
A Riemannian Exponential Augmented Lagrangian
Method for Computing the Projection Robust

Wasserstein Distance

Bo Jiang
Ministry of Education Key Laboratory of NSLSCS

School of Mathematical Sciences, Nanjing Normal University
Nanjing 210023, China
jiangbo@njnu.edu.cn

Ya-Feng Liu ∗
State Key Laboratory of Scientific and Engineering Computing

Institute of Computational Mathematics and Scientific/Engineering Computing
Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Beijing 100190, China
yafliu@lsec.cc.ac.cn

Abstract

Projection robust Wasserstein (PRW) distance is recently proposed to efficiently
mitigate the curse of dimensionality in the classical Wasserstein distance. In this
paper, by equivalently reformulating the computation of the PRW distance as an
optimization problem over the Cartesian product of the Stiefel manifold and the
Euclidean space with additional nonlinear inequality constraints, we propose a
Riemannian exponential augmented Lagrangian method (REALM) for solving
this problem. Compared with the existing Riemannian exponential penalty-based
approaches, REALM can potentially avoid too small penalty parameters and exhibit
more stable numerical performance. To solve the subproblems in REALM effi-
ciently, we design an inexact Riemannian Barzilai-Borwein method with Sinkhorn
iteration (iRBBS), which selects the stepsizes adaptively rather than tuning the step-
sizes in efforts as done in the existing methods. We show that iRBBS can return an
ε-stationary point of the original PRW distance problem within O(ε−3) iterations,
which matches the best known iteration complexity result. Extensive numerical re-
sults demonstrate that our proposed methods outperform the state-of-the-art solvers
for computing the PRW distance.

1 Introduction

The optimal transport (OT) problem has found wide applications in machine learning, representation
learning, data sciences, and image sciences; see [21, 5, 42, 1, 14] and the references therein for more
details. However, its direct application in machine learning may encounter the issue of the curse of
dimensionality since the sample complexity of approximating the Wasserstein distance can grow
exponentially in dimension [22, 49]. To resolve this issue, by making an important extension to the
sliced Wasserstein distance [43], Paty and Cuturi [41], Deshpande et al. [16], and Niles-Weed and
Rigollet [40] proposed to project the distributions to a low-dimensional subspace that maximizes the

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Wasserstein distance between the projected distribution, which can reduce the sample complexity and
overcome the issue of the curse of dimensionality [40, 16, 35].

In this paper, we focus on the discrete probability measure case. For {x1, . . . , xn} ⊂ Rd and
{y1, . . . , yn} ⊂ Rd, define Mij = (xi − yj)(xi − yj)

T for each (i, j) ∈ [n] × [n] with [n] :=
{1, . . . n}. Let 1 ∈ Rn be the all-one vector and δx be the Dirac delta function at x. Given
r = (r1, . . . , rn)T ∈ ∆n := {z ∈ Rn | 1Tz = 1, z > 0} and c = (c1, . . . , cn)T ∈ ∆n, define
two discrete probability measures µn =

∑n
i=1 riδxi and νn =

∑n
i=1 ciδyi . For k ∈ [d], the k-

dimensional projection robust Wasserstein (PRW) distance between µn and νn is defined as [41]

P2
k(µn, νn) = max

U∈U
min

π∈Π(r,c)
〈π,C(U)〉 , (1)

where 〈·, ·〉 is the standard inner product in Rn×n, C(U) ∈ Rn×n with [C(U)]ij =
〈
Mij , UU

T
〉
,

U = {U ∈ Rd×k | UTU = Ik} is known as the Stiefel manifold with Ik being the k-by-k identity
matrix, and Π(r, c) = {π ∈ Rn×n | π1 = r, πT1 = c, π ≥ 0}. Problem (1) is a nonconcave-convex
max-min problem over the Stiefel manifold, which makes it very challenging to solve.

Related works and motivations. To compute the PRW distance, Paty and Cuturi [41] proposed two
algorithms for solving the subspace robust Wasserstein distance, which is a convex relaxation of
problem (1) (without the theoretical guarantee on the relaxation gap). An OT or entropy-regularized
OT subproblem with dimension n and a full or top k eigendecomposition of a d-by-d matrix needs to
be solved exactly at each iteration. Very recently, Lin et al. [34] proposed a Riemannian (adaptive)
gradient ascent with Sinkhorn (R(A)GAS) algorithm for solving the following entropy-regularized
problem with a small regularization parameter η:

max
U∈U

pη(U), (2)

where pη(U) = minπ∈Π(r,c) {〈π,C(U)〉 − ηH(π)}, in which H(π) = −
∑
ij πij log πij is the

entropy function. They showed that R(A)GAS can return an ε-stationary point of PRW problem (1)
within O(ε−4) iterations if η = O(ε) in (2). However, at each iteration, R(A)GAS needs to solve a
regularized OT problem in relatively high precision, which results in a high computational cost. To
reduce the complexity of R(A)GAS, Huang et al. [28, 29] proposed a Riemannian (adaptive) block
coordinate descent (R(A)BCD) algorithm for solving an equivalent “min” formulation of (2) as

min
U∈U,α,β∈Rn

Lη(x,11T), (3)

where Lη(·, ·) is defined in (8) further ahead. By choosing η = O(ε) in (3), they showed that the
whole iteration complexity of R(A)BCD to attain an ε-stationary point of PRW problem (1) reduces
to O(ε−3), which significantly improves the complexity of R(A)GAS.

However, there are two main issues of R(A)BCD and R(A)GAS. First, to compute a solution of
problem (1) with relatively high quality, η in problem (2) or (3) has to be chosen small, which makes
the corresponding problem ill-conditioned and may cause numerical instability in solving it. Second,
the performance of the above algorithms is sensitive to the stepsizes in updating U . Hence, to achieve
a better performance, one has to spend some efforts tuning the stepsizes carefully. Resolving these
two main issues demands some novel approaches from both theoretical and computational points of
view, and this is the motivation and focus of our paper.

Contributions. In this paper, by reformulating (1) as an optimization problem defined over the
Cartesian product of the Stiefel manifold and the Euclidean space with additional inequality con-
straints (see problem (6) further ahead), we can resolve the above-mentioned two issues. Our main
contributions are summarized as follows. See also Figure 1 for a summary of the related works and
the main results of this paper.

(i) We propose a Riemannian exponential augmented Lagrangian method (REALM) to efficiently and
faithfully compute the PRW distance, in which a series of subproblems with dynamically decreasing
penalty parameters and adaptively updated multiplier matrices are solved approximately. In theory,
we establish the global convergence of REALM in the sense that any limit point of the sequence
generated by the algorithm is a stationary point of the original problem; see Theorem 2.7. Numerically,
REALM always outperforms the Riemannian exponential penalty approach since it could avoid too
small penalty parameters in many cases.

2

An
 𝝐

-s
ta

tio
na

ry

po
in

t o
f (

3)

w
ith

 𝜼
=
𝑶
𝝐

is

an
 𝝐

-s
ta

tio
na

ry

po
in

t o
f (

1)

Compute an
𝝐-stationary

point of (11) within
𝑶 𝜼!𝟏𝝐!𝟐
𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬

(Theorems 3.2 & B.5)

Compute an
𝝐-stationary

point of (3) within
𝑶 𝜼!𝟏𝝐!𝟐
𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬

Compute an
𝝐-stationary

point of (2) within
𝑶 𝜼!𝟐𝝐!𝟐
𝐢𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧𝐬

An 𝝐-stationary point of (11) with

𝜼 = 𝑶 𝝐 is an 𝝐-stationary point of (1)

(Theorem 2.4)

PRW Problem (1)

Problem (3) Problem (11) Problem (2)

An 𝝐-stationary point of (2) with

𝜼 =
𝑶 𝝐 is an 𝝐 -stationary point of (1)

R(A)GAS [33] R(A)BCD [27] iRBBS (this paper) REALM (this paper)

Converge to
a stationary
point of (1)

(Theorem 2.7)

Figure 1: A summary of the related works and the main results of this paper.

(ii) To efficiently solve the subproblem in REALM (i.e., problem (11) further ahead), we view it as a
one-block optimization problem over the Stiefel manifold and propose a novel and practical algorithm,
namely, the inexact Riemannian Barzilai-Borwein (BB) method with Sinkhorn iteration (iRBBS),
wherein a flexible number of Sinkhorn iterations is performed to compute the inexact Riemannian
gradient. Compared with R(A)BCD, our proposed iRBBS (applied to problem (11) with fixed πk
and ηk = O(ε)) can not only return a stronger ε-stationary point of PRW problem (1) (compared
with the definitions in [34, 28]; see Remark 2.2), within O(ε−3) iterations (see Theorem 3.2 with
ε1 = ε2 = ε), but also has a better numerical performance, which mainly benefits from the adaptive
Riemannian BB stepsize (based on the inexact Riemannian gradient information).

Notations. For x ∈ Rn, Diag(x) is an n× n diagonal matrix with x being its main diagonal. For a
matrix A, denote Amin = minij Aij , Amax = maxij Aij , ‖A‖1 =

∑
ij |Aij |, ‖A‖∞ = maxij |Aij |,

‖A‖2F =
∑
ij A

2
ij , and ‖A‖var = Amax −Amin. Denote by log(·) and exp(·) the element-wise loga-

rithmic and exponential operators, respectively. We use Rn×n+ and Rn×n++ to denote the nonnegative
and positive orthants of Rn×n, respectively. Throughout this paper, we define C ∈ Rn×n with
Cij = ‖xi − yj‖2 and Vπ =

∑
ij πijMij .

The tangent space at U ∈ U is TUU = {ξ ∈ Rd×k | UTξ + ξTU = 0}. Let TU = {(U, ξ) | U ∈
U and ξ ∈ TUU} be the tangent bundle of U . A smooth map Retr : TU → U : (U, ξ) 7→ RetrU (ξ)
is called a retraction if each curve R(t) = RetrU (tξ) satisfies R(0) = U and R′(0) = ξ; see [9,
Definition 3.47] or [2, Definition 4.1.1]. The Riemannian metric 〈·, ·〉U endowed on the Stiefel
manifold U is taken as the standard metric 〈·, ·〉 on Rd×k. The Riemannian gradient of a smooth
function f : Rd×k → R at U ∈ U is defined as grad f(U), which satisfies 〈grad f(U), ξ〉U =
〈∇f(U), ξ〉 for all ξ ∈ TUU , where ∇f(U) denotes the Euclidean gradient of f at U . If UT∇f(U)
is symmetric, we have grad f(U) = ProjTUU (∇f(U)) = (Id − UUT)∇f(U).

The rest of this paper is organized as follows. The proposed REALM is introduced in Section 2. A
practical iRBBS for solving the subproblem in REALM is proposed in Section 3. Numerical results
are presented in Section 4. Finally, we draw some concluding remarks in Section 5.

2 A Riemannian Exponential ALM for Computing the PRW Distance (1)

Given a fixed U ∈ U , consider the OT problem
min

π∈Rn×n
〈π,C(U)〉 s.t. π1 = r, πT1 = c, π ≥ 0. (4)

By adding a redundant constraint ‖π‖1 = 1 [29, 36], we derive the dual of (4) as

max
α∈Rn,β∈Rn

−(rTα+ cTβ + y) s.t. ϕ(x)ij + y ≥ 0, ∀(i, j) ∈ [n]× [n], (5)

where x = (α, β, U) and ϕ(x) ∈ Rn×n with ϕ(x)ij = αi + βj + 〈Mij , UU
T〉 for each (i, j) ∈

[n]×[n]. Note that the matrix π in (4) can also be understood as the Lagrange multiplier corresponding
to the inequalities in (5). Therefore, the value P2

k(µn, νn) defined in (1) is equal to the opposite of
the optimal objective value of the following optimization problem:

min
x∈M,y∈R

rTα+ cTβ + y s.t. ϕ(x)ij + y ≥ 0, ∀(i, j) ∈ [n]× [n], (6)

3

whereM = Rn × Rn × U . Motivated by the first-order necessary condition of problem (6) (see
Appendix A.1 for details), we define the (ε1, ε2)-stationary point of problem (1) as follows.
Definition 2.1. We call (x̃, π̃) ∈ M× Π(r, c) an (ε1, ε2)-stationary point of PRW problem (1), if
‖ProjTŨU (−2Vπ̃Ũ)‖F ≤ ε1 and 〈π̃, Z(x̃)〉 ≤ ε2, where Z(x̃) ∈ Rn×n with Z(x̃)ij = ϕ(x)ij −
ϕ(x)min. If ε1 = ε2 = 0, we call such (x̃, π̃) a stationary point of PRW problem (1).
Remark 2.2. Our Definition 2.1 is stronger than [28, Definition 3.1] and [34, Definition 2.7] in the
sense that the (ε1, ε2)-stationary point satisfying the conditions here also satisfies all conditions
therein. See Appendix A.2 for more details.

Given π ∈ Rn×n++ and η > 0, define the function ζη(x, π) ∈ Rn×n with

[ζη(x, π)]ij = πijexp

(
−ϕ(x)ij

η

)
, (7)

define

L̃η(x, y, π) = rTα+ cTβ + y + η
∑

ij
πij exp

(
−ϕ(x)ij + y

η

)
and

Lη(x, π) := rTα+ cTβ + η log(‖ζη(x, π)‖1). (8)
One natural approach for solving problem (6) is the Riemannian exponential penalty approach (where
the manifold constraints are kept in the subproblem), which aims to solve the penalty subproblem

min
x∈M,y∈R

L̃η(x, y,11T). (9)

For any fixed x, letting ∇yL̃η(x, y,11T) = 0, we can obtain the optimal y as y =
η log(‖ζη(x,11T)‖1). By eliminating the variable y in (9), we thus obtain the subproblem (3)
of the approach in Huang et al. [28].

It is known that the exponential augmented Lagrangian method (ALM) is usually more stable than
the exponential penalty approach; see [18, Tables 3.1-3.3] for a detailed example. More specifically,
the penalty parameter in the exponential ALM can be chosen as any positive number in the convex
case [47, 52] or can be bounded away from zero under some standard assumptions in the general
nonlinear case [20], which is in sharp contrast to the exponential penalty approach. Based on the
aforementioned knowledge, we thus extend the exponential ALM [8] to the manifold case to solve
problem (6). Fix the current estimate of the Lagrange multiplier corresponding to the inequality
constraints in (6) and the penalty parameter as πk and ηk, respectively. Then the subproblem at the
k-th iteration is given as

min
x∈M,y∈R

L̃ηk(x, y, πk). (10)

Similar to the way for eliminating y in (9), we obtain an equivalent formulation of (10):
min
x∈M

Lηk(x, πk). (11)

Define the matrix φηk(x, πk) ∈ Rn×n with

[φηk(x, πk)]ij = [ζηk(x, πk)]ij/‖ζηk(x, πk)‖1. (12)

By the chain rule, we have ∇αLηk(x, πk) = r − φηk(x, πk)1, ∇βLηk(x, πk) = c− φηk(x, πk)T1,
∇ULηk(x, πk) = −2Vφηk (x,πk)U , and gradU Lηk(x, πk) = ProjTUU (−2Vφηk (x,πk)U). Let
e1
ηk

(x, πk) = ‖ gradU Lηk(x, πk)‖F and e2
ηk

(x, πk) = ‖∇αLηk(x, πk)‖1 + ‖∇βLηk(x, πk)‖1.
The (ε1, ε2)-stationary point of (11) and the connections of the approximate stationary points of
problems (11) and (1) are given as follows.
Definition 2.3. We say x̃ ∈M an (ε1, ε2)-stationary point of problem (11) (with fixed ηk and πk) if
e1
ηk

(x̃, πk) ≤ ε1 and e2
ηk

(x̃, πk) ≤ ε2.

Theorem 2.4. Suppose x̃ = (α̃, β̃, Ũ) ∈M with ‖ζηk(x̃, πk)‖1 = 1 is an (ε1, ε2)-stationary point
of problem (11). Then, we have

‖ProjTŨU (−2Vπ̂Ũ)‖F ≤ ε1 + 2‖C‖∞ε2, (13a)

〈π̂, Z(x̃)〉 ≤ (2 log n+ ‖log πk‖var)ηk + (‖α̃‖var + ‖β̃‖var + ‖C‖∞)ε2, (13b)

where π̂ := Round(φηk(x̃, πk),Π(r, c)) is a feasible matrix returned by running the rounding
procedure “Round” given in [3, Algorithm 2] with input φηk(x̃, πk).

4

Remark 2.5. By Theorem 2.4, we can see that, given any ε > 0, for fixed πk, by choosing ηk = O(ε)

with ε1 = ε2 = ε, an ε-stationary point with bounded (α̃, β̃) (which can be found efficiently by
iRBBS proposed in Section 3) of problem (11) can recover an ε-stationary point of PRW problem (1).
This may also be of independent interest for the case with fixed U . In such case, one can return a
feasible ε-stationary point of the OT problem (4) (with fixed U) evaluated by the primal-dual gap
other than the primal gap typically used in the literature, such as [3, Theorem 1].

Let x0 be an initial point satisfying rTα0 = cTβ0 and ‖ζη1
(x0, π1)‖1 = 1 with π1 = 11T. We

require that xk = (αk, βk, Uk), the (εk,1, εk,2)-stationary point of the subproblem (11) with k ≥ 1,
satisfies the following conditions:

rTαk = cTβk, ‖ζηk(xk, πk)‖1 = 1, Lηk(xk, πk) ≤ min{Lηk(xk−1, πk),Lηk(x0, πk)}. (14)
These conditions are important to establish the convergence of REALM (as shown in Appendix A.4).
The following key observation to (11) shows that xk satisfying the first two conditions in (14) can be
easily obtained. We omit the detailed proof for brevity since they can be verified easily by noticing
that Lηk(x, πk) = Lηk(xs, πk) where xs is defined in Proposition 2.6. The third condition in (14)
can be easily satisfied by using any descent-like method starting from the better point of xk−1 and x0

to solve problem (11).
Proposition 2.6. For any x = (α, β, U) ∈ M, consider xs = (α + υ11, β + υ21, U) ∈ M with
υ1 = (cTβ − rTα+ ηk log(‖ζηk(x, πk)‖1))/2 and υ2 = (rTα− cTβ + ηk log(‖ζηk(x, πk)‖1))/2.
Then we have that rT(α+υ11) = cT(β+υ21) and ‖ζηk(xs, πk)‖1 = 1 and also that Lηk(x, πk) =
Lηk(xs, πk) and ∇xLηk(x, πk) = ∇xLηk(xs, πk).

With such xk in hand, we compute the candidate of the next estimate πk+1 as

π̃k+1 = φηk(xk, πk). (15)

Denote W k ∈ Rn×n with W k
ij = min{ηkπ̃k+1

ij , ϕ(xk)ij}. The penalty parameter ηk+1 is updated
according to the progress of the complementarity violation [4], denoted by ‖W k‖F. If ‖W k‖F ≤
γW ‖W k−1‖F with γW ∈ (0, 1), we keep ηk+1 = ηk and update πk+1 = π̃k+1; otherwise we keep
πk+1 = πk and reduce ηk+1 via

ηk+1 = min
{
γηηk, %k/‖log πk‖∞

}
, (16)

where γη ∈ (0, 1) is a constant and %k → 0 with %k > 0.

We summarize the above discussion as the complete algorithm in Algorithm 1, whose convergence is
established as follows.
Theorem 2.7. Let {(xk, π̃k)} be the sequence generated by Algorithm 1 with ε1 = ε2 = εc = 0 and
(x∞, π̃∞) be a limit point of {(xk, π̃k)}. Then, (x∞, π̃∞) is a stationary point of PRW problem (1).

Remark 2.8. Our proposed REALM is a nontrivial extension of the exponential ALM from the
Euclidean case [47, 20, 51, 52] to the Riemannian case. The following two differences distinguish
our proposed REALM from the existing exponential ALM (e.g., the one proposed in [20]: (i)
Measure of complementarity. The measure of complementarity used in our proposed REALM is
motivated by the direct use of the complementarity condition adopted in the classical (quadratic)
ALM, while that used in [20] is a variant of the measure for the exponential case. (ii) Conditions
on global convergence. To guarantee the global convergence of the exponential ALMs, some
(strong) constraint qualifications, the boundness of the iterates, and the feasibility of the limit point
of the iterates generally need to be assumed; see Proposition 2.1 and Theorem 2.1 in [20] for the
corresponding results. In contrast, for our considered PRW distance problem (6), we can prove the
boundness of the iterates generated by REALM without making the assumption and establish the
global convergence of REALM without explicitly dealing with the constraint qualification assumption.
This advantage is mainly due to the essential changes in the proposed REALM (compared with
the existing exponential ALMs), i.e., specific conditions (14) and (16) (motivated by (13b)) on the
solution of subproblems and the adopted measure of complementarity.

Moreover, it would be possible to extend the analysis in [20] to prove that the penalty parameter ηk
in Algorithm 1 is bounded away from zero if the Riemannian versions of the three conditions hold,
including the linear independence constraint qualification, the strict complementarity condition, and
the second-order sufficient condition. However, these three conditions might not be easy to check
since we do not have prior knowledge of the solution.

5

Algorithm 1: REALM for solving problem (6).

1 Input: Choose εc, ε1, ε2, η1 > 0, γW , γη, γε ∈ (0, 1), ε1,1 ≥ ε1, ε1,2 ≥ ε2. Choose π1 = 11T,
x0 ∈M with rTα0 = cTβ0, ‖ζη1

(x0, π1)‖1 = 1. Compute W 0 with W 0
ij = min{η1, ϕ(x0)ij}.

2 for k = 1, 2, . . . , do
3 Compute an (εk,1, εk,2)-stationary point xk of (11) satisfying (14);
4 Compute π̃k+1 according to (15) and compute W k;
5 if ‖W k‖F ≤ εc, e1

ηk
(xk, πk) ≤ ε1, e2

ηk
(xk, πk) ≤ ε2 then return xk and πk+1 = π̃k+1;

6 if ‖W k‖F ≤ γW ‖W k−1‖F then set πk+1 = π̃k+1, ηk+1 = ηk else set πk+1 = πk and
update ηk+1 via (16) ;

7 Set εk+1,1 = γεεk,1 and εk+1,2 = γεεk,2.

Remark 2.9. We cannot establish the iteration complexity of Algorithm 1 due to the following
two main difficulties: (i) characterizing the connection between the two complementarity measures
‖W k‖F and ek := 〈π̂k, Z(xk)〉 with π̂k := Round(φηk(xk, πk),Π(r, c)) at the approximate station-
ary point of the subproblem; (ii) establishing the relationship between ηkπ̃k+1

ij and ϕ(xk)ij . Thanks
to Theorem 2.4, we can slightly modify Algorithm 1 to establish the iteration complexity. By modi-
fying the “if” condition in Line 6 of Algorithm 1 as “‖W k‖F ≤ γW ‖W k−1‖F and ek ≤ γW ek−1”,
and leveraging the connection between the approximate stationary points of the subproblem and the
original problem as proven in (13), we know that the modified Algorithm 1 will terminate within at
most O(max{log ε−1

1 , log ε−1
2 , Tk}) iterations, where Tk := min{k | %k ≤ εc}.

Remark 2.10. Problem (6) can also be solved by the Riemannian ALMs based on the quadratic
penalty function [37, 55]. However, the subproblems therein have four blocks of the variable, i.e.,
(α, β, y, U), and some customized solvers are needed to solve them. Moreover, the connections
between the stationary points of problem (1) and the subproblems therein remain unclear.

3 A Practical iRBBS for Solving Subproblem (11)

At first glance, (11) is a three-block optimization problem and can be solved by R(A)BCD proposed
by [28]. However, as stated therein, tuning the stepsizes for updating U is not easy for R(A)BCD. In
sharp contrast, we understand (11) as optimization with only one variable U as follows:

min
U∈U

{
q(U) := min

α∈Rn,β∈Rn
Lηk(x, πk)

}
. (17)

By [34, Lemma 3.1], we know that q(·) is differentiable over Rd×k. Here, we give a new formulation
of grad q(U), which can provide more insights into approximating grad q(U).
Lemma 3.1. Let (α∗U , β

∗
U) ∈ argminα∈Rn,β∈Rn L(x, πk) and x∗U = (α∗U , β

∗
U , U). Then we have

grad q(U) = gradU Lηk(x∗U , π
k) = ProjTUU (−2Vφηk (x∗U ,π

k)U).

Hence we could use the Riemannian gradient descent (RGD) method [2] to solve problem (11).
Letting τt > 0 be some stepsize, the main iterations of RGD are given as

U t+1 = RetrUt
(
− τt grad q(U t)

)
. (18)

However, RGD (18) needs to calculate (α∗U , β
∗
U) exactly, which can be challenging (or might be

unnecessary) to do. Motivated by the well-established inexact gradient type methods for optimization
in the Euclidean space [11, 26, 46, 17, 39, 7, 52], we propose an inexact RGD framework. Let
xt = (αt, βt, U t) with (αt, βt) ≈ (α∗Ut , β

∗
Ut), wherein the inexactness level is determined by

e2
ηk

(xt, πk) = ‖∇αLηk(xt, πk)‖1 + ‖∇βLηk(xt, πk)‖1 ≤ θt for given θt. By Lemma 3.1, we use

ξt := gradU Lηk(xt, πk) = ProjTUtU
(
− 2Vφηk (xt,πk)U

t
)

to approximate grad q(U t). Then, we perform an inexact RGD with grad q(U t) in (18) replaced by
ξt. More specifically, given the inexactness parameter θt+1 ≥ 0 and the stepsize τt ≥ 0, we update
xt+1 = (αt+1, βt+1, U t+1) with U t+1 and (αt+1, βt+1) ≈ (α∗Ut+1 , β∗Ut+1) satisfying

U t+1 = RetrUt
(
−τtξt

)
, (inexact RGD step) (19a)

e2
ηk

(xt+1, πk) ≤ θt+1. (inexactness criterion) (19b)

6

To make iRGD (19) practical, the first main ingredient is how to compute (αt+1, βt+1) such that
(19b) holds. Given U t+1 ∈ U , α(0) = αt, and β(0) = βt, for ` = 0, 1, . . ., we adopt the block
coordinate descent method to update

α(`+1) = argmin
α∈Rn

Lηk(α, β(`), U t+1, πk), β(`+1) = argmin
β∈Rn

Lηk(α(`+1), β, U t+1, πk). (20)

Note that α(`+1) and β(`+1) admit the closed-form solutions as follows:

α(`+1) = α(`) − ηk log r + ηk log(ζ(`)1), β(`+1) = β(`) − ηk log c+ ηk log((ζ(`+ 1
2))T1), (21)

where ζ(`) := ζηk(α(`), β(`), U t+1, πk) and ζ(`+ 1
2) := ζηk(α(`+1), β(`), U t+1, πk) (see (7) for

its definition). Note that for fixed U t+1 and πk = 11T, (21) reduces to the famous Sinkhorn
iteration [15]. Therefore, we still name (21) as the Sinkhorn iteration. It is easy to verify that
‖ζ(`+ 1

2)‖1 = ‖ζ(`+1)‖1 = 1 (see also [28, Remark 3.1]). By (12), we have

π(`+ 1
2) := φηk(α(`+1), β(`), U t+1, πk) = ζ(`+ 1

2), π(`+1) := φηk(α(`+1), β(`+1), U t+1, πk) = ζ(`+1).
(22)

From the update of β(`+1), we have (π(`+1))T1− c = 0. Therefore, to make condition (19b) hold,
we stop the Sinkhorn iteration once

‖π(`+1)1− r‖1 ≤ θt+1, (23)

and set αt+1 = α(`+1), βt+1 = β(`+1). Recalling the calculation of the gradient and the definition
of e2

ηk
(xt+1, πk) after (12), we have

e2
ηk

(xt+1, πk) = ‖π(`+1)1− r‖1.

Next, we choose the stepsize τt in (19a). Since the accurate function and gradient information of
q(U t) = Lηk(x∗Ut , π

k) is unavailable, we cannot expect to build the linesearch condition based on
q(U t) and need to find some appropriate potential function instead. Considering thatLηk(xt, πk) is an
approximation of q(U t) and the approximation error is controlled by e2

ηk
(xt, πk), it is thus desirable

that some combinations of Lηk(xt, πk) and e2
ηk

(xt, πk) will be smaller than the corresponding values
at the previous iteration. Given ρ ∈ [0, ηk/2), we define the potential function as

Eρ(x
t) = Lηk(xt, πk) + ρ(e2

ηk
(xt, πk))2 (24)

and require the stepsize τt to satisfy the following nonmonotone line search condition:

Eρ(x
t+1) ≤ Ert − δ1τt‖ξt‖2F −

(ηk
2
− ρ
)

(e2
ηk

(xt+1, πk))2, (25)

where Ert+1 = (γQtE
r
t + Eρ(x

t+1))/Qt+1 and Qt+1 = γQt + 1 with a constant γ ∈ [0, 1) and
Er0 = Eρ(x

0), Q0 = 1; see [54]. Such τt can be found by adopting the simple backtracking
line search technique starting from an initial guess of the stepsize τ (0)

t . Owing to the excellent
performance of the BB method in Riemannian optimization [50, 32, 23, 25, 31, 24], we choose the
initial guess τ (0)

t for t ≥ 1 as a new Riemannian BB stepsize with safeguards:

τ
(0)
t = min{max{τBB

t , τmin}, τmax}, (26)
where τmax > τmin > 0 are preselected stepsize safeguards and τBB

1 = τBB2
1 and for t ≥ 2, we set

τBB
t = min{τBB2

t−1 , τ
BB2
t ,max{τnew

t , 0}} if τBB2
t < κtτBB1

t and set τBB
t = τBB1

t otherwise. Here,
τBB1
t = ‖U t−U t−1‖2F/|〈U t−U t−1, ξt− ξt−1〉|, τBB2

t = |〈U t−U t−1, ξt− ξt−1〉|/‖ξt− ξt−1‖2F,
and τnew

t is chosen according to [30, Eq. (2.15)]. In our numerical tests, we set the initial κt to be
0.05 and update κt+1 = κt/1.02 if τBB2

t /τBB1
t < κt and update κt+1 = 1.02κt otherwise.

We are ready to summarize the complete iRBBS in Algorithm 2. The overall complexity of Algo-
rithm 2 to find an (ε1, ε2)-stationary point of problem (1) is in the same order as that of R(A)BCD.
Theorem 3.2. By choosing ε1 = ε′1/2, ε2 = min{ε′1/(4‖C‖∞), ε′2/(4ηkΨ + 6‖C‖∞)} with Ψ =
‖log πk‖var + max{‖log r‖var, ‖log c‖var} and ηk = ε′2/(4 log n+ 2‖log πk‖var), Algorithm 2 can
return an (ε′1, ε

′
2)-stationary point of problem (1) in O(Tε′1,ε′2) iterations with

Tε′1,ε′2 = max
{

(ε′1)−2, (ε′2)−2
}

(ε′2)−1.

If θt ≥ 2Rt/(ηk(`max − 2 +
√

2)) with `max ≥ 1 and Rt = ‖C(U t)‖var + ηkΨ, the total number
of Sinkhorn iterations is O(`maxTε′1,ε′2) and the total arithmetic operation complexity is O((n2(k +

`max) + ndk + dk2)Tε′1,ε′2).

7

Algorithm 2: A practical iRBBS for solving problem (11).

1 Input: Choose τmax > τmin > 0, τ (0)
0 > 0, ε1, ε2 ≥ 0, σ, δ1 ∈ (0, 1), ρ ∈ [0, ηk/2), γ ∈ [0, 1),

and (α−1, β−1, U0) ∈M. Set α(0) = α−1, β(0) = β−1 and perform the Sinkhorn iteration (21)
at U0 until (23) holds with θ0 = 1 for some `. Set α0 = α(`+1), β0 = β(`+1).

2 for t = 0, 1, . . . do
3 Compute ξt = gradU Lηk(xt, πk);
4 if ‖ξt‖F ≤ ε1 and e2

ηk
(xt, πk) ≤ ε2 then return xt;

5 for s = 0, 1, . . . do
6 Set U t+1 = RetrUt (−τtξt) with τt = τ

(0)
t σs and update θt+1 (e.g., via (27) further

ahead);
7 Set α(0) = αt and β(0) = βt and perform the Sinkhorn iteration (21) at U t+1 until (23)

holds for some `; set αt+1 = α(`+1) and βt+1 = β(`+1).
8 if (25) holds then break;

Remark 3.3. The basic idea of proposing Algorithm 2 is sharply different from that of R(A)BCD de-
veloped in [28]. Ours is based on the inexact RGD viewpoint, while the latter is based on the BCD
approach. Such an inexact RGD viewpoint enables us to choose the stepsize adaptively via leveraging
the efficient BB stepsize. Actually, tuning the best stepsize for the U -update in R(A)BCD is nontrivial.
It is remarked in [28, Remark 4.1] that “the adaptive algorithms RABCD and RAGAS are also
sensitive to the step size, though they are usually faster than their non-adaptive versions RBCD and
RGAS.” Numerical results in Section 4.1 show the higher efficiency of our iRBBS over R(A)BCD.
Remark 3.4. Although the inexact gradient type methods have been well explored in the Euclidean
case [11, 26, 46, 17, 39, 7, 52], to our best knowledge, there are little results for the Riemannian
case and on how to choose the stepsizes adaptively for general nonlinear objective functions. One
exception is R(A)GAS proposed in [34], which can be understood as the inexact RGD method.
However, it needs to compute the inexact Riemannian gradient with relatively high accuracy and
essentially uses the constant-like stepsizes. In contrast, our iRBBS allows to compute the inexact
Riemannian gradient with low accuracy and choose the stepsize adaptively.
Remark 3.5. It might be better to use possible multiple Sinkhorn iterations rather than only one
iteration as done in R(A)BCD in updating α and β from the computational point of view. The cost of
updating α(l+1) and β(`+1) via one Sinkhorn iteration (21) isO(n2). In contrast, the cost of updating
U t+1 via performing a RGD step (19a) isO(ndk+n2k+ dk2), wherein the main cost is to compute
Vφk(xt,πk)U

t, which can be done by observing VπU = X Diag(π1)XTU + Y Diag(πT1)Y TU −
XπY TU − Y πTXTU. Considering that the cost of updating α and β is much less than that of
updating U , it is reasonable to update α and β multiple times and update U only once.

4 Experimental Results

In this section, we conduct numerical experiments on six Shakespeare operas to evaluate the perfor-
mance of our proposed approaches; see Dataset C.1 for a more detailed description of the dataset. All
methods are implemented in MATLAB. More numerical results can be found in Appendix D. The
codes are available from https://github.com/bjiangopt/ReALM.

4.1 Comparison with R(A)BCD on Solving Subproblem (11)

Subproblem (11) with πk = 11T and a relatively small ηk = η is used to compute the PRW
distance in [28]. We choose η = 0.1 as done in [28]. Since [28] has shown the superiority of
R(A)BCD over R(A)GAS proposed in [34], we mainly compare our proposed iRBBS, namely,
Algorithm 2, with R(A)BCD. For iRBBS and R(A)BCD, we use the same stopping conditions with
ε1 = 2‖C‖∞ε2 (motivated by (13a)) and ε2 = 10−6 max{‖r‖∞, ‖c‖∞}. To make the residual error
more comparable, we choose

θ0 = 1, θt+1 = max

{
θ ·

e1
ηk

(xt, πk)

ε1
, 1

}
ε2, t ≥ 0, (27)

8

https://github.com/bjiangopt/ReALM

Table 1: Comparison results of R(A)BCD and iRBBS for Dataset C.1. Here, “a”, “b” stand for
RBCD and RABCD, respectively; “c”, “d”, and “e” stand for iRBBS-inf, iRBBS-0.1, and iRBBS-0,
respectively. For RBCD, RABCD, and iRBBS-inf, nGrad is equal to nSk.

P̂2
k nGrad/nSk time

data a b c d e a b c d e a b c d e

H5/H 0.049074 0.049074 0.049074 0.049074 0.049074 871 604 320 64/1296 61/3218 9.6 6.7 3.4 1.2 1.8
H5/JC 0.059576 0.059576 0.059576 0.059576 0.059576 904 497 193 63/1571 60/3047 5.3 2.9 1.2 0.6 0.7

H5/MV 0.062515 0.062515 0.062515 0.062515 0.062515 800 444 118 63/1373 61/2812 5.4 2.9 0.8 0.6 0.8
H5/O 0.049973 0.049973 0.049973 0.049973 0.049973 612 397 129 43/1084 45/2410 4.9 3.2 1.0 0.5 0.7
H5/RJ 0.180227 0.180226 0.180227 0.180227 0.180227 474 440 319 73/1670 69/3041 3.8 3.5 2.4 0.8 1.0
H/JC 0.050081 0.050081 0.050081 0.057156 0.057156 637 523 427 41/1049 42/2020 4.4 3.6 2.9 0.4 0.6

H/MV 0.038416 0.038416 0.038416 0.038415 0.038416 2794 1661 440 117/2045 125/5129 22.9 13.6 3.4 1.2 1.6
H/O 0.014042 0.014042 0.014042 0.014042 0.014042 796 503 212 49/1471 53/3093 7.7 4.7 2.0 0.8 1.2
H/RJ 0.189475 0.189475 0.189475 0.189475 0.189475 360 441 265 46/933 47/1763 3.4 4.2 2.3 0.6 0.8

JC/MV 0.013257 0.013257 0.013256 0.013257 0.013257 1816 975 216 66/1781 65/3742 7.2 3.8 0.9 0.4 0.6
JC/O 0.009835 0.009835 0.009835 0.009835 0.009835 1160 763 101 52/1402 45/2454 6.5 3.5 0.5 0.4 0.5
JC/RJ 0.110336 0.110336 0.110336 0.110336 0.110336 340 332 235 44/1016 53/2536 1.5 1.5 1.1 0.3 0.5
MV/O 0.010090 0.010090 0.010090 0.010090 0.010090 2222 1396 154 90/2448 88/5186 13.2 8.2 0.9 0.8 1.1
MV/RJ 0.168293 0.168293 0.168293 0.168293 0.168293 842 763 632 85/1688 95/4805 5.0 4.5 3.8 0.7 1.1
O/RJ 0.125614 0.125614 0.125614 0.124085 0.124085 376 372 210 55/1070 62/2749 2.5 2.4 1.4 0.5 0.8

AVG 0.075387 0.075387 0.075387 0.075757 0.075757 1000 674 265 63/1460 65/3200 6.89 4.62 1.86 0.66 0.90

where the parameter θ is a preselected constant in the proposed iRBBS algorithm. We consider
several different values of θ and denote the corresponding version of iRBBS as iRBBS-θ. When
θ = 0, we have θt+1 ≡ ε2 for all t ≥ 0, which means that we calculate grad q(U t) almost exactly;
when θ = +∞, the Sinkhorn iteration always stops in one iteration. For numerical tests in this
subsection, we can always perform an equivalent formulation of Sinkhorn iteration (21) as [15, 6]

u(`+1) = r � (Av(`)), v(`+1) = c� (ATu(`+1)), (28)

where � denotes elementwise division, u(`) = exp(−α(`)/ηk), v(`) = exp(−β(`)/ηk), and A ∈
Rn×n with Aij = πkij exp(−〈Mij , UU

T〉/ηk). More settings and details on the implementation can
be found in Appendix C.

For each instance of Dataset C.1, we randomly generate 20 initial points and report the average
performance in Table 1. The term “nGrad” means the total number of calculating gradU Lηk(xt, πk),
“nSk” means the total number of Sinkhorn iterations, and “time” represents the running time in
seconds evaluated by “tic-toc” commands. Moreover, since we aim to compute the PRW distance,
with U t returned by some method in hand, we invoke Gurobi 9.5/Mosek 9.3 to compute a more
accurate PRW distance, denoted as P̂2

k = minπ∈Π(r,c) 〈π,C(U t)〉. Note that a larger P̂2
k means a

higher solution quality of the corresponding U t. In the last “AVG” line, we summarize the averaged
performance.

From Table 1, we have the following observations: (i) as for the solution quality, iRBBS-0.1 performs
the best among all methods; (ii) among iRBBS methods, iRBBS-0.1 is about 2.8x faster than iRBBS-
inf and about 1.4x faster than iRBBS-0; (iii) compared with R(A)BCD, iRBBS-0.1 can always take
significantly less nGrad and may take a bit more nSk. This makes it about 7x faster than RABCD and
about 10.4x faster than RBCD. The results show that iRBBS generally performs much better than
R(A)BCD. More importantly, our methods adopt the adaptive stepsize without needing to tune the
best stepsize as done in R(A)BCD.

4.2 Comparison on Computing the PRW Distance (1)

In this subsection, we present numerical results to illustrate the effectiveness and efficiency of our
proposed REALM, namely, Algorithm 1. We choose ε1 = 2‖C‖∞ε2, ε2 = 10−6 max{‖r‖∞, ‖c‖∞},
εc = 10−3, and η1 = 20. To avoid possible numerical instability, we restrict the maximum
number of updating πk as 8. To prevent too small ηk, in our implementation, we update ηk+1 =
min {γηηk, ηmin} other than using (16), where ηmin is a preset positive number. We set γη = γε =
0.25. Moreover, we denote by REALM-(ηmin, γW) the REALM with particular parameters ηmin

and γW . Note that choosing γW = 0 means that we adopt a continuation technique to solve (11)
with πk ≡ π1 and ηk = ηmin, which is generally better than directly solving a single (11) with

9

Table 2: Average results of REALM for Dataset C.1, “a” and “b” stand for REALM-(0.0035, 0) and
REALM-(0.007, 0.9), respectively.

P̂2
k nGrad nSkexp/nSklog time iter

data a b a b a b a b a b

H5/JC 0.09270 0.10985 1081 675 23809/8267 9786/0 84.1 8.6 0.0/8.0 8.0/15.0
H/MV 0.06378 0.06424 1116 727 3864/13382 30997/0 175.7 14.9 0.0/8.0 8.0/15.0
H/RJ 0.21706 0.22607 547 788 3091/4062 11747/0 63.3 15.6 0.0/8.0 8.0/15.0

JC/MV 0.06270 0.06235 1324 711 12875/9727 17073/0 55.3 5.9 0.0/8.0 8.0/15.0
JC/O 0.04221 0.04277 1650 1100 4997/26612 35031/4500 204.7 46.7 0.0/8.0 8.0/15.0

MV/O 0.04181 0.03661 890 822 6101/5289 31651/0 57.0 13.3 0.0/8.0 8.0/15.0

AVG 0.11338 0.11461 863 787 7824/7364 20261/300 78.0 15.0 0.0/8.0 8.0/15.0

ηk = ηmin. Subproblem (11) in REALM is solved by iRBBS. If max{‖r‖∞, ‖c‖∞} ≥ 500ηk or
‖C(U t)− ηk log πk‖var ≥ 900ηk, we set θ = 10 and perform the Sinkhorn iteration (21); otherwise,
we set θ = 0.1 and perform an equivalent formulation of Sinkhorn iteration (28).

The results over 20 runs on Dataset C.1 are reported in Table 2. In this table, the terms “nSklog” and
“nSkexp” mean the total numbers of Sinkhorn iterations (21) and (28), respectively, the pair “k1/k” in
the column “iter” means that the corresponding algorithm stops at the k-iteration and updates the
multiplier matrix k1 times. To save space, we only report instances where one method can return
the value “P̂2

k” larger than 1.005 times of the smaller one of the two P̂2
k values returned by the two

methods. The better “P̂2
k” is marked in bold. Besides, the average performance over all 15 instances

is also kept in the “AVG” line.

From Table 2, we can observe that REALM-(0.007, 0.9) can not only return better solutions than
REALM-(0.0035, 0) but also is about 5.2x faster. On average, REALM-(0.007, 0.9) updates the
multiplier matrix 8 times in 15 total iterations, which shows that updating the multiplier matrix does
help. The reasons why REALM with updating the multiplier matrix outperforms REALM without
updating the multiplier matrix in terms of solution quality and speed are as follows. First, updating
the multiplier matrix in REALM can keep the solution quality even using a larger ηk. Second, solving
the subproblem with a larger ηk is always easier, which enables that REALM-(0.07, 0.9) computes
less gradU Lηk(xt, πk) and performs less Sinkhorn iterations (21) which involves computing the
log-sum-exp function log

∑
i exp(xi/ηk) = xmax/ηk + log

∑
i exp((xi − xmax)/ηk) for small ηk.

5 Concluding Remarks

In this paper, we considered the computation of the PRW distance. By reformulating this problem
as an optimization problem over the Cartesian product of the Stiefel manifold and the Euclidean
space with additional nonlinear inequality constraints, we proposed a method called REALM. The
convergence of REALM was also established. To solve the subproblem in REALM efficiently, we
developed a practical iRBBS method with convergence and iteration complexity guarantees, wherein
the Riemannian BB stepsize (based on the inexact Riemannian gradient information) and Sinkhorn
iterations are employed. The complexity of iRBBS to attain an ε-stationary point of the original PRW
distance problem matches the best known iteration complexity result. Numerical results showed
that, compared with the state-of-the-art methods, our proposed REALM and iRBBS methods have
advantages in solution quality and speed.

Moreover, our proposed REALM and iRBBS can also be extended to solve some important mini-
max problems over the Riemannian manifolds arising from machine learning, such as the fair PCA
problem [45] and the projection robust Wasserstein barycenters [27], etc.

Lastly, a limitation of our work is that we did not establish the positive lower bound of ηk in REALM,
despite the fact that REALM performs well in practice and can avoid too small ηk in many cases. We
shall investigate the conditions under which it is possible to establish a lower bound of ηk in REALM.
This can be achievable by extending the analysis and conditions in [20] to the Riemannian case.

10

Acknowledgments The work of Bo Jiang was supported in part by the National Natural Science
Foundation of China (NSFC) under Grant 11971239, Grant 12371314, and in part by the Natural Sci-
ence Foundation of the Higher Education Institutions of Jiangsu Province under Grant 21KJA110002.
The work of Ya-Feng Liu was supported in part by NSFC under Grant 11991020, Grant 11991021,
and Grant 12288201.

References
[1] T. Abrishami, N. Guillen, P. Rule, Z. Schutzman, J. Solomon, T. Weighill, and S. Wu. Geometry

of graph partitions via optimal transport. SIAM Journal on Scientific Computing, 42(5):A3340–
A3366, 2020. (Cited on page 1.)

[2] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix Manifolds.
Princeton University Press, Princeton, 2008. (Cited on pages 3 and 6.)

[3] J. Altschuler, J. Niles-Weed, and P. Rigollet. Near-linear time approximation algorithms for
optimal transport via Sinkhorn iteration. Advances in Neural Information Processing Systems,
30:1961–1971, 2017. (Cited on pages 4, 5, and 21.)

[4] R. Andreani, E. G. Birgin, J. M. Martínez, and M. L. Schuverdt. On augmented Lagrangian
methods with general lower-level constraints. SIAM Journal on Optimization, 18(4):1286–1309,
2008. (Cited on page 5.)

[5] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In
International Conference on Machine Learning, pages 214–223. PMLR, 2017. (Cited on page 1.)

[6] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative Bregman projections
for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2):A1111–
A1138, 2015. (Cited on page 9.)

[7] A. S. Berahas, L. Cao, and K. Scheinberg. Global convergence rate analysis of a generic line
search algorithm with noise. SIAM Journal on Optimization, 31(2):1489–1518, 2021. (Cited on
pages 6 and 8.)

[8] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic Press,
1982. (Cited on page 4.)

[9] N. Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge University Press,
2023. (Cited on page 3.)

[10] N. Boumal, P.-A. Absil, and C. Cartis. Global rates of convergence for nonconvex optimization
on manifolds. IMA Journal of Numerical Analysis, 39(1):1–33, 2019. (Cited on page 19.)

[11] R. G. Carter. On the global convergence of trust region algorithms using inexact gradient
information. SIAM Journal on Numerical Analysis, 28(1):251–265, 1991. (Cited on pages 6
and 8.)

[12] A. Chambolle and J. P. Contreras. Accelerated Bregman primal-dual methods applied to optimal
transport and Wasserstein barycenter problems. SIAM Journal on Mathematics of Data Science,
4(4):1369–1395, 2022. (Cited on page 14.)

[13] X. Chen, L. Guo, Z. Lu, and J. J. Ye. An augmented Lagrangian method for non-Lipschitz
nonconvex programming. SIAM Journal on Numerical Analysis, 55(1):168–193, 2017. (Cited
on page 15.)

[14] A. Cherian and S. Aeron. Representation learning via adversarially-contrastive optimal transport.
In International Conference on Machine Learning, pages 1820–1830. PMLR, 2020. (Cited on
page 1.)

[15] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in
Neural Information Processing Systems, 26:2292–2300, 2013. (Cited on pages 7 and 9.)

[16] I. Deshpande, Y.-T. Hu, R. Sun, A. Pyrros, N. Siddiqui, S. Koyejo, Z. Zhao, D. Forsyth, and
A. G. Schwing. Max-sliced Wasserstein distance and its use for GANs. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10648–10656, 2019.
(Cited on pages 1 and 2.)

[17] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimization
with inexact oracle. Mathematical Programming, 146(1):37–75, 2014. (Cited on pages 6 and 8.)

11

[18] J.-P. Dussault. Augmented non-quadratic penalty algorithms. Mathematical programming, 99
(3):467–486, 2004. (Cited on page 4.)

[19] P. Dvurechensky, A. Gasnikov, and A. Kroshnin. Computational optimal transport: Complex-
ity by accelerated gradient descent is better than by Sinkhorn’s algorithm. In International
Conference on Machine Learning, pages 1367–1376. PMLR, 2018. (Cited on page 19.)

[20] N. Echebest, M. D. Sánchez, and M. L. Schuverdt. Convergence results of an augmented
Lagrangian method using the exponential penalty function. Journal of Optimization Theory and
Applications, 168(1):92–108, 2016. (Cited on pages 4, 5, and 10.)

[21] R. Flamary, N. Courty, D. Tuia, and A. Rakotomamonjy. Optimal transport for domain
adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39:1853–1865,
2016. (Cited on page 1.)

[22] N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the empirical
measure. Probability Theory and Related Fields, 162(3):707–738, 2015. (Cited on page 1.)

[23] B. Gao, X. Liu, X. Chen, and Y. Yuan. A new first-order algorithmic framework for optimization
problems with orthogonality constraints. SIAM Journal on Optimization, 28(1):302–332, 2018.
(Cited on page 7.)

[24] B. Gao, X. Liu, and Y. Yuan. Parallelizable algorithms for optimization problems with orthogo-
nality constraints. SIAM Journal on Scientific Computing, 41(3):A1949–A1983, 2019. (Cited on
page 7.)

[25] J. Hu, A. Milzarek, Z. Wen, and Y. Yuan. Adaptive quadratically regularized Newton method
for Riemannian optimization. SIAM Journal on Matrix Analysis and Applications, 39(3):
1181–1207, 2018. (Cited on page 7.)

[26] Y.-Q. Hu and Y.-H. Dai. Inexact Barzilai-Borwein method for saddle point problems. Numerical
Linear Algebra with Applications, 14(4):299–317, 2007. (Cited on pages 6 and 8.)

[27] M. Huang, S. Ma, and L. Lai. Projection robust Wasserstein barycenters. In International
Conference on Machine Learning, pages 4456–4465. PMLR, 2021. (Cited on page 10.)

[28] M. Huang, S. Ma, and L. Lai. A Riemannian block coordinate descent method for computing
the projection robust Wasserstein distance. In International Conference on Machine Learning,
pages 4446–4455. PMLR, 2021. (Cited on pages 2, 3, 4, 6, 7, 8, 14, 20, 21, and 22.)

[29] M. Huang, S. Ma, and L. Lai. A Riemannian block coordinate descent method for computing
the projection robust Wasserstein distance. arXiv:2012.05199, v5, 2021. (Cited on pages 2, 3, 17,
18, and 19.)

[30] Y.-K. Huang, Y.-H. Dai, and X.-W. Liu. Equipping the Barzilai–Borwein method with the two
dimensional quadratic termination property. SIAM Journal on Optimization, 31(4):3068–3096,
2021. (Cited on page 7.)

[31] B. Iannazzo and M. Porcelli. The Riemannian Barzilai–Borwein method with nonmonotone
line search and the matrix geometric mean computation. IMA Journal of Numerical Analysis,
38(1):495–517, 2018. (Cited on page 7.)

[32] B. Jiang and Y.-H. Dai. A framework of constraint preserving update schemes for optimization
on Stiefel manifold. Mathematical Programming, 153(2):535–575, 2015. (Cited on page 7.)

[33] S. Kullback. A lower bound for discrimination information in terms of variation (corresp.).
IEEE Transactions on Information Theory, 13(1):126–127, 1967. (Cited on page 18.)

[34] T. Lin, C. Fan, N. Ho, M. Cuturi, and M. Jordan. Projection robust Wasserstein distance and
Riemannian optimization. Advances in Neural Information Processing Systems, 33:9383–9397,
2020. (Cited on pages 2, 3, 4, 6, 8, 14, 17, 21, and 22.)

[35] T. Lin, Z. Zheng, E. Chen, M. Cuturi, and M. I. Jordan. On projection robust optimal transport:
Sample complexity and model misspecification. In International Conference on Artificial
Intelligence and Statistics, pages 262–270. PMLR, 2021. (Cited on page 2.)

[36] T. Lin, N. Ho, and M. I. Jordan. On the efficiency of entropic regularized algorithms for optimal
transport. Journal of Machine Learning Research, 23(137):1–42, 2022. (Cited on pages 3 and 19.)

[37] C. Liu and N. Boumal. Simple algorithms for optimization on Riemannian manifolds with
constraints. Applied Mathematics & Optimization, 82:949–981, 2020. (Cited on page 6.)

12

[38] H. Liu, A. M.-C. So, and W. Wu. Quadratic optimization with orthogonality constraint: Explicit
Łojasiewicz exponent and linear convergence of retraction-based line-search and stochastic
variance-reduced gradient methods. Mathematical Programming, 178(1):215–262, 2019. (Cited
on page 19.)

[39] Y.-F. Liu, X. Liu, and S. Ma. On the nonergodic convergence rate of an inexact augmented La-
grangian framework for composite convex programming. Mathematics of Operations Research,
44(2):632–650, 2019. (Cited on pages 6 and 8.)

[40] J. Niles-Weed and P. Rigollet. Estimation of Wasserstein distances in the spiked transport model.
Bernoulli, 28(4):2663–2688, 2022. (Cited on pages 1 and 2.)

[41] F.-P. Paty and M. Cuturi. Subspace robust Wasserstein distances. In International Conference
on Machine Learning, pages 5072–5081. PMLR, 2019. (Cited on pages 1, 2, and 22.)

[42] G. Peyré and M. Cuturi. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019. (Cited on page 1.)

[43] J. Rabin, G. Peyré, J. Delon, and M. Bernot. Wasserstein barycenter and its application to texture
mixing. In International Conference on Scale Space and Variational Methods in Computer
Vision, pages 435–446. Springer, 2011. (Cited on page 1.)

[44] E. W. Sachs and S. M. Sachs. Nonmonotone line searches for optimization algorithms. Control
and Cybernetics, 40(4):1059–1075, 2011. (Cited on page 20.)

[45] S. Samadi, U. Tantipongpipat, J. H. Morgenstern, M. Singh, and S. Vempala. The price of
fair PCA: One extra dimension. Advances in Neural Information Processing Systems, 31:
10999–11010, 2018. (Cited on page 10.)

[46] M. Schmidt, N. Roux, and F. Bach. Convergence rates of inexact proximal-gradient methods
for convex optimization. Advances in Neural Information Processing Systems, 24:1458–1466,
2011. (Cited on pages 6 and 8.)

[47] P. Tseng and D. P. Bertsekas. On the convergence of the exponential multiplier method for
convex programming. Mathematical Programming, 60(1):1–19, 1993. (Cited on pages 4 and 5.)

[48] J.-P. Vial. Strong and weak convexity of sets and functions. Mathematics of Operations
Research, 8(2):231–259, 1983. (Cited on page 14.)

[49] J. Weed and F. Bach. Sharp asymptotic and finite-sample rates of convergence of empirical
measures in Wasserstein distance. Bernoulli, 25(4A):2620–2648, 2019. (Cited on page 1.)

[50] Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. Mathe-
matical Programming, 142(1):397–434, 2013. (Cited on page 7.)

[51] Y. Xie, X. Wang, R. Wang, and H. Zha. A fast proximal point method for computing exact
Wasserstein distance. In Uncertainty in Artificial Intelligence, pages 433–453. PMLR, 2020.
(Cited on page 5.)

[52] L. Yang and K.-C. Toh. Bregman proximal point algorithm revisited: A new inexact version
and its variant. SIAM Journal on Optimization, 32(3):1523–1554, 2022. (Cited on pages 4, 5, 6,
and 8.)

[53] W. H. Yang, L.-H. Zhang, and R. Song. Optimality conditions for the nonlinear programming
problems on Riemannian manifolds. Pacific Journal of Optimization, 10(2):415–434, 2014.
(Cited on page 14.)

[54] H. Zhang and W. W. Hager. A nonmonotone line search technique and its application to
unconstrained optimization. SIAM Journal on Optimization, 14(4):1043–1056, 2004. (Cited on
pages 7 and 20.)

[55] Y. Zhou, C. Bao, C. Ding, and J. Zhu. A semismooth Newton based augmented Lagrangian
method for nonsmooth optimization on matrix manifolds. Mathematical Programming, 201:
1–61, 2023. (Cited on page 6.)

13

The appendices are organized as follows. In Appendix A, we present more details on our proposed
REALM in Section 2. Some proofs in Section 3 are given in Appendix B. Some details on the dataset
and implementation in Section 4 are shown in Appendix C. Finally, we present additional numerical
results to evaluate the performance of our proposed methods to compute the PRW distance (1) in
Appendix D.

A More Details on Our Proposed REALM in Section 2

In this section, we provide more materials on REALM in Section 2, including the first-order necessary
conditions of our reformulation (6), relations between different (ε1, ε2)-stationary points of the PRW
distance problem (1), the connections of the approximate stationary points of problems (11) and (1),
and the convergence analysis of Algorithm 1.

A.1 First-Order Necessary Conditions of Problem (6)

Lemma A.1 (First-order necessary conditions of problem (6)). Given x̄ ∈M and ȳ ∈ R, suppose
that (x̄, ȳ) is a local minimizer of problem (6), then (x̄,−ϕ(x̄)min) is a stationary point of problem
(6), namely, there exists π̄ ∈ Π(r, c) such that

ProjTŪU
(
−2Vπ̄Ū

)
= 0, 〈π̄, Z(x̄)〉 = 0, (29)

where Z(x̄) ∈ Rn×n is defined as

Z(x̄)ij = ϕ(x̄)ij − ϕ(x̄)min. (30)

Proof. Since (x̄, ȳ) is a local minimizer of problem (6), there must hold ȳ = −ϕ(x̄)min =
maxij{−ϕ(x̄)ij}. Moreover, such x̄ is also a local minimizer of problem minx∈M h(x) with
h(x) = rTα + cTβ − ϕ(x)min. For fixed α and β, it is easy to see that −ϕ(x)ij + ‖C‖∞‖U‖2F is
convex with respect to U since ‖Mij‖2 = Cij ≤ ‖C‖∞. We thus know that the function

−ϕ(x̄)min + ‖C‖∞‖U‖2F = max
ij

{
−ϕ(x)ij + ‖C‖∞‖U‖2F

}
is convex with respect to U , which means that the function−ϕ(x̄)min and thus h(x) is ‖C‖∞-weakly
convex with respect to U [48, Proposition 4.3]. LetA(x̄) = {(i, j) ∈ [n]× [n] | ϕ(x̄)ij = ϕ(x̄)min}.
By [48, Proposition 4.6], we have

∂h(x̄) = (r, c, 0) + conv
{

(−ei,−ej ,−2MijŪ) | (i, j) ∈ A(x̄)
}
,

where ei is the i-th standard unit vector in Rn. Moreover, by [53, Theorem 4.1], [53, Theorem
5.1], and Tx̄M = Rn × Rn × Tx̄U , there must hold that 0 ∈ ProjTx̄M∂h(x̄). Putting all the
above things together shows that there exists π̄ ∈ Rn×n+ with π̄ij = 0 for all (i, j) 6∈ A(x̄) and∑

(i,j)∈A(x̄) π̄i,j = 1 such that π̄ ∈ Π(r, c) and (29) hold. The proof is completed.

A.2 Explanations on Remark 2.2

From [28, Section B], we know that the (ε1, ε2)-stationary point in [28, Definition 3.1] is stronger
than that in [34, Definition 2.7]. To show that our Definition 2.1 of the (ε1, ε2)-stationary point is
stronger than both definitions, we only need to verify that 〈π̃, Z(x̃)〉 ≤ ε2 can imply

〈π̃, C(Ũ)〉 − min
π∈Π(r,c)

〈π,C(Ũ)〉 ≤ ε2,

which is clear since 〈π̃, C(Ũ)〉 −minπ∈Π(r,c)〈π,C(Ũ)〉 ≤ 〈π̃, Z(x̃)〉. This inequality comes from
the fact that problem (5) is a dual formulation of minπ∈Π(r,c) 〈π,C(U)〉 for fixed U and the strong
duality theorem.

A.3 Proof of Theorem 2.4

Proof. We first show that (13a) is true. First, by [12, Lemma 3.2], we have π̂ ∈ Π(r, c) and

‖π̂ − φηk(x̃, πk)‖1 ≤ ‖φηk(x̃, πk)1− r‖1 + ‖φηk(x̃, πk)T1− c‖1 = e2
ηk

(x̃, πk) ≤ ε2. (31)

14

Second, by the triangular inequality and the non-expansive property of the projection operator, we
have

‖ProjTUU (A1)‖F ≤ ‖ProjTUU (A1)− ProjTUU (A2)‖F + ‖ProjTUU (A1)‖F
≤ ‖A1 −A2‖F + ‖ProjTUU (A1)‖F,

where A1, A2 ∈ Rd×k. Hence, we have

‖ProjTUU (−2Vπ̂Ũ)‖F ≤ 2‖(Vπ̂ − Vφηk (x̃,πk))Ũ‖F + ε1 ≤ 2‖Vπ̂ − Vφηk (x̃,πk)‖F + ε1, (32)

where the first inequality uses ‖ProjTŨU (−2Vφηk (x̃,πk)Ũ)‖F ≤ ε1 and the second inequality is due
to the fact that ‖AŨ‖F ≤ ‖A‖F for any matrix A ∈ Rd×d. Moreover, observe that

‖Vπ̂ − Vφηk (x̃,πk)‖F =
∥∥∥∑

ij

(π̂ij − φηk(x̃, πk)ij)Mij

∥∥∥
F
≤ ‖C‖∞‖π̂ − φηk(x̃, πk)‖1.

Combining the above assertions with (31) and (32) yields (13a).

Next, we show that (13b) is also true. By the Cauchy-Schwarz inequality and (31), we have

〈π̂, Z(x̃)〉 =
〈
π̂ − φηk(x̃, πk), Z(x̃)

〉
+
〈
φηk(x̃, πk), Z(x̃)

〉
≤ ‖Z(x̃)‖∞ε2 +

〈
φηk(x̃, πk), Z(x̃)

〉
≤ (‖α̃‖var + ‖β̃‖var + ‖C‖∞)ε2 +

〈
φηk(x̃, πk), Z(x̃)

〉
, (33)

where the second inequality uses (30), the definition of ϕ(x) in (5), and

〈Mij , UU
T〉 = [C(U)]ij ≤ Cij ≤ ‖C‖∞ ∀ U ∈ U . (34)

The remaining is to bound
〈
φηk(x̃, πk), Z(x̃)

〉
. By ‖ζηk(x̃, πk)‖1 = 1, (7), and (12), we have

ϕ(x̃)ij = ηk(log πkij − log φηk(x̃, πk)ij) and ϕ(x̃)min ≥ ηk(log πk)min. Again with (30), we have〈
φηk(x̃, πk), Z(x̃)

〉
=
〈
φηk(x̃, πk), ϕ(x̃)

〉
− ϕ(x̃)min

≤ ηk
(〈

log πk, φηk(x̃, πk)
〉

+H(φηk(x̃, πk))− (log πk)min

)
,

which, together with H(φηk(x̃, πk)) ≤ 2 log n and
〈
log πk, φηk(x̃, πk)

〉
≤ (log πk)max, further

implies
〈
φηk(x̃, πk), Z(x̃)

〉
≤ (2 log n+‖log πk‖var)ηk. This, together with (33), yields (13b). The

proof is completed.

A.4 Proof of Theorem 2.7

We first use the requirements in (14) to show that rTαk ≤ rTα0 for all k ≥ 0.

With the first two requirements in (14), we haveLηk(xk, πk) = 2rTαk. By the fact ‖ζη1
(x0, π1)‖1 =

1 with π1 = 11T, we know from (7) that ϕ(x0)ij ≥ 0. Due to the update rules of πk and ηk, we
know that 0 < πkij ≤ 1 and 0 < ηk ≤ η1 for all k ≥ 1. Therefore, we have from (7) that

[ζηk(x0, πk)]ij = πkij exp

(
−ϕ(x0)ij

ηk

)
≤ exp

(
−ϕ(x0)ij

η1

)
= [ζη1

(x0, π1)]ij ,

which further implies ‖ζηk(x0, πk)‖1 ≤ ‖ζη1(x0, π1)‖1 = 1. With rTα0 = cTβ0, we know
Lηk(x0, πk) ≤ 2rTα0. By the third requirement in (14), we further have

rTαk ≤ rTα0, ∀ k ≥ 0. (35)

Besides, since xk is an (εk,1, εk,2)-stationary point of (11), we have∥∥ProjT
Uk
U
(
−2Vπ̃k+1Uk

) ∥∥
F
≤ εk,1, ‖r − π̃k+11‖1 + ‖c− (π̃k+1)T1‖1 ≤ εk,2. (36)

We next consider two cases, which is motivated by the proofs of Theorem 3.1 in [13].

Case (i). ηk is bounded below by some threshold value η > 0. Due to the update rule of ηk+1, we
can see that (16) is invoked only finite times. Besides, due to 0 < πkij ≤ 1, without loss of generality,

15

we assume ηk ≡ η for all k ≥ 2 and limk→∞ πkij = π∞ij . Meanwhile, due to the update rule of πk,
we have πkij = π̃kij for k ≥ 2 and∣∣min{ηπk+1

ij , ϕ(xk)ij}
∣∣→ 0 ∀ (i, j) ∈ [n]× [n]. (37)

We now show that {xk} has at least a limit point. By (37), we must have ϕ(xk)ij → 0 for each
(i, j) 6∈ A(π∞) := {(i, j) ∈ [n] × [n] | π∞ij = 0} and there must exist K1 > 0 such that for all
k ≥ K1, there holds ϕ(xk)ij ≥ −1 for each (i, j) ∈ A(π∞). Recalling the definition of ϕ(x) in (5),
then we can conclude that there exists K2 > 0 such that for all k ≥ K2, there holds that

αki + βkj + 〈Mij , U
k(Uk)T〉 ≥ −1 ∀ (i, j) ∈ [n]× [n].

Multiplying both sides of the above assertions by cj and then summing the obtained inequality from
j = 1 to n, we have

αki ≥ −1−
∑

j
cj
〈
Mij , U

k(Uk)T
〉
− cTβk ≥ −1− ‖C‖∞ − rTα0, (38)

where the second inequality is due to rTαk = cTβk, (35), and (34). Combining (35) and (38), we
further have

−1− ‖C‖∞ − rTα0 ≤ αki ≤ r−1
i

(
(1− ri)(1 + ‖C‖∞ + rTα0) + rTα0

)
.

Similarly, we can establish a similar bound for each βkj . Recalling that Uk is in a compact set, it is thus
safe to say that the sequence {xk} has at least one limit point, denoted by x∞ = limk∈K,k→∞ xk.
Again with limk→∞ πkij = π∞, we have from (37) that min{ηπ∞ij , ϕ(x∞)ij} = 0, which, together
with π∞ij ≥ 0 and the fact

0 ≤ 〈π∞, Z(x∞)〉 =
∑
ij

π∞ij ϕ(x∞)ij − ϕ(x∞)min,

further implies ϕ(x∞)min = 0 and 〈π∞, Z(x∞)〉 = 0. This shows that (x∞, 0) is feasi-
ble. Moreover, letting k ∈ K go to infinity in (36), we further have π∞ ∈ Π(r, c) and
‖ProjTU∞U (−2Vπ∞U

∞) ‖F = 0. From Lemma A.1, we know that (x∞, 0) is a stationary point of
problem (6) and (x∞, π∞), namely, (x∞, π̃∞), is a stationary point of problem (1).

Case (ii). The sequence {ηk} is not bounded below by any positive number, namely, limk→∞ ηk = 0.
By the updating rule, we know that ηk is updated via (16) infinitely many times. Hence, there must
exist k1 < k2 < · · · such that ηk` → 0 as `→∞ and

ηs = ηk` = min{γηηk`−1, %k`−1/‖ log πk`−1‖∞} with k` ≤ s < k`+1 and πk` = πk`−1.

By (7) and the second assertion in (14), we have πk`ij exp(−ϕ(xk`)ij/ηk`) ≤ 1, which, together with
0 < πk`ij ≤ 1 and (16), implies

ϕ(xk`)ij ≥ −ηk` |log πk`ij | ≥ −ηk`‖log πk`−1‖∞ ≥ −%k`−1, ∀ ` ≥ 1. (39)

Using the same arguments as in the proof in Case (i), we can show that {xk} is bounded
over {k1, k2, . . .} and thus {xk} has at least a limit point. Without loss of generality, assume
lim`→∞ xk` = x∞. By (39) and %k → 0 in (16), we know that ϕ(x∞) ≥ 0 and thus that (x∞, 0) is
feasible to problem (6).

Due to the compactness of π̃k in (15), there must exist a subset K ⊆ {k1, k2, . . .} such that
limk∈K,k→∞ π̃kij = π̃∞. Recalling (15), (7), and the second requirement in (14), we have
π̃k+1
ij = πkij exp(−ϕ(xk)ij/ηk) for each k ≥ 1. Let A(x∞) = {(i, j) ∈ [n]× [n] | ϕ(x∞)ij = 0}.

We claim A(x∞) 6= ∅. Otherwise, for every (i, j) we have ϕ(x∞)ij > 0 and thus

0 ≤ lim
k∈K,k→∞

π̃k+1
ij ≤ lim

k∈K,k→∞
exp

(
−ϕ(xk)ij

ηk

)
= 0, (40)

where the equality uses lim`→∞ xk` = x∞, K ⊆ {k1, k2, . . .}, and limk→∞ ηk → 0. This makes a
contradiction with ‖π̃k+1‖1 = 1. Moreover, (40) also further implies that 〈π̃∞, Z(x∞)〉 = 0. Finally,
with (36), we further have ‖ProjTU∞U (−2Vπ̃∞U

∞)‖F = 0 and π̃∞ ∈ Π(r, c). Putting the above
things together, we know that that (x∞, 0) is a stationary point of (6) and (x∞, π̃∞) is a stationary
point of problem (1). The proof is completed.

16

B Proofs in Section 3

B.1 Proof of Lemma 3.1

For notational simplicity, we define

h(π, U) =
〈
C(U)− ηk log πk, π

〉
− ηkH(π). (41)

It is easy to see that

max
α∈Rn,β∈Rn

−Lηk(x, πk) is the dual formulation of min
π∈Π(r,c)

h(π, U). (42)

Therefore, we can write
q(U) = − min

π∈Π(r,c)
h(π, U). (43)

Since the entropy function is 1-strongly convex with respect to the `1-norm over the probability
simplex, the minimization problem in (43) has a unique solution π∗U = argminπ∈Π(r,c) h(π, U).
Using [34, Lemma B.1], we thus have

grad q(U) = ProjTUU (−2Vπ∗UU). (44)

By (5), (7), (12), and recalling [C(U)]ij = 〈Mij , UU
T〉, we have

[C(U)]ij + ηk log φηk(x∗U , π
k)ij − ηk log πkij = −[α∗U]i − [β∗U]j − ηk log(‖ζηk(x∗U , π

k)‖1). (45)

By the optimality of α∗U and β∗U , we know that e1
ηk

(x∗U , π
k) = e2

ηk
(x∗U , π

k) = 0 and thus
φηk(x∗U , π

k)1 = r and φηk(x∗U , π
k)T1 = c. With (45), (41), and the definition of Lηk(·, ·) in

(11), by some calculations, we have

h(φηk(x∗U , π
k), U) = −rTα∗U − cTβ∗U − ηk log(‖ζηk(x∗U , π

k)‖1) = −Lηk(x∗U , π
k).

By the dual formulation (42), we have −Lηk(x∗U , π
k) ≤ h(π∗U , U). Hence, we know that

h(φηk(x∗U , π
k), U) ≤ h(π∗U , U), which, together with the optimality and uniqueness of π∗U , yields

φηk(x∗U , π
k) = π∗U . Finally, using (44), we can complete the proof.

B.2 Proof of Theorem 3.2

We first establish the iteration complexity result of iRBBS, which is based on the following nice
properties of Sinkhorn iteration (21). Note that the sufficient decrease property in Lemma B.2 is quite
different from that in [29, Lemmas 4.10 & 4.11] since we can establish the non-increasing property
of the feasibility violation of π(l) in Lemma B.1.

Lemma B.1. Let {(α`, β`)} be the sequence generated by (21) and consider {π(`)} and {π(`+ 1
2)}

in (22). Then we have ‖π(0)1 − r‖1 + ‖(π(0))T1 − c‖1 ≥ ‖(π(1
2))T1 − c‖1 ≥ ‖π(1)1 − r‖1 and

for each ` ≥ 1,
‖π(`)1− r‖1 ≥ ‖(π(`+ 1

2))T1− c‖1 ≥ ‖π(`+1)1− r‖1. (46)

Proof. By the optimality of α(`+1) in (20) and the first equation in (22), we have π(`+ 1
2)1− r = 0

for ` ≥ 0. Therefore, we have

‖π(`+1)1− r‖1 = ‖π(`+ 1
2)1− π(`+1)1‖1 ≤ ‖π(`+ 1

2) − π(`+1)‖1

=
∑
ij

π
(`+ 1

2)
ij

∣∣∣∣∣1− exp

(
−
β

(`+1)
j − β(`)

j

ηk

)∣∣∣∣∣
=
∑
ij

π
(`+ 1

2)
ij

[(π(`+ 1
2))T1]j

∣∣∣[(π(`+ 1
2))T1]j − cj

∣∣∣ = ‖(π(`+ 1
2))T1− c‖1,

where the first inequality uses the Cauchy-Schwarz inequality, the second equality comes from (7),
(22), and the definitions of ζ(`) and ζ(`+ 1

2) after (21), and the third equality is due to the second
equation in (21) and the first equation in (22). This proves ‖(π(`+ 1

2))T1 − c‖1 ≥ ‖π(`+1)1 − r‖1

17

for ` ≥ 0. On the other hand, by the optimality of β(`+1) in (20) and the second equation in (22),
we have (π(`))T1 − c = 0 for ` ≥ 1. Using a similar argument, we can prove ‖π(`)1 − r‖1 ≥
‖(π(`+ 1

2))T1− c‖1 for ` ≥ 1 and ‖π(0)1− r‖1 + ‖(π(0))T1− c‖1 ≥ ‖(π(1
2))T1− c‖1. The proof

is completed.

Lemma B.2 (Sufficient decrease of Lηk(·, ·) in (α, β)). Let {(α`, β`)} be the sequence generated
by (21) and consider {π(`)} in (22). Then, for each ` ≥ 0, we have

Lηk(α(`+1), β(`+1), U t+1, πk)

≤ Lηk(α(`), β(`), U t+1, πk)− ηk
2

(
‖π(`)1− r‖21 + ‖π(`+1)1− r‖21

)
.

(47)

Proof. By [29, Lemma 4.11], for ` ≥ 0, we have

Lηk(α(`+1), β(`+1), U t+1, πk) ≤ Lηk(α(`+1), β(`), U t+1, πk)− ηk
2
‖(π(`+ 1

2))T1− c‖21.

By Lemma B.1, for ` ≥ 0, we further have

Lηk(α(`+1), β(`+1), U t+1, πk) ≤ Lηk(α(`+1), β(`), U t+1, πk)− ηk
2
‖(π(`+1))1− r‖21. (48)

On the other hand, we have

Lηk(α(`+1), β(`), U t+1, πk)− Lηk(α(`), β(`), U t+1, πk) = 〈r, α(`+1) − α(`)〉

= − ηk〈r, log r − log(π(`)1)〉 = −ηkKL(r‖π(`)1) ≤ −ηk
2
‖π(`)1− r‖21,

(49)

where the first equality uses the first equation in (21), the second equality comes from the second
equation in (22), and the last inequality is due to Pinsker’s inequality [33]. Here, for p, q ∈ ∆n, the
Kullbbback-Leibler divergence between p and q is KL(p‖q) =

∑
i pi log(pi/qi). Combining (48)

and (49), we obtain (47). The proof is completed.

We need to use the following elementary result.
Lemma B.3. Let ϑ1 and ϑ2 be two given positive constants. Consider two sequences {a`}, {b`} ⊆
R+ with ` ≥ 0. If they obey:

a` − a`+1 ≥ ϑ1(b2` + b2`+1), (50a)
a` ≤ ϑ2b` (50b)

for all ` ≥ 1, then we have b1 ≤ ϑ2/ϑ1 and

min
1≤i≤`+1

bi ≤
ϑ2

ϑ1
· 1

`+
√

2− 1
, ∀ ` ≥ 1.

Proof. Applying (50) on ` = 1, it is easy to see that ϑ2b1 ≥ a1 ≥ ϑ1b
2
1. Therefore, we have

b1 ≤ ϑ2/ϑ1 and a1 ≤ ϑ2
2/ϑ1. For ` ≥ 1, by (50a), we have

1

a`+1
− 1

a`
=
a` − a`+1

ala`+1
≥
ϑ1(b2` + b2`+1)

ϑ2
2b`b`+1

≥ 2ϑ1

ϑ2
2

,

which, together with a1 ≤ ϑ2
2/ϑ1, implies

a`+1 ≤
ϑ2

2

ϑ1
· 1

2(`+ 1)− 1
, ∀ ` ≥ 0.

Let b`/2c be the largest integer smaller than `/2. For ` ≥ 1, summing (50a) over i = b`/2c+1, . . . , `,
we have

2(`− b`/2c) min
1≤i≤l+1

b2i ≤
∑̀

i=b`/2c+1

(b2i + b2i+1) ≤
ab`/2c+1

ϑ1
≤ ϑ2

2

ϑ2
1

· 1

2(b`/2c+ 1)− 1
,

which immediately implies min1≤i≤l+1 b
2
i ≤

ϑ2
2/ϑ

2
1

`(`+1) . With the fact that `(`+ 1) ≥ (`+
√

2− 1)2

for ` ≥ 1 and b1 ≤ ϑ2/ϑ1, we thus complete the proof.

18

With the help of the above lemmas, we can provide a new analysis of the iteration complexity of the
classical Sinkhorn iteration based on the decreasing properties developed in Lemma B.1 and B.2.
It differs from the proof technique in [19], wherein a switching strategy is adopted to establish the
complexity.

Lemma B.4. The total number of Sinkhorn iterations to find a point π(`+1) satisfying (23) is at most
d2Rt+1/(ηkθt+1) + 2−

√
2e, where

Rt+1 = ‖C(U t+1)‖var + ηkΨ, (51)

where Ψ = ‖log πk‖var +max{‖log r‖var, ‖log c‖var}. Here, dae is the smallest nonnegative integer
larger than a ∈ Rn.

Proof. Let (α∗Ut+1 , β∗Ut+1) ∈ argminα∈Rn,β∈Rn Lηk(α, β, U t+1, πk). By refining the proof in [19]
and [36], we can prove

max{‖α(`+1)‖var, ‖α∗Ut+1‖var, ‖β(`+1)‖var, ‖β∗Ut+1‖var} ≤ Rt+1, ∀ ` ≥ 0. (52)

Since∇αLηk(α(`+1), β(`+1), U t+1, πk) = r − π(`+1)1,

∇βLηk(α(`+1), β(`+1), U t+1, πk) = c− (π(`+1))T1 = 0,

and Lηk(α, β, U t+1, πk) is jointly convex with respect to α and β, we have

Lηk(α(`+1), β(`+1), U t+1, πk)− Lηk(α∗Ut+1 , β∗Ut+1 , U t+1, πk) ≤ 〈π(`+1)1− r, α∗Ut+1 − α(`+1)〉.
(53)

Given x ∈ Rn, let xm = ‖x‖var/2 + xmin, it holds that ‖x− xm1‖∞ = ‖x‖var/2. For y ∈ Rn with
〈y,1〉 = 0, we further know that

〈y, x〉 = 〈y, x− xm1〉 ≤ ‖y‖1‖x− xm1‖∞ =
‖x‖var

2
‖y‖1.

Applying this assertion with y = π(`+1)1−r, x = α∗Ut+1 or x = α(`+1), we obtain from ‖π(`+1)‖1 =
‖r‖1 = 1, (52), and (53) that

Lηk(α(`+1), β(`+1), U t+1, πk)−Lηk(α∗Ut+1 , β∗Ut+1 , U t+1, πk) ≤ Rt+1‖π(`+1)1− r‖1, ∀ ` ≥ 0.
(54)

Applying Lemma B.3 with a` = Lηk(α(`), β(`), U t+1, πk) − Lηk(α∗Ut+1 , β∗Ut+1 , U t+1, πk) and
b` = ‖π(`)1−r‖1 and using (46), (47), and (54), we have ‖π(1)1−r‖1 ≤ 2Rt+1/ηk and ‖π(`+1)1−
r‖1 ≤ 2Rt+1/(ηk(` +

√
2 − 1)) for all ` ≥ 1. Letting 2Rt+1/(ηk(` +

√
2 − 1)) ≤ θt+1, we can

complete the proof of Lemma B.4.

We now can establish the convergence result of iRBBS, namely, Algorithm 2.
Theorem B.5. Let {xt} be the sequence generated by Algorithm 2. If ε1 = ε2 = 0, we have
e1
ηk

(xt, πk)→ 0 and e2
ηk

(xt, πk)→ 0. If ε1 > 0 and ε2 > 0, then Algorithm 2 stops within at most
dΥ max{ε−2

1 , ε−2
2 }e iterations for any θt+1 ≥ 0, where Υ is a constant defined in (64).

Proof. Given α ∈ Rn and β ∈ Rn, by [29, Lemma 4.8] for any ι ∈ [0, 1] and U1, U2 ∈ U ,

‖∇ULηk(α, β, U2, π
k)−∇ULηk(α, β, ιU1 + (1− ι)U2, π

k)‖F
≤ 2

(
‖C‖∞ + 2‖C‖2∞/η

)
ι‖U1 − U2‖F.

(55)

From [38, 10], we know that the retraction on the Stiefel manifold has the following nice properties,
namely, there exist positive constants L1 and L2 such that

‖RetrU (ξ)− U‖F ≤ L1‖ξ‖F and ‖RetrU (ξ)− (U + ξ)‖F ≤ L2‖ξ‖2F (56)

hold for all ξ ∈ TUU and U ∈ U . With (55) and (56), following the proof of Lemma 3 in [10], for
each U ∈ U and ξ ∈ TUU , we have

Lηk
(
α, β,RetrU (ξ), πk

)
≤ Lηk(α, β, U, πk) +

〈
gradU Lηk(x, πk), ξ

〉
+
L

2
‖ξ‖2F, (57)

19

where
L = 2(L2

1 + L2)‖C‖∞ + 4L2
1‖C‖2∞/ηk. (58)

Applying (57) with α = αt, β = βt, U = U t, and ξ = −τt gradU Lηk(xt, πk) = −τtξt, with (19a),
we have

Lηk(αt, βt, U t+1, πk) ≤ Lηk(xt, πk)− τt
(

1− Lτt
2

)
‖ξt‖2F. (59)

In addition, by the fact that αt+1 = α(`+1), βt+1 = β(`+1), and e2
ηk

(xt+1, πk) = ‖π(`+1)1 − r‖1
for some ` and α(0) = αt, β(0) = βt, we have from (47) that

Lηk(xt+1, πk) ≤ Lηk(αt, βt, U t+1, πk)− ηk
2

(e2
ηk

(xt+1, πk))2. (60)

Recalling (24), it follows from (59) and (60) that

Eρ(x
t+1) ≤ Eρ(xt)− τt

(
1− Lτt

2

)
‖ξt‖2F −

(ηk
2
− ρ
)

(e2
ηk

(xt+1, πk))2 (61)

holds with ρ ∈ [0, ηk/2).

Recalling that τt takes the form τt = τ
(0)
t σs for some nonnegative integer s, with (26), we know

from (61) that if s =
⌈

log 2(1−δ1)
τmaxL

/ log σ
⌉
, there must hold that

Eρ(x
t+1) ≤ Eρ(xt)− δ1τt‖ξt‖2F −

(ηk
2
− ρ
)

(e2
ηk

(xt+1, πk))2.

Using similar arguments as [54, Lemma 1.1], this also shows that the backtracking line search in
Algorithm 2 terminates in at most

⌈
log 2(1−δ1)

τmaxL
/ log σ

⌉
trials and Ert ≥ Eρ(x

t). Moreover, since

τ
(0)
t ≥ τmin from (26), we further know that τt = τ

(0)
t σs ≥ τ := 2σ(1−δ1)τmin

τmaxL
. Therefore, we know

that the nonmonotone linesearch condition (25) is satisfied for some τt ≥ τ .

Let x∗ = (α∗, β∗, U∗) be the minimizer of problem (11). Using a similar argument as [28, Lemma
4.7], by (34) and − log πkij ≤ ‖log πk‖∞, we have

Lηk(x∗, πk) ≥ −‖C‖∞ − ηk‖log πk‖∞. (62)

Let ωt = Ert − Eρ(xt). By (62) and using the argument in [44, Theorem 5], we know that such
ωt ≥ 0 satisfies

+∞∑
t=0

ωt ≤
γ

1− γ
(Eηk/2(x0) + ‖C‖∞ + ηk‖log πk‖∞) < +∞.

By (24), the fact that (25) holds with τt ≥ τ , and ‖ξt‖F = e1
ηk

(xt, πk), we have

δ1τ(e1
ηk

(xt, πk))2 +
(ηk

2
− ρ
)

(e2
ηk

(xt+1, πk))2

≤ Lηk(xt, πk)− Lηk(xt+1, πk) + ρ((e2
ηk

(xt, πk))2 − (e2
ηk

(xt+1, πk))2) + ωt.
(63)

Summing (63) over t = 0, . . . , T and adding the term (ηk/2 − ρ)(e2
ηk

(x0))2 on both sides of the
obtained equation, and then combining them with Lηk(xT+1, πk) ≥ Lηk(x∗, πk) and (62), we have

T∑
t=0

(
δ1τ(e1

ηk
(xt, πk))2 +

(ηk
2
− ρ
)

(e2
ηk

(xt, πk))2
)

≤ Υ̃ :=
1

1− γ
(
Eηk/2(x0) + ‖C‖∞ + ηk‖log πk‖∞

)
for any T ≥ 1. This further implies∑T

t=0
(e1
ηk

(xt, πk))2 + (e2
ηk

(xt, πk))2 ≤ Υ :=
Υ̃

min{δ1τ , ηk/2− ρ}
. (64)

Hence, we have e1
ηk

(xt, πk)→ 0 and e2
ηk

(xt, πk)→ 0 as t→∞.

20

Suppose e1
ηk

(xt, πk) ≤ ε1 and e2
ηk

(xt, πk) ≤ ε2 are fulfilled for t = T but not fulfilled for all t < T .
Then there hold that e1

ηk
(xT , πk) ≤ ε1, e2

ηk
(xT , πk) ≤ ε2, and (e1

ηk
(xt, πk))2 + (e2

ηk
(xt, πk))2 >

min{ε21, ε22} for all t < T . Setting T in (64) as T yields T min{ε21, ε22} ≤ Υ, which completes the
proof.

We are now ready to complete the proof of Theorem 3.2.

Proof of Theorem 3.2. Given ε1 > 0 and ε2 > 0, by Theorem B.5, we know that Algorithm 2
will return a point xT with T ≤ dΥ max{ε−2

1 , ε−2
2 }e satisfying satisfying e1

ηk
(xt, πk) ≤ ε1 and

e2
ηk

(xt, πk) ≤ ε2. Let π̂T := Round(φηk(xT , πk),Π(r, c)), where “Round” is the rounding pro-
cedure given in [3, Algorithm 2]. By the second equation in (22) and xT = (αT , βT , UT) with
αT = α(`+1), βT = β(`+1) for some `, we know that ‖ζηk(xT , πk)‖1 = 1. By ‖C(U)‖∞ ≤ ‖C‖∞
for all U ∈ U , (58), (52), (51), we have ‖αT ‖var + ‖βT ‖var + ‖C‖∞ ≤ 3‖C‖∞+ 2ηkΨ. Therefore,
we obtain from (13) that

‖ProjTUU (−2Vπ̂TU
T)‖F ≤ ε1 + 2‖C‖∞ε2,〈

π̂T , Z(xT)
〉
≤ (2 log n+ ‖log πk‖var)ηk + (3‖C‖∞ + 2ηkΨ)ε2.

With the choices of ηk, ε1 and ε2 in Theorem 3.2, we can immediately know from (13) that such
(xT ,−ϕ(xT)min) is an (ε′1, ε

′
2)-stationary point of problem (6). With the expression of Υ in (64),

Lemma B.4 and Remark 3.5, we can complete the proof. Note that the O(·) in this theorem hides the
constants related to Eηk/2(x0), Ψ, L1, L2, log n, and ‖C‖∞.

C Experimental Settings

We implemented all methods in MATLAB 2021b and performed all the experiments on a MacBook
Pro with a 2.3GHz 8-core Intel Core i9. We follow the ways in [34] to generate the following real
dataset.

Datasets C.1. We consider six Shakespeare operas. Each script is preprocessed according to the
way in [34] and corresponds to a matrix over X ∈ R300×nX . The values nX of H5, H, JC, MV, O,
and RJ are 1303, 1481, 910, 1008, 1148, and 1141, respectively. The weight vector r or c is taken as
1nX/nX . We set k = 2.

Initial points and retraction. We choose α−1 = 0, β−1 = 0 for iRBBS and α0 = 0, β0 = 0 for
R(A)BCD. As for U0, we choose U0 ∈ argmaxU∈U 〈Vπ0 , UUT〉 with π0 ∈ Π(r, c) for all methods.
Here, π0 is formulated by firstly generating a matrix π̃0 with each entry randomly drawn from the
standard uniform distribution on (0, 1) and then rounding π̃0/‖π̃0‖1 to π0 via [3, Algorithm 2]. The
retraction operator in all the above methods is taken as the QR-retraction Retrqr

U (ξ) = qf(X + ξ),
where qf(X + ξ) ∈ U satisfying X + ξ = qf(X + ξ)upp(X + ξ) with upp(X + ξ) being an upper
triangular k-by-k matrix with positive diagonal elements.

Parameters of iRBBS in Section 4.1. We choose τmin = 10−10/L, τmax = 1010/L, γ = 0.85,
τ0 = 10−3, σ = 1/2, δ1 = 10−4, and ρ = 0.49ηk.

Parameters of R(A)BCD in Section 4.1. As stated in Remark 4.1 in [28], to achieve the best
performance of R(A)BCD, one has to spend some efforts in tuning the stepsizes. Here, we adopt the
stepsizes used therein (with a slight modification, marked in italic type, to have better performance
for some cases). We choose τRBCD = 0.09 if the instance is X/RJ and τRBCD = 0.1 otherwise;
τRABCD = 0.0015 if the instance is X/RJ with X 6= H, τRABCD = 0.001 if the instance is H/RJ
and τRABCD = 0.0025 otherwise. Moreover, we stop R(A)BCD when e1

ηk
(αt, βt−1, U t) ≤ ε1 and

e2
ηk

(αt, βt−1, U t) ≤ ε2 or the maximum iteration number reaches 5000.

Parameters of REALM in Section 4.2. Once ηk becomes ηmin, we set the corresponding εk,1 = ε1
and εk,2 = ε2 and stop the algorithm if e1

ηk
(xk, πk) ≤ ε1 and e2

ηk
(xk, πk) ≤ ε2. We choose

ε1,2 = 10−1 max{‖r‖∞, ‖c‖∞} and ε1,1 = 2‖C‖∞ε1,2.

21

100 200 300 400 500

d

10
1

10
2

10
3

10
4

n
G

ra
d

100 200 300 400 500

d

10
2

10
3

10
4

n
S

k

100 200 300 400 500

d

10
0

10
1

10
2

s
c
a
le

d
 t
im

e

(a) n = 100

200 400 600 800 1000

n

10
1

10
2

10
3

n
G

ra
d

200 400 600 800 1000

n

10
2

10
3

10
4

n
S

k

200 400 600 800 1000

n

10
0

10
1

10
2

s
c
a

le
d

 t
im

e

(b) d = 50

100 200 300 400 500

d

10
1

10
2

10
3

10
4

n
G

ra
d

100 200 300 400 500

d

10
2

10
3

10
4

n
S

k

100 200 300 400 500

d

10
0

10
1

10
2

s
c
a
le

d
 t
im

e

(c) n = d

50 100 150 200 250

d

10
1

10
2

10
3

10
4

n
G

ra
d

50 100 150 200 250

d

10
2

10
3

10
4

n
S

k

50 100 150 200 250

d

10
0

10
1

10
2

s
c
a
le

d
 t
im

e

(d) n = 10d

Figure 2: Averaged results for Dataset D.1. The scaled time means the time of each method over the
minimum time of all methods. For (a), d ∈ {20, 100, 250, 500}; for (b), n ∈ {100, 250, 500, 1000};
for (c), d ∈ {20, 50, 250, 500}; for (d), d ∈ {10, 20, 100, 250}.

D Additional Numerical Results

In this section, we present additional numerical results to evaluate the performance of our proposed
methods to compute the PRW distance (1). We follow the ways in [34, 28, 41] to generate the
synthetic and real datasets.
Datasets D.1 (Synthetic dataset: Fragmented hypercube [41]). Define a map P (x) = x+2sign(x)�∑k∗

k=1 ek, where sign(·) is taken elementwise, k∗ ∈ {1, . . . , d} and {e1, . . . , ek∗} is the canonical
basis of Rd. Let µ = U([−1, 1]d) be the uniform distribution over an hypercube and ν = P#(µ) be
the pushforward of µ under the map P . We set k = k∗ = 2 and take both the weight vectors r and c
as 1/n.

Datasets D.2 (Real datasets: digits from MNIST datasets [34]). For each digit 0, 1, . . . , 9, we
extract the 128-dimensional features from a pre-trained convolutional neural network. Each digit
corresponds to a matrix X ∈ R128×nX . The values nX of 0, 1, . . . , 9 are 980, 1135, 1032, 1010,
982, 892, 958, 1028, 974, and 1009, respectively. The weight vector r or c is taken as 1nX/nX . We
choose k = 2.

D.1 Comparison with R(A)BCD on Solving Subproblem (11)

We follow the same settings of η in [28]. For Dataset D.1, we choose η = 0.2 when d < 250 and
η = 0.5 otherwise. For Dataset D.2, we set η = 8.

Parameters of R(A)BCD in this section. For Dataset D.1, we choose τRBCD = τRABCD = 0.001 as done
in [28]. For Dataset D.2, we choose τRBCD = 0.004, and we do not test RABCD for this dataset since
the well-chosen stepsize is not provided in [28].

For Dataset D.1, we randomly generate 10 instances for each (n, d) pair, each equipped with 5
randomly generated initial points. The comparison results for Dataset D.1 are plotted as Figure 2.
Note that the values P̂2

k returned by different methods are almost the same for this dataset. Therefore,
we do not report the values in the figure. From the figure, we can draw the following observations. (i)
Among iRBBS methods, iRBBS with smaller θ always has less nGrad but more nSk. This means that
computing grad q(U t) in a relatively high precision can help to reduce the whole iteration number of
updating U . In particular, iRBBS-0, which computes (almost) the exact grad q(U t), takes the least
nGrad. Because the complexity of one Sinkhorn iteration is much less than that of updating U (see
Remark 3.5), iRBBS with a moderate θ generally achieves the best overall performance. The last rows
of Figure 2 show that iRBBS-0.1 is almost the fastest among all iRBBS methods. (ii) Our iRBBS-θ
is better than R(A)BCD in terms that the former always have smaller nGrad and nSk and are always
faster. Particularly, for Dataset D.1, iRBBS-0.1 is always more than 5x faster than RABCD and is
about more than 10x faster than RBCD. For the largest instance d = 250, n = 2500, iRBBS-0.1
(1.6s) is more than 7.2x faster than RABCD (11.1s) and about 28.6x faster than RBCD (44.4s). It

22

Table 3: The average results of 20 runs for Dataset D.2. Here, “a”, “c”, “d”, and “e” stand for RBCD,
iRBBS-inf, iRBBS-0.1, and iRBBS-0, respectively. For RBCD and iRBBS-inf, nGrad is equal to
nSk.

10−3 × P̂2
k nGrad/nSk time

data a c d e a c d e a c d e

D0/D1 0.974647 0.974647 0.974647 0.974647 519 132 59/506 46/1062 2.7 0.7 0.4 0.4
D0/D2 0.794227 0.794227 0.794227 0.794227 988 187 72/943 74/2655 4.8 1.0 0.5 0.6
D0/D3 1.202136 1.202136 1.202136 1.202136 554 177 64/934 44/1386 2.6 0.8 0.4 0.4
D0/D4 1.220464 1.220464 1.230833 1.230833 912 243 98/998 81/2947 4.1 1.1 0.5 0.6
D0/D5 1.026643 1.027569 1.026643 1.026643 1178 252 89/1402 96/4355 4.8 1.1 0.5 0.8
D0/D6 0.802711 0.802711 0.802711 0.802711 919 186 66/1052 54/2387 4.0 0.8 0.4 0.5
D0/D7 0.855776 0.855776 0.855776 0.855776 601 163 63/747 56/1727 2.7 0.8 0.4 0.4
D0/D8 1.052850 1.052850 1.052850 1.052850 709 185 84/1330 72/3302 3.1 0.8 0.5 0.6
D0/D9 1.084633 1.084633 1.084633 1.084633 698 179 68/1108 55/2436 3.3 0.8 0.4 0.5
D1/D2 0.664666 0.664666 0.664666 0.664666 757 114 55/638 47/1511 4.1 0.6 0.4 0.5
D1/D3 0.861031 0.861031 0.861031 0.861031 1649 230 105/982 71/2065 8.8 1.3 0.7 0.8
D1/D4 0.666639 0.666639 0.666639 0.666639 982 153 65/505 54/1282 5.1 0.8 0.4 0.5
D1/D5 0.839978 0.839978 0.839978 0.839978 3436 540 184/1503 157/3844 15.9 2.4 1.0 1.1
D1/D6 0.795720 0.795720 0.795720 0.795368 2919 331 128/1095 119/3354 15.0 1.7 0.8 1.1
D1/D7 0.572325 0.572325 0.572325 0.572325 961 157 65/525 56/1253 5.2 0.9 0.4 0.5
D1/D8 0.878387 0.878387 0.878387 0.878310 5000 402 200/2001 181/5505 25.8 2.1 1.3 1.6
D1/D9 0.853405 0.853405 0.853405 0.853405 951 168 69/581 58/1321 5.6 1.0 0.6 0.7
D2/D3 0.718821 0.718821 0.718821 0.718821 2070 336 120/1733 100/4897 10.0 1.6 0.8 1.0
D2/D4 1.068421 1.085370 1.085370 1.085370 5000 4602 550/8093 382/16291 24.3 21.4 3.2 3.4
D2/D5 1.076728 1.076728 1.076728 1.076728 1320 272 109/1910 89/3990 5.9 1.2 0.6 0.7
D2/D6 0.899301 0.899301 0.899301 0.899301 1202 245 102/967 87/3205 5.8 1.2 0.6 0.7
D2/D7 0.695023 0.695023 0.695023 0.695023 951 174 67/1156 63/3108 4.7 0.9 0.5 0.8
D2/D8 0.671073 0.671073 0.671073 0.671073 1293 213 72/925 69/3547 6.2 1.0 0.4 0.7
D2/D9 1.056729 1.056729 1.056729 1.056729 1985 284 120/1907 93/3753 9.4 1.3 0.7 0.8
D3/D4 1.199367 1.200346 1.200346 1.200346 5000 312 76/762 69/2523 22.2 1.4 0.4 0.5
D3/D5 0.581711 0.581711 0.581711 0.581711 1187 181 71/793 58/2430 4.8 0.8 0.4 0.5
D3/D6 1.231675 1.231675 1.231675 1.231675 1028 212 82/772 66/2121 4.5 0.9 0.4 0.5
D3/D7 0.724492 0.724492 0.724492 0.724492 1101 202 88/831 776/19184 5.2 0.9 0.5 5.3
D3/D8 0.879795 0.879795 0.879795 0.879795 916 200 84/1113 77/3675 4.0 0.9 0.5 0.7
D3/D9 0.830151 0.830151 0.830151 0.830151 1572 210 72/955 49/2193 7.2 1.0 0.4 0.4
D4/D5 1.006255 1.006255 1.006255 1.006255 936 245 87/863 71/2748 3.9 1.0 0.4 0.5
D4/D6 0.843616 0.843616 0.843616 0.843616 1312 245 96/1102 82/3463 5.9 1.1 0.5 0.7
D4/D7 0.789906 0.789906 0.789906 0.789906 1351 269 96/912 76/2509 6.4 1.2 0.5 0.6
D4/D8 1.094979 1.098234 1.098234 1.098234 5000 213 52/550 52/1930 21.9 0.9 0.3 0.4
D4/D9 0.489215 0.489215 0.489215 0.489215 1997 281 70/1116 54/2610 9.1 1.3 0.4 0.5
D5/D6 0.717009 0.717009 0.717009 0.717009 1335 220 86/891 69/2536 5.4 0.9 0.4 0.5
D5/D7 0.912583 0.912583 0.912583 0.912583 899 242 72/652 71/2132 3.7 1.0 0.4 0.5
D5/D8 0.715209 0.715209 0.715209 0.715209 1429 225 71/1060 50/2347 5.9 0.9 0.4 0.4
D5/D9 0.775506 0.775506 0.775506 0.775506 1413 252 86/1216 64/3451 5.9 1.0 0.5 0.6
D6/D7 1.109787 1.109787 1.109787 1.109787 826 195 66/398 62/1318 3.8 0.9 0.3 0.4
D6/D8 0.917487 0.917487 0.917487 0.917487 725 186 57/721 57/2305 3.2 0.8 0.3 0.5
D6/D9 1.105550 1.105550 1.105550 1.105550 1117 219 95/1038 79/3046 5.0 1.0 0.5 0.6
D7/D8 1.078740 1.078740 1.078740 1.078740 757 180 68/796 59/2455 3.5 0.8 0.4 0.5
D7/D9 0.607866 0.607866 0.607866 0.607866 1985 266 79/1026 72/3208 9.3 1.3 0.5 0.7
D8/D9 0.867753 0.867753 0.867753 0.867753 745 180 57/713 50/2107 3.2 0.8 0.3 0.4

AVG 0.884689 0.885180 0.885390 0.885380 1560 326 95/1152 95/3366 7.28 1.52 0.57 0.78

should also be mentioned that for all 800 problem instances, there are 5/21 instances for which
RBCD/RABCD meet the maximum iteration numbers and return solutions not satisfying the stopping
criteria.

For each instance of Dataset D.2, we randomly generate 20 initial points. The comparison results
for Dataset D.2 are reported in Table 3. From the table, we have the following observations: (i) as
for the solution quality, iRBBS-0 and iRBBS-0.1 perform the best among all methods; (ii) among
iRBBS methods, iRBBS-0.1 and iRBBS-0 take the least nGrad and iRBBS-inf takes the most nGrad

23

Table 4: The average results of REALM for Dataset D.1. In this table, “a” and “b” stand for
REALM-(0.02, 0) and REALM-(0.055, 0.9), respectively.

P̂2
k nGrad nSkexp/nSklog time iter

n/d a b a b a b a b a b

100/20 8.34297 8.34296 182 138 3208/8342 13258/0 1.1 0.1 0.0/7.0 8.0/14.0
100/100 9.17320 9.17340 287 241 3837/3354 11369/0 0.5 0.1 0.0/7.0 8.0/14.0
100/250 10.89561 10.89689 467 348 3200/8858 10550/279 1.3 0.2 0.0/7.0 8.0/14.1
100/500 13.31111 13.31524 680 469 2192/3782 9844/213 0.8 0.2 0.0/7.0 8.0/14.0

100/50 8.59993 8.60005 321 189 3945/13096 11700/0 1.8 0.1 0.0/7.0 8.0/14.0
250/50 8.23339 8.23336 150 156 2480/4168 10828/0 2.2 0.3 0.0/7.0 7.9/13.9
500/50 8.12987 8.12986 122 141 1944/4508 11578/0 7.2 0.8 0.0/7.0 8.0/14.0

1000/50 8.07096 8.07095 111 130 1716/5307 12344/0 30.8 2.3 0.0/7.0 8.0/14.0

20/20 9.30977 9.31036 591 221 4016/23861 11906/0 0.5 0.0 0.0/7.1 8.0/14.0
50/50 9.36270 9.36292 386 248 4656/9416 11819/0 0.5 0.1 0.0/7.0 7.9/13.9

250/250 9.17441 9.17476 282 257 2942/4136 11371/248 2.2 0.5 0.0/7.0 8.0/14.0
500/500 9.11498 9.11540 258 262 2391/4884 9927/873 7.5 2.2 0.0/7.0 7.6/13.6

100/10 8.16197 8.16193 405 173 4635/33570 65772/0 4.6 0.3 0.0/7.0 8.0/14.0
200/20 8.13310 8.13309 180 128 2861/10259 15007/0 3.8 0.3 0.0/7.0 8.0/14.0

1000/100 8.11874 8.11873 124 145 2096/5157 12153/141 30.5 3.1 0.0/7.0 8.0/14.0
2500/250 8.11640 8.11639 117 146 2416/5499 11482/624 373.8 103.3 0.0/7.0 7.9/13.9

AVG 9.01557 9.01602 291 212 3033/9262 15057/149 29.3 7.1 0.0/7.0 8.0/14.0

while iRBBS-0 takes the most nSk and iRBBS-inf takes the least nSk; Compared with iRBBS-inf,
iRBBS-0.1 is about 2.7x faster for Dataset D.2. Compared with iRBBS-0, iRBBS-0.1 is about 1.4x
faster for Dataset D.2; (iii) compared with R(A)BCD, iRBBS-0.1 can take significantly less nGrad
and may take a bit more nSk. This makes it about 7x faster than RABCD and about 12.8x faster
than RBCD for Dataset D.2. Besides, for instances D1/D8, D2/D4, D3/D4, D4/D8, RBCD meets the
maximum iteration number.

From the above results, we can conclude that iRBBS generally performs much better than
R(A)BCD for the two datasets. More importantly, our methods adopt the adaptive stepsize without
needing to tune the best stepsize as done in R(A)BCD.

D.2 Comparison on Computing the PRW Distance (1)

In this subsection, we present more numerical results on Datasets D.1 and D.2 to illustrate the
effectiveness and efficiency of our proposed REALM, namely, Algorithm 1. The subproblem (11) is
solved by our developed iRBBS algorithm, namely, Algorithm 2, with θt chosen as in Section 4.1.

The results for Dataset D.1 are presented in Table 4. For each (n, d) pair, we randomly generate 10
instances, each equipped with 5 randomly generated initial points. We conside REALM-(0.055, 0.9)
and REALM-(0.02, 0) both with η1 = 1, γε = 0.25, and γη = 0.5. Note that the latter admits a
smaller ηmin and does not update the multiplier matrix. From Table 4, we can observe that REALM-
(0.055, 0.9) can not only return better solutions than REALM-(0.02, 0.9) but also is about 4x faster.
This shows that updating the multiplier matrix does help. In fact, on average REALM-(0.055, 0.9)
updates the multiplier matrix 8 times in 14 total iterations.

The results over 20 runs on the real Dataset D.2 are reported in Table 5. We consider REALM-(1, 0)
and REALM-(3, 0.9) both with η1 = 200 and γη = γε = 0.25. From Table 5, we can see that
updating the multiplier matrix also helps. Compared with REALM-(1, 0), REALM-(3, 0.9) can
not only return better solutions but is about 2.4x faster. On average, REALM-(3, 0.9) updates the
multiplier matrix 6.7 times in 11.7 total iterations.

24

Table 5: The average results of REALM for Dataset D.2, “a” and “b” stand for REALM-(1, 0) and
REALM-(3, 0.9), respectively.

10−3 × P̂2
k nGrad nSkexp/nSklog time iter

data a b a b a b a b a b

D0/D1 0.97509 0.97508 238 482 770/1406 4468/0 13.9 5.6 0.0/5.0 8.0/13.0
D0/D2 0.79482 0.79454 340 409 1473/2636 5212/0 15.7 3.3 0.0/5.0 3.0/8.0
D0/D3 1.20244 1.20571 359 740 1758/4162 6737/0 25.3 5.7 0.0/5.0 8.0/13.0
D0/D4 1.22100 1.23156 428 632 2169/3599 6564/0 20.8 4.8 0.0/5.0 8.0/13.0
D0/D5 1.03638 1.03634 539 693 2385/3840 4666/0 21.0 4.4 0.0/5.2 8.0/13.0
D0/D6 0.80313 0.80683 313 1215 1881/2929 12402/0 17.6 8.7 0.0/5.1 8.0/13.0
D0/D7 0.85624 0.85624 297 562 928/1907 6342/0 11.7 4.5 0.0/5.0 8.0/13.0
D0/D8 1.05330 1.05361 292 696 1575/2091 7139/0 11.8 5.0 0.0/5.0 7.0/12.0
D0/D9 1.08510 1.08899 306 766 1780/2386 7557/0 13.9 5.8 0.0/5.0 8.0/13.0
D1/D2 0.66502 0.66501 193 535 1042/1068 6793/0 10.8 6.7 0.0/5.0 8.0/13.0
D1/D3 0.86173 0.86205 484 1069 1348/2261 10720/0 22.3 12.1 0.0/5.7 7.6/12.6
D1/D4 0.66703 0.66702 267 648 860/1372 5138/0 13.1 7.1 0.0/5.0 8.0/13.0
D1/D5 0.83950 0.83796 639 1330 1800/2966 18003/0 19.2 10.5 0.0/5.0 6.0/11.0
D1/D6 0.79633 0.79614 567 1243 1527/2918 12372/0 26.9 12.8 0.0/5.1 6.0/11.0
D1/D7 0.57276 0.57274 318 862 755/2013 7149/0 19.9 10.1 0.0/5.0 8.0/13.1
D1/D8 0.87915 0.87737 1554 1465 3318/10079 22317/0 92.9 16.1 0.0/5.2 7.0/12.0
D1/D9 0.85394 0.85393 326 712 880/1578 5716/0 15.8 8.3 0.0/5.0 8.0/13.0
D2/D3 0.71916 0.71916 323 858 1755/1892 16797/0 12.3 7.5 0.0/5.0 8.0/13.0
D2/D4 1.08616 1.08614 348 853 3854/1156 7422/0 8.3 6.5 0.0/5.0 8.0/13.0
D2/D5 1.07706 1.08610 574 1083 707/6040 7035/1642 33.0 15.0 0.0/5.0 8.0/13.0
D2/D6 0.90032 0.90030 342 981 1022/1339 10140/0 8.6 7.5 0.0/5.0 6.0/11.0
D2/D7 0.69549 0.70124 272 538 1890/2284 7972/0 21.0 6.0 0.0/5.0 7.0/12.0
D2/D8 0.67232 0.67159 336 1210 1263/2180 23641/0 13.5 10.2 0.0/5.0 7.0/11.9
D2/D9 1.05704 1.06966 502 721 3027/4541 4172/0 28.0 5.9 0.0/5.0 8.0/13.0
D3/D4 1.20147 1.20145 400 861 1449/1896 6847/0 11.8 6.5 0.0/5.0 8.0/13.0
D3/D5 0.58300 0.58299 295 435 1284/1613 5758/0 8.8 3.1 0.0/5.0 4.0/9.0
D3/D6 1.23233 1.23234 299 750 1166/1290 7664/0 7.9 5.6 0.0/5.0 8.0/13.0
D3/D7 0.72528 0.72529 314 719 836/1263 9008/0 8.4 5.8 0.0/5.0 6.0/11.0
D3/D8 0.88074 0.88071 334 781 1433/2175 13688/0 13.0 6.2 0.0/5.2 6.0/11.0
D3/D9 0.83143 0.83145 363 983 1552/2159 20490/0 13.6 8.5 0.0/5.0 8.0/13.0
D4/D5 1.00719 1.00720 302 666 995/1569 8687/0 8.3 4.5 0.0/5.0 6.0/11.5
D4/D6 0.84488 0.84485 366 650 935/1550 6296/0 9.1 4.4 0.0/5.0 4.5/9.4
D4/D7 0.79120 0.79065 680 856 2701/3931 12068/0 24.3 6.8 0.0/5.2 6.0/11.0
D4/D8 1.09898 1.09899 308 566 1307/1616 6729/0 9.5 4.3 0.0/5.0 7.0/12.0
D4/D9 0.49061 0.48902 304 437 1620/1933 10152/0 11.4 3.8 0.0/5.0 4.0/9.0
D5/D6 0.71801 0.71769 337 628 1275/1716 8743/0 8.9 4.2 0.0/5.0 4.0/9.0
D5/D7 0.91332 0.91333 287 649 744/928 5357/0 5.6 4.4 0.0/5.0 8.0/13.0
D5/D8 0.71623 0.71573 323 823 1633/2654 17832/0 13.8 6.0 0.0/5.0 6.0/11.0
D5/D9 0.77656 0.77597 371 811 1952/2633 14998/0 14.4 5.9 0.0/5.0 5.0/10.0
D6/D7 1.11056 1.11051 340 969 843/790 4240/0 5.7 6.8 0.0/5.0 8.0/13.0
D6/D8 0.91820 0.91821 267 768 1258/1703 14078/0 9.6 5.9 0.0/5.0 8.0/13.0
D6/D9 1.10662 1.10607 368 550 1029/1712 4346/0 10.4 3.9 0.0/5.0 3.0/8.0
D7/D8 1.07946 1.07946 298 825 909/1188 6158/0 7.6 6.2 0.0/5.0 8.0/13.0
D7/D9 0.60736 0.60796 382 606 1794/2195 11288/0 13.8 5.2 0.0/5.0 4.0/9.0
D8/D9 0.86860 0.86855 287 595 1187/1857 8905/0 10.9 4.6 0.0/5.0 5.0/10.0

AVG 0.88606 0.88697 386 783 1504/2378 9551/36 16.1 6.7 0.0/5.0 6.7/11.7

25

	Introduction
	A Riemannian Exponential ALM for Computing the PRW Distance (1)
	A Practical iRBBS for Solving Subproblem (11)
	Experimental Results
	Comparison blackwith R(A)BCD on Solving Subproblem (11)
	Comparison on Computing the PRW Distance (1)

	Concluding Remarks
	More Details on Our Proposed REALM in sec:REALM
	First-Order Necessary Conditions of Problem (6)
	blackExplanations on remark:kkt:strong
	Proof of thm:kkt:connection
	Proof of theorem:convergence:REALM

	Proofs in section:iRBBSs
	Proof of lemma:grad:qU
	Proof of prop:complexity:prw

	Experimental Settings
	Additional Numerical Results
	Comparison with R(A)BCD on Solving Subproblem (11)
	Comparison on Computing the PRW Distance (1)

