-known Elastic Net. On the other hand, if λ ∈ {(λ1, 0), (0, λ2)} for λ1, λ2 > 0, y ∈ {±1}m,
and l(β, (X, y)) = lRLR(β, (X, y)) = 1

m

∑m
i=1 log(1 + exp(−yix

⊤
i β)), we obtain RLR with ℓ1

or ℓ2 regularization. Note that for the Elastic Net hyperparameter tuning problem, we allows the
regularization coefficients of both ℓ1, ℓ2 are positive, while in the Regularized Logistic Regression
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problem, we consider either ℓ1 or ℓ2 as the regularization term. We then use the validation set
(Xval, yval) to calculate the validation loss h(λ, P ) = l(β̂(X,y)(λ), (Xval, yval)) corresponding to the
problem instance P and learned regularization parameters λ.

In the data-driven setting, we receive a collection of n problem instances P (i) =

(X(i), y(i), X
(i)
val , y

(i)
val ) ∈ Rmi,pi,m′

i
for i ∈ [n], where Rmi,pi,m′

i
:= Rmi×pi×Ymi×Rm′

i×pi×Ym′
i .

The problem space Πm,p is given by Πm,p = ∪m1≥0,m2≤m,p1≤pRm1,p1,m2
, and we assume that

problem instance P is drawn i.i.d from the problem distribution D over Πm,p. Remarkably, in this
setting, problem instances can have varying training and validation sample sizes, as well as different
sets of features. This general framework applies to practical scenarios where the feature sets differ
among instances and allows one to learn regularization parameters that effectively work on average
across multiple different but related problem instances. See Figure 1 for an illustration of the setting.

The goal here is to learn the value λ̂ s.t. with high probability over the draw of n problem instances,
the expected validation loss EP∼Dh(λ̂, P ) is close to minλ EP∼D[h(λ, P )]. This paper primarily
focuses on providing learning guarantees in terms of sample complexity for the problem of tuning
regularization parameters in the Elastic Net and regularized logistic regression (RLR). Specifically, we
aim to address the question of how many problem instances are required to learn a value of λ that per-
forms well across all problems P drawn from the problem distribution D. To achieve this, we analyze
the pseudo-dimension (in the case of the Elastic Net) or the Rademacher Complexity (for RLR) of
the validation loss function class H = {h(λ, ·) | λ ∈ Λ}, where Λ represents the search space for λ.

3 Tight pseudo-dimension bounds for Elastic Net hyperparameter tuning

In this section, we will present our results on the pseudo-dimension upper and lower bounds for
the regularized linear regression problem in the data-driven setting. Classic learning-theoretic
results [33, 34] connect the pseudo-dimension of the validation loss function class (parameterized
by the regularization coefficient) with the sample complexity of the number of problem instances
{P (1), . . . , P (n)} drawn i.i.d. from some unknown problem distribution D needed for learning good
regularization parameters with high confidence. Let hEN(λ, P ) = lEN(β̂(X,y)(λ), (Xval, yval)) be the
validation loss function of the Elastic Net, and HEN = {hEN(λ, P ) : Πm,p → R≥0 | λ ∈ R2

>0} be
the corresponding validation loss function class, we now present tight bounds for Pdim(HEN).

3.1 The Goldberg-Jerrum framework

Recently, Bartlett et al. [31] instantiate a simplified version of the well-known Goldberg-Jerrum (GJ)
Framework [17]. The GJ framework offers a general pseudo-dimension upperbound for a wide class
of functions in which each function can be computed by a GJ algorithm. We provide a brief overview
of the GJ Framework which is useful in establishing our improved pseudo-dimension upper bound.
Definition 1 (GJ Algorithm, [31]). A GJ algorithm Γ operates on real-valued inputs, and can
perform two types of operations:

• Arithmetic operators of the form v′′ = v ⊙ v′, where ⊙ ∈ {+,−,×,÷}, and

• Conditional statements of the form ”if v ≥ 0 . . . else . . . ”.

In both cases, v and v′ are either inputs or values previously computed by the algorithm.

General speaking, each intermediate value of the GJ algorithm Γ can be described by a rational
function, which is a fractional between two polynomials, of the algorithm’s inputs. The degree
of a rational function is equal to the maximum degree of the polynomials in its numerator and its
denominator. We can define two quantities that represent the complexity of GJ algorithms.
Definition 2 (Complexity of GJ algorithm, [31]). The degree of a GJ algorithm is the maximum
degree of any rational function it computes of the inputs. The predicate complexity of a GJ algorithm
is the number of distinct rational functions that appear in its conditional statements.

The following theorem essentially shows that for any function class F , if we can describe any
function f ∈ F by a GJ algorithm of which the degree and predicate complexity are at most ∆ and
Λ, respectively, then we can automatically obtain the upper bound for the pseudo-dimension of F .
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Theorem 3.1 ([31]). Suppose that each function f ∈ F is specified by n real parameters. Suppose
that for every x ∈ X and r ∈ R, there is a GJ algorithm Γx,r that given f ∈ F , returns "true" if
f(x) ≥ r and "false" otherwise. Assume that Γx,r has degree ∆ and predicate complexity Λ. Then,
Pdim(F) = O(n log(∆Λ)).

3.2 Upper bound

Our work improves on prior research [14] by presenting an upper bound on the pseudo-dimension
of Elastic Net validation loss function class HEN parameterized by λ. We extend the previous
piecewise-decomposable structure of the loss function by providing a bound on the number of distinct
rational piece functions for any fixed problem instance (Definition 3). This allows us to use a GJ
algorithm and Theorem 3.1 to obtain better bounds on the number of distinct predicates that need to
be computed. While prior research only used a bound on the number of distinct loss function pieces
generated by algebraic boundaries, our new observation that the loss function has a limited number
of possible distinct functional behaviors yields a tighter upper bound on the pseudo-dimension
(Theorem 3.2). In Theorem 3.5, we will demonstrate the tightness of our upper bound by providing
a novel lower bound for the problem.

We first provide a refinement of the piece-wise decomposable function class terminology introduced
by [32] which is useful for establishing our improved upper bound. Intuitively, this corresponds to
real-valued functions for which the domain is partitioned by finitely many boundary functions such
that the function is well-behaved in each piece in the partition, i.e. can be computed using a piece
function from another function class.

Figure 2: An illustration of piece-wise structure of H∗
EN = {h∗

P : HEN → R≥0 | P ∈ Πm,p}.
Given a problem instance P , the function h∗

P (λ) = h(P ;λ) is a fixed rational function fi(λ) in each
piece (piece function), that is regulated by boundary functions gri of the form 1{ri(λ) < 0}. As
mentioned in our main result, there are at most 3p functions fi of degree at most 2p, and at most p3p
functions gri where ri is a polynomial of degree at most p.

Definition 3. A function class H ⊆ RY that maps a domain Y to R is (F , kF ,G, kG)−piece-
wise decomposable for a class G of boundary functions and a class F ∈ RY of piece functions
if the following holds: for every h ∈ H, (1) there are kG functions g(1), . . . , g(kG) ∈ G and a
function fbbb ∈ F for each bit vector bbb ∈ {0, 1}kG s.t. for all y ∈ Y , h(y) = hbbby (y) where
bbby = {(g(1)(y), . . . , g(kG)(y))} ∈ {0, 1}kG , and (2) there is at most kF different functions in F .

A key distinction from [32] is the finite bound kF on the number of different piece functions needed
to define any function in the class H. Under this definition we give the following more refined
structure for the Elastic Net loss function class by extending arguments from [14].

Theorem 3.2. Let HEN = {hEN(λ, ·) : Πm,p → R≥0 | λ ∈ R2
>0} be the class of Elastic Net

validation loss function class. Consider the dual class H∗
EN = {h∗

P : HEN → R≥0 | P ∈ Πm,p},
where h∗

P (hEN (λ, ·)) = hEN(λ, P ). Then H∗
EN is (F , 3p,G, p3p)-piecewise decomposable, where the

piece function class F = {fq : HEN → R} consists at most 3p rational functions fq1,q2 : hEN(λ, ·) 7→
q1(λ1,λ2)
q2(λ1,λ2)

of degree at most 2p, and the boundary function class G = {gr : HEN → {0, 1}} consists
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of semi-algebraic sets bounded by at most p3p algebraic curves gr : hEN(λ, ·) 7→ 1{r(λ1, λ2) < 0},
where r is a polynomial of degree at most p.

Figure 2 demonstrates the piece-wise structure of H∗
EN, which allows us to establish an improved

upper bound on the pseudo-dimension.
Theorem 3.3. Let HEN = {hEN(λ, ·) : Π → R≥0 | λ ∈ R2

>0} be the Elastic Net validation loss
function class that maps problem instance P to validation loss hval(λ, P ). Then Pdim(HEN) is O(p).

Proof Sketch. For every problem instance P ∈ Πm,p, and a threshold r ∈ R, consider the
computation 1{hEN(λ, P )− r ≥ 0} for any hEN(λ, ·) ∈ HEN. From Theorem 3.2, we can describe
1{hEN(λ, P )− r ≥ 0} as a GJ algorithm ΓP,r which is specified by 2 parameters λ1, λ2, has degree
of at most 2p, and has predicate complexity of at most (p+ 1)3p (See Figure 3). Then Theorem 3.1
implies that Pdim(HEN) = O(p). □

Figure 3: An illustration of how 1{hEN(λ, P )− r ≥ 0} is computed as a GJ algorithm. The number
of boundary (polynomial) functions kG is at most p3p, and there are at most M = 3p distinct (rational)
piece functions. All the polynomial and rational functions are of degree at most 2p.

The detailed proof of Theorem 3.3 can be found on Appendix B.1.2. Recent work by Balcan et al.
[14] also studied the Elastic Net, and showed the piece-wise structure of the dual function of the
validation loss function which implies an upper bound of O(p2) by employing the general tool from
[32]. We establish a tighter bound of O(p) in Theorem 3.3 by establishing additional properties of
the loss function class and giving a GJ algorithm for computing the loss functions.

To guarantee the boundedness of the considered validation loss function classes, we will have the
following assumptions for the data and regularization parameters. The first assumption is that all
features and target values in the training and validation examples are bounded. The second assumption
is that we only consider regularization coefficient values λ within an interval [λmin, λmax]. In practice,
those assumptions are naturally satisfied by data normalization.
Assumption 1 (Bounded covariate and label). We assume that all the feature vectors and tar-
get values in training and validation set is upper-bounded by absolute constants R1 and R2, i.e.
max{∥X∥∞ , ∥Xval∥∞} ≤ R1, and max{∥y∥∞ , ∥yval∥∞} ≤ R2.

Assumption 2 (Bounded Coefficient). We assume that λ ∈ [λmin, λmax]
2 with λmin > 0.

Under Assumptions 2, 1, Theorem 3.3 immediately implies the following generalization guarantee
for Elastic Net hyperparameter tuning.
Theorem 3.4. Let D be an arbitrary distribution over the problem instance space Πm,p. Under
Assumptions 1, 2, the loss functions in HEN have range bounded by some constant H (Lemma
C.1). Then there exists an algorithm s.t. for any ϵ, δ > 0, given N = O(H

2

ϵ2 (p + log( 1δ ))) sample
problem instances drawn from D, the algorithm outputs a regularization parameter λ̂ such that with
probability at least 1− δ, EP∼DhEN(λ̂, P ) < minλ EP∼DhEN(λ, P ) + ϵ.

Proof. Denote λ∗ = argminλ EP∼DhEN(λ, P ). From Theorems 3.3 and A.2, given n = O(H
2

ϵ2 (p+

log( 1δ ))) problem instances P (i) for i ∈ [N ] drawn from D, w.p. 1− δ, we have EP∼DhEN(λ̂, P ) <
1
N

∑N
i=1 hEN(λ̂, P

(i)) + ϵ
2 < 1

N

∑N
i=1 hEN(λ

∗, P (i)) + ϵ
2 < EP∼DhEN(λ

∗, P ) + ϵ.
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3.3 Lower bound

Remarkably, we are able to establish a matching lower bound on the pseudo-dimension of the
Elastic Net loss function class, parameterized by the regularization parameters. Note that every
Elastic Net problem can be converted to an equivalent LASSO problem [1]. In fact, we show
something stronger, that the pseudo-dimension of even the LASSO regression loss function class
(parameterized by regression coefficient λ1) is Ω(p), from which the above observation follows (by
taking λ2 = 0 in our construction). Our proof of the lower bound adapts the “adversarial strategy”
of [35] which is used to design a worst-case LASSO regularization path. While [35] construct a
single dataset to bound the number of segments in the piecewise-linear LASSO solution path, we
create a collection of problem instances for which all above-below sign patterns may be achieved
by selecting regularization parameters from different segments of the solution path.

Theorem 3.5. Let HLASSO be a set of functions {hLASSO(λ, ·) : Πm,p → R≥0 | λ ∈ R+} that map
a regression problem instance P ∈ Πm,p to the validation loss hLASSO(λ, P ) of LASSO trained with
regularization parameter λ. Then Pdim(HLASSO) is Ω(p).

Proof Sketch. Consider N = p problem instances for LASSO regression given by
P (i) = (X(i), y(i), X

(i)
val , y

(i)
val ), where the training set (X(i), y(i)) = (X∗, y∗) is fixed and set using

the “adversarial strategy” of [35], Proposition 2. The validation sets are given by single examples
(X

(i)
val , y

(i)
val ) = (ei, 0), where ei are standard basis vectors in Rp. We will now proceed to provide

the witnesses r1, . . . , rN and λ values to exhibit a pseudo-shattering of these problem instances.

Corresponding to subset T ⊆ [p] of problem instances, we will provide a value of λT such that,
we have ℓLASSO(λT , P

(i)) > ri iff i ∈ T , for each i ∈ [p] and each T ⊆ [p]. We set all witnesses
ri = 0 for all i ∈ [p]. As a consequence of Theorem 1 in [35], the regularization path of (X∗, y∗)
consists of a linear segment corresponding all 2p unsigned sparsity patterns in {0, 1}p (we will not
need all the segments in the construction, but note that it is guaranteed to contain all distinct unsigned
sparsity patterns) and we select λT as any interior point corresponding to a linear segment with
sparsity pattern {(c1, . . . , cp) | ci = 0 iff i ∈ T}, i.e. elements in T are exactly the ones with sparsity
pattern 0. Therefore, |β∗

T · ei| = 0 iff i ∈ T , where β∗
T is the LASSO regression fit for regularization

parameter λT . This implies the desired shattering condition w.r.t. witnesses r1 = 0, . . . , rN = 0.
Therefore, Pdim(HLASSO) ≥ p. See Appendix B.2 for a full proof.

3.4 Hyperparameter tuning in Regularized Kernel Regression

The Kernel Least Squares Regression ([4]) is a natural generalization of the linear regression problem,
which uses a kernel to handle non-linearity. In this problem, each sample has p1 feature, corresponding
to a real-valued target. Formally, each problem instance P drawn from Π can be described as

P = (X, y,Xval, yval) ∈ Rm×p1 × Rm × Rm′×p1 × Rm′
.

A common issue in practice is that the relation between y and X is non-linear in the original
space. To overcome this issue, we consider the mapping ϕ : Rp1 → Rp2 which maps the original
input space to a new feature space in which we hopefully can perform linear regression. Define
ϕ(X) = (ϕ(x1), . . . , ϕ(xm))m×p2

, our goal is to find a vector θ ∈ Rp2 so that the squared loss
1
2 ∥y − ϕ(X)θ∥22 +R(∥θ∥) is minimized, where the regularization term R(∥θ∥) is any strictly mono-
tonically increasing function of the Hilbert space norm. It is well-known from the literature (e.g. [36])
that under the Representer Theorem’s conditions, the optimal value θ∗ can be linearly represented
by row vectors of ϕ(X), i.e., θ∗ = ϕ(X)β =

∑m
i=1 ϕ(xi)βi, where β = (β1, . . . , βm) ∈ Rm. This

directly includes the ℓ2 regularizer but does not include ℓ1 regularization. To overcome this issue,
Roth ([3]) proposed an alternative approach to regularized kernel regression, which directly restricts
the representation of coefficient θ via a linear combination of ϕ(xi), for i ∈ [m]. The regularized
kernel regression hence can be formulated as

β̂
(X,y)
l,λ = argmin

β∈Rm

1

2
∥y −Kβ∥22 + λ1 ∥β∥1 + λ2 ∥β∥22 ,

where k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ is the kernel mapping, and the Gram matrix K satisfies
[K]i,j = k(xi, xj) for all i, j ∈ [m].
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Clearly, the problem above is a linear regression problem. Formally, denote hKER(λ, P ) =
1
2∥y −Kβ̂(X,y)(λ)∥2 and let HKER = {hKER(λ, ·) : Πm,p → R≥0 | λ ∈ R2

+}. The following result
is a direct corollary of Theorem 3.3, which gives an upper bound for the pseudo-dimension of HKER.

Corollary 3.6. Pdim(HKER) = O(m).

Note that m here denotes the training set size for a single problem instance, and Corollary 3.6 implies
a guarantee on the number of problem instances needed for learning a good regularization parameter
for kernel regression via classic results [33, 34]. Our results do not make any assumptions on the
m samples within a problem instance/dataset; if these samples within problem instances are further
assumed to be i.i.d. draws from some data distribution (distinct from problem distribution D), then
well-known results imply that m = O(k log p) samples are sufficient to learn the optimal LASSO
coefficient [37, 38], where k denotes the number of non-zero coefficients in the optimal regression fit.

4 Hyperparameter tuning for Regularized Logistic Regression

Logistic regression is more naturally suited to applications modeling probability of an event,
like medical risk for a patient [39], predicting behavior in markets [40], failure probability
of an engineering system [41] and many more applications [42]. It is a fundamental statis-
tical technique for classification, and regularization is again crucial for avoiding overfitting
and estimating variable importance. In this section, we will present learning guarantees
for tuning the Regularized Logistic Regression (RLR) regularization coefficients across in-
stances. Given a problem instance P drawn from a problem distribution D over Πm,p, let
hRLR(λ, P ) = lRLR(β̂(X,y)(λ), (Xval, yval)) be the RLR validation loss function class (defined in Sec-
tion 2), and let HRLR = {hRLR(λ, ·) : Πm,p → R≥0 | λ ∈ R>0} be the RLR validation loss function
class, our goal is to provide a learning guarantee for HRLR. Besides, we also study the commonly
used 0-1 validation loss function class H0-1

RLR = {h0-1
RLR(λ, ·) : Πm,p → R≥0 | λ ∈ R>0}, where

h0-1
RLR(λ, P ) = 1

m′

∑m′

i=1 1{yix⊤
i β̂X,y(λ) ≤ 0}, which we will cover in Section 4.3. Similarly, to

guarantee the boundedness of HRLR, we also assume that Assumptions 1 and 2 also hold in this setting.

4.1 Approximate solutions of Regularized Logistic Regression

The main challenge in analyzing the regularized logistic regression, unlike the regularized logistic
regression problem, is that the solution β̂(X,y)(λ) corresponding to a problem instance P and
particular value λ > 0 does not have a closed form depending on λ. We then propose an alternative
approach to this end, which is examining via the approximation β

(ϵ)
(X,y)(λ) of the solution β̂(X,y)(λ).

Algorithm 1 Approximate incremental quadratic algorithm for RLR with ℓ1 penalty, [2]

Set β(ϵ)
0 = β̂(X,y)(λmin), t = 0, small constant δ ∈ R>0, and A = {j | [β̂(X,y)(λmin)]j ̸= 0}.

while λt < λmax do
λt+1 = λt + ϵ(
β
(ϵ)
t+1

)
A
=
(
β
(ϵ)
t

)
A
−
[
∇2l

(
β
(ϵ)
t , (X, y)

)
A

]−1

·
[
∇l
(
β
(ϵ)
t , (X, y)

)
A
+ λt+1 sgn

(
β
(ϵ)
t

)
A

]
(
β
(ϵ)
t+1

)
−A

=
#»
0

A = A ∪ {j ̸= A | ∇l(β
(ϵ)
t+1, (X, y)) > λt+1}

A = A \ {j ∈ A |
∣∣∣β(ϵ)

t+1,j

∣∣∣ < δ}
t = t+ 1

The approximation Algorithm 1 (Algorithm 2) for the solution β̂(λ) of RLR under ℓ1 (or ℓ2)
constraint were first proposed by Rosset [26, 2]. Given a problem instance P , and a sufficiently small
step-size ϵ > 0, using Algorithms 1, 2 yields an approximation β

(ϵ)
(X,y) of β̂(X,y) that are piece-wise

linear functions of λ in total (λmax − λmin)/ϵ [26]. Moreover, it is also guaranteed that the error
between β

(ϵ)
(X,y) and β̂(X,y) is uniformly upper bounded for all λ ∈ [λmin, λmax].
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Algorithm 2 Approximate incremental quadratic algorithm for RLR with ℓ2 penalty, [2]

Set β(ϵ)
0 = β̂(X,y)(λmin), t = 0.

while λt < λmax do
λt+1 = λt + ϵ

β(ϵ)(λ) = β
(ϵ)
t −

[
∇2l

(
β
(ϵ)
t , (X, y)

)
+ 2λt+1I

]−1

·
[
∇l
(
β
(ϵ)
t , (X, y)

)
+ 2λt+1β

(ϵ)
t

]
t = t+ 1

Theorem 4.1 (Theorem 1, [2]). Given a problem instance P , for small enough ϵ, there is a uniform
bound O(ϵ2) on the error ∥β̂(X,y)(λ)− β

(ϵ)
(X,y)(λ)∥2 for any λ ∈ [λmin, λmax].

Denote h
(ϵ)
RLR(λ, P ) = lRLR(β

ϵ(λ), (Xval, yval)) the approximation function of the validation loss
hRLR(λ, P ). Using Theorem 4.1 and note that the loss f(z) = log(1 + e−z) is 1-Lipschitz, we can
show that the difference between h

(ϵ)
RLR(λ, P ) and hRLR(λ, P ) is uniformly upper-bounded.

Lemma 4.2. The approximation error of the validation loss function is uniformly upper-bounded
|h(ϵ)

RLR(λ, P )− hRLR(λ, P )| = O(ϵ2) , for all λ ∈ [λmin, λmax].

We now present one of our main results, which is the pseudo-dimension bound of the approximate
validation loss function class H(ϵ)

RLR.

Theorem 4.3. Consider the RLR under ℓ1 (or ℓ2) constraint with parameter λ ∈ [λmin, λmax] that
take a problem instance P drawn from an unknown problem distribution D over Πm,p. Under
Assumptions 1 and 2, HRLR is bounded by some constant H (Lemma C.2). Suppose that we use
Algorithm 1 (or Algorithm 2) to approximate the solution β̂(X,y)(λ) by β(ϵ)

(X,y)(λ) with a uniform error
O(ϵ2) for any λ ∈ [λmin, λmax], where ϵ is the approximation step-size. Consider the approximation
validation loss function class H(ϵ)

RLR = {h(ϵ)
RLR(λ, ·) : Πm,p → R≥0 | λ ∈ [λmin, λmax]}, where

h
(ϵ)
RLR(λ, P ) =

1

m′

m′∑
i=1

log(1 + exp(−yix
⊤
i β

(ϵ)
(X,y)(λ)))

is the approximate validation loss. Then we have Pdim(H(ϵ)
RLR) = O(m2 + log(1/ϵ)). Further, we

assume that ϵ = O(
√
H) where H is the upperbound of HRLR under Assumptions 1 and 2. Given

any set S of T problem instances drawn from a problem distribution D over Πm,p, the empirical
Rademacher complexity R̂(H(ϵ)

RLR,S) = O(H
√
(m2 + log(1/ϵ))/T ).

The key observation here is that the approximation solution β̂
(ϵ)
(X,y) is piece-wise linear over

(λmax−λmin)/ϵ pieces, leading to the fact that the approximate validation loss function h
(ϵ)
RLR(λ, ·) is

a "special function" (Pfaffian function [43]) in each piece, which is a combination of exponentiation
of linear functions of λ. The detailed proof of Theorem 4.3 can be found on the Appendix D.3.

4.2 Learning guarantees for Regularized Logistic Regression hyperparameter tuning

Our goal now is to use the upper bound for empirical Rademacher complexity of the validation
loss function class HRLR. We use techniques for approximate data-driven algorithm design due to
[29], combining the uniform error upper bound between validation loss function hRLR(λ, P ) and
its approximation h

(ϵ)
RLR(λ, P ) (Lemma 4.2) and empirical Rademacher complexity of approximation

validation loss function class H(ϵ)
RLR (Theorem 4.3), to obtain a bound on the empirical Rademacher

complexity of HRLR. This allows us to give a learning guarantee for the regularization parameters
λ, which is formalized by the following theorem.

Theorem 4.4. Consider the RLR under ℓ1 (or ℓ2) constraint. Under Assumptions 1, 2, HRLR is
bounded by some constant H (Lemma C.2). Consider the class function HRLR = {hRLR(λ, ·) :
Πm,p → R≥0 | λ ∈ [λmin, λmax]} where hRLR(λ, P ) is the validation loss corresponding to problem
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instance P and the ℓ1 (ℓ2) parameter λ. Given any set S of T problem instances drawn from a
problem distribution D over Πm,p, for any hRLR(λ, ·) ∈ HRLR, w.p. 1− δ for any δ ∈ (0, 1), we have∣∣∣∣∣ 1T

T∑
i=1

hRLR(λ, P
(i))− EP∼D[hRLR(λ, P )]

∣∣∣∣∣ ≤ O

(
H

√
m2 + log(1/ϵ)

T
+ ϵ2 +

√
1

T
log

1

δ

)
,

for some sufficiently small ϵ.

The proof detail of Theorem 4.4 is included in the Appendix D.3. The above generalization guarantee
gives a bound on the average error on RLR validation loss over the problem distribution, for the
parameter λ learned from T problem instances. In commonly used approaches, the validation set
size is small or a constant, and our result can be interpreted as the upper bound on the generalization
error in terms of the number of problem instances T and the step length ϵ. We only consider RLR
under ℓ1 (or ℓ2) constraints, which are commonly studied in the literature, our analysis could be
easily extended to RLR under ℓq constraint for any q ≥ 1.

4.3 An extension to 0-1 loss

Since logistic regression is often used for binary classification tasks, it is interesting to consider the
0-1 loss as the validation loss function. It has been shown that 1{z ≤ 0} ≤ 4 log(1 + e−z) for any
z [44]. This inequality, combined with Theorem 4.4, directly provides a learning guarantee for the
0-1 validation loss function.

Theorem 4.5. Let τ > 2ϵ2 and δ ∈ (0, 1), where ϵ is the approximation step-size. Then for any

n ≥ s(τ/2, δ) = Ω
(

H2(m2+log 1
ϵ )+log 1

δ

(τ/2−ϵ2)2

)
, if we have n problem instances {P (i), . . . , P (n)} drawn

i.i.d. from some problem distribution D over Πm,p to learn the regularization parameter λERM for
RLR via ERM, then

EP∼D(h
0-1
RLR(λ

ERM , P ))) ≤ 4 min
λ∈[λmin,λmax]

EP∼D(hRLR(λ, P )) + 4τ.

The detailed proof of Theorem 4.5 can be found on Appendix D.4. It is worth noting that we are
providing learning guarantee for 0-1 validation loss function class H0-1

RLR indirectly via the validation
loss function class HRLR with cross-entropy objective function, which is arguably not optimal. The
question of how to provide a true PAC-learnable guarantee for H0-1

RLR remains an interesting challenge.

5 Conclusion and future work

In this work, we present novel learning guarantees for tuning regularization parameters for both the
Elastic Net and Regularized Logistic Regression models, across problem instances. For the Elastic
Net, we propose fine-grained structural results that pertain to the tuning of regularization parameters.
We use them to give an improved upper bound on the pseudo-dimension of the relevant validation
loss function class of and we prove that our new bound is tight.

For the problem of tuning regularization parameters in regularized logistic regression, we propose
an alternative approach that involves analyzing the approximation of the original validation loss
function class. This approximation, characterized by a piece-wise linear representation, provides a
useful analytical tool in the absence of an exact dependence of the logistic loss on the regularization
parameters. Additionally, we employ an upper bound on the approximation error between the original
and approximated functions, to obtain a learning guarantee for the original validation loss function
class. Remarkably, our proposed approach is not restricted solely to regularized logistic regression
but can be extended to a wide range of other problems, demonstrating its generality and applicability.

It is worth noting that this work only focuses on the sample complexity aspect of the hyperparameter
tuning in the Elastic Net and Regularized Logistic Regression. The question of computational
complexity in this setting is an interesting future direction. Other interesting questions include
designing hyperparameter tuning techniques for this setting that are robust to adversarial attacks,
and hyperparameter tuning for Regularized Logistic Regression with both ℓ1 and ℓ2 constraints.
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