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518
519520

A Other related works521

We limit our discussions primarily to provable RL algorithms in the tabular setting with finite state522

and action spaces, which are most related to our work.523

Finite-sample guarantees for standard RL. A surge of recent research has utilized the toolkit of524

concentration inequalities to investigate the performance of standard RL algorithms in non-asymptotic525

settings. There has been a considerable amount of research into non-asymptotic sample analysis of526

standard RL for a variety of settings; a small set of samples include, but are not limited to, the works527

via probably approximately correct (PAC) bounds for the generative model setting (Kearns and Singh,528

1999; Beck and Srikant, 2012; ?; Chen et al., 2020; Azar et al., 2013; Sidford et al., 2018; Agarwal529

et al., 2020; Li et al., 2023, 2020; Wainwright, 2019), the offline setting (Rashidinejad et al., 2021;530

Xie et al., 2021; Yin et al., 2021; Shi et al., 2022; Li et al., 2022a; Jin et al., 2021; Yan et al., 2022),531

and the online setting via regret analysis (Jin et al., 2018; Bai et al., 2019; Li et al., 2021; Zhang et al.,532

2020b; Dong et al., 2019; Jafarnia-Jahromi et al., 2020; Yang et al., 2021).533

Robustness in RL. Although standard RL has achieved remarkable success, current RL algorithms534

are still limited since the agent may fail catastrophically if the deployed environment is subject to535

perturbation, uncertainty, and even structural changes. To address these challenges, an emerging line536

of works begin to address robustness of RL algorithms with respect to the uncertainty or perturbation537

over different components of MDPs — state, action, reward, and the transition kernel; see Moos538

et al. (2022) for a recent review. Besides the framework of distributionally robust MDPs (RMDPs)539
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(Iyengar, 2005) adopted by this work, to promote robustness in RL, there exist various other works540

including but not limited to Zhang et al. (2020a, 2021); Han et al. (2022); Qiaoben et al. (2021); Sun541

et al. (2021); Xiong et al. (2022) investigating the robustness w.r.t. state uncertainty, where the agent’s542

policy is chosen based on a perturbed observation generated from the state by adding restricted noise543

or adversarial attack. Besides, Tessler et al. (2019); Tan et al. (2020) considered the robustness to the544

uncertainty of the action, namely, the action is possibly distorted by an adversarial agent abruptly or545

smoothly.546

Distributionally robust RL. Rooted in the literature of distributionally robust optimization, which547

has primarily been investigated in the context of supervised learning (Rahimian and Mehrotra,548

2019; Gao, 2020; Bertsimas et al., 2018; Duchi and Namkoong, 2018; Blanchet and Murthy, 2019),549

distributionally robust dynamic programming and RMDPs have attracted considerable attention550

recently (Iyengar, 2005; Xu and Mannor, 2012; Wolff et al., 2012; Kaufman and Schaefer, 2013;551

Ho et al., 2018; Smirnova et al., 2019; Ho et al., 2021; Goyal and Grand-Clement, 2022; Derman552

and Mannor, 2020; Tamar et al., 2014; Badrinath and Kalathil, 2021). In the context of RMDPs,553

both empirical and theoretical studies have been widely conducted, although most prior theoretical554

analyses focus on planning with an exact knowledge of the uncertainty set (Iyengar, 2005; Xu and555

Mannor, 2012; Tamar et al., 2014), or are asymptotic in nature (Roy et al., 2017).556

Resorting to the tools of high-dimensional statistics, various recent works begin to shift attention557

to understand the finite-sample performance of provable robust RL algorithms, under diverse data558

generating mechanisms and forms of the uncertainty set over the transition kernel. Besides the559

infinite-horizon setting, finite-sample complexity bounds for RMDPs with the TV distance and the560

�
2 divergence are also developed for the finite-horizon setting in Xu et al. (2023); Dong et al. (2022).561

In addition, many other forms of uncertainty sets have been considered. For example, Wang and562

Zou (2021) considered a R-contamination uncertain set and proposed a provable robust Q-learning563

algorithm for the online setting with similar guarantees as standard MDPs. The KL divergence is564

another popular choice widely considered, where Yang et al. (2022); Panaganti and Kalathil (2022);565

Zhou et al. (2021); Shi and Chi (2022); Xu et al. (2023); Wang et al. (2023); ? investigated the566

sample complexity of both model-based and model-free algorithms under the simulator or offline567

settings. Xu et al. (2023) considered a variety of uncertainty sets including one associated with568

Wasserstein distance. Badrinath and Kalathil (2021) considered a general (s, a)-rectangular form of569

the uncertainty set and proposed a model-free algorithm for the online setting with linear function570

approximation to cope with large state spaces. Moreover, various other related issues have been571

explored such as the iteration complexity of the policy-based methods (Li et al., 2022b; Kumar et al.,572

2023), and regularization-based robust RL (Yang et al., 2023).573

B Preliminaries574

For convenience, we introduce the notation [T ] := {1, · · · , T} for any positive integer T > 0.575

Moreover, for any two vectors x = [xi]1in and y = [yi]1in, the notation x  y (resp. x � y)576

means xi  yi (resp. xi � yi) for all 1  i  n. And for any vecvor x, we overload the notation577

by letting x
�2 =

⇥
x(s, a)2

⇤
(s,a)2S⇥A (resp. x

�2 =
⇥
x(s)2

⇤
s2S). With slight abuse of notation, we578

denote 0 (resp. 1) as the all-zero (resp. all-one) vector, and drop the subscript ⇢ to write U�(·) = U�⇢ (·)579

whenever the argument holds for all divergence ⇢.580

Matrix notation. To continue, we recall or introduce some additional matrix notation that is useful581

throughout the analysis.582

• P
0 2 RSA⇥S : the matrix of the nominal transition kernel with P

0
s,a as the (s, a)-th row.583

• bP 0 2 RSA⇥S : the matrix of the estimated nomimal transition kernel with bP 0
s,a as the584

(s, a)-th row.585

• r 2 RSA: a vector representing the reward function r (so that r(s,a) = r(s, a) for all586

(s, a) 2 S ⇥ A).587
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• ⇧⇡ 2 {0, 1}S⇥SA: a projection matrix associated with a given deterministic policy ⇡ taking588

the following form589

⇧⇡ =

0

B@

e>
⇡(1) 0> · · · 0>

0> e>
⇡(2) · · · 0>

...
...

. . .
...

0> 0> · · · e>
⇡(S)

1

CA, (18)

where e>⇡(1), e
>
⇡(2), . . . , e

>
⇡(S) 2 RA are standard basis vectors.590

• r⇡ 2 RS : a reward vector restricted to the actions chosen by the policy ⇡, namely, r⇡(s) =591

r(s,⇡(s)) for all s 2 S (or simply, r⇡ = ⇧⇡
r).592

• VarP (V ) 2 RSA: for any transition kernel P 2 RSA⇥S and vector V 2 RS , we denote the593

(s, a)-th row of VarP (V ) as594

VarP (s, a) := VarPs,a(V ). (19)

• P
V 2 RSA⇥S , bPV 2 RSA⇥S : the matrices representing the probability transition kernel595

in the uncertainty set that leads to the worst-case value for any vector V 2 RS . We denote596

P
V
s,a (resp. bPV

s,a) as the (s, a)-th row of the transition matrix P
V (resp. bPV ). In truth, the597

(s, a)-th rows of these transition matrices are defined as598

P
V
s,a = argminP2U�(P 0

s,a)PV, and bPV
s,a = argminP2U�( bP 0

s,a)PV. (20a)

Furthermore, we make use of the following short-hand notation:599

P
⇡,V
s,a := P

V ⇡,�

s,a = argminP2U�(P 0
s,a)PV

⇡,�
,

P
⇡,bV
s,a := P

bV ⇡,�

s,a = argminP2U�(P 0
s,a)P bV ⇡,�

, (20b)

bP⇡,V
s,a := bPV ⇡,�

s,a = argminP2U�( bP 0
s,a)PV

⇡,�
,

bP⇡,bV
s,a := bP bV ⇡,�

s,a = argminP2U�( bP 0
s,a)P

bV ⇡,�
. (20c)

The corresponding probability transition matrices are denoted by P
⇡,V 2 RSA⇥S , P

⇡,bV 2600

RSA⇥S , bP⇡,V 2 RSA⇥S and bP⇡,bV 2 RSA⇥S , respectively.601

• P
⇡ 2 RS⇥S , bP⇡ 2 RS⇥S , P

⇡,V 2 RS⇥S , P
⇡,bV 2 RS⇥S , bP

⇡,V
2 RS⇥S and bP

⇡,bV
2602

RS⇥S : six square probability transition matrices w.r.t. policy ⇡ over the states, namely603

P
⇡ := ⇧⇡

P
0
, bP⇡ := ⇧⇡ bP 0

, P
⇡,V := ⇧⇡

P
⇡,V

, P
⇡,bV := ⇧⇡

P
⇡,bV

,

bP
⇡,V

:= ⇧⇡ bP⇡,V
, and bP

⇡,bV
:= ⇧⇡ bP⇡,bV

. (21)
We denote P

⇡
s as the s-th row of the transition matrix P

⇡; similar quantities can be defined604

for the other matrices as well.605

B.1 Basic facts606

Kullback-Leibler (KL) divergence. First, for any two distributions P and Q, we denote by607

KL(P k Q) the Kullback-Leibler (KL) divergence of P and Q. Letting Ber(p) be the Bernoulli608

distribution with mean p, we also introduce609

KL(p k q) := p log
p

q
+ (1 � p) log

1 � p

1 � q
and �

2(p k q) :=
(p � q)2

q
+

(p � q)2

1 � q
=

(p � q)2

q(1 � q)
,

(22)

which represent respectively the KL divergence and the �2 divergence of Ber(p) from Ber(q) (Tsy-610

bakov and Zaiats, 2009). We make note of the following useful property about the KL divergence in611

Tsybakov and Zaiats (2009, Lemma 2.7).612

Lemma 1. For any p, q 2 (0, 1), it holds that613

KL(p k q)  (p � q)2

q(1 � q)
. (23)
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Variance. For any probability vector P 2 R1⇥S and vector V 2 RS , we denote the variance614

VarP (V ) := P (V � V ) � (PV ) � (PV ). (24)

The following lemma bounds the Lipschitz constant of the variance function.615

Lemma 2. Consider any 0  V1, V2  1
1�� obeying kV1 � V2k1  x and any probability vector616

P 2 �(S), one has617

|VarP (V1) � VarP (V2)|  2x

(1 � �)
. (25)

Proof. It is immediate to check that618

|VarP (V1) � VarP (V2)| = |P (V1 � V1) � (PV1) � (PV1) � P (V2 � V2) + (PV2) � (PV2)|

��P
�
V1 � V1 � V2 � V2

���+ |(PV1 + PV2)P (V1 � V2)|

 2kV1 + V2k1kV1 � V2k1  2x

(1 � �)
. (26)

where the penultimate inequality holds by the triangle inequality.619

B.2 Properties of the robust Bellman operator620

�-contraction of the robust Bellman operator. It is worth noting that the robust Bellman operator621

(cf. (6)) shares the nice �-contraction property of the standard Bellman operator, stated as below.622

Lemma 3 (�-Contraction). (Iyengar, 2005, Theorem 3.2) For any � 2 [0, 1), the robust Bellman623

operator T �(·) (cf. (6)) is a �-contraction w.r.t. k · k1. Namely, for any Q1, Q2 2 RSA s.t.624

Q1(s, a), Q2(s, a) 2
⇥
0,

1
1��

⇤
for all (s, a) 2 S ⇥ A, one has625

kT �(Q1) � T �(Q2)k1  � kQ1 � Q2k1 . (27)

Additionally, Q
?,� is the unique fixed point of T �(·) obeying 0  Q

?,�(s, a)  1
1�� for all (s, a) 2626

S ⇥ A.627

Dual equivalence of the robust Bellman operator. Fortunately, the robust Bellman operator can628

be evaluated efficiently by resorting to its dual formulation (Iyengar, 2005). In what follows, we shall629

illustrate this for the two choices of the divergence ⇢ of interest. Before continuing, for any V 2 RS ,630

we denote [V ]↵ as its clipped version by some non-negative value ↵, namely,631

[V ]↵(s) :=

⇢
↵, if V (s) > ↵,

V (s), otherwise.
(28)

• TV distance, where the uncertainty set is U�⇢ ( bP 0
s,a) := U�TV( bP 0

s,a) := U�⇢TV( bP
0
s,a) w.r.t. the632

TV distance ⇢ = ⇢TV defined in (7). In particular, we have the following lemma due to633

strong duality, which is a direct consequence of Iyengar (2005, Lemma 4.3).634

Lemma 4 (Strong duality for TV). Consider any probability vector P 2 �(S), any fixed635

uncertainty level � and the uncertainty set U�(P ) := U�TV(P ). For any vector V 2 RS636

obeying V � 0, recalling the definition of [V ]↵ in (28), one has637

inf
P2U�(P )

PV = max
↵2[mins V (s),maxs V (s)]

n
P [V ]↵ � �

⇣
↵� min

s0
[V ]↵ (s0)

⌘o
. (29)

In view of the above lemma, the following dual update rule is equivalent to (13) in DRVI:638

bQt(s, a) = r(s, a)

+ � max
↵2[mins

bVt�1(s),maxs
bVt�1(s)]

n
bP 0
s,a

h
bVt�1

i

↵
� �

⇣
↵� min

s0

h
bVt�1

i

↵
(s0)

⌘o
. (30)

• �2 divergence, where the uncertainty set is U�⇢ ( bP 0
s,a) := U��2( bP 0

s,a) := U�⇢�2
( bP 0

s,a) w.r.t. the639

�
2 divergence ⇢ = ⇢�2 defined in (8). We introduce the following lemma which directly640

follows from (Iyengar, 2005, Lemma 4.2).641
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Lemma 5 (Strong duality for �2). Consider any probability vector P 2 �(S), any fixed642

uncertainty level � and the uncertainty set U�(P ) := U��2(P ). For any vector V 2 RS643

obeying V � 0, one has644

inf
P2U�(P )

PV = max
↵2[mins V (s),maxs V (s)]

n
P [V ]↵ �

p
�VarP ([V ]↵)

o
, (31)

where VarP (·) is defined as (24).645

In view of the above lemma, the update rule (13) in DRVI can be equivalently written as:646

bQt(s, a) = r(s, a)

+ � max
↵2[mins

bVt�1(s),maxs
bVt�1(s)]

⇢
bP 0
s,a

h
bVt�1

i

↵
�
r
�Var bP 0

s,a

⇣h
bVt�1

i

↵

⌘�
. (32)

The proofs of Lemma 4 and Lemma 5 are provided as follows.647

Proof of Lemma 4. To begin with, applying (Iyengar, 2005, Lemma 4.3), the term of interest obeys648

inf
P2U�(P )

PV = max
µ2RS ,µ�0

n
P (V � µ) � �

⇣
max
s0

{V (s0) � µ(s0)} � min
s0

{V (s0) � µ(s0)}
⌘o

,

(33)

where µ(s0) represents the s
0-th entry of µ 2 RS . Denoting µ

? as the optimal dual solution, taking649

↵ = maxs0 {V (s0) � µ
?(s0)}, it is easily verified that µ

? obeys650

µ
?(s) =

⇢
V (s) � ↵, if V (s) > ↵

0, otherwise.
(34)

Therefore, (33) can be solved by optimizing ↵ as below (Iyengar, 2005, Lemma 4.3):651

inf
P2U�(P )

PV = max
↵2[mins V (s),maxs V (s)]

n
P [V ]↵ � �

⇣
↵� min

s0
[V ]↵ (s0)

⌘o
. (35)

652

Proof of Lemma 5. Due to strong duality (Iyengar, 2005, Lemma 4.2), it holds that653

inf
P2U�(P )

PV = max
µ2RS ,µ�0

n
P (V � µ) �

p
�VarP (V � µ)

o
, (36)

and the optimal µ
? obeys654

µ
?(s) =

⇢
V (s) � ↵, if V (s) > ↵

0, otherwise.
(37)

for some ↵ 2 [mins V (s), maxs V (s)]. As a result, solving (36) is equivalent to optimizing the655

scalar ↵ as below:656

inf
P2U�(P )

PV = max
↵2[mins V (s),maxs V (s)]

n
P [V ]↵ �

p
�VarP ([V ]↵)

o
. (38)

657

B.3 Additional facts of the empirical robust MDP658

Bellman equations of the empirical robust MDP cMrob. To begin with, recall that the empirical ro-659

bust MDP cMrob = {S, A, �, U�( bP 0), r} based on the estimated nominal distribution bP 0 constructed660

in (10) and its corresponding robust value function (resp. robust Q-function) bV ⇡,� (resp. bQ⇡,�).661

Note that bQ?,� is the unique fixed point of bT �(·) (see Lemma 3), the empirical robust Bellman662

operator constructed using bP 0. Moreover, similar to (??), for cMrob, the Bellman’s optimality663
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principle gives the following robust Bellman consistency equation (resp. robust Bellman optimality664

equation):665

8(s, a) 2 S ⇥ A : bQ⇡,�(s, a) = r(s, a) + � inf
P2U�( bP 0

s,a)
P bV ⇡,�

, (39a)

8(s, a) 2 S ⇥ A : bQ?,�(s, a) = r(s, a) + � inf
P2U�( bP 0

s,a)
P bV ?,�

. (39b)

With these in mind, combined with the matrix notation, for any policy ⇡, we can write the robust666

Bellman consistency equations as667

Q
⇡,� = r + � inf

P2U�(P 0)
PV

⇡,� and bQ⇡,� = r + � inf
P2U�( bP 0)

P bV ⇡,�
, (40)

which leads to668

V
⇡,� = r⇡ + �⇧⇡ inf

P2U�(P 0)
PV

⇡,� (i)
= r⇡ + �P

⇡,V
V
⇡,�

,

bV ⇡,� = r⇡ + �⇧⇡ inf
P2U�( bP 0)

P bV ⇡,� (ii)
= r⇡ + � bP

⇡,bV bV ⇡,�
, (41)

where (i) and (ii) holds by the definitions in (18), (20) and (21).669

Encouragingly, the above property of the robust Bellman operator ensures the fast convergence of670

DRVI. We collect this consequence in the following lemma.671

Lemma 6. Let bQ0 = 0. The iterates { bQt}, {bVt} of DRVI obey672

8t � 0 :
�� bQt � bQ?,�

��
1  �

t

1 � �
and

��bVt � bV ?,�
��
1  �

t

1 � �
. (42)

Furthermore, the output policy b⇡ obeys673

��bV ?,� � bV b⇡,���
1  2�"opt

1 � �
, where

��bV ?,� � bVT�1

��
1 =: "opt. (43)

Proof of Lemma 6. Applying the �-contraction property in Lemma 3 directly yields that for any674

t � 0,675

k bQt � bQ?,�k1 =
��bT �( bQt�1) � bT �( bQ?,�)

��
1  �

�� bQt�1 � bQ?,�
��
1

 · · ·  �
t
�� bQ0 � bQ?,�

��
1 = �

t
�� bQ?,�

��
1  �

t

1 � �
,

where the last inequality holds by the fact k bQ?,�k1  1
1�� (see Lemma 3). In addition,676

kbVt � bV ?,�k1 = max
s2S

���max
a2A

bQt(s, a) � max
a2A

bQ?,�(s, a)
���
1


�� bQt � bQ?,�

��
1  �

t

1 � �
,

where the penultimate inequality holds by the maximum operator is 1-Lipschitz. This completes the677

proof of (42).678

We now move to establish (43). Note that there exists at least one state s0 2 S that is associated with679

the maximum of the value gap, i.e.,680

��bV ?,� � bV b⇡,���
1 = bV ?,�(s0) � bV b⇡,�(s0) � bV ?,�(s) � bV b⇡,�(s), 8s 2 S.

Recall b⇡? is the optimal robust policy for the empirical RMDP cMrob. For convenience, we denote681

a1 = b⇡?(s0) and a2 = b⇡(s0). Then, since b⇡ is the greedy policy w.r.t. bQT , one has682

r(s0, a1) + � inf
P2U�( bP 0

s0,a1
)
P bVT�1 = bQT (s0, a1)  bQT (s0, a2) = r(s0, a2) + � inf

P2U�( bP 0
s0,a2

)
P bVT�1.

(44)

19



Recalling the notation in (20), the above fact and (43) altogether yield683

r(s0, a1) + � bP bVT�1
s0,a1

⇣
bV ?,� � "opt1

⌘
 r(s0, a1) + � bP bVT�1

s0,a1
bVT�1

 r(s0, a2) + � inf
P2U�( bP 0

s0,a2
)
P bVT�1

(i)
 r(s0, a2) + � bP bV b⇡,�

s0,a2
bVT�1

 r(s0, a2) + � bP bV b⇡,�

s0,a2

⇣
bV ?,� + "opt1

⌘
, (45)

where (i) follows from the optimality criteria. The term of interest can be controlled as684

���bV ?,� � bV b⇡,�
���
1

= bV ?,�(s0) � bV b⇡,�(s0)

= r(s0, a1) + � inf
P2U�( bP 0

s0,a1
)
P bV ?,� �

 
r(s0, a2) + � inf

P2U�( bP 0
s0,a2

)
P bV b⇡,�

!

= r(s0, a1) � r(s0, a2) + �

 
inf

P2U�( bP 0
s0,a1

)
P bV ?,� � inf

P2U�( bP 0
s0,a2

)
P bV b⇡,�

!

(i)
 2�"opt + �

 
bP bV b⇡,�

s0,a2
bV ?,� � bP bVT�1

s0,a1
bV ?,� + inf

P2U�( bP 0
s0,a1

)
P bV ?,� � inf

P2U�( bP 0
s0,a2

)
P bV b⇡,�

!

= 2�"opt + �

 
bP bV b⇡,�

s0,a2
bV ?,� � inf

P2U�( bP 0
s0,a2

)
P bV b⇡,�

!
+ �

 
inf

P2U�( bP 0
s0,a1

)
P bV ?,� � bP bVT�1

s0,a1
bV ?,�

!

(ii)
 2�"opt + � bP bV b⇡,�

s0,a2

⇣
bV ?,� � bV b⇡,�

⌘
+ �

⇣
bP bVT�1
s0,a1

bV ?,� � bP bVT�1
s0,a1

bV ?,�
⌘

 2�"opt + �

���bV ?,� � bV b⇡,�
���
1

, (46)

where (i) holds by plugging in (45), and (ii) follows from infP2U�( bP 0
s0,a1

) P bV ?,�  P bV ?,� for any

P 2 U�( bP 0
s0,a1

). Rearranging (46) leads to
���bV ?,� � bV b⇡,�

���
1

 2�"opt
1 � �

.

685

C Proof of the upper bound with TV distance: Theorem 1686

Throughout this section, for any transition kernel P , the uncertainty set is taken as (see (7))687

U�(P ) := U�TV(P ) = ⌦ U�TV(Ps,a), U�TV(Ps,a) :=

⇢
P

0
s,a 2 �(S) :

1

2

��P 0
s,a � Ps,a

��
1

 �

�
.

(47)

C.1 Technical lemmas688

We begin with a key lemma concerning the dynamic range of the robust value function V
⇡,� (cf. (??)),689

which produces tighter control when � is large; the proof is deferred to Appendix C.3.1.690

Lemma 7. For any nominal transition kernel P 2 RSA⇥S , any fixed uncertainty level �, and any691

policy ⇡, its corresponding robust value function V
⇡,� (cf. (??)) satisfies692

max
s2S

V
⇡,�(s) � min

s2S
V
⇡,�(s)  1

�max{1 � �,�} .

Next, we introduce the following lemma, whose proof is postponed in Appendix C.3.2.693
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Lemma 8. Consider an MDP with transition kernel matrix P and reward function 0  r  1. For any694

policy ⇡ and its associated state transition matrix P⇡ := ⇧⇡
P and value function 0  V

⇡,P  1
1��695

(cf. (1)), one has696

(I � �P⇡)
�1

q
VarP⇡ (V ⇡,P ) 

s
8(maxs V ⇡,P (s) � mins V ⇡,P (s))

�2(1 � �)2
1.

C.2 Proof of Theorem 1697

The main proof idea of Theorem 1 is similar to that of Agarwal et al. (2020) and Li et al. (2020)698

while the argument needs essential adjustments in order to adapt to the robustness setting. Before699

proceeding, applying Lemma 6 yields that for any "opt > 0, as long as T � log( 1
(1��)"opt ), one has700

���bV ?,� � bV b⇡,�
���
1

 2�"opt
1 � �

, (48)

allowing us to justify the more general statement in Remark ??. To control the performance gap701 ��V ?,� � V
b⇡,�

��
1, the proof is divided into several key steps.702

Step 1: decomposing the error. Recall the optimal robust policy ⇡? w.r.t. Mrob and the optimal703

robust policy b⇡?, the optimal robust value function bV ?,� (resp. robust value function bQ⇡,�) w.r.t.704

cMrob. The term of interest V
?,� � V

b⇡,� can be decomposed as705

V
?,� � V

b⇡,� =
⇣
V
⇡?,� � bV ⇡?,�

⌘
+
⇣
bV ⇡?,� � bV b⇡?,�

⌘
+
⇣
bV b⇡?,� � bV b⇡,�

⌘
+
⇣
bV b⇡,� � V

b⇡,�
⌘

(i)

⇣
V
⇡?,� � bV ⇡?,�

⌘
+
⇣
bV b⇡?,� � bV b⇡,�

⌘
+
⇣
bV b⇡,� � V

b⇡,�
⌘

(ii)


⇣
V
⇡?,� � bV ⇡?,�

⌘
+

2�"opt
1 � �

1 +
⇣
bV b⇡,� � V

b⇡,�
⌘

(49)

where (i) holds by bV ⇡?,� � bV b⇡?,�  0 since b⇡? is the robust optimal policy for cMrob, and (ii) comes706

from the fact in (48).707

To control the two important terms in (49), we first consider a more general term bV ⇡,� � V
⇡,� for708

any policy ⇡. Towards this, plugging in (41) yields709

bV ⇡,� � V
⇡,� = r⇡ + � bP

⇡,bV bV ⇡,� �
�
r⇡ + �P

⇡,V
V
⇡,�

�

=

✓
� bP

⇡,bV bV ⇡,� � �P
⇡,bV bV ⇡,�

◆
+
⇣
�P

⇡,bV bV ⇡,� � �P
⇡,V

V
⇡,�

⌘

(i)
 �

⇣
P
⇡,V bV ⇡,� � P

⇡,V
V
⇡,�

⌘
+

✓
� bP

⇡,bV bV ⇡,� � �P
⇡,bV bV ⇡,�

◆
,

where (i) holds by observing710

P
⇡,bV bV ⇡,�  P

⇡,V bV ⇡,�

due to the optimality of P
⇡,bV (cf. (20)). Rearranging terms leads to711

bV ⇡,� � V
⇡,�  �

�
I � �P

⇡,V
��1

✓
bP
⇡,bV bV ⇡,� � P

⇡,bV bV ⇡,�

◆
. (50)

Similarly, we can also deduce712

bV ⇡,� � V
⇡,� = r⇡ + � bP

⇡,bV bV ⇡,� �
�
r⇡ + �P

⇡,V
V
⇡,�

�

=

✓
� bP

⇡,bV bV ⇡,� � �P
⇡,bV bV ⇡,�

◆
+
⇣
�P

⇡,bV bV ⇡,� � �P
⇡,V

V
⇡,�

⌘

� �

⇣
P
⇡,bV bV ⇡,� � P

⇡,bV
V
⇡,�

⌘
+

✓
� bP

⇡,bV bV ⇡,� � �P
⇡,bV bV ⇡,�

◆
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� �

⇣
I � �P

⇡,bV
⌘�1

✓
bP
⇡,bV bV ⇡,� � P

⇡,bV bV ⇡,�

◆
. (51)

Combining (50) and (51), we arrive at713

���bV ⇡,� � V
⇡,�

���
1

 �max

(����
�
I � �P

⇡,V
��1

✓
bP
⇡,bV bV ⇡,� � P

⇡,bV bV ⇡,�

◆����
1

,

����
⇣
I � �P

⇡,bV
⌘�1

✓
bP
⇡,bV bV ⇡,� � P

⇡,bV bV ⇡,�

◆����
1

)
. (52)

By decomposing the error in a symmetric way, we can similarly obtain714

���bV ⇡,� � V
⇡,�

���
1

 �max

(����
⇣
I � � bP

⇡,V
⌘�1 ⇣

bP
⇡,V

V
⇡,� � P

⇡,V
V
⇡,�

⌘����
1

,

�����

✓
I � � bP

⇡,bV
◆�1 ⇣

bP
⇡,V

V
⇡,� � P

⇡,V
V
⇡,�

⌘�����
1

)
. (53)

With the above facts in mind, we are ready to control the two terms kbV ⇡?,� � V
⇡?,�k1 and715

kbV b⇡,� � V
b⇡,�k1 in (49) separately. More specifically, taking ⇡ = ⇡

?, applying (53) leads to716

���bV ⇡?,� � V
⇡?,�

���
1

 �max

(�����

✓
I � � bP

⇡?,V
◆�1 ✓

bP
⇡?,V

V
⇡?,� � P

⇡?,V
V
⇡?,�

◆�����
1

,

�����

✓
I � � bP

⇡?,bV
◆�1 ✓

bP
⇡?,V

V
⇡?,� � P

⇡?,V
V
⇡?,�

◆�����
1

)
. (54)

Similarly, taking ⇡ = b⇡, applying (52) leads to717

���bV b⇡,� � V
b⇡,�

���
1

 �max

(����
⇣
I � �P

b⇡,bV
⌘�1

✓
bP
b⇡,bV bV b⇡,� � P

b⇡,bV bV b⇡,�
◆����

1
,

����
⇣
I � �P

b⇡,V
⌘�1

✓
bP
b⇡,bV bV b⇡,� � P

b⇡,bV bV b⇡,�
◆����

1

)
. (55)

Step 2: controlling kbV ⇡?,� � V
⇡?,�k1: bounding the first term in (54). To control the two718

terms in (54), we first introduce the following lemma whose proof is postponed to Appendix C.3.3.719

Lemma 9. Consider any � 2 (0, 1). Setting N � log( 18SAN
� ), with probability at least 1 � �, one720

has721

���� bP
⇡?,V

V
⇡?,� � P

⇡?,V
V
⇡?,�

����  2

s
log( 18SAN

� )

N

p
VarP⇡? (V ?,�) +

log( 18SAN
� )

N(1 � �)
1

 3

s
log( 18SAN

� )

(1 � �)2N
1, (56)

where VarP⇡? (V ?,�) is defined in (19).722

Armed with the above lemma, now we control the first term on the right hand side of (54) as follows:723

⇣
I � � bP

⇡?,V
⌘�1⇣ bP

⇡?,V
V
⇡?,� � P

⇡?,V
V
⇡?,�

⌘

(i)

⇣
I � � bP

⇡?,V
⌘�1��� bP

⇡?,V
V
⇡?,� � P

⇡?,V
V
⇡?,�

���
1

(ii)


⇣
I � � bP

⇡?,V
⌘�1

0

@2

s
log( 18SAN

� )

N

p
VarP⇡? (V ?,�) +

log( 18SAN
� )

N(1 � �)
1

1

A
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log( 18SAN

� )

N(1 � �)

⇣
I � � bP

⇡?,V
⌘�1

1 + 2

s
log( 18SAN

� )

N

⇣
I � � bP

⇡?,V
⌘�1q

Var bP⇡?,V (V ?,�)

| {z }
=:C1

+ 2

s
log( 18SAN

� )

N

⇣
I � � bP

⇡?,V
⌘�1

r���Var bP⇡? (V ?,�) � Var bP⇡?,V (V ?,�)
���

| {z }
=:C2

+ 2

s
log( 18SAN

� )

N

⇣
I � � bP

⇡?,V
⌘�1⇣p

VarP⇡? (V ?,�) �
q

Var bP⇡? (V ?,�)
⌘

| {z }
=:C3

, (57)

where (i) holds by
⇣
I � � bP

⇡?,V
⌘�1

� 0, (ii) follows from Lemma 9, and the last inequality arise724

from725

p
VarP⇡? (V ?,�) =

⇣p
VarP⇡? (V ?,�) �

q
Var bP⇡? (V ?,�)

⌘
+
q

Var bP⇡? (V ?,�)


⇣p

VarP⇡? (V ?,�) �
q

Var bP⇡? (V ?,�)
⌘

+

r���Var bP⇡? (V ?,�) � Var bP⇡?,V (V ?,�)
���

+
q

Var bP⇡?,V (V ?,�)

by applying the triangle inequality.726

To continue, observing that each row of bP
⇡?,V

is a probability distribution obeying that the sum is 1,727

we arrive at728

⇣
I � � bP

⇡?,V
⌘�1

1 =
⇣
I +

1X

t=1

�
t
⇣
bP
⇡?,V

⌘t⌘
1 =

1

1 � �
1. (58)

Armed with this fact, we shall control the other three terms C1, C2, C3 in (57) separately.729

• Consider C1. We first introduce the following lemma, whose proof is postponed to Ap-730

pendix C.3.4.731

Lemma 10. Consider any � 2 (0, 1). With probability at least 1 � �, one has732

⇣
I � � bP

⇡?,V
⌘�1q

Var bP⇡?,V (V ?,�)  4

vuuut

✓
1 +

q
log( 18SAN

� )
(1��)2N

◆

�3(1 � �)2 max{1 � �,�}1

 4

vuuut

✓
1 +

q
log( 18SAN

� )
(1��)2N

◆

�3(1 � �)3
1.

Applying Lemma 10 and inserting back to (57) leads to733

C1 = 2

s
log( 18SAN

� )

N

⇣
I � � bP

⇡?,V
⌘�1q

Var bP⇡?,V (V ?,�)

 8

vuuut
log( 18SAN

� )

�3(1 � �)2 max{1 � �,�}N

0

@1 +

s
log( 18SAN

� )

(1 � �)2N

1

A1. (59)

• Consider C2. First, denote V
0 := V

?,� � mins02S V
?,�(s0)1, by Lemma 7, it follows that734

0  V
0  1

�max{1 � �,�}1. (60)
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Then, we have for all (s, a) 2 S ⇥ A, and Ps,a 2 �(S), and ePs,a 2 U�(Ps,a):735
���Var ePs,a

(V ?,�) � VarPs,a(V ?,�)
��� =

���Var ePs,a
(V 0) � VarPs,a(V 0)

���

 k ePs,a � Ps,ak1kV
0k2

1

 2�

�2(max{1 � �,�})2
1  2

�2 max{1 � �,�}1.

(61)

Applying the above relation we obtain736

C2 = 2

s
log( 18SAN

� )

N

⇣
I � � bP

⇡?,V
⌘�1

r���Var bP⇡? (V ?,�) � Var bP⇡?,V (V ?,�)
���

= 2

s
log( 18SAN

� )

N

⇣
I � � bP

⇡?,V
⌘�1q��⇧⇡?

�
Var bP 0(V ?,�) � Var bP⇡?,V (V ?,�)

���

 2

s
log( 18SAN

� )

N

⇣
I � � bP

⇡?,V
⌘�1q��Var bP 0(V ?,�) � Var bP⇡?,V (V ?,�)

��
1 1

 2

s
log( 18SAN

� )

N

⇣
I � � bP

⇡?,V
⌘�1

s
2

�2 max{1 � �,�}1

= 2

s
2 log( 18SAN

� )

�2(1 � �)2 max{1 � �,�}N
1, (62)

where the last equality uses
⇣
I � � bP

⇡?,V
⌘�1

1 = 1
1�� (cf. (58)).737

• Consider C3. The following lemma plays an important role.738

Lemma 11. (Panaganti and Kalathil, 2022, Lemma 6) Consider any � 2 (0, 1). For any739

fixed policy ⇡ and fixed value vector V 2 RS , one has with probability at least 1 � �,740

���
q

Var bP⇡ (V ) �
p

VarP⇡ (V )
��� 

s
2kV k2

1 log( 2SA
� )

N
1.

Applying Lemma 11 with ⇡ = ⇡
? and V = V

?,� leads to741

p
VarP⇡? (V ?,�) �

q
Var bP⇡? (V ?,�) 

s
2kV ?,�k2

1 log( 2SA
� )

N
1,

which can be plugged in (57) to verify742
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s
log( 18SAN

� )

N

⇣
I � � bP

⇡?,V
⌘�1 ⇣p

VarP⇡? (V ?,�) �
q
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(1 � �)

log(SAN
� )kV

?,�k1
N
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4 log( 18SAN

� )

(1 � �)2N
1, (63)

where the last line uses
⇣
I � � bP

⇡?,V
⌘�1

1 = 1
1�� (cf. (58)).743

Finally, inserting the results of C1 in (59), C2 in (62), C3 in (63), and (58) back into (57) gives744
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+ 2

s
2 log( 18SAN
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1, (64)

where the last inequality holds by the fact � � 1
4 and letting N � log(SAN

� )
(1��)2 .745

Step 3: controlling kbV ⇡?,� �V
⇡?,�k1: bounding the second term in (54). To proceed, applying746

Lemma 9 on the second term of the right hand side of (54) leads to747
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⌘
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, (65)

where the last term eC3 can be controlled the same as C3 in (63). We now bound the above terms748

separately.749

• Applying Lemma 8 with P = bP⇡?,bV , ⇡ = ⇡
? and taking V = bV ⇡?,� which obeys750

bV ⇡?,� = r⇡? + � bP
⇡?,bV bV ⇡?,� , and in view of (58), the term C4 in (65) can be controlled as751

follows:752
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where the last inequality holds by applying Lemma 7.753
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• To continue, considering C5, we directly observe that (in view of (58))754
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• Then, it is easily verified that C6 can be controlled similarly as (62) as follows:755
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1. (68)

• Similarly, C7 can be controlled the same as (63) shown below:756
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Combining the results in (66), (67), (68), and (69) and inserting back to (65) leads to757
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where the last inequality follows from the assumption � � 1
4 .758
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where the last inequality holds by taking N � 16 log(SAN
� )
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Step 4: controlling kbV b⇡,� � V
b⇡,�k1: bounding the first term in (55). Unlike the earlier term,761

we now need to deal with the complicated statistical dependency between b⇡ and the empirical RMDP.762

To begin with, we introduce the following lemma which controls the main term on the right hand side763

of (55), which is proved in Appendix C.3.5.764
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With Lemma 12 in hand, we have767
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where (i) and (ii) hold by the fact that each row of (1 � �)
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that falls into �(S).769

The remainder of the proof will focus on controlling the three terms in (73) separately.770

• For D1, we introduce the following lemma, whose proof is postponed to C.3.6.771
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Applying Lemma 13 and (58) to (73) leads to774
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• D3 can be controlled similar to C2 in (62) as follows:776
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Finally, summing up the results in (74), (75), and (76) and inserting them back to (73) yields: taking777
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Step 5: controlling kbV b⇡,� � V
b⇡,�k1: bounding the second term in (55). Towards this, applying780
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We shall bound each of the terms separately.782
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• Applying Lemma 8 with P = P
b⇡,V , ⇡ = b⇡, and taking V = V
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b⇡,� =783

rb⇡ + �P
b⇡,V

V
b⇡,� , the term D4 can be controlled similar to (66) as follows:784
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• Next, observing that D6 and D7 are almost the same as the terms D2 (controlled in (75))786

and D3 (controlled in (76)) in (73), it is easily verified that they can be controlled as follows787
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Then inserting the results in (79), (80), and (81) back to (78) leads to788

⇣
I � �P

b⇡,V
⌘�1⇣ bP

b⇡,bV bV b⇡,� � P
b⇡,bV bV b⇡,�

⌘



0

@
8 log( 54SAN2

(1��)� )

N(1 � �)2
+

2�"opt
(1 � �)2

1

A 1 + 8

s
log( 54SAN2

� )

�3(1 � �)2 max{1 � �,�}N
1

+ 2

s
log( 54SAN2

� )

(1 � �)2N

���V b⇡,� � bV b⇡,�
���
1

1 + 4

s
�"opt log( 54SAN2

(1��)� )

(1 � �)4N
1

+ 4

s
log( 54SAN2

(1��)� )

�2(1 � �)2 max{1 � �,�}N
1

 12

s
2 log( 8SAN2

(1��)� )

�3(1 � �)2 max{1 � �,�}N
1 +

14 log( 54SAN2

(1��)� )

N(1 � �)2
1 + 2

s
log( 54SAN2

� )

(1 � �)2N

���V b⇡,� � bV b⇡,�
���
1

1,

(82)

where the last inequality holds by letting "opt  log( 54SAN2
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Step 6: summing up the results. Summing up the results in (71) and (83) and inserting back793
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where the last inequality holds by � � 1
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C.3 Proof of the auxiliary lemmas797

C.3.1 Proof of Lemma 7798
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C.3.2 Proof of Lemma 8810

Observing that each row of P⇡ belongs to �(S), it can be directly verified that each row of (1 �811
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(I � �P⇡)
�1

q
VarP⇡ (V ⇡,P ) =

1

1 � �
(1 � �) (I � �P⇡)

�1
q

VarP⇡ (V ⇡,P )

(i)
 1

1 � �

q
(1 � �) (I � �P⇡)

�1 VarP⇡ (V ⇡,P )

=

r
1

1 � �

vuut
1X

t=0

�t (P⇡)
t VarP⇡ (V ⇡,P ), (86)

where (i) holds by Jensen’s inequality.813
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where (i) holds by the fact that VarP⇡ (V ⇡,P � b1) = VarP⇡ (V ⇡,P ) for any scalar b and V
⇡,P 2 RS ,816

(ii) follows from V
0 = r⇡ + �P⇡V

⇡,P � Vmin1 = r⇡ � (1 � �)Vmin1 + �P⇡V
0, and the last line817

arises from 1
�2 V

0 � V
0 � 1

�V
0 � V

0 and kr⇡ � (1 � �)Vmin1k1  1. Plugging (87) back to (86)818

leads to819

(I � �P⇡)
�1

q
VarP⇡ (V ⇡,P ) 

r
1

1 � �

vuut
1X

t=0

�t (P⇡)
t
✓

P⇡ (V 0 � V 0) � 1

�
V 0 � V 0 +

2

�2
kV 0k11

◆

(i)

r

1

1 � �

vuut
�����

1X

t=0

�t (P⇡)
t
✓

P⇡ (V 0 � V 0) � 1

�
V 0 � V 0

◆�����+
r

1

1 � �

vuut
1X

t=0

�t (P⇡)
t 2

�2
kV 0k11


r

1

1 � �

vuut
�����

 1X

t=0

�t (P⇡)
t+1 �

1X

t=0

�t�1 (P⇡)
t

!
(V 0 � V 0)

�����+

s
2kV 0k11

�2(1 � �)2

(ii)


s
kV 0k2

11

�(1 � �)
+

s
2kV 0k11

�2(1 � �)2



s
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, (88)

where (i) holds by the triangle inequality, (ii) holds by following recursion, and the last inequality820

holds by kV
0k1  1

1�� .821

C.3.3 Proof of Lemma 9822

Step 1: controlling the point-wise concentration. We first consider a more general term w.r.t. any823

fixed (independent from bP 0) value vector V obeying 0  V  1
1�� 1 and any policy ⇡. Invoking824
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Lemma 4 leads to that for any (s, a) 2 S ⇥ A,825
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, (89)

where the last inequality holds by that the maximum operator is 1-Lipschitz.826

Then for a fixed ↵ and any vector V that is independent with bP 0, using the Bernstein’s inequality,827

one has with probability at least 1 � �,828

gs,a(↵, V ) =
���
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. (90)

Step 2: deriving the uniform concentration. To obtain the union bound, we first notice that829

gs,a(↵, V ) is 1-Lipschitz w.r.t. ↵ for any V obeying kV k1  1
1�� . In addition, we can construct830

an "1-net N"1 over [0,
1

1�� ] whose size satisfies |N"1 |  3
"1(1��) (Vershynin, 2018). By the union831

bound and (90), it holds with probability at least 1 � �
SA that for all ↵ 2 N"1 ,832
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Combined with (89), it yields that,833
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(iii)
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s
log( 18SAN

� )

(1 � �)2N
(94)

where (i) follows from that the optimal ↵? falls into the "1-ball centered around some point inside834

N"1 and gs,a(↵, V ) is 1-Lipschitz, (ii) holds by (91), (iii) arises from taking "1 =
log(

2SA|N"1 |
� )

3N(1��) , (iv)835

is verified by |N"1 |  3
"1(1��)  9N , and the last inequality is due to the fact kV

?,�k1  1
1�� and836

letting N � log( 18SAN
� ).837
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To continue, applying (93) and (94) with ⇡ = ⇡
? and V = V

?,� (independent with bP 0) and taking838

the union bound over (s, a) 2 S ⇥A gives that with probability at least 1� �, it holds simultaneously839

for all (s, a) 2 S ⇥ A that840
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s,a V

?,� � P
⇡?,V
s,a V

?,�
���  2

s
log( 18SAN

� )

N

q
VarP 0

s,a
(V ?,�) +

log( 18SAN
� )

N(1 � �)

 3

s
log( 18SAN

� )

(1 � �)2N
. (95)

By converting (95) to the matrix form, one has with probability at least 1 � �,841

���� bP
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C.3.4 Proof of Lemma 10842

Following the same argument as (86), it follows843
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Var bP⇡?,V (V ?,�). (97)

To continue, we first focus on controlling Var bP⇡?,V (V ?,�). Towards this, denoting the minimum844

value of V
?,� as Vmin := mins2S V

?,�(s) and V
0 := V

?,� � Vmin1, we arrive at (see the robust845

Bellman’s consistency equation in (41))846
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where the last line holds by letting r
0
⇡? := r⇡? � (1 � �)Vmin1  r⇡? . With the above fact in hand,847

we control Var bP⇡?,V (V ?,�) as follows:848
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where (i) holds by the fact that VarP⇡ (V �b1) = VarP⇡ (V ) for any scalar b and V 2 RS , (ii) follows849

from (98), (iii) arises from 1
�2 V

0 � V
0 � 1

�V
0 � V

0 and �1  r⇡? � (1 � �)Vmin1 = r
0
⇡?  r⇡?  1,850

and the last inequality holds by Lemma 9.851
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Plugging (100) into (97) leads to852
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where (i) holds by the triangle inequality. Therefore, the remainder of the proof shall focus on the853

first term, which follows854
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by recursion. Inserting (102) back to (101) leads to855
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where the penultimate inequality follows from applying Lemma 7 with P = P
0 and ⇡ = ⇡

?:856

kV
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s2S
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C.3.5 Proof of Lemma 12857

To begin with, for any (s, a) 2 S ⇥ A, invoking the results in (89), we have858
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where (i) holds by the triangle inequality, and (ii) follows from
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��� in (104) for any given ↵ 2
⇥
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⇤
, and tame the dependency861

between bV ?,� and bP 0, we resort to the following leave-one-out argument motivated by (Agarwal et al.,862

2020; Li et al., 2022a; Shi and Chi, 2022). Specifically, we first construct a set of auxiliary RMDPs863

which simultaneously have the desired statistical independence between robust value functions and864

the estimated nominal transition kernel, and are minimally different from the original RMDPs under865

consideration. Then we control the term of interest associated with these auxiliary RMDPs and show866

the value is close to the target quantity for the desired RMDP. The process is divided into several867

steps as below.868

Step 1: construction of auxiliary RMDPs with deterministic empirical nominal transitions.869

Recall that we target the empirical infinite-horizon robust MDP cMrob with the nominal transition870

kernel bP 0. Towards this, we can construct an auxiliary robust MDP cMs,u
rob for each state s and any871

non-negative scalar u � 0, so that it is the same as cMrob except for the transition properties in state s.872

In particular, we define the nominal transition kernel and reward function of cMs,u
rob as P

s,u and r
s,u,873

which are expressed as follows874
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P
s,u(s0 | s, a) = 1(s0 = s) for all (s0, a) 2 S ⇥ A,

P
s,u(· | es, a) = bP 0(· | es, a) for all (es, a) 2 S ⇥ A and es 6= s,

(105)

and875
⇢

r
s,u(s, a) = u for all a 2 A,

r
s,u(es, a) = r(es, a) for all (es, a) 2 S ⇥ A and es 6= s.

(106)

It is evident that the nominal transition probability at state s of the auxiliary cMs,u
rob , i.e. it never leaves876

state s once entered. This useful property removes the randomness of bP 0
s,a for all a 2 A in state s,877

which will be leveraged later.878

Correspondingly, the robust Bellman operator bT �
s,u(·) associated with the RMDP cMs,u

rob is defined as879

8(s̃, a) 2 S ⇥ A : bT �
s,u(Q)(s̃, a) = r

s,u(s̃, a) + � inf
P2U�(P s,u

s̃,a )
PV, with V (s̃) = max

a
Q(s̃, a).

(107)

Step 2: fixed-point equivalence between cMrob and the auxiliary RMDP cMs,u
rob . Recall that880

bQ?,� is the unique fixed point of bT �(·) with the corresponding robust value bV ?,� . We assert that the881

corresponding robust value function bV ?,�
s,u? obtained from the fixed point of bT �

s,u(·) aligns with the882

robust value function bV ?,� derived from bT �(·), as long as we choose u in the following manner:883

u
? := u

?(s) = bV ?,�(s) � � inf
P2U�(es)

P bV ?,�
. (108)

where es is the s-th standard basis vector in RS . Towards verifying this, we shall break our arguments884

in two different cases.885

• For state s: One has for any a 2 A:886

r
s,u?

(s, a) + � inf
P2U�(P s,u?

s,a )
P bV ?,� = u

? + � inf
P2U�(es)

P bV ?,�
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= bV ?,�(s) � � inf
P2U�(es)

P bV ?,� + � inf
P2U�(es)

P bV ?,� = bV ?,�(s), (109)

where the first equality follows from the definition of P
s,u?

s,a in (105), and the second equality887

follows from plugging in the definition of u
? in (108).888

• For state s
0 6= s: It is easily verified that for all a 2 A,889

r
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where the first equality follows from the definitions in (106) and (105), and the last line890

arises from the definition of the robust Bellman operator in (12), and that bQ?,� is the fixed891

point of bT �(·) (see Lemma 3).892

Combining the facts in the above two cases, we establish that there exists a fixed point bQ?,�
s,u? of the893

operator bT �
s,u?(·) by taking894

(
bQ?,�
s,u?(s, a) = bV ?,�(s) for all a 2 A,

bQ?,�
s,u?(s0, a) = bQ?,�(s0, a) for all s

0 6= s and a 2 A.
(111)

Consequently, we confirm the existence of a fixed point of the operator bT �
s,u?(·). In addition, its895

corresponding value function bV ?,�
s,u? also coincides with bV ?,�. Note that the corresponding facts896

between cMrob and cMs,u
rob in Step 1 and step 2 holds in fact for any uncertainty set.897

Step 3: building an "-net for all reward values u. It is easily verified that898
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We can construct a N"2 -net over the interval
h
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1
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i
, where the size is bounded by |N"2 |  3

"2(1��)899

(Vershynin, 2018). Following the same arguments in the proof of Lemma 3, we can demonstrate900
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By the definitions in (105) and (106), we observe that for all u 2 N"2 , cMs,u
rob is statistically in-904

dependent from bP 0
s,a. This independence indicates that [bV ?,�

s,u ]↵ and bP 0
s,a are independent for a905

fixed ↵. With this in mind, invoking the fact in (93) and (94) and taking the union bound over906
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where the last inequality holds by the fact VarP 0
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Step 4: uniform concentration. Recalling that u
? 2

⇥
0,

1
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⇤
(see (112)), we can always find911

some u 2 N"2 such that |u�u
?|  "2. Consequently, plugging in the operator bT �

s,u(·) in (107) yields912
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where the last inequality holds by the fact that bT �
s,u(·) is a �-contraction. It directly indicates that914

��� bQ?,�
s,u � bQ?,�

s,u?

���
1

 "2

(1 � �)
and

���bV ?,�
s,u � bV ?,�

s,u?

���
1


��� bQ?,�

s,u � bQ?,�
s,u?

���
1

 "2

(1 � �)
.

(114)

Armed with the above facts, to control the first term in (104), invoking the identity bV ?,� = bV ?,�
s,u?915

established in Step 2 gives that: for all (s, a) 2 S ⇥ A,916

max
↵2[mins

bV b⇡,�(s),maxs
bV b⇡,�(s)]

���
⇣
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s,a � bP 0
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���
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↵2[0,1/(1��)]

���
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s,a � bP 0

s,a

⌘
[bV ?,�]↵

��� = max
↵2[0,1/(1��)]

���
⇣
P
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s,a � bP 0

s,a

⌘
[bV ?,�

s,u? ]↵
���

(i)
 max

↵2[0,1/(1��)]

n���
⇣
P

0
s,a � bP 0

s,a

⌘
[bV ?,�

s,u ]↵
���+

���
⇣
P

0
s,a � bP 0

s,a

⌘⇣
[bV ?,�

s,u ]↵ � [bV ?,�
s,u? ]↵

⌘���
o

(ii)
 max

↵2[0,1/(1��)]

���
⇣
P

0
s,a � bP 0

s,a

⌘
[bV ?,�

s,u ]↵
���+

2"2
(1 � �)

(iii)
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(1 � �)
+ "2 + 2
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log(

18SAN |N"2 |
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N
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s,a
(bV ?,�

s,u ) +
2 log(

18SAN |N"2 |
� )

3N(1 � �)

 3"2
(1 � �)

+ 2

s
log(

18SAN |N"2 |
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N

q
VarP 0

s,a
(bV ?,�) +

2 log(
18SAN |N"2 |
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3N(1 � �)

+ 2

s
log(

18SAN |N"2 |
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N

r���VarP 0
s,a

(bV ?,�) � VarP 0
s,a

(bV ?,�
s,u )

���

(iv)
 3"2
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log(

18SAN |N"2 |
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VarP 0
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(bV ?,�)
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2 log(
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3N(1 � �)
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2"2 log(

18SAN |N"2 |
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s
log( 54SAN2

(1��)� )

N

q
VarP 0

s,a
(bV ?,�) +

8 log( 54SAN2

(1��)� )

N(1 � �)
(115)

 10

s
log( 54SAN2

(1��)� )

(1 � �)2N
, (116)

where (i) holds by the triangle inequality, (ii) arises from (the last inequality holds by (114))917

���
⇣
P

0
s,a � bP 0

s,a

⌘⇣
[bV ?,�

s,u ]↵ � [bV ?,�
s,u? ]↵

⌘��� 
���P 0

s,a � bP 0
s,a

���
1

���[bV ?,�
s,u ]↵ � [bV ?,�

s,u? ]↵
���
1
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 2
���bV ?,�

s,u � bV ?,�
s,u?

���
1

 2"2
(1 � �)

, (117)

(iii) follows from (113), (iv) can be verified by applying Lemma 2 with (114). Here, the penultimate918

inequality holds by letting "2 =
log(

18SAN|N"2 |
� )

N , which leads to |N"2 |  3
"2(1��)  3N

1�� , and the919

last inequality holds by the fact VarP 0
s,a

(bV ?,�)  kbV ?,�k1  1
1�� and letting N � log

⇣
54SAN2

(1��)�

⌘
.920

Step 5: finishing up. Inserting (115) and (116) back into (104) and combining with (116) give that921

with probability at least 1 � �,922

��� bP b⇡,bV
s,a

bV b⇡,� � P
b⇡,bV
s,a

bV b⇡,�
���  max
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bV b⇡,�(s),maxs

bV b⇡,�(s)]

���
⇣
P

0
s,a � bP 0

s,a

⌘
[bV ?,�]↵

���+
2�"opt
1 � �

 max
↵2[0,1/(1��)]

���
⇣
P

0
s,a � bP 0

s,a

⌘
[bV ?,�]↵

���+
2�"opt
1 � �

 2

s
log( 54SAN2

(1��)� )

N

q
VarP 0

s,a
(bV ?,�) +

8 log( 54SAN2

(1��)� )

N(1 � �)
+

2�"opt
1 � �

 10

s
log( 54SAN2

(1��)� )

(1 � �)2N
+

2�"opt
1 � �

(118)

holds for all (s, a) 2 S ⇥ A.923

Finally, we complete the proof by compiling everything into the matrix form as follows:924

���� bP
b⇡,bV bV b⇡,� � P

b⇡,bV bV b⇡,�
����  2

s
log( 54SAN2

(1��)� )

N

q
VarP 0

s,a
(bV ?,�)1 +

8 log( 54SAN2

(1��)� )

N(1 � �)
1 +

2�"opt
1 � �

1

 10

s
log( 54SAN2

(1��)� )

(1 � �)2N
1 +

2�"opt
1 � �

1. (119)

C.3.6 Proof of Lemma 13925

The proof can be achieved by directly applying the same routine as Appendix C.3.4. Towards this,926

similar to (97), we arrive at927

⇣
I � �P

b⇡,bV
⌘�1q

Var
P b⇡, bV (bV b⇡,�) 

r
1

1 � �

vuut
1X

t=0

�t
⇣
P

b⇡,bV
⌘t

Var
P b⇡, bV (bV b⇡,�). (120)

To control Var
P b⇡, bV (bV b⇡,�), we denote the minimum value of bV b⇡,� as Vmin = mins2S bV b⇡,�(s) and928

V
0 := bV b⇡,� � Vmin1. By the same argument as (99), we arrive at929

Var
P b⇡, bV (bV b⇡,�)  P

b⇡,bV (V 0 � V
0) � 1
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V

0 � V
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2

�2
kV

0k11 +
2

�
kV

0k1
����

✓
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b⇡,bV

� P
b⇡,bV

◆
bV b⇡,�
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b⇡,bV (V 0 � V

0) � 1

�
V

0 � V
0 +

2

�2
kV

0k11 +
2

�
kV

0k1
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s
log( 54SAN2

(1��)� )

(1 � �)2N
+

2�"opt
1 � �

!
1,

(121)

where the last inequality makes use of Lemma 12. Plugging (121) back into (120) leads to930
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P b⇡, bV (bV b⇡,�)
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◆�����

+

vuuut 1
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log( 54SAN2
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+
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1
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(ii)


s
kV 0k2

1
�(1 � �)

1 +

vuuuut

 
2 + 20

r
log( 54SAN2

(1��)� )

(1��)2N + 2�"opt
1��

!
kV 0k1

(1 � �)2�2
1

(iii)


s
kV 0k2

1
�(1 � �)

1 +

s
24kV 0k1
(1 � �)2�2

1  6

s
kV 0k1

(1 � �)2�2
1,

(122)
where (i) arises from following the routine of (101), (ii) holds by repeating the argument of (102),931

(iii) follows by taking N � log( 54SAN2

(1��)� )

(1��)2 and "opt  1��
� , and the last inequality holds by kV

0k1 932

kV
?,�k1  1

1�� .933

Finally, applying Lemma 7 with P = bP 0 and ⇡ = b⇡ yields934

kV
0k1  max

s2S
bV b⇡,�(s) � min

s2S
bV b⇡,�(s)  1

�max{1 � �,�} ,

which can be inserted into (122) and gives935

⇣
I � �P

b⇡,bV
⌘�1 q

Var
P b⇡, bV (bV b⇡,�)  6

s
1

�3(1 � �)2 max{1 � �,�}1  6

s
1

(1 � �)3�2
1.

D Proof of the lower bound with TV distance: Theorem 2936

To prove Theorem 2, we shall first construct some hard instances and then characterize the sample937

complexity requirements over these instances. Note that the hard instances for robust MDPs are938

different from those for standard MDPs, due to the asymmetric structure induced by the robust RL939

problem formulation to consider the worst-case performance. By constructing a new class of hard940

instances inspired by the asymmetric structure of the RMDP, we develop a new lower bound in941

Theorem 2 that is tighter than prior art (Yang et al., 2022).942

D.1 Construction of the hard problem instances943

Construction of two hard MDPs. Suppose there are two standard MDPs defined as below:944 �
M� =

�
S, A, P

�
, r, �

�
|� = {0, 1}

 
.

Here, � is the discount parameter, S = {0, 1, . . . , S � 1} is the state space. Given any state945

s 2 {2, 3, · · · , S � 1}, the corresponding action space are A = {0, 1, 2, · · · , A � 1}. While for946

states s = 0 or s = 1, the action space is only A0 = {0, 1}. For any � 2 {0, 1}, the transition kernel947

P
� of the constructed MDP M� is defined as948

P
�(s0 | s, a) =

(
p1(s0 = 1) + (1 � p)1(s0 = 0) if (s, a) = (0,�)
q1(s0 = 1) + (1 � q)1(s0 = 0) if (s, a) = (0, 1 � �)
1(s0 = 1) if s � 1

, (123)

where p and q are set to satisfy949

0  p  1 and 0  q = p � � (124)
for some p and � > 0 that shall be introduced later. The above transition kernel P

� implies that state950

1 is an absorbing state, namely, the MDP will always stay after it arrives at 1.951

Then, we define the reward function as952

r(s, a) =

⇢
1 if s = 1
0 otherwise . (125)

Additionally, we choose the following initial state distribution:953

'(s) =

⇢
1, if s = 0
0, otherwise

. (126)

Here, the constructed two instances are set with different probability transition from state 0 with954

reward 0 but not state 1 with reward 1 (which were used in standard MDPs (Li et al., 2022a)), yielding955

a larger gap between the value functions of the two instances.956
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Uncertainty set of the transition kernels. Recalling the uncertainty set assumed throughout this957

section is defined as U�(P�) with TV distance:958

U�(P ) := U�TV(P ) = ⌦ U�TV(Ps,a), U�TV(Ps,a) :=

⇢
P

0
s,a 2 �(S) :

1

2

��P 0
s,a � Ps,a

��
1

 �

�
,

(127)

where P
�
s,a := P

�(· | s, a) is defined similar to (4). In addition, without loss of generality, we recall959

the radius � 2 (0, 1 � c0] with 0 < c0 < 1. With the uncertainty level in hand, taking c1 := c0
2 , p960

and � which determines the instances obey961

p = (1 + c1) max{1 � �,�} and �  c1 max{1 � �,�}, (128)

which ensure 0  p  1 as follows:962

(1 + c1)�  1 � c0 + c1�  1 � c0

2
< 1, (1 + c1) (1 � �)  3

2
(1 � �)  3

4
< 1. (129)

Consequently, applying (124) directly leads to963

p � q � max{1 � �,�}. (130)

To continue, for any (s, a, s
0) 2 S ⇥ A ⇥ S, we denote the infimum probability of moving to the964

next state s
0 associated with any perturbed transition kernel Ps,a 2 U�(P�

s,a) as965

P
�(s0 | s, a) := inf

Ps,a2U�(P�
s,a)

P (s0 | s, a) = max{P (s0 | s, a) � �, 0}, (131)

where the last equation can be easily verified by the definition of U�(P�) in (127). As shall be seen,966

the transition from state 0 to state 1 plays an important role in the analysis, for convenience, we967

denote968

p := P
�(1 | 0,�) = p � �, q := P

�(1 | 0, 1 � �) = q � �, (132)

which follows from the fact that p � q � � in (130).969

Robust value functions and robust optimal policies. To proceed, we are ready to derive the970

corresponding robust value functions, identify the optimal policies, and characterize the optimal971

values. For any MDP M� with the above uncertainty set, we denote ⇡?� as the optimal policy, and972

the robust value function of any policy ⇡ (resp. the optimal policy ⇡?�) as V
⇡,�
� (resp. V

?,�
� ). Then,973

we introduce the following lemma which describes some important properties of the robust (optimal)974

value functions and optimal policies. The proof is postponed to Appendix D.3.1.975

Lemma 14. For any � = {0, 1} and any policy ⇡, the robust value function obeys976

V
⇡,�
� (0) =

�

⇣
z
⇡
� � �

⌘

(1 � �)

✓
1 +

�(z⇡
���)

1��(1��)

◆
(1 � � (1 � �))

, (133)

where z
⇡
� is defined as977

z
⇡
� := p⇡(� | 0) + q⇡(1 � � | 0). (134)

In addition, the robust optimal value functions and the robust optimal policies satisfy978

V
?,�
� (0) =

� (p � �)

(1 � �)
⇣
1 + �(p��)

1��(1��)

⌘
(1 � � (1 � �))

, (135a)

⇡
?
�(� | s) = 1, for s 2 S. (135b)

D.2 Establishing the minimax lower bound979

Note that our goal is to control the quantity w.r.t. any policy estimator b⇡ based on the chosen initial980

distribution ' in (126) and the dataset consisting of N samples over each state-action pair generated981

from the nominal transition kernel P
�, which gives982

⌦
', V

?,�
� � V

b⇡,�
�

↵
= V

?,�
� (0) � V

b⇡,�
� (0).
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Step 1: converting the goal to estimate �. We make the following useful claim which shall be983

verified in Appendix D.3.2: With "  c1
32(1��) , letting984

� = 32(1 � �) max{1 � �,�}"  c1 max{1 � �,�} (136)

which satisfies (128), it leads to that for any policy b⇡,985

⌦
', V

?,�
� � V

b⇡,�
�

↵
� 2"

�
1 � b⇡(� | 0)

�
. (137)

With this connection established between the policy b⇡ and its sub-optimality gap as depicted in (137),986

we can now proceed to build an estimate for �. Here, we denote P� as the probability distribution987

when the MDP is M�, where � can take on values in the set {0, 1}.988

Let’s assume momentarily that an estimated policy b⇡ achieves989

P�
n⌦
', V

?,�
� � V

b⇡,�
�

↵
 "

o
� 7

8
, (138)

then in view of (137), we necessarily have b⇡(� | 0) � 1
2 with probability at least 7

8 . With this in mind,990

we are motivated to construct the following estimate b� for � 2 {0, 1}:991

b� = arg max
a2{0,1}

b⇡(a | 0), (139)

which obeys992

P�
�b� = �

 
� P�

�
b⇡(� | 0) > 1/2

 
� 7

8
. (140)

Subsequently, our aim is to demonstrate that (140) cannot occur without an adequate number of993

samples, which would in turn contradict (137).994

Step 2: probability of error in testing two hypotheses. Equipped with the aforementioned995

groundwork, we can now delve into differentiating between the two hypotheses � 2 {0, 1}. To996

achieve this, we consider the concept of minimax probability of error, defined as follows:997

pe := inf
 

max
�
P0( 6= 0), P1( 6= 1)

 
. (141)

Here, the infimum is taken over all possible tests  constructed from the samples generated from the998

nominal transition kernel P
�.999

Moving forward, let us denote µ� (resp. µ�(s)) as the distribution of a sample tuple (si, ai, s
0
i) under1000

the nominal transition kernel P
� associated with M� and the samples are generated independently.1001

Applying standard results from Tsybakov and Zaiats (2009, Theorem 2.2) and the additivity of the1002

KL divergence (cf. Tsybakov and Zaiats (2009, Page 85)), we obtain1003

pe � 1

4
exp

⇣
� NSAKL

�
µ0 k µ1

�⌘

=
1

4
exp

⇢
� N

⇣
KL

�
P

0(· | 0, 0) k P
1(· | 0, 0)

�
+ KL

�
P

0(· | 0, 1) k P
1(· | 0, 1)

�⌘�
, (142)

where the last inequality holds by observing that1004

KL
�
µ0 k µ1

�
=

1

SA

X

s,a,s0

KL
�
P

0(s0 | s, a) k P
1(s0 | s, a)

�

=
1

SA

X

a2{0,1}

KL
�
P

0(· | 0, a) k P
1(· | 0, a)

�
,

Here, the last equality holds by the fact that P
0(· | s, a) and P

1(· | s, a) only differ when s = 0.1005

Now, our focus shifts towards bounding the terms involving the KL divergence in (142). Given1006

p � q � max{1 � �,�} (cf. (130)), applying Lemma 1 (cf. (23)) gives1007

KL
�
P

0(· | 0, 1) k P
1(· | 0, 1)

�
= KL (p k q)  (p � q)2

(1 � p)p

(i)
=

�2

p(1 � p)
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(ii)
=

1024(1 � �)2 max{1 � �,�}2
"
2

p(1 � p)

 1024(1 � �)2 max{1 � �,�}"2

1 � p
 4096

c1
(1 � �)2 max{1 � �,�}"2, (143)

where (i) stems from the definition in (124), (ii) follows by the expression of � in (136), and the last1008

inequality arises from 1 � q � 1 � p � c0
4 (see (129)).1009

Note that it can be shown that KL
�
P

0(· | 0, 0) k P
1(· | 0, 0)

�
can be upper bounded in a same manner.1010

Substituting (143) back into (142) demonstrates that: if the sample size is selected as1011

N  c1 log 2

8192(1 � �)2 max{1 � �,�}"2 , (144)

then one necessarily has1012

pe � 1

4
exp

⇢
� N

8192

c1
(1 � �)2 max{1 � �,�}"2

�
� 1

8
, (145)

Step 3: putting the results together. Lastly, suppose that there exists an estimator b⇡ such that1013

P0

�⌦
', V

?,�
0 � V

b⇡,�
0

↵
> "

 
<

1

8
and P1

�⌦
', V

?,�
1 � V

b⇡,�
1

↵
> "

 
<

1

8
.

According to Step 1, the estimator b� defined in (139) must satisfy1014

P0

�b� 6= 0
�

<
1

8
and P1

�b� 6= 1
�

<
1

8
.

However, this cannot occur under the sample size condition (144) to avoid contradiction with (145).1015

Thus, we have completed the proof.1016

D.3 Proof of the auxiliary facts1017

D.3.1 Proof of Lemma 141018

Deriving the robust value function over different states. For any M� with � 2 {0, 1}, we first1019

characterize the robust value function of any policy ⇡ over different states. Before proceeding, we1020

denote the minimum of the robust value function over states as below:1021

V
⇡,�
�,min := min

s2S
V
⇡,�
� (s). (146)

Clearly, there exists at least one state s
⇡
�,min that satisfies V

⇡,�
� (s⇡�,min) = V

⇡,�
�,min.1022

With this in mind, it is easily observed that for any policy ⇡, the robust value function at state s = 11023

obeys1024

V
⇡,�
� (1) = Ea⇠⇡(· | 1)

"
r(1, a) + � inf

P2U�(P�
1,a)

PV
⇡,�
�

#

(i)
= 1 + �Ea⇠⇡(· | 1)

h
P
�(1 | 1, a)V ⇡,�

� (1)
i

+ ��V
⇡,�
�,min

(ii)
= 1 + �(1 � �)V ⇡,�

� (1) + ��V
⇡,�
�,min,

(147)

where (i) holds by r(1, a) = 1 for all a 2 A0 and (131), and (ii) follows from P
�(1 | 1, a) = 1 for all1025

a 2 A0.1026

Similarly, for any s 2 {2, 3, · · · , S � 1}, we have1027

V
⇡,�
� (s) = 0 + �Ea⇠⇡(· | s)

h
P
�(1 | s, a)V ⇡,�

� (1)
i

+ ��V
⇡,�
�,min

= � (1 � �) V
⇡,�
� (1) + ��V

⇡,�
�,min, (148)

since r(s, a) = 0 for all s 2 {2, 3, · · · , S � 1} and the definition in (131).1028
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Finally, we move onto compute V
⇡,�
� (0), the robust value function at state 0 associated with any1029

policy ⇡. First, it obeys1030

V
⇡,�
� (0) = Ea⇠⇡(· | 0)

"
r(0, a) + � inf

P2U�(P�
0,a)

PV
⇡,�
�

#

= 0 + �⇡(� | 0) inf
P2U�(P�

0,�)
PV

⇡,�
� + �⇡(1 � � | 0) inf

P2U�(P�
0,1��)

PV
⇡,�
� . (149)

Recall the transition kernel defined in (123) and the fact about the uncertainty set over state 0 in1031

(132), it is easily verified that the following probability vector P1 2 �(S) obeys P1 2 U�(P�
0,�),1032

which is defined as1033

P1(0) = 1 � p + � 1
�
0 = s

⇡
�,min

�
, P1(1) = p = p � �,

P1(s) = � 1
�
s = s

⇡
�,min

�
, 8s 2 {2, 3, · · · , S � 1}, (150)

where p = p � � due to (132). Similarly, the following probability vector P2 2 �(S) also falls into1034

the uncertainty set U�(P�
0,1��):1035

P2(0) = 1 � q + � 1
�
0 = s

⇡
�,min

�
, P2(1) = q = q � �,

P2(s) = � 1
�
0 = s

⇡
�,min

�
8s 2 {2, 3, · · · , S � 1}. (151)

It is noticed that P0 and P1 defined above are the worst-case perturbations, since the probability1036

mass at state 1 will be moved to the state with the least value. Plugging the above facts about1037

P1 2 U�(P�
0,�) and P2 2 U�(P�

0,1��) into (149), we arrive at1038

V
⇡,�
� (0)  �⇡(� | 0)P1V

⇡,�
� + �⇡(1 � � | 0)P2V

⇡,�
�

= �⇡(� | 0)
h
(p � �) V

⇡,�
� (1) + (1 � p) V

⇡,�
� (0) + �V

⇡,�
�,min

i

+ �⇡(1 � � | 0)
h
(q � �) V

⇡,�
� (1) + (1 � q) V

⇡,�
� (0) + �V

⇡,�
�,min

i

(i)
= �

�
z
⇡
� � �

�
V
⇡,�
� (1) + ��V

⇡,�
�,min + �(1 � z

⇡
�)V ⇡,�

� (0), (152)

where the last equality holds by the definition of z
⇡
� in (134). To continue, recursively applying (152)1039

yields1040

V
⇡,�
� (0)

 �
�
z
⇡
� � �

�
V
⇡,�
� (1) + ��V

⇡,�
�,min + �(1 � z

⇡
�)
h
�
�
z
⇡
� � �

�
V
⇡,�
� (1)

+ ��V
⇡,�
�,min + �(1 � z

⇡
�)V ⇡,�

� (0)
i

(i)
 �

�
z
⇡
� � �

�
V
⇡,�
� (1) + ��V

⇡,�
�,min + �(1 � z

⇡
�)
h
�z

⇡
�V

⇡,�
� (1) + �(1 � z

⇡
�)V ⇡,�

� (0)
i

 ...

 �
�
z
⇡
� � �

�
V
⇡,�
� (1) + ��V

⇡,�
�,min + �z

⇡
�

1X

t=1

�
t(1 � z

⇡
�)tV ⇡,�

� (1) + lim
t!1

�
t(1 � z

⇡
�)tV ⇡,�

� (0)

(ii)
 �

�
z
⇡
� � �

�
V
⇡,�
� (1) + ��V

⇡,�
�,min + �(1 � z

⇡
�)

�z
⇡
�

1 � �(1 � z⇡�)
V
⇡,�
� (1) + 0

< �
�
z
⇡
� � �

�
V
⇡,�
� (1) + ��V

⇡,�
�,min + �(1 � z

⇡
�)V ⇡,�

� (1)

= � (1 � �) V
⇡,�
� (1) + ��V

⇡,�
�,min, (153)

where (i) uses V
⇡,�
�,min  V

⇡,�
� (1), (ii) follows from �(1 � z

⇡
�) < 1, and the penultimate line follows1041

from the trivial fact that �z⇡
�

1��(1�z⇡
�) < 1.1042

Combining (147), (148), and (153), we have that for any policy ⇡,1043

V
⇡,�
� (0) = V

⇡,�
�,min, (154)
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which directly leads to1044

V
⇡,�
� (1) = 1 + � (1 � �) V

⇡,�
� (1) + ��V

⇡,�
�,min =

1 + ��V
⇡,�
� (0)

1 � � (1 � �)
. (155)

Let’s now return to the characterization of V
⇡,�
� (0). In view of (154), the equality in (152) holds, and1045

we have1046

V
⇡,�
� (0) = �

�
z
⇡
� � �

�
V
⇡,�
� (1) + �

�
1 � z

⇡
� + �

�
V
⇡,�
� (0)

(i)
= �

�
z
⇡
� � �

� 1 + ��V
⇡,�
� (0)

1 � � (1 � �)
+ �

�
1 � z

⇡
� + �

�
V
⇡,�
� (0)

=
�

⇣
z
⇡
� � �

⌘

1 � � (1 � �)
+ �

✓
1 +

�
z
⇡
� � �

� �� � (1 � � (1 � �))

1 � � (1 � �)

◆
V
⇡,�
� (0)

=
�

⇣
z
⇡
� � �

⌘

1 � � (1 � �)
+ �

0

@1 �
(1 � �)

⇣
z
⇡
� � �

⌘

1 � � (1 � �)

1

AV
⇡,�
� (0),

where (i) arises from (155). Solving this relation gives1047

V
⇡,�
� (0) =

�(z⇡
���)

1��(1��)

(1 � �)

✓
1 +

�(z⇡
���)

1��(1��)

◆ . (156)

The optimal robust policy and optimal robust value function. We move on to characterize the1048

robust optimal policy and its corresponding robust value function. To begin with, denoting1049

z :=
�
�
z
⇡
� � �

�

1 � � (1 � �)
, (157)

we rewrite (156) as1050

V
⇡,�
� (0) =

z

(1 � �)(1 + z)
=: f(z).

Plugging in the fact that z
⇡
� � q � � > 0 in (130), it follows that z > 0. So for any z > 0, the1051

derivative of f(z) w.r.t. z obeys1052

(1 � �)(1 + z) � (1 � �)z

(1 � �)2(1 + z)2
=

1

(1 � �)(1 + z)2
> 0. (158)

Observing that f(z) is increasing in z, z is increasing in z
⇡
� , and z

⇡
� is also increasing in ⇡(� | 0) (see1053

the fact p � q in (130)), the optimal policy in state 0 thus obeys1054

⇡
?
�(� | 0) = 1. (159)

Considering that the action does not influence the state transition for all states s > 0, without loss of1055

generality, we choose the robust optimal policy to obey1056

8s > 0 : ⇡
?
�(� | s) = 1. (160)

Taking ⇡ = ⇡
?
�, we complete the proof by showing that the corresponding robust optimal robust value1057

function at state 0 as follows:1058

V
?,�
� (0) =

�
⇣
z⇡?

� ��
⌘

1��(1��)

(1 � �)

✓
1 +

�(z⇡?
� ��)

1��(1��)

◆ =

�(p��)
1��(1��)

(1 � �)
⇣
1 + �(p��)

1��(1��)

⌘ . (161)
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D.3.2 Proof of the claim (137)1059

Plugging in the definition of ', we arrive at that for any policy ⇡,1060

⌦
', V

?,�
� � V

⇡,�
�

↵
= V

?,�
� (0) � V

⇡,�
� (0) =

�(p�z⇡
�)

1��(1��)

(1 � �)
⇣
1 + �(p��)

1��(1��)

⌘✓
1 +

�(z⇡
���)

1��(1��)

◆ , (162)

which follows from applying (133) and basic calculus. Then, we proceed to control the above term in1061

two cases separately in terms of the uncertainty level �.1062

• When � 2 (0, 1 � �]. Then regarding the important terms in (162), we observe that1063

1 � � < 1 � � (1 � �)  1 � � (1 � (1 � �)) = (1 � �)(1 + �)  2(1 � �), (163)

which directly leads to1064

�
�
z
⇡
� � �

�

1 � � (1 � �)

(i)
 � (p � �)

1 � � (1 � �)
 �c1(1 � �)

1 � � (1 � �)

(ii)
< c1�, (164)

where (i) holds by z
⇡
� < p, and (ii) is due to (163). Inserting (163) and (164) back into1065

(162), we arrive at1066

⌦
', V

?,�
� � V

⇡,�
�

↵
�

�(p�z⇡
�)

2(1��)

(1 � �)(1 + c1�)2
�
�
�
p � z

⇡
�

�

8(1 � �)2

=
� (p � q)

�
1 � ⇡(� | 0)

�

8(1 � �)2
=
��

�
1 � ⇡(� | 0)

�

8(1 � �)2
� 2"

�
1 � ⇡(� | 0)

�
,

(165)

where the last inequality holds by setting (� � 1/2)1067

� = 32(1 � �)2". (166)

Finally, it is easily verified that1068

"  c1

32(1 � �)
=) �  c1(1 � �).

• When � 2 (1 � �, 1 � c1]. Regarding (162), we observe that1069

�� < 1 � � (1 � �) = 1 � � + ��  (1 + �)�  2�, (167)

which directly leads to1070

�
�
z
⇡
� � �

�

1 � � (1 � �)
 � (p � �)

1 � � (1 � �)
 �c1�

1 � � (1 � �)

(i)
< c1, (168)

where (i) holds by (167). Inserting (167) and (168) back into (162), we arrive at1071

⌦
', V

?,�
� � V

⇡,�
�

↵
�

�(p�z⇡
�)

2�

(1 � �)(1 + c1)2
�
�

⇣
p � z

⇡
�

⌘

8(1 � �)�
=
� (p � q)

�
1 � ⇡(� | 0)

�

8(1 � �)�

=
��

�
1 � ⇡(� | 0)

�

8(1 � �)�
� 2"

�
1 � ⇡(� | 0)

�
, (169)

where the last inequality holds by letting (� � 1/2)1072

� = 32(1 � �)�". (170)

Finally, it is easily verified that1073

"  c1

32(1 � �)
=) �  c1�. (171)
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E Proof of the upper bound with �2
divergence: Theorem 31074

The proof of Theorem 3 mainly follows the structure of the proof of Theorem 1 in Appendix C.1075

Throughout this section, for any nominal transition kernel P , the uncertainty set is taken as (see (8))1076

U�(P ) = U��2(P ) := ⌦ U��2(Ps,a),

U��2(Ps,a) :=

(
P

0
s,a 2 �(S) :

X

s02S

(P 0(s0 | s, a) � P (s0 | s, a))2

P (s0 | s, a)
 �

)
. (172)

E.1 Proof of Theorem 31077

In order to control the performance gap
��V ?,� � V

b⇡,�
��
1, recall the error decomposition in (49):1078

V
?,� � V

b⇡,� 
⇣
V
⇡?,� � bV ⇡?,�

⌘
+

2�"opt
1 � �

1 +
⇣
bV b⇡,� � V

b⇡,�
⌘

, (173)

where "opt (cf. (48)) shall be specified later (which justifies Remark ??). To further control (173), we1079

bound the remaining two terms separately.1080

Step 1: controlling

���bV ⇡?,� � V
⇡?,�

���
1

. Towards this, recall the bound in (54) which holds for1081

any uncertainty set:1082

���bV ⇡?,� � V
⇡?,�

���
1

 �max

(����
⇣
I � � bP

⇡?,bV ⌘�1⇣ bP
⇡?,V

V
⇡?,� � P

⇡?,V
V
⇡?,�

⌘����
1

,

����
⇣
I � � bP

⇡?,V
⌘�1⇣ bP

⇡?,V
V
⇡?,� � P

⇡?,V
V
⇡?,�

⌘����
1

)
. (174)

To control the main term bP
⇡?,V

V
⇡?,��P

⇡?,V
V
⇡?,� in (174), we first introduce an important lemma1083

whose proof is postponed to Appendix E.2.1.1084

Lemma 15. Consider any � > 0 and the uncertainty set U�(·) := U��2(·). For any � 2 (0, 1) and1085

any fixed policy ⇡, one has with probability at least 1 � �,1086

��� bP
⇡,V

V
⇡,� � P

⇡,V
V
⇡,�

���
1

 4

s
2(1 + �) log( 24SAN

� )

(1 � �)2N
.

Applying Lemma 15 by taking ⇡ = ⇡
? gives1087

���� bP
⇡?,V

V
⇡?,� � P

⇡?,V
V
⇡?,�

����
1

 4

s
2(1 + �) log( 24SAN

� )

(1 � �)2N
, (175)

which directly leads to1088
�����

⇣
I � � bP

⇡?,bV ⌘�1⇣ bP
⇡?,V

V
⇡?,� � P

⇡?,V
V
⇡?,�

⌘�����
1


���� bP

⇡?,V
V
⇡?,� � P

⇡?,V
V
⇡?,�

����
1

·
����
⇣
I � � bP

⇡?,bV ⌘�1
1

����
1

 4

s
2(1 + �) log( 24SAN

� )

(1 � �)4N
.

(176)
Similarly, we have1089

����
⇣
I � � bP

⇡?,V
⌘�1⇣ bP

⇡?,V
V
⇡?,� � P

⇡?,V
V
⇡?,�

⌘����
1

 4

s
2(1 + �) log( 24SAN

� )

(1 � �)4N
. (177)

Inserting (176) and (177) back to (174) yields1090

���bV ⇡?,� � V
⇡?,�

���
1

 4

s
2(1 + �) log( 24SAN

� )

(1 � �)4N
. (178)
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Step 2: controlling

���bV b⇡,� � V
b⇡,�

���
1

. Recall the bound in (55) which holds for any uncertainty1091

set:1092

���bV b⇡,� � V
b⇡,�

���
1

 �max

(����
⇣
I � �P

b⇡,V
⌘�1⇣ bP

b⇡,bV bV b⇡,� � P
b⇡,bV bV b⇡,�

⌘����
1

,

����
⇣
I � �P

b⇡,bV
⌘�1⇣ bP

b⇡,bV bV b⇡,� � P
b⇡,bV bV b⇡,�

⌘����
1

)
. (179)

We introduce the following lemma which controls bP
b⇡,bV bV b⇡,� � P

b⇡,bV bV b⇡,� in (179); the proof is1093

deferred to Appendix E.2.2.1094

Lemma 16. Consider the uncertainty set U�(·) := U��2(·) and any � 2 (0, 1). With probability at1095

least 1 � �, one has1096

���� bP
b⇡,bV bV b⇡,� � P

b⇡,bV bV b⇡,�
����
1

 12

s
2(1 + �) log( 36SAN2

� )

(1 � �)2N
+

2�"opt
1 � �

+ 4

r
�"opt

(1 � �)2
. (180)

Repeating the arguments from (175) to (178) yields1097

���bV b⇡,� � V
b⇡,�

���
1

 12

s
2(1 + �) log( 36SAN2

� )

(1 � �)4N
+

2�"opt
(1 � �)2

+ 4

r
�"opt

(1 � �)4
. (181)

Finally, inserting (178) and (181) back to (173) complete the proof1098

kV
?,� � V

b⇡,�k1 
���V ⇡?,� � bV ⇡?,�

���
1

+
2�"opt
1 � �

+
���bV b⇡,� � V

b⇡,�
���
1

 4

s
2(1 + �) log( 24SAN

� )

(1 � �)4N
+

2�"opt
1 � �

+ 12

s
2(1 + �) log( 36SAN2

� )

(1 � �)4N

+
2�"opt

(1 � �)2
+ 4

r
�"opt

(1 � �)4

 24

s
2(1 + �) log( 36SAN2

� )

(1 � �)4N
, (182)

where the last line holds by taking "opt  min

⇢q
32(1+�) log( 36SAN2

� )
N ,

4 log( 36SAN2

� )
N

�
.1099

E.2 Proof of the auxiliary lemmas1100

E.2.1 Proof of Lemma 151101

Step 1: controlling the point-wise concentration. Consider any fixed policy ⇡ and the correspond-1102

ing robust value vector V := V
⇡,� (independent from bP 0). Invoking Lemma 5 leads to that for any1103

(s, a) 2 S ⇥ A,1104

��� bP⇡,V
s,a V

⇡,� � P
⇡,V
s,a V

⇡,�
��� =

����� max
↵2[mins V (s),maxs V (s)]

n
P

0
s,a[V ]↵ �

q
�VarP 0

s,a
([V ]↵)

o

� max
↵2[mins V (s),maxs V (s)]

n
bP 0
s,a[V ]↵ �

q
�Var bP 0

s,a
([V ]↵)

o �����

 max
↵2[mins V (s),maxs V (s)]

���
⇣
P

0
s,a � bP 0

s,a

⌘
[V ]↵ +

q
�Var bP 0

s,a
([V ]↵) �

q
�VarP 0

s,a
([V ]↵)

���

 max
↵2[mins V (s),maxs V (s)]

���
⇣
P

0
s,a � bP 0

s,a

⌘
[V ]↵

���+
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+ max
↵2[mins V (s),maxs V (s)]

p
�

���
q
Var bP 0

s,a
([V ]↵) �

q
VarP 0

s,a
([V ]↵)

��� , (183)

where the first inequality follows by that the maximum operator is 1-Lipschitz, and the second1105

inequality follows from the triangle inequality. Observing that the first term in (183) is exactly the1106

same as (89), recalling the fact in (94) directly leads to: with probability at least 1 � �,1107

max
↵2[mins V (s),maxs V (s)]

���
⇣
P

0
s,a � bP 0

s,a

⌘
[V ]↵

���  2

s
log( 2SAN

� )

(1 � �)2N
(184)

holds for all (s, a) 2 S ⇥ A. Then the remainder of the proof focuses on controlling the second term1108

in (183).1109

Step 2: controlling the second term in (183). For any given (s, a) 2 S⇥A and fixed ↵ 2 [0,
1

1�� ],1110

applying the concentration inequality (Panaganti and Kalathil, 2022, Lemma 6) with k[V ]↵k1  1
1�� ,1111

we arrive at1112

���
q
Var bP 0

s,a
([V ]↵) �

q
VarP 0

s,a
([V ]↵)

��� 

s
2 log( 2

� )

(1 � �)2N
(185)

holds with probability at least 1 � �. To obtain a uniform bound, we first observe the follow lemma1113

proven in Appendix E.2.3.1114

Lemma 17. For any V obeying kV k1  1
1�� , the function Js,a(↵, V ) :=

���
q
Var bP 0

s,a
([V ]↵) �1115

q
VarP 0

s,a
([V ]↵)

��� w.r.t. ↵ obeys1116

|Js,a(↵1, V ) � Js,a(↵2, V )|  4

s
|↵1 � ↵2|

1 � �
.

In addition, we can construct an "3-net N"3 over [0,
1

1�� ] whose size is |N"3 |  3
"3(1��) (Vershynin,1117

2018). Armed with the above, we can derive the uniform bound over ↵ 2 [mins V (s), maxs V (s)] ⇢1118

[0, 1/(1 � �)]: with probability at least 1 � �
SA , it holds that for any (s, a) 2 S ⇥ A,1119

max
↵2[mins V (s),maxs V (s)]

���
q
Var bP 0

s,a
([V ]↵) �

q
VarP 0
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↵2[0,1/(1��)]
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VarP 0
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���

(i)
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r
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+ sup
↵2N"3

���
q

Var bP 0
s,a

([V ]↵) �
q
VarP 0

s,a
([V ]↵)

���

(ii)
 4

r
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+

s
2 log(

2SA|N"3 |
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(iii)
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s
2 log(
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where (i) holds by the property of N"3 , (ii) follows from (185), (iii) arises from taking "3 =1120

log(
2SA|N"3 |

� )
8N(1��) , and the last inequality is verified by |N"3 |  3

"3(1��)  24N .1121

Inserting (184) and (186) back to (183) and taking the union bound over (s, a) 2 S ⇥ A, we arrive at1122

that for all (s, a) 2 S ⇥ A, with probability at least 1 � �,1123
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⇡,V
s,a V

���  max
↵2[mins V (s),maxs V (s)]

���
⇣
P

0
s,a � bP 0
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Finally, we complete the proof by recalling the matrix form as below:1124

��� bP
⇡,V

V
⇡,� � P

⇡,V
V
⇡,�

���
1
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(s,a)2S⇥A

��� bP⇡,V
s,a V � P

⇡,V
s,a V

���  4

s
2(1 + �) log( 24SAN

� )

(1 � �)2N
.

E.2.2 Proof of Lemma 161125

Step 1: decomposing the term of interest. The proof follows the routine of the proof of Lemma 121126

in Appendix C.3.5. To begin with, for any (s, a) 2 S ⇥ A, following the same arguments of (183)1127

yields1128

��� bP b⇡,bV
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�
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↵

⌘���� . (187)

Invoking the fact in (118) (for proving Lemma 12), the first term in (187) obeys1129

max
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bV b⇡,�(s),maxs
bV b⇡,�(s)]
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. (188)

The remainder of the proof will focus on controlling the second term of (187).1130

Step 2: controlling the second term of (187). Towards this, we recall the auxiliary robust MDP1131

cMs,u
rob defined in Appendix C.3.5. Taking the uncertainty set U�(·) := U��2(·) for both cMs,u

rob and1132

cMrob, we recall the corresponding robust Bellman operator bT �
s,u(·) in (107) and the following1133

definition in (108)1134

u
? := bV ?,�(s) � � inf

P2U�(es)
P bV ?,�

. (189)

Following the arguments in Appendix C.3.5, it can be verified that there exists a unique fixed point1135

bQ?,�
s,u of the operator bT �

s,u(·), which satisfies 0  bQ?,�
s,u  1

1�� 1. In addition, the corresponding robust1136

value function coincides with that of the operator bT �(·), i.e., bV ?,�
s,u = bV ?,� .1137

We recall the N"2-net over
h
0,

1
1��

i
whose size obeying |N"2 |  3

"2(1��) (Vershynin, 2018). Then1138

for all u 2 N"2 and a fixed ↵, cMs,u
rob is statistically independent from bP 0

s,a, which indicates the1139

independence between [bV ?,�
s,u ]↵ and bP 0

s,a. With this in mind, invoking the fact in (186) and taking the1140
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holds for all (s, a, u) 2 S ⇥ A ⇥ N"2 .1142

To continue, we decompose the term of interest in (187) as follows:1143
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where (i) holds by the triangle inequality, (ii) arises from applying Lemma 2, and the last inequality1144

holds by (48).1145

Armed with the above facts, invoking the identity bV ?,� = bV ?,�
s,u? leads to that for all (s, a) 2 S ⇥ A,1146
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where (i) holds by the triangle inequality, (ii) arises from applying Lemma 2 and the fact1148 ���bV ?,�
s,u � bV ?,�

s,u?

���
1

 "2
(1��) (see (114)), (iii) follows from (190), and the last inequality holds1149
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2 .1150

In summary, inserting (192) back to (191) and (191) leads to with probability at least 1 � �,1151
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(193)

holds for all (s, a) 2 S ⇥ A.1152

Step 4: finishing up. Inserting (193) and (188) back to (187), we complete the proof: with1153

probability at least 1 � �,1154
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E.2.3 Proof of Lemma 171155

For any 0  ↵1,↵2  1/(1 � �), one has1156
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where (i) holds by the fact ||x| � |y||  |x � y| for all x, y 2 R, (ii) follows from the fact that1157 p
x � p

y 
p

x � y for any x � y � 0 and VarP ([V ]↵2) � VarP ([V ]↵1) for any transition kernel1158

P 2 �(S), (iii) holds by the definition of VarP (·) defined in (24), and the last inequality arises from1159

0  ↵1,↵2  1/(1 � �).1160

F Proof of the lower bound with �2
divergence: Theorem 41161

To prove Theorem 4, we shall first construct some hard instances and then characterize the sample1162

complexity requirements over these instances. The structure of the hard instances are the same as the1163

ones used in the proof of Theorem 2.1164

F.1 Construction of the hard problem instances1165

First, note that we shall use the same MDPs defined in Appendix D.1 as follows1166

�
M� =

�
S, A, P

�
, r, �

�
|� = {0, 1}

 
.

In particular, we shall keep the structure of the transition kernel in (123), reward function in (125)1167

and initial state distribution in (126), while p and � shall be specified differently later.1168
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Uncertainty set of the transition kernels. Recalling the uncertainty set associated with �2 diver-1169

gence in (172), for any uncertainty level �, the uncertainty set throughout this section is defined as1170

U�(P�):1171

U�(P�) := ⌦ U��2(P�
s,a),

U��2(P�
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(
Ps,a 2 �(S) :

X

s02S

�
P (s0 | s, a) � P

�(s0 | s, a)
�2

P�(s0 | s, a)
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)
. (196)

Clearly, U�(P�
s,a) = P

�
s,a whenever the state transition is deterministic for �2 divergence. Here,1172

q and � (whose choice will be specified later in more detail) which determine the instances are1173

specified as1174

0  q =

⇢
1 � � if � 2

�
0,

1��
4

�

�
1+� if � 2

⇥ 1��
4 , 1

� , p = q + �, (197)

and1175

0 < � 
(

1
4 (1 � �) if � 2

�
0,

1��
4

�

min
n

1
4 (1 � �), 1

2(1+�)

o
if � 2

⇥ 1��
4 , 1

� . (198)

This directly ensures that

p = � + q  max

⇢ 1
2 + �

1 + �
,
5

4
(1 � �)

�
 1

since � 2
⇥
3
4 , 1

�
.1176

To continue, for any (s, a, s
0) 2 S ⇥ A ⇥ S, we denote the infimum probability of moving to the1177

next state s
0 associated with any perturbed transition kernel Ps,a 2 U�(P�

s,a) as1178

P
�(s0 | s, a) := inf

Ps,a2U�(P�
s,a)

P (s0 | s, a). (199)

In addition, we denote the transition from state 0 to state 1 as follows, which plays an important role1179

in the analysis,1180

p := P
�(1 | 0,�), q := P

�(1 | 0, 1 � �). (200)

Before continuing, we introduce some facts about p and q which are summarized as the following1181

lemma; the proof is postponed to Appendix F.3.1.1182

Lemma 18. Consider any � 2 (0, 1) and any p, q, � obeying (197) and (198), the following1183
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,
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⇥ 1��

4 , 1
�
.

(201)

Value functions and optimal policies. Armed with above facts, we are positioned to derive the1185

corresponding robust value functions, the optimal policies, and its corresponding optimal robust1186

value functions. For any RMDP M� with the uncertainty set defined in (196), we denote the robust1187

optimal policy as ⇡?�, the robust value function of any policy ⇡ (resp. the optimal policy ⇡?�) as1188

V
⇡,�
� (resp. V

?,�
� ). The following lemma describes some key properties of the robust (optimal) value1189

functions and optimal policies whose proof is postponed to Appendix F.3.2.1190

Lemma 19. For any � = {0, 1} and any policy ⇡, one has1191

V
⇡,�
� (0) =

�z
⇡
�

(1 � �)
⇣
1 � �

�
1 � z⇡�

�⌘ , (202)

where z
⇡
� is defined as1192

z
⇡
� := p⇡(� | 0) + q⇡(1 � � | 0). (203)

In addition, the optimal value functions and the optimal policies obey1193

V
?,�
� (0) =

�p

(1 � �)
�
1 � �

�
1 � p

�� , (204a)

⇡
?
�(� | s) = 1, for s 2 S. (204b)
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F.2 Establishing the minimax lower bound1194

Our goal is to control the performance gap w.r.t. any policy estimator b⇡ based on the generated1195

dataset and the chosen initial distribution ' in (126), which gives1196

⌦
', V

?,�
� � V

b⇡,�
�

↵
= V

?,�
� (0) � V

b⇡,�
� (0). (205)

Step 1: converting the goal to estimate �. To achieve the goal, we first introduce the following1197

fact which shall be verified in Appendix F.3.3: given1198

" 
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1
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choosing1199
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3(1��)

⌘
,

16
3(1+�)" if � >
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(207)

which satisfies the requirement of � in (197), it holds that for any policy b⇡,1200

⌦
', V

?,�
� � V

b⇡,�
�

↵
� 2"

�
1 � b⇡(� | 0)

�
. (208)

Step 2: arriving at the final results. To continue, following the same definitions and argument in1201

Appendix D.2, we recall the minimax probability of the error and its property as follows:1202
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4
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⇢
� N

⇣
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�
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�
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�
P
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�⌘�
, (209)

then we can complete the proof by showing pe � 1
8 given the bound for the sample size N . In the1203

following, we shall control the KL divergence terms in (209) in three different cases.1204

• Case 1: � 2
�
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1��
4

�
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Armed with the above facts, applying Lemma 1 (cf. (23)) yields1206
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where (i) follows from the definition in (197), (ii) holds by plugging in the expression of � in1207

(207), and (iii) arises from (210). The same bound can be established for KL
�
P

0
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then one necessarily has1211
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• Case 2: � 2
h

1��
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1
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⌘
. Applying the facts of � in (198), one has1212
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Given (214), applying Lemma 1 (cf. (23)) yields1213
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where (i) follows from the definition in (197), (ii) holds by plugging in the expression of � in1214

(207), and (iii) arises from (214). The same bound can be established for KL
�
P

0
1 (· | 0, 0) k1215

P
1
1 (· | 0, 0)

�
.1216

Substituting (215) back into (142) demonstrates that: if the sample size is chosen as1217

N  � log 2

16384(1 � �)4(1 + �)4"2
, (216)

then one necessarily has1218

pe � 1

4
exp

⇢
� N

16384(1 � �)4(1 + �)4"2

�

�
� 1

8
. (217)

• Case 3: � >
1

3(1��) � 1
3 . Regarding this, one gives1219

1 � q > 1 � p = 1 � q � � � 1

1 + �
� 1

4(1 + �)
� 1

2(1 + �)
,

p � q � 1

4
. (218)

Given p � q � 1/2 and (218), applying Lemma 1 (cf. (23)) yields1220

KL
�
P

0(· | 0, 1) k P
1(· | 0, 1)

�
= KL (p k q)  (p � q)2

(1 � p)p

(i)
=

�2

p(1 � p)

(ii)


64
(1+�)2 "

2

p(1 � p)
(iii)
 492"2

�
, (219)

where (i) follows from the definition in (197), (ii) holds by plugging in the expression of � in1221

(207), and (iii) arises from (218). The same bound can be established for KL
�
P

0
1 (· | 0, 0) k1222

P
1
1 (· | 0, 0)

�
. Substituting (219) back into (142) demonstrates that: if the sample size is1223

chosen as1224

N  � log 2

984"2
, (220)

then one necessarily has1225

pe � 1

4
exp

⇢
� N

984"2

�

�
� 1

8
. (221)
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Step 3: putting things together. Finally, summing up the results in (212), (216), and (220),1226

combined with the requirement in (206), one has when1227

"  c1

(
1

1�� if � 2
�
0,

1��
4

�

max
n

1
(1+�)(1��) , 1

o
if � 2

⇥ 1��
4 , 1

� , (222)

taking1228

N  c2

(
1

(1��)3"2 if � 2
�
0,

1��
4

�

�
min{1,(1��)4(1+�)4}"2 if � 2

⇥ 1��
4 , 1

� (223)

leads to pe � 1
8 , for some universal constants c1, c2 > 0.1229

F.3 Proof of the auxiliary facts1230

We begin with some basic facts about the �2 divergence defined in (22) for any two Bernoulli1231

distributions Ber(w) and Ber(x), denoted as1232

f(w, x) := �
2(x k w) =

(w � x)2

w
+

(1 � w � (1 � x))2

1 � w
=

(w � x)2

w(1 � w)
. (224)

For x 2 [0, w), it is easily verified that the partial derivative w.r.t. x obeys @f(w,x)
@x = 2(x�w)

w(1�w) < 0,1233

implying that1234

8 x1 < x2 2 [0, w), f(w, x1) > f(w, x2). (225)
In other words, the �2 divergence f(w, x) increases as x decreases from w to 0.1235

Next, we introduce the following function for any fixed � 2 (0, 1) and any x 2
h

�
1+� , 1

⌘
:1236

f�(x) := inf
{y:�2(ykx)�,y2[0,x]}

y
(i)
= max

n
0, x �

p
�x(1 � x)

o
= x �

p
�x(1 � x), (226)

where (i) has been verified in Yang et al. (2022, Corollary B.2), and the last equality holds since1237

x � �
1+� . The next lemma summarizes some useful facts about f�(·), which again has been verified1238

in Yang et al. (2022, Lemma B.12 and Corollary B.2).1239

Lemma 20. Consider any � 2 (0, 1). For x 2 [ �
1+� , 1), f�(x) is convex and differentiable, which1240

obeys1241

f
0
�(x) = 1 +

p
�(2x � 1)

2
p

x(1 � x)
.

F.3.1 Proof of Lemma 181242

Let us control q and p respectively.1243

Step 1: controlling q. We shall control q in different cases w.r.t. the uncertainty level �.1244

• Case 1: � 2
�
0,

1��
4

�
. In this case, recall that q = 1 � � defined in (197), applying (226)1245

with x = q leads to1246

1 � � = q > q = f�(q) = 1 � � �
p
��(1 � �) � 1 � � �

r
1 � �

4
�(1 � �) >

1 � �

2
.

(227)

• Case 2: � 2
⇥ 1��

4 , 1
�
. Note that it suffices to treat P

�
0,1�� as a Bernoulli distribution Ber(q)1247

over states 1 and 0, since we do not allow transition to other states. Recalling q = �
1+� in1248

(197) and noticing the fact that1249

f(q, 0) =
q
2

q
+

(1 � (1 � q))2

1 � q
=

q

(1 � q)
= �, (228)

one has the probability Ber(0) falls into the uncertainty set of Ber(q)) of size �. As a result,1250

recalling the definition (200) leads to1251

q = P
�(1 | 0, 1 � �) = 0, (229)

since q � 0.1252
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Step 2: controlling p. To characterize the value of p, we also divide into several cases separately.1253

• Case 1: � 2
�
0,

1��
4

�
. In this case, note that p > q = 1 � � � �

1+� . Therefore, applying1254

that f�(·) is convex and the form of its derivative in Lemma 20, one has1255

p = f�(p) � f�(q) + f
0
�(q)(p � q)

= q +

 
1 +

p
�(2q � 1)

2
p

q(1 � q)

!
� � q +

0

@1 �

q
1��

4 (1 � 2(1 � �))

2
p

(1 � �)�

1

A� � q +
3�

4
.

(230)

Similarly, applying Lemma 20 leads to1256

p = f�(p)  f�(q) + f
0
�(p)(p � q)

= q +

 
1 �

p
�(1 � 2p)

2
p

p(1 � p)

!
�  q + �, (231)

where the last inequality holds by 1�2p > 0 due to the fact p = q+�  5
4 (1��)  5

16 <
1
21257

(cf. (198) and � 2 [ 34 , 1)). To sum up, given � 2
�
0,

1��
4

�
, combined with (227), we arrive1258

at1259

q +
3

4
�  p  q + �  5(1 � �)

4
, (232)

where the last inequality holds by �  1
4 (1 � �) (see (197)).1260

• Case 2: � 2
⇥ 1��

4 , 1
�
. We recall that p = q + � > q = �

1+� in (197). To derive the lower1261

bound for p in (200), similar to (230), one has1262

p = f�(p) � f�(q) + f
0
�(q)(p � q)

= q +

 
1 +

p
�(2q � 1)

2
p

q(1 � q)

!
�

(i)
= 0 +

0

@1 +

p
�
��1
1+�

2
q

�
1+�

1
1+�

1

A� =

✓
1 +

� � 1

2

◆
� =

✓
� + 1

2

◆
�, (233)

where (i) follows from q = �
1+� and q = 0 (see (229)). For the other direction, similar to1263

(231), we have1264

p = f�(p)  f�(q) + f
0
�(p)(p � q) = q +

 
1 +

p
�(2p � 1)

2
p

p(1 � p)

!
�

(i)
=

 
1 +

p
�(2p � 1)

2
p

p(1 � p)

!
�

(ii)
=

0

BB@1 +

p
�

⇣
��1
1+� + 2�

⌘

2

r⇣
�

1+� + �
⌘⇣

1
1+� � �

⌘

1

CCA�

(iii)


0

@1 +

p
�(1 + 2�)

2
q

�
1+� · 1

2(1+�)

1

A�
(iv)


✓
1 + (1 + �)

✓
1 +

1

1 + �

◆◆
� = (3 + �)�,

(234)

where (i) holds by q = 0 (see (229)), (ii) follows from plugging in p = q + � = �
1+� + �,1265

and (iii) and (iv) arises from � = min
n

1
4 (1 � �), 1

2(1+�)

o
 1 in (198). Combining (233)1266

and (234) yields1267

� + 1

2
�  p  (3 + �)�. (235)
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Step 3: combining all the results. Finally, summing up the results for both q (in (227) and (229))1268

and p (in (232) and (235)), we arrive at the advertised bound.1269

F.3.2 Proof of Lemma 191270

The robust value function for any policy ⇡. For any M� with � 2 {0, 1}, we first characterize1271

the robust value function of any policy ⇡ over different states.1272

Towards this, it is easily observed that for any policy ⇡, the robust value functions at state s = 1 or1273

any s 2 {2, 3, · · · , S � 1} obey1274

V
⇡,�
� (1)

(i)
= 1 + �V

⇡,�
� (1) =

1

1 � �
(236a)

and1275

8s 2 {2, 3, · · · , S} : V
⇡,�
� (s)

(ii)
= 0 + �V

⇡,�
� (1) =

�

1 � �
, (236b)

where (i) and (ii) is according to the facts that the transitions defined over states s � 1 in (123) give1276

only one possible next state 1, leading to a non-random transition in the uncertainty set associated with1277

�
2 divergence, and r(1, a) = 1 for all a 2 A0 and r(s, a) = 0 holds all (s, a) 2 {2, 3, · · · , S�1}⇥A.1278

To continue, the robust value function at state 0 with policy ⇡ satisfies1279

V
⇡,�
� (0) = Ea⇠⇡(· | 0)

"
r(0, a) + � inf

P2U�(P�
0,a)

PV
⇡,�
�

#

= 0 + �⇡(� | 0) inf
P2U�(P�

0,�)
PV

⇡,�
� + �⇡(1 � � | 0) inf

P2U�(P�
0,1��)

PV
⇡,�
� (237)

(i)
 �

1 � �
, (238)

where (i) holds by that kV
⇡,�
� k1  1

1�� . Summing up the results in (236b) and (238) leads to1280

8s 2 {2, 3, · · · , S}, V
⇡,�
� (1) > V

⇡,�
� (s) � V

⇡,�
� (0). (239)

With the transition kernel in (123) over state 0 and the fact in (239), (237) can be rewritten as1281

V
⇡,�
� (0) = �⇡(� | 0) inf

P2U�(P�
0,�)

PV
⇡,�
� + �⇡(1 � � | 0) inf

P2U�(P�
0,1��)

PV
⇡,�
�

(i)
= �⇡(� | 0)

h
pV

⇡,�
� (1) +

�
1 � p

�
V
⇡,�
� (0)

i
+ �⇡(1 � � | 0)

h
qV

⇡,�
� (1) +

�
1 � q

�
V
⇡,�
� (0)

i

(ii)
= �z

⇡
�V

⇡,�
� (1) + �

�
1 � z

⇡
�

�
V
⇡,�
� (0)

=
�z

⇡
�

(1 � �)
⇣
1 � �

�
1 � z⇡�

�⌘ , (240)

where (i) holds by the definition of p and q in (200), (ii) follows from the definition of z
⇡
� in (203),1282

and the last line holds by applying (236a) and solving the resulting linear equation for V
⇡,�
� (0).1283

Optimal policy and its optimal value function. To continue, observing that V
⇡,�
� (0) =: f(z⇡�) is1284

increasing in z
⇡
� since the derivative of f(z⇡�) w.r.t. z

⇡
� obeys1285

f
0(z⇡�) =

�(1 � �)
⇣
1 � �

�
1 � z

⇡
�

�⌘
� �

2
z
⇡
�(1 � �)

(1 � �)2
⇣
1 � �

�
1 � z⇡�

�⌘2 =
�

⇣
1 � �

�
1 � z⇡�

�⌘2 > 0,

where the last inequality holds by 0  z
⇡
�  1. Further, z

⇡
� is also increasing in ⇡(� | 0) (see the fact1286

p � q in (200)), the optimal robust policy in state 0 thus obeys1287

⇡
?
�(� | 0) = 1. (241)
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Considering that the action does not influence the state transition for all states s > 0, without loss of1288

generality, we choose the optimal robust policy to obey1289

8s > 0 : ⇡
?
�(� | s) = 1. (242)

Taking ⇡ = ⇡
?
� and z

⇡?
�

� = p in (240), we complete the proof by showing the corresponding optimal1290

robust value function at state 0 as follows:1291

V
?,�
� (0) =

�z
⇡?
�

�

(1 � �)
⇣
1 � �

⇣
1 � z

⇡?
�

�

⌘⌘ =
�p

(1 � �)
�
1 � �

�
1 � p

�� .

F.3.3 Proof of the claim (208)1292

Plugging in the definition of ', we arrive at that for any policy ⇡,1293
⌦
', V

?,�
� � V

⇡,�
�

↵
= V

?,�
� (0) � V

⇡,�
� (0)

(i)
=

�p

(1 � �)
�
1 � �

�
1 � p

�� �
�z

⇡
�

(1 � �)
⇣
1 � �

�
1 � z⇡�

�⌘

=
�

⇣
p � z

⇡
�

⌘

�
1 � �

�
1 � p

�� ⇣
1 � �

�
1 � z⇡�

�⌘
(ii)
�

�

⇣
p � z

⇡
�

⌘

�
1 � �

�
1 � p

��2

(iii)
=

�(p � q)
�
1 � ⇡(� | 0)

�

�
1 � �

�
1 � p

��2 , (243)

where (i) holds by applying Lemma 19, (ii) arises from z
⇡
�  p (see the definition of z

⇡
� in (203) and1294

the fact p � q + 3�
4 in (200)), and (iii) follows from the definition of z

⇡
� in (203).1295

To further control (243), we consider it in two cases separately:1296

• Case 1: � 2
�
0,

1��
4

�
. In this case, applying Lemma 18 to (243) yields1297

⌦
', V

?,�
� � V

⇡,�
�

↵
�
�(p � q)

�
1 � ⇡(� | 0)

�

�
1 � �

�
1 � p

��2 �
�

3�
4

�
1 � ⇡(� | 0)

�
⇣
1 � �

⇣
1 � 5(1��)

4

⌘⌘2

�
�
�
1 � ⇡(� | 0)

�

9(1 � �)2
= 2"

�
1 � ⇡(� | 0)

�
, (244)

where the penultimate inequality follows from � � 3/4, and the last inequality holds by1298

taking the specification of � in (207) as follows:1299

� = 18(1 � �)2". (245)

It is easily verified that taking "  1
72(1��) as in (206) directly leads to meeting the1300

requirement in (198), i.e., �  1
4 (1 � �).1301

• Case 2: � 2
⇥ 1��

4 , 1
�
. Similarly, applying Lemma 18 to (243) gives1302

⌦
', V

?,�
� � V

⇡,�
�

↵
�
�(p � q)

�
1 � ⇡(� | 0)

�

�
1 � �

�
1 � p

��2 �
�
�+1

2 �
�
1 � ⇡(� | 0)

�

min
n

1, (1 � � (1 � (3 + �)�))2
o

(246)

Before continuing, it can be verified that1303

1 � � (1 � (3 + �)�) = 1 � � + �(3 + �)�

(i)
 1 � � + (3 + �) min

⇢
1

4
(1 � �),

1

2(� + 1)

�
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 min

⇢
2(1 + �)(1 � �),

3

2

�
, (247)

where (i) is obtained by �  min
n

1
4 (1 � �), 1

2(1+�)

o
(see (197)). Applying the above fact1304

to (246) gives1305

⌦
', V

?,�
� � V

⇡,�
�

↵
�

�
�+1

2 �
�
1 � ⇡(� | 0)

�

min
n

1, (1 � � (1 � (3 + �)�))2
o

(i)
�

3(� + 1)�
�
1 � ⇡(� | 0)

�

8 min {4(1 + �)2(1 � �)2, 1}

�
�
�
1 � ⇡(� | 0)

�

min
n

32(1 + �)(1 � �)2, 8
3(1+�)

o = 2"
�
1 � ⇡(� | 0)

�
, (248)

where (i) holds by � � 3
4 and (246), and the last equality holds by the specification in (207):1306

� =

(
64(1 + �)(1 � �)2" if � 2

h
1��

4 ,
1

3(1��)

⌘
,

16
3(1+�)" if � >

1
3(1��) .

(249)

As a result, it is easily verified that the requirement in (198)1307

�  min

⇢
1

4
(1 � �),

1

2(1 + �)

�
(250)

is met if we let1308

" 
(

1
256(1+�)(1��) if � 2

h
1��

4 ,
1

3(1��)

⌘
,

3
32 if � >

1
3(1��) ,

(251)

as in (206).1309

The proof is then completed by summing up the results in the above two cases.1310

1311
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