
GAIA: Delving into Gradient-based Attribution
Abnormality for Out-of-distribution Detection

Jinggang Chen†∗, Junjie Li†∗, Xiaoyang Qu‡§, Jianzong Wang‡§, Jiguang Wan†, Jing Xiao‡
† Huazhong University of Science and Technology, China

‡ Ping An Technology (Shenzhen) Co., Ltd.
{chen.jinggang98, 2216217669ljj, quxiaoy}@gmail.com, jzwang@188.com,

jgwan@hust.edu.cn, xiaojing661@pingan.com.cn

Abstract

Detecting out-of-distribution (OOD) examples is crucial to guarantee the reliability
and safety of deep neural networks in real-world settings. In this paper, we offer
an innovative perspective on quantifying the disparities between in-distribution
(ID) and OOD data—analyzing the uncertainty that arises when models attempt
to explain their predictive decisions. This perspective is motivated by our obser-
vation that gradient-based attribution methods encounter challenges in assigning
feature importance to OOD data, thereby yielding divergent explanation patterns.
Consequently, we investigate how attribution gradients lead to uncertain expla-
nation outcomes and introduce two forms of abnormalities for OOD detection:
the zero-deflation abnormality and the channel-wise average abnormality. We
then propose GAIA, a simple and effective approach that incorporates Gradient
Abnormality Inspection and Aggregation. The effectiveness of GAIA is validated
on both commonly utilized (CIFAR) and large-scale (ImageNet-1K) benchmarks.
Specifically, GAIA reduces the average FPR95 by 23.10% on CIFAR10 and by
45.41% on CIFAR100 compared to advanced post-hoc methods.

1 Introduction

Deep neural networks have been extensively applied across various domains, demonstrating remark-
able performance. However, when they are deployed in real-world scenarios, particularly in contexts
that require high levels of security [1–3], an urgent challenge arises. Namely, these models must
be able to ensure the reliability of their outcomes, even in the face of out-of-distribution (OOD)
inputs from the open world that differ from in-distribution (ID) training data and thus surpass their
cognitive capabilities. That underscores the importance of OOD detection, which involves estimating
uncertainty from the model to identify the "unknown" samples, serving as an alert mechanism before
making predictive decisions.

Recently, a rich line of literature has emerged to address the challenge of OOD detection [4–13].
Indeed, the majority of previous approaches focus on defining more suitable measures of OOD
uncertainty by using model outputs [4, 5, 7–9] or feature representations [11, 13–15]. Despite the
above mainstream approaches, estimating uncertainty from gradients is readily implemented with a
fixed model and has received increasing research attention lately. Prior gradient-based OOD detection
methods [10, 16, 17] have primarily emphasized utilizing parameter gradients as the measurement,
while giving limited attention to the in-depth exploration of gradients related to the inputs (i.e.,
attribution gradients [18]).
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Figure 1: Motivation of our work. Gradient-based attribution algorithms use attribution gradients to
explain where models look for predicting final outputs. An intriguing question is: when encountering
OOD sample Xout whose label falls outside the in-distribution label space Yin, how does the model
interpret its overconfident prediction? In order to unearth uncertainty from the explanatory result, we
conduct our research by inspecting the abnormalities in attribution gradients and then aggregate them
for OOD detection.

In this paper, we put our eye on a novel and insightful perspective — let models explain the uncertainty
themselves with attribution approaches. Gradient-based attribution algorithms [19–21] are ubiquitous
for the visual explanation of why the model makes such a decision to the predicted class. An intuition
comes up that well-trained networks can clearly attribute the region of target ID objects, but what if
they face OOD samples that are totally unknown to them? As shown in Fig. 1, we observe through
the utilization of attribution gradients that the pre-trained model is capable of generating reasonable
visual interpretation for the ID input Xin from ImageNet [22]. However, when attempting to interpret
an OOD image Xout from iNaturalist [23] with a label that does not belong to Yin, it confuses the
model, leading to a meaningless attribution result.

Following the observation, we delve into investigating the gradient-based attribution abnormality
when inferring OOD examples. Our further study finds that this phenomenon can be caused by the
attribution gradient, which is constructed by taking the value of the partial derivative of the target
output Sc(·) w.r.t. one unit zi of the input variables z (i.e., ∂Sc(z)∂zi

). To enlarge the discrepancy between
ID and OOD without prior knowledge from training data, we introduce the channel-wise average
abnormality and the zero-deflation abnormality as two measurements for detecting distributional
shifts. Then, we propose our detection framework GAIA with Gradient Abnormality Inspection and
Aggregation and conduct comprehensive experiments on both CIFAR benchmarks and large-scale
ImageNet-1K benchmark to validate the effectiveness of our proposed method. Code is available at
https://github.com/JGEthanChen/GAIA-OOD.

Our key results and contributions are summarized as follows:

• We provide insights into the attribution abnormality for OOD detection. Our intuition is that
unreliability from visual explanations can be a direct alarm to distinguish OOD examples.
Hence, we delve further into the underlying causality of the abnormality. Then, we provide
a theoretical explanation for the causes of attribution abnormality.

• We propose a simple yet effective post-hoc detection framework via Gradient Abnormality
Inspection and Aggregation (GAIA), which consists of two independent measurements: the
Channel-wise Average abnormality (GAIA-A) and the Zero-deflation abnormality (GAIA-
Z). Both of them are lightweight and plug-and-play—hyperparameter-free, training-free,
with no ID data and outliers required for estimation.

• Thorough experiments demonstrate that GAIA surpasses most advanced post-hoc methods
on both commonly utilized (CIFAR) and large-scale (ImageNet-1K) benchmarks. GAIA-
Z exhibits superior performance on CIFAR benchmarks, reducing the average FPR95
by 23.10% on CIFAR10 and by 45.41% on CIFAR100. GAIA-A performs well on the
ImageNet-1K benchmark and reduces by 17.28% compared to the advanced gradient-based
detection method GradNorm.
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2 Preliminaries

We consider the general setting of a supervised machine learning problem, where X denotes the input
space and Yin = {1, 2, ..., C} denotes the ID label space. Especially, we denote the output score w.r.t.
class c before softmax layer as Sc(·).
Out-of-distribution detection. The goal of out-of-distribution (OOD) detection is to distinguish
the sample xout that exhibits substantial deviation from the distribution X . In literature, OOD data
originates from an unknown distribution Xout. And the label space of the OOD samples has no
intersection with Yin. This problem can be formulated as a binary classification task using a score
function ∆(x). More specifically, when provided with an input sample x, the level-set estimation can
be expressed as follows:

G(x) =
{

out, if ∆(x) > γ

in, if ∆(x) ≤ γ
(1)

In our work, lower scores correspond to a higher likelihood of classifying the sample x as in-
distribution (ID), and γ denotes a threshold for separating the ID and OOD data.

Gradients from attribution algorithms. The attribution gradient is first introduced by sensitivity
analysis (SA) [18] and widely utilized in visual explainability techniques [19–21, 24, 25]. It refers
to the sensitivity of a particular input variable (input or feature unit) w.r.t. c-class predictive output
Sc(·). Denotes k-th channel feature map at layer l as Akl ∈ RW×H . The attribution gradient of one
feature unit Aklij is computed by:

Gradij =
∂Sc(A

kl)

∂Aklij
(2)

It is unrelated to the gradients commonly associated with the typical understanding of network
optimization (i.e., gradients of the parameters). In most attribution algorithms, the attribution gradient
is used for quantifying the contribution of each feature unit to the model’s prediction.

3 Investigating Attribution Abnormality for Out-of-distribution Detection

In this section, we aim to investigate how attribution gradients can lead to abnormality when explaining
OOD examples. We also attempt to provide a unified theoretical analysis.

Channel-wise average abnormality. We first focus on the abnormality in the Gradient-based Class
Activation Mapping (GradCAM) algorithm [19], which is one of the most widely applied attribution
strategies. Its paradigm is to channel-wise sum up feature maps for a saliency map M ∈ RW×H .
Here we denote feature maps A ∈ RK×W×H with K-channels in the convolutional layer as the
input variables. The attribution αij of each unit Mij can be formulated as follows:

αij = ReLU(

K∑
k=1

wkA
k
ij), where wk =

∂g(A)

∂Akij
=

1

W ×H

W∑
i=1

H∑
j=1

∂Sc(A)

∂Akij
(3)
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Figure 2: Demonstration of the attribution abnormality from gradient-based weights. The toy
experiment is conducted on ResNet34 with four blocks trained on CIFAR10. We select four attribution
layers from different blocks and calculate the average attribution gradients for each channel.
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where wk is the channel-wise weight that re-weights feature maps in different channels, and g(A)
denotes the explanatory function of the DNN output from A. Detailed elaboration is provided
in Appendix C. Taking different layers as the attribution targets, we visualize the distribution of
channel-wise average attribution gradients in Fig. 2. It can be observed that the discrepancy of the
weights wk is distinguishable in that OOD samples tend to produce more noisy and abnormal outliers
compared to ID samples. Additionally, as the layers increase in depth, the magnitude of the average
gradients also increases.

Zero-deflation abnormality. Then, we closely examine the abnormality that may arise in attribution
gradients themselves due to distributional shifts. Fig. 3(a) shows attribution gradients on feature
maps across all channels at a specific layer. We observe that the quantity of zero partial derivation
∂Sc(A)

∂Akij
in OOD is extremely less than ID, leading to a high occurrence of dense gradient matrices.

As shown in Fig. 3(b), this phenomenon is more pronounced in deeper layers, indicating an abnormal
behavior.

3.1 Theoretical Explanation for Attribution Abnormality

We consider a unified explanation for attribution algorithms with Taylor expansion. As proved in
[26], attribution algorithms are mathematically equivalent to the perspective that the network c-class
output Sc(z) is explained as a Taylor expansion model. For variables z = [z1, ..., zn] (e.g., feature
units to be attributed or inputs), here we perform P -order expansion of zero baseline output Sc(0) at
z:

Sc(0) = Sc(z) +

P∑
p=1

n∑
i=1

1

p!

∂pSc(z)

∂(zi)p
(zi)

p +
1

2!

∂2Sc(z)

∂z1∂z2
z1z2 + ...+RP (z) (4)

where RP (z) denotes the remainder term for the P -order expansion. In our paper, we consider the
feature values to be all zeros as the zero baseline, which is commonly adopted for analyzing gradient-
based attribution algorithms. Then all terms can be represented by vector κ = [κ1, ..., κn] ∈ Nn,
where κi ∈ N reflects the integral degree of the input variable zi (e.g., κi = 1 indicates the
corresponding item only contains first-order partial derivative w.r.t. zi). Thus we can represent the
c-label output change caused by variables z as:

|Sc(z)− Sc(0)| = |
P∑
p=1

∑
κ∈Ω,|κ|=p

C(κ) · ∂
κ1+···+κnSc(z)

∂κ1z1 · · · ∂κnzn
(z1)

κ1 · · · (zn)κn +RP (z)| (5)

where C(κ) is a non-negative constant related to vector κ. The expansion formula reflects the
contribution of each variable zi to the c-label output change. Thus, we can attribute importance αi to
zi based on how much it contributes to such a change. Furthermore, the effect of zi to Sc(z) can be
decomposed into Taylor independent effect term ϕi(κ) and Taylor interaction effect term ψi(κ). For
independent term ϕi(κ), only zi is contained, where κ = [0, · · · , κi, · · · , 0] ∈ Ωϕ and κi > 0. And
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Figure 3: Left (a): Visualization of attribution gradients on feature maps. Right (b): Proportion of
non-zero values across different channels. Each data point represents one single channel.
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the overall effect of term ψi(κ) is caused by the interactions between zi and other variables, where
κ ∈ Ωψ has at least two non-negative values and κi > 0. Attribution methods are formulated as:

αi =

P∑
p=1

∑
κ∈Ωϕ,|κ|=p

ωi,κϕi(κ) +

P∑
p=1

∑
κ∈Ωψ,|κ|=p

ωi,κψi(κ) (6)

where ωi,κ denotes the ratio of a specific term (either the independent term or the interaction term)
allocated to αi.

Attribution abnormality in zero importance. A reliable attribution result requires accurate identifi-
cation of the features that are useful for the output. Here, we consider the Null-player axiom [27] (see
Appendix E), which states that in the reliable attribution, a feature should be considered as having
zero importance when it makes no contribution to the model’s output. In other words, if a feature
does not contribute to the model’s prediction, it should be considered as having zero importance.

Proposition 1. Given input variables z, for one variable zi ∈ z to be attributed, if ∂Sc(z)∂zi
is zero

throughout the analysis, then αi = 0 always holds.

Given variables z in one analysis, it is assumed that the partial derivative function w.r.t. zi is a
constant zero. As shown in Eq. 7, all independent and interaction terms related to zi are zero. Thus,
zi is of zero importance to the prediction. This is, zero attribution gradient values will directly impact
the final attribution result.

∂Sc(z)

∂zi
= 0 ⇒ ∂κ1+···+κnSc(z)

∂κ1z1 · · · ∂κnzn
= 0, κi > 0 ⇒ ϕi(κ) = ψi(κ) = 0 ⇒ αi = 0 (7)

This provides us with an explanatory perspective for our observation — visual explanation for OOD
data tends to be messy and unreliable due to the model’s uncertainty about the unknown distribution,
resulting in an abundance of intricate non-zero importance attributions.

Attribution abnormality in gradient-based weights. Following Eq. 6, GradCAM in Eq. 3 can be
reformulated in form that includes only the first-order Taylor independent terms (see Appendix D for
the proof), where κ = [0, ..., κi = 1, ...0] is a one-hot vector, and κj = 0 if j ̸= i. This simplifies our
analysis of the abnormality in weights, focusing solely on the correlation between first-order partial
derivatives and the attribution result to reflect the uncertainty on each independent feature.

4 GAIA: A Simple and Effective Framework for Abnormality Aggregation

We propose our GAIA framework, which aggregates the channel-wise average abnormality (GAIA-A)
or the zero-deflation abnormality (GAIA-Z) for out-of-distribution detection.

Abnormality aggregation from label space. General attribution algorithms focus on the final
predictive output Sc(A), where c = argmaxci∈CSci(A). This is adequate for the zero-deflation
abnormality as we aim to ascertain the model’s confidence in interpreting its own classification result.
While for the channel-wise average abnormality, our aspiration is to gather abnormalities from a
broader label space. Hence, all outputs in the ID label space are informative for collecting the model’s
tendency towards identifying samples as ID categories. For GAIA-A, we fuse all the outputs with
log(softmax(·)):

∂S(A)

∂Akij
=
∂
∑
c∈C log softmax(Sc(A))

∂Akij
(8)

This strategy first accumulates the model’s outputs and simultaneously performs backpropagation
w.r.t. the features Akij . It is more efficient compared to individually backpropagating through each
category and then accumulating them, which is impractical in scenarios with large label space (e.g.,
1000 categories in ImageNet). Furthermore, we find that GAIA-A can be enhanced with a two-stage
fusion strategy. Let us denote the neural network prediction function based on input feature variables
A ∈ RK×W×H by Sc(A) = Ψ(Alast,ΘΨ), where Ψ(·) represents the classification function and
Alast ∈ R1×Wlast×Hlast is the feature map at the last layer. Then the network feature extraction function
is defined as Φ(·) and Alast = Φ(A,ΘΦ). In our methods, we consider the gradient matrix on the
Alast and the inner feature map Ak ∈ R1×W×H (k-th channel from A) separately, with the former
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regarded as the output component ∇Alast and the latter as the inner component ∇Ak:

∇Ak =
∂Φ(A,ΘΦ)

∂Ak

∇Alast =
∂S(Alast)

∂Alast
=
∂
∑
c∈C log softmax(Sc(Alast))

∂Alast

(9)

Abnormality aggregation from input space. We start by defining the anormalies expectation on
k-th channel feature map at l layer as Akl ∈ R1×W×H . The zero-deflation abnormality can be
described as the non-zero density of Akl:

E[ϵ|Akl] =
1

W ×H
| {Aklij | ∂Sc(A

kl)

∂Aklij
̸= 0} | (10)

For the channel-wise average abnormality, we observed that average gradients on Alast from the
output component and the average attribution gradients obtained from the inner component exhibit
opposite behaviors in terms of ID and OOD data (We discuss its effectiveness in Section 5.3 and
provide theoretical analysis in Appendix F). Consequently, we use division to get the expectation of
the final fusion channel-wise average abnormality abnormality:

E[ϵ|Akl] =
Einner[ϵ|Akl]√
Eoutput[ϵ|Alast]

=
| 1
W×H

∑
gkl∈∇Akl gkl |

| 1
Wlast×Hlast

∑
glast∈∇Alast

glast |
1
2

(11)

Consider networks have L layers to be utilized, and each layer has Kl channels. Our framework
accumulates them into an abnormality matrix Λ ∈ RL×Km , where Km = max{Ki|1 ≤ i ≤ L}
and Λij = 0 if j > Ki. Then, we use the Frobenius norm as a non-parameter measuring score to
represent the global abnormality. For instance, assuming Km = KL, ∥Λ∥F is calculated as:

∥Λ∥F =

∥∥∥∥∥∥∥
E[ϵ|A1,1] · · · E[ϵ|A1,K1 ] 0 · · · 0

E[ϵ|AL,1] · · · E[ϵ|AL,K1 ] E[ϵ|AL,Km ]

∥∥∥∥∥∥∥
F

=

√√√√ L∑
i

Km∑
j

(E[ϵ|Ai,j ])2

(12)

The overall process are formulized in Algorithm 1.

Algorithm 1: GAIA
Input: Test sample x; Fixed model fθ.
Output: OOD score ∆(x).

Compute label output set {Sc(x)|c ∈ C} by fθ(x);
Backpropagate attribution gradients by ∂Sc(A

kl)

∂Aklij
(GAIA-Z) or Eq. 9 (GAIA-A);

Calculate E[ϵ|Akl] by Eq. 10 (GAIA-Z) or Eq. 11 (GAIA-A);
Calculate global abnormality ∥Λ∥F by Eq. 12;
return ∥Λ∥F as OOD score ∆(x).

5 Experiments

In this section, we describe our experimental setup in Section 5.1. Then, we demonstrate the effec-
tiveness of our method on the large-scale ImageNet-1K benchmark [28] and the CIFAR benchmarks
[7] in Section 5.2. We also conduct ablation studies in Section 5.3.

5.1 Setup

Benchmarks. In accordance with [10, 11, 15, 28], we employ the large-scale ImageNet-1K bench-
mark [28], which offers a more realistic and challenging environment due to its use of high-resolution
images and an large label space that encompasses 1,000 distinct categories. Four OOD datasets in this
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ID
Datasets Methods

SVHN TinyImageNet LSUN Places Textures Average

FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC
(↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑) (↓) (↑)

CIFAR10
(ResNet34)

MSP [7] 61.03 89.01 53.11 85.79 46.79 90.63 43.71 91.88 48.28 90.08 50.58 89.48
ODIN [9] 50.74 92.09 39.82 92.62 33.34 94.17 36.53 93.18 45.00 91.11 41.09 92.63
Energy [5] 42.87 91.20 37.76 92.98 34.25 93.85 38.34 92.44 45.73 90.26 39.79 92.15
Mahalanobis [14] 22.19 93.36 29.35 90.16 25.31 91.89 28.61 91.26 39.34 87.02 28.96 90.74
ReAct [11] 24.60 92.39 33.68 89.71 19.15 93.78 23.69 92.78 32.61 89.27 26.75 91.59
GradNorm [10] 62.47 76.08 73.00 65.21 59.38 72.97 58.93 75.36 67.77 67.41 64.31 71.41
KNN [29] 32.03 95.28 29.56 95.44 27.42 95.92 41.77 93.26 35.41 94.87 33.24 94.95
Rankfeat [15] 84.58 72.99 50.20 89.84 41.63 91.97 67.79 82.64 68.12 80.67 62.46 83.62
ASH-P@70 [30] 23.11 95.53 29.78 93.71 22.72 95.33 25.27 94.35 30.92 93.08 26.36 94.40

GAIA-Z (Ours) 2.47 99.49 6.26 98.63 2.48 99.43 2.27 99.50 2.84 99.36 3.26 99.28
GAIA-A (Ours) 14.44 97.12 16.45 97.07 9.10 98.10 11.06 97.82 12.62 97.54 12.73 97.53

CIFAR10
(WRN40)

MSP [7] 40.51 92.70 50.05 86.99 38.90 91.34 45.41 89.58 56.42 84.57 46.26 89.04
ODIN [9] 16.11 96.91 44.18 89.66 33.37 93.45 40.30 91.31 51.51 87.71 37.09 91.81
Energy [5] 19.94 95.80 41.70 90.04 37.95 91.44 44.88 89.67 55.89 84.58 40.07 90.31
Mahalanobis [14] 21.63 94.99 42.86 89.77 46.87 86.58 45.39 89.47 48.06 88.65 40.96 89.89
ReAct [11] 20.05 95.87 41.32 90.29 37.81 91.57 44.28 89.77 54.88 85.54 39.67 90.61
GradNorm [10] 49.60 80.45 82.23 59.60 78.17 63.55 81.70 59.72 82.93 58.05 74.93 64.27
KNN [29] 27.52 95.55 38.14 93.44 38.95 94.30 45.79 90.65 50.37 90.77 40.16 92.94
Rankfeat [15] 60.02 72.03 72.33 63.24 52.17 83.24 78.43 61.27 86.22 51.97 69.83 66.35
ASH-P@70 [30] 19.94 95.80 41.70 90.04 37.96 91.44 44.53 89.75 55.69 84.71 39.97 90.35

GAIA-Z (Ours) 4.05 99.17 53.31 90.59 12.40 97.92 7.76 98.59 12.30 97.34 17.96 96.72
GAIA-A (Ours) 18.34 96.51 30.98 94.54 12.73 97.70 16.94 96.84 14.93 97.15 18.78 96.55

CIFAR100
(ResNet34)

MSP [7] 86.21 74.13 75.21 79.31 83.58 72.80 87.19 70.60 82.00 74.46 82.84 74.26
ODIN [9] 89.34 70.21 70.00 81.44 83.80 71.37 88.10 67.69 81.81 72.66 82.61 72.67
Energy [5] 87.55 73.91 73.46 79.83 84.38 72.58 88.53 70.17 82.54 74.69 83.29 74.24
Mahalanobis [14] 88.71 73.72 75.70 79.57 88.28 71.63 78.54 79.74 82.63 73.78 81.29 76.16
ReAct [11] 77.53 83.17 71.18 78.60 73.36 84.37 78.41 80.12 72.06 82.54 74.51 81.76
GradNorm [10] 90.70 65.95 80.12 61.44 82.62 58.10 92.29 64.35 85.89 52.48 86.32 60.46
KNN [29] 73.34 80.06 69.24 82.17 76.98 78.36 86.76 71.53 79.95 69.24 77.25 76.27
Rankfeat [15] 92.94 65.55 87.46 74.98 90.84 70.65 90.77 72.68 86.72 73.99 89.75 71.57
ASH-P@65 [30] 81.21 79.46 74.26 81.17 82.84 74.93 85.49 72.91 79.70 77.33 80.70 77.16

GAIA-Z (Ours) 15.73 97.06 63.85 89.17 33.33 94.18 16.78 97.17 15.82 97.09 29.10 94.93
GAIA-A (Ours) 68.02 89.03 68.61 83.33 71.24 86.37 73.15 86.25 63.81 87.12 68.97 86.42

CIFAR100
(WRN40)

MSP [7] 83.44 79.85 76.94 77.84 76.68 80.32 85.81 72.50 83.42 74.94 81.26 77.09
ODIN [9] 80.64 82.34 78.50 76.41 74.43 81.95 84.57 74.58 82.36 76.51 80.10 78.36
Energy [5] 84.58 79.72 76.77 77.90 76.32 80.45 86.13 72.35 83.95 74.83 81.55 77.05
Mahalanobis [14] 82.36 81.07 82.95 79.20 74.76 81.16 82.44 76.06 83.72 76.93 80.97 78.34
ReAct [11] 75.04 82.36 76.09 75.83 66.64 83.06 77.94 78.18 77.66 78.33 74.67 79.55
GradNorm [10] 85.27 69.22 86.58 67.75 81.10 62.38 87.01 52.89 89.41 51.30 85.89 60.71
KNN [29] 46.88 88.97 70.88 82.86 68.92 76.83 83.57 69.64 60.41 83.66 66.13 80.39
Rankfeat [15] 80.39 77.10 94.58 52.35 91.63 61.89 86.83 67.71 88.00 67.36 88.29 65.28
ASH-P@70 [30] 81.20 80.99 76.24 77.92 74.78 81.06 84.81 73.78 81.97 76.12 79.80 77.97

GAIA-Z (Ours) 15.19 97.19 87.06 73.42 37.97 91.59 25.64 95.26 27.29 94.05 38.63 90.30
GAIA-A (Ours) 35.49 93.60 53.37 89.86 33.52 93.86 27.62 95.37 31.44 94.16 36.29 93.37

Table 1: Main Results on CIFAR Benchmarks [7]. We evaluate on ResNet34 [31] and WideRes-
net40 [32], which are both pre-trained with cross-entropy loss. For Rankfeat and ASH, we choose
their best performance. ↑ indicates larger values are better, while ↓ indicates smaller values are better.
All values are percentages. The best results are in Bold and the second best results are underlined.

benchmark are from iNaturalist [23], SUN [33], Places [34] and Textures [35], including fine-grained
images, scene-oriented images, and textural images. We also evaluate CIFAR10 and CIFAR100
benchmarks [7], which are routinely used in literature. Correspondingly, OOD datasets are SVHN
[36], TinyImageNet [9], LSUN [37], Places [34] and Textures [35].

Baselines. We consider various kinds of mainstream post-hoc OOD detection methods as baselines,
including Maximum Softmax Probability (MSP) [7], ODIN [9], Energy-based method [5], Maha-
lanobis [14], ReAct [11], GradNorm [10], Rankfeat [15], ASH [30] and KNN [29]. We use FPR95
(the false positive rate of OOD examples when the true positive rate of ID examples is 95%) and
AUROC (the area under the receiver operating characteristic curve) as evaluation metrics.

5.2 Main Results
In our main results, all methods can be directly used for pre-trained models and for a fair comparison,
auxiliary OOD data is unavailable for tuning.

Evaluation on CIFAR benchmarks. In Tab. 1, we evaluate GAIA methods on CIFAR10 and
CIFAR100 benchmarks. The results show that both GAIA-A and GAIA-Z exhibit superior perfor-
mance. And we also note that advanced post-hoc methods such as Rankfeat and Gradnorm tend to
encounter performance degradations on limited label space with small architectures. For ID dataset
CIFAR10, baseline ASH performs the best with an average FPR95 of 26.36% on ResNet34 and
ODIN performs 37.09% on WideResNet40 (WRN40). Our method GAIA-Z significantly outper-
forms ASH on ResNet34 by 23.10% improvement and outperforms ODIN on WideResNet by
19.13% improvement. Moreover, GAIA-A achieves the second best performance after GAIA-Z.
For CIFAR100, GAIA-Z attains an average FPR95 of 29.10% and average AUROC of 94.93% on
ResNet34, surpassing the best baseline ReAct by a margin of 45.41% FPR95 and 13.17% AUROC.
GAIA-Z achieves surprising performance on CIFAR benchmarks by utilizing the zero-deflation
abnormality.
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Methods
Space Methods

iNaturalist SUN Places Textures Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

Output
MSP [7] 63.69 87.59 79.98 78.34 81.44 76.76 82.73 74.45 76.96 79.29
ODIN [9] 62.69 89.36 71.67 83.92 76.27 80.67 81.31 76.30 72.99 82.56
Energy [5] 64.91 88.48 65.33 85.32 73.02 81.37 80.87 75.79 71.03 82.74

Feature

Mahalanobis [14] 96.34 46.33 88.43 65.20 89.75 64.46 52.23 72.10 81.69 62.02
ReAct [11] 44.52 91.81 52.71 90.16 62.66 87.83 70.73 76.85 57.66 86.67
KNN [29] 59.08 86.20 69.53 80.10 77.09 74.87 11.56 97.18 54.32 84.59
Rankfeat (Block4)[15] 46.54 81.49 27.88 92.18 38.26 88.34 46.06 89.33 39.69 87.84
Rankfeat (Block3+4)[15] 41.31 91.91 29.27 94.07 39.34 90.93 37.29 91.70 36.80 92.15
ASH-B@90 [30] 22.22 96.15 35.43 92.53 47.73 89.61 23.33 95.43 32.18 93.43

Gradient
GradNorm [10] 50.03 90.33 46.48 89.03 60.86 84.82 61.42 81.07 54.70 86.31
GAIA-A (Ours) 29.47 93.52 31.24 92.42 48.55 88.94 40.41 92.71 37.42 91.90
GAIA-Z (Ours) 65.09 84.15 64.23 84.31 71.02 81.16 11.32 97.93 52.92 86.89

Table 2: Main Results on ImageNet-1K [28]. OOD detection performance comparison between
GAIA and advanced baselines on pre-trained Google BiT-S [38] model. Our methods only use layers
from Block4 and all methods are post hoc that can be directly used for pre-trained models. The best
results for each Methods Space are all in Bold.

Evaluation on ImageNet-1K benchmark. In Tab. 2, we compare GAIA with other post hoc
baselines on pre-trained Google BiT-S model [38]. For our methods, both GAIA-A and GAIA-Z
use layers from the last block (Block4), and no hyperparameters are required. GAIA-A performs
well with an average FPR95 of 37.42% and an average AUROC of 91.90%. Compared to other
gradient-based OOD methods, GAIA-A outperforms GradNorm by 17.28% in FPR95. Besides,
GAIA-Z excels in handling the OOD dataset of textures with 11.32% FPR95, despite not achieving
the best overall performance. While ASH achieves competitive results on the ImageNet dataset
through careful parameter tuning, it is highly sensitive to its hyperparameters and lacks empirical
parameters. In contrast, GAIA methods don’t require parameter adjustments and directly achieve
good results.

5.3 Ablation Studies

Our ablation study begins by validating the effectiveness of each step of the methods. We first verify
the effect of the Frobenius norm (2-norm). Then we explore the aggregation’s effectiveness on the
label space and the input space.

Influence of Frobenius norm. In Eq. 12, we use ∥Λ∥F to calculate the final OOD score. To verify
its effectiveness, we evaluate different norms of Λ on the above three benchmarks. As shown in
Fig. 4, the Frobenius norm performs the best. Compared to 1-norm, Frobenius norm particularly
demonstrates significant improvements. This is because the Frobenius norm can exclude the influence
of numerous smaller values. As the number of layers in the model increases, the accumulation of
insignificant small values in the shallow layers can weaken the scoring impact of extreme values
OOD data. However, we can observe that as the value of p increases, the influence of extreme values
will also be affected.

(a) GAIA-Z (b) GAIA-A

Figure 4: Ablation studies on Frobenius norm of matrix Λ.

Influence of label space aggregation. In GAIA-A, we employ division to fuse the inner component
Einner[ϵ|Akl] and the output component Eoutput[ϵ|Akl] to obtain the final OOD scores. As shown in
Fig. 5, we visualize the score distributions of the individual components and the fused scores, and
observe that the performance of the inner and output components in OOD and ID data are contrasting.
After dividing and merging the two components, the fusion resulted in a greater concentration of ID
data, tending towards a narrower distribution. However, the impact on the distribution of OOD data
was relatively minor, thereby widening the score differences between them. In Tab. 3, we compare the
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Figure 5: The distribution of the OOD scores in three settings (inner only, output only and fusion).
All scores are non-negative for comparison.

OOD detection performance with and without (w/o) the fusion strategy. Experiments demonstrated a
improvement with the implementation of this strategy.

Methods
iNaturalist SUN Places Textures Average

FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑ FPR95 ↓ AUROC ↑

w/o fusion (top 1 label) 74.44 74.04 77.30 77.60 82.07 71.11 50.14 89.57 70.99 78.08
w/o fusion (output only) 47.50 92.54 69.87 84.47 74.52 82.00 76.17 78.83 67.02 84.46
w/o fusion (inner only) 59.45 81.98 52.24 86.51 62.74 80.20 52.45 89.77 56.72 84.62
fusion (logsoftmax + division) 29.47 93.52 31.24 92.42 48.55 88.94 40.41 92.71 37.42 91.90

Table 3: Ablation studies on fusion strategy. top 1 label means utilizing the predictive output only.

Influence of input space aggregation across different layers (blocks). Given that both ResNet34
and Google BiT-S models have four blocks, we analyze the performance of our methods across
different blocks to elucidate the influence of feature layers. As shown in Tab. 4, deeper layers possess
a higher power in distinguishing between ID and OOD data. It indicates that as the network becomes
shallower, the feature maps progressively contain a diminishing amount of relevant information w.r.t.
the prediction decision [39]. For CIFAR benchmarks, information from Block3+4 is sufficient for
detection, and for ImageNet-1K benchmark, only using Block4 can achieve the best performance.

Blocks
CIFAR10 CIFAR100 ImageNet

GAIA-A GAIA-Z GAIA-A GAIA-Z GAIA-A GAIA-Z
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

Block 1 64.52 83.28 57.15 67.06 77.89 79.72 58.38 66.46 86.59 61.26 92.38 49.62
Block 2 62.19 86.26 50.71 86.69 77.30 80.50 52.40 86.96 87.21 58.39 88.56 58.64
Block 3 44.56 91.07 22.17 95.71 71.28 84.67 44.18 89.01 63.34 80.81 73.28 78.96
Block 4 12.90 97.54 6.42 98.75 69.16 86.40 49.97 91.28 37.42 91.90 52.92 86.89

Block 3+4 12.70 97.53 3.55 99.26 68.98 86.42 27.86 95.24 41.91 91.03 58.39 86.91
All blocks 12.73 97.53 3.26 99.28 68.98 86.42 29.05 94.92 42.38 90.86 63.28 86.02

Table 4: Ablation studies of the influence on different blocks with average FPR95 and AUROC.

6 Related Work

Among all attempts so far, post-hoc methods [5, 9–11, 14, 15] are preferable in the wild due to their
advantages of being easy to use without modifying the training procedure and objective. An initial
solution proposed by Hendrycks and Gimpel [7] utilizes maximum softmax probability (MSP). While
due to the tendency of networks to display overconfident softmax scores when predicting OOD inputs
[40, 41], it renders a non-trivial dilemma to separate ID and OOD data. Then ODIN [9] introduces
temperature factors and input perturbations to enhance detection performance. In a different approach,
Energy [5] is proposed to utilize the energy score as an informative indicator. ReAct [11] proposes
that OOD examples result in abnormal model activation and suggests clamping the activation values
above a threshold. Rankfeat [15] leverages the differences in singular value distributions, which still
focuses on abnormal activations of the model. Another relevant study to this paper is gradient-based
OOD detection. In the early work, ODIN [9] first implicitly utilizes gradients as perturbations to
increase the softmax score of any given input. Recently, Lee and AlRegib [16], Huang et al. [10] and
Igoe et al. [17] use the gradients of parameters as the measurement, which emphasizes the importance
of the loss function. In this paper, we delve into investigating attribution abnormality and utilize
attribution gradients for OOD detection.
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7 Discussion

In this section, we discuss the comparison of our methods with other gradient-based OOD detection
methods, as well as the limitation on transformer-based models.

7.1 Comparison with Other Gradient-based Methods

A crucial distinction between other gradient-based OOD detection methods and ours lies in the
utilization of attribution methods to interpret the anomalous behavior of OOD examples. Specifically,
we investigate and aggregate the abnormal patterns exhibited by attribution gradients at the feature
level. Compared to ODIN [9], GAIA directly leverages the uncertainty derived from the gradients of
input features, providing a more intuitive and efficient solution. Furthermore, rather than focusing
solely on the softmax output, we delve into the intermediate statistics to uncover more fundamental
discrepancies. Compared to GradNorm [10], ExGrad [17] and Lee and AlRegib [16], our approaches
focus on attribution gradients and demonstrate superior performance. The comparative performance
is presented in Tab. 5. Additionally, GAIA supports batch processing, as the attribution gradients are
independent for each input feature, while gradients of parameters are unique to the network. This
means that our method can handle multiple samples simultaneously, providing a parallel processing
advantage over these methods that can only process one sample at a time.

Methods Batch processing iNaturalist SUN Places Textures Average
AUROC ↑ AUROC ↑ AUROC ↑ AUROC ↑ AUROC ↑

Lee and AlRegib [16] 72.30 82.61 74.00 84.16 78.27
GradNorm [10] 90.33 89.03 84.82 81.07 86.31
ExGrad [17] 76.90 66.60 68.90 65.10 69.40
GAIA-A (Ours) ✓ 93.52 92.42 88.94 92.71 91.90
GAIA-Z (Ours) ✓ 84.15 84.31 81.16 97.93 86.89

Table 5: Comparison with other gradient-based methods. To ensure a fair comparison with Lee and
AlRegib [16], the gradients of uniform noise are used as a surrogate, as suggested in [10].

7.2 Limitation on Transformer-based Models

Newer models like Vision Transformers (ViT) [42], which are based on transformers, excel in feature
extraction. However, they may not align well with image-specific characteristics. For instance, ViTs
employ positional encoding to capture spatial information, posing challenges for attribution. Due to
this reason, existing attribution algorithms are rarely applied to ViTs, resulting in poorer performance
for GAIA. While the attention mechanism in transformer-based models can also offer directions for
visual explanations. In our future work, we will research the uncertainty in the attention matrix to
enhance OOD detection performance on transformer-based models.

8 Conclusion

This paper targets bridging the gap between OOD detection and visual interpretation by utilizing
the uncertainty of a model in explaining its own predictions. We further examine how attribution
gradients contribute to uncertain explanation outcomes and introduce two forms of abnormalities
for OOD detection. Then, we propose GAIA, a simple and effective framework for abnormality
aggregation. The effectiveness of our framework is validated through experiments.

Societal impact and limitations. Through this work, we aim to provide a new perspective to
improve the performance of OOD detection and ensure the safety and reliability of machine learning
applications. However, the utilization of attribution gradients in this paper is relatively simplistic.
We believe there is still significant research potential in this area. Moreover, the limitation on
transformer-based models remains a topic for further investigation.
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