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Abstract

Machine learning (ML) models are only as good as the data they are trained on. But
recent studies have found datasets widely used to train and evaluate ML models, e.g.
ImageNet, to have pervasive labeling errors. Erroneous labels on the train set hurt
ML models’ ability to generalize, and they impact evaluation and model selection
using the test set. Consequently, learning in the presence of labeling errors is an
active area of research, yet this field lacks a comprehensive benchmark to evaluate
these methods. Most of these methods are evaluated on a few computer vision
datasets with significant variance in the experimental protocols. With such a large
pool of methods and inconsistent evaluation, it is also unclear how ML practitioners
can choose the right models to assess label quality in their data. To this end, we
propose a benchmarking environment AQuA to rigorously evaluate methods that
enable machine learning in the presence of label noise. We also introduce a design
space to delineate concrete design choices of label error detection models. We hope
that our proposed design space and benchmark enable practitioners to choose the
right tools to improve their label quality and that our benchmark enables objective
and rigorous evaluation of machine learning tools facing mislabeled data.

1 Introduction

A lot of machine learning (ML) research is devoted to making efficient and effective use of available
data to learn accurate, high-fidelity, and interpretable models, with little to no focus on the quality of
the data they are trained and evaluated on. Nonetheless, it is widely recognized that ML models are
only as good as the data they rely on, i.e., the quality of data imposes practical limits to what ML
models can achieve. Not only are datasets used to train ML models; they also serve as benchmarks to
measure the state-of-the-art and validate theoretical findings. Thus, high quality large labeled datasets
are the cornerstone of progress in supervised machine learning. However, the data is rarely free of
noise, which can both manifest in the features of the data (feature noise) and in labels that categorize
them (label noise). Between feature and label noise, the former has been found to be much more
harmful to machine learning models [1, 2, 3]. To make matters worse, label noise is prevalent in
popular ML benchmarks. A recent study estimated an average of at least 3.3% label errors across 10
datasets commonly used for benchmarking computer vision, natural language, and audio classification
algorithms [4]. Consequently, a growing body of research is devoted to understanding the harms of
label noise and to developing techniques to identify and mitigate labeling errors.
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Figure 1: Overview of the AQuA benchmark framework. AQuA comprises of datasets from 4 modalities,
4 single-label and 3 multi-annotator label noise injection methods, 4 state-of-the-art label error
detection models, classification models, and several evaluation metrics beyond metrics of predictive
accuracy. We are in the process of integrating several fairness, generalization, and robustness metrics
into AQuA. The red and blue arrows show two example experimental pipelines for image data and
time-series data, respectively.

In recent years, over 50 papers have been written on this topic, including 6 surveys, yet the literature
lacks a comprehensive benchmark to evaluate the available methods. The evaluation of existing
methods is lacking along the following dimensions:

Arbitrary choice of datasets and limited data modalities. To the best of our knowledge, relevant
studies have used over 40 datasets (e.g., ImageNet [5]) and their variations (e.g., Imagenette [6],
ImageNet-100 [7]) for evaluation, but mostly on computer vision related tasks, with less than 15
studies using text data, 7 using tabular data and only 1 paper using time-series data.

Arbitrary choice of classification models. The ultimate goal of identifying labeling errors is to
learn a classification model using training data with clean labels. Much like the datasets, relevant
studies have used over 47 different classification architectures (e.g., ResNet [8], MobileNet [9],
ResNeXt [10], BERT [11], XLM-RoBERTa [12], etc) to measure the impact of label cleaning.

Inconsistent evaluation protocols and metrics. Different studies conduct different experiments to
measure the efficacy of their proposed methods (e.g., the accuracy of the label cleaning method, or
performance of the downstream model before and after label cleaning, etc.) and use various measures
of success (e.g., high accuracy, F1-score, or low error rate).

With such diversity and inconsistency in the way in which these methods are evaluated, it is hard
to measure the state of the art. To bridge this gap, we propose the Annotation Quality Assessment,
AQuA, the first benchmark framework to evaluate machine learning methods in the presence of label
noise (Fig. 1). We also elucidate the design space for such models, with the hope that it will not only
foster future research on detecting labeling errors, but also enable ML practitioners to choose the
appropriate label cleaning tools for their specific data and tasks. We run a large-scale experiment (>
1000 unique experiments) and make several interesting observations, demonstrating AQuA’s efficacy
in benchmarking machine learning models in the presence of label noise.

2 Background and Problem Formulation

Sources of labeling errors. Labeling errors can arise from automated labeling processes such as
crowd-sourcing [13], programmatic weak supervision [14, 15], and human error (e.g., due to lack of
expertise or low confidence in expert assessment) [16]3. Errors may also stem from idiosyncrasies

3The root cause of labeling errors in crowd-sourcing is different from human expert annotation. For instance,
errors during crowd-sourcing have been shown to arise from other factors such as gaming the system to maximize
monetary gains [13].
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of the annotation procedure and the corresponding guidelines themselves [17]. Finally, existing
labels may also become inconsistent with prevailing knowledge due to constantly evolving problem
definitions and domain knowledge leading to concept drift4.

Figure 2: Labeling errors in widely used bench-
marks: CIFAR-10, Clothing-100K, MIT-BIH, and
TweetEval Hate Speech datasets. Observed labels
are in red and true labels are in green.

Impact of labeling errors. At training time,
labeling errors can cripple an ML model’s abil-
ity to generalize and introduce undesirable bi-
ases in its hypothesis space [19, 20]. Mislabeled
training data is especially problematic for over-
parameterized deep neural networks, which can
achieve zero training error even on randomly-
assigned labels [20]. At test time, labeling errors
can lead to noisy model evaluations and inval-
idate common model selection strategies. In
safety-critical settings, models trained, evalu-
ated, and selected using mislabeled data can be
ineffective at best and can lead to disastrous outcomes at worst. Finally, recent studies in the context
of fairness have shown that naively enforcing parity constraints based on noisy labels can harm
groups that are unaffected by label noise [21, 22].

Problem formulation. Due to the far-reaching consequences that labeling errors can have on model
training and evaluation, the literature has attacked multiple different but related problems, for example:
(1) label error detection, identify which data points have erroneous labels [23, 24], (2) label noise
estimation, estimate the proportion of data with noisy labels [25], (3) label noise robust learning,
learn models robust to label noise [26, 27], and (4) noise transition matrix estimation, estimate the
parameters of the noisy label generation process [28].

In this work, we focus on the label error detection problem, because (a) it is the most general
of the above problem types, i.e., with knowledge of labeling errors, we can estimate the noise rate,
parameters of the noise generation process and train ML models free from label noise, (b) it provides
practitioners greater visibility of issues that plague their data, and (c) allows them to directly rectify
these errors.

Label error detection problem: Assume a dataset D⇤ = {(xi, y
⇤
i )}Ni=1 2 (X ,Y), where xi and y⇤

i denote
the features and labels, respectively. In practice, we do not have access to D⇤, but instead observe a noisy
dataset D = {(xi, yi)}Ni=1 2 (X ,Y)a. We call yi a labeling errorb if yi 6= y⇤

i , and correctly labeled,
otherwise. Our goal is to identify all labeling errors in D.

aWe assume that we observe the true features since we are interested in identifying labeling errors and
isolating their impact on downstream model performance.

bA note on terminology: In this paper, we will sometimes refer to labeling errors as noisy labels or label
noise, and the process of identifying them as label error detection, or loosely as label cleaning.

3 A Design Space of Labeling Error Detection Models

In this section, we seek to align the dimensions along which label error detection models vary, with
dimensions that can facilitate model selection for ML practitioners. We provide a brief overview of
these dimensions below and defer detailed discussions to Appendix A.1.

What inputs do you have? All label error detection models take features and noisy labels as input.
In most datasets, data points are labeled by multiple experts, but their individual annotations are
seldom available. When available, multi-annotator labels can be used to identify data points that
are inherently ambiguous [29], or to model individual annotators to estimate their expertise and
propensity for mislabeling examples [7], and using these to identify likely labeling errors. While most
methods identify labeling errors and automatically remove or correct them, a few rely on a human

4For example, sepsis is one of the most sought-after clinical conditions to predict. However, with the
constantly evolving definition of sepsis, the labeling process is frequently affected, causing many annotations in
legacy benchmark data to become inconsistent with the latest guidelines [18], a very dangerous risk to take in
the particular type of application area
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expert who can be queried to relabel suspicious data points [29, 30]. Some other methods assume
access to data points called anchor points, which most certainly belong to a particular class [31, 32].
The number of anchor points required is generally proportional to the number of classes, and quickly
becomes prohibitive for multi-class classification problems, and in more complicated noise settings
[33]. Finally, a vast majority of methods assume access to classification models, and primarily
differ in their number (model-free [34], one or multiple models [35, 36, 37, 38]), nature of access
(prediction-only [23] versus access to logits [24], gradients [30] etc.), and extent of pre-training (no
pre-training [23, 24] versus large-scale pre-training e.g. large language models [39]).

What inputs do you have?

What outputs do you want?                 What would you do with the outputs?

Multi-annotator labels Domain expert Anchor Points Pre-trained classifiers

Noise structure Heuristics Modeling Decisions

FilteringLabel errors
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Figure 3: Design space of labeling error detection
models to delineate concrete design choices.

What modeling assumptions can you make?
Different studies use different assumptions on
data (noise structure and clusterability), heuris-
tics (model self-confidence and perceptual un-
certainty), and modeling decisions (whether to
explicitly model the transition matrix and multi-
network training). Most studies in the literature
explicitly assume some form of structure in the
noise present in the data [23, 34, 40, 28]. Most
early studies assumed class-dependent noise,
i.e., the likelihood of error is only dependent
on the latent true class, not on the data [23, 28].
There is growing interest in more realistic forms
of noise where the probability of error also de-
pends on the features of a data point (instance-
dependent noise) [41, 42]. To this end, some
recent studies have shown promising results by
leveraging natural notions of similarity between
data points and their labels. For example, Zhu
et al. [34] assume that examples with similar
features should have similar labels.

Many studies treat a trained model’s low confidence that a data point belongs to its observed label as
a heuristic likelihood to identify labeling errors [24, 23, 43]. In a similar vein, a recent study used the
loss of a pre-trained large language model on each data point to identify mislabeled examples [39].
When multi-annotator labels are available, as discussed before, some studies have also used them to
model the perceptual uncertainty in the annotators to identify labeling errors.

Finally, studies differ in their modeling decisions. While some explicitly estimate a data structure
called the noise transition matrix, which encodes the joint probability of latent true and observed
noisy labels [23, 33, 27], others do not [24, 30, 14]. Finally, there is a body of work on label noise
robust learning using multiple model instances either using knowledge distillation [35, 36, 44] or
meta-learning [38, 37]. The key idea is to use a cooperative game between models to identify labeling
errors and ensure that the eventually deployed model only learns from clean data.

What outputs do you want, and what would you do with them? All labeling error detection models
identify data points that are likely to be labeling errors. With knowledge of the potentially mislabeled
data points, most studies simply remove them from consideration[23, 24, 45, 42]. This strategy may
be practical for large datasets, where only a small fraction of data is found to be mislabeled and
domain experts are unavailable for supervision. We use this strategy by default in AQuA. A smaller
number of methods predict the alternate class that the data point is most likely to belong to [38, 34]
and even provide explanations for their predictions [30, 46]. CINCER [30] is one of the few methods
which not only finds labeling errors but also identifies counter-examples in the training data to serve as
explanations for its suspicion. Some studies use the label predicted by these models and perform loss
re-weighting or correction to learn robust classification models [27, 47, 48]. When domain experts
are available, some studies also leverage their insight to re-label mislabeled data point [30, 29].
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Modality Dataset # Train / Test # Annotators/sample Label Source Classification Task Sample Size Usage

Image

CIFAR-10N[49] 50K / 10K 3 Human annotation Object 32⇥ 32⇥ 3 [50, 34]
CIFAR-10H[16] 0 / 10K 47–63 Human annotation Object 32⇥ 32⇥ 3 [29]
Clothing100K[51] 100K 1 Web-labeled Image 256⇥ 256⇥ 3 [24, 4, 34]
NoisyCXR[52] 26K / 3K 1–XX Human expert annotation Pneumonia 1024⇥ 1024⇥ 1 [29]

Text IMDb�[53] 25K / 25K 1 Human annotation Sentiment - [27, 47, 4]
TweetEval[54] 10K 1 Human annotation Hate speech - -

Tabular

Credit Card Fraud�[55] 284K 1 Human annotation Credit card fraud 28 [56, 57]
Adult�[58] 48K 1 Rule-based extraction Salary 14 [30, 21, 22]
Dry Bean[59] 13K 1 Vision system-based annotation Bean variety 17 -
Car Evaluation[60] 1K 1 Hierarchical decision model [60] Car condition 6 [61]
Mushroom�[62] 8K 1 - Mushroom edibility 22 [56]
COMPAS�[63] 6K 1 - Recidivism 28 [21]

Time
Series

Crop[64] 7K / 16K 1 Hierarchical k-means tree
with dynamic time warping [64] Crop cover 46⇥ 1 -

ElectricDevices[65] 9K / 7K 1 Human annotation Appliance-type 96⇥ 1 -
MIT-BIH[66] 23K / 4K 1 Human expert annotation Arrhythmia 256⇥ 2 -
PenDigits[67] 7K / 3K 1 Human annotations Handwritten digit 16⇥ 1 -
WhaleCalls�[68] 11K / 2K 1 - Whale call 4, 000⇥ 1 -

Table 1: Summary of datasets. AQuA currently includes a variety of datasets for different classifi-
cation problems, varying in the number of classes, sources of annotations, and data modalities. All
datasets except those marked with � are multi-class.

4 Benchmark Design

4.1 Real-world, Popular Datasets, and Downstream Classification Models

Datasets. AQuA currently comprises of a collection of 17 popular real-world public datasets from
4 prevalent data modalities: image, text, time-series and tabular. To evaluate label error detection
models across various practical scenarios, we carefully choose datasets with diversity in the following
characteristics: (1) classification problems (e.g., sentiment classification vs. hate speech detection),
(2) number of classes (binary vs multi-class classification), (3) relative prevalence of classes (e.g.,
skewed datasets like Credit Card Fraud [55] and balanced ones like IMDb [53]), (4) sources of
annotations (e.g., human vs rule-based annotation), and (5) number of annotations per example (e.g.,
CIFAR-10N labeled by 3 annotators). Table 1 summarizes the key characteristics of datasets included
as a part of AQuA. In particular, to make comparison with prior work easier while maintaining diversity
across practical scenarios, we try to include datasets that have been used frequently by prior work
(see usage in Table 1) and preprocess them in a manner consistent with those works. We do not use
any data augmentation during training. App A.3 provides detailed descriptions of the datasets.

Classification models. The ultimate goal of label cleaning is to train accurate downstream classifiers,
but different studies use different classification models to measure the efficacy of their proposed
label cleaning methods. To provide a level playing field for all cleaning methods, we include mul-
tiple classification model architectures for each data modality. Specifically, we include ResNet-18
[8], MobileNet [9] and FastViT-T8 [69] for image datasets, all-distilroberta-v1 [70, 71] and
all-MiniLM-L6-v2 [72] for text datasets, ResNet-1D, PatchTST [73] and LSTM Fully Convolu-
tional Network [74] for time-series datasets, and TabTransformer [75] and a Multi-Layer Perceptron
for tabular datasets. While choosing classification models we prioritized performant methods with
(1) different architectures and inductive biases, (2) ideally pre-trained using different strategies, and
(3) previously-used either by label cleaning methods or task-relevant papers. App. A.4 and App. A.5
provide a detailed description of classification models and their hyperparameters, respectively.

4.2 Advanced Label Error Detection Methods

AQuA provides easy-to-use Application Programmer Interfaces (Fig. 4) for 4 state-of-the-art label
error detection methods, namely Area Under Margin ranking (AUM) [24], Confident Learning [23],
Contrastive and Influent Counter Example Strategy (CINCER) [30], and Model-free Label Error
Detection (SimiFeat) [34]. Below, we provide a brief overview of these methods and their key ideas.

Area Under the Margin Ranking (AUM) [24]. Given noisy data and access to the logits of a deep
learning model, AUM exploits differences in training dynamics of clean and mislabeled samples
to identify labeling errors. The key idea is to identify data points that do not contribute to the
generalization of a model as labeling errors by leveraging the delicate tension between the label of a
data point (via memorization) and its predicted label (via gradient updates), measured as the margin
between the logits of a sample’s assigned class and its highest unassigned class.
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from aqua.models import TrainAqModel, ConvNet
from aqua.data import Aqdata, load_cifar
from aqua.reports import generate_report

# Load CIFAR-10 and ResNet-18
clf = ConvNet('resnet18')
data = load_cifar()
data.add_noise(noise_rate=0.2) # Add uniform

noise,!

# Instantiate a cleaning method and classifier
cleaner = TrainAqModel(clf, method='aum')
label_errors = cleaner.find_label_issues(data)

# Remove data with label issues
data.clean_data(label_issues)
# Train a downstream model on cleaned data
y_preds = TrainAqModel(clf).fit_predict(data)

Figure 4: AQuA makes identifying label issues, and
evaluating new and existing label error detection
models simple.

Confident Learning (CON) [23]. Given noisy
data, confident learning estimates a data struc-
ture called confident joint, which is the joint
probability distribution of observed noisy and
latent true labels. The key idea is to leverage
a model trained on held-out data drawn from
the same (or similar) distribution to predict the
probability that an example xi belongs to its ob-
served label yi. A low probability is then used
as a heuristic-likelihood of yi being a label error.
The confident joint can then be used to identify
labeling errors and estimate the noise rate.

Contrastive and Influent Counter Example
Strategy (CINCER or CIN) [30]. CINCER
treats the problem of identifying labeling errors
as a sequential decision making problem where
a domain expert can be queried to relabel suspi-
cious examples. CINCER uses the same heuris-
tic as AUM to identify labeling errors, but also identifies counter-examples in the data to serve as
explanations of the model’s suspicion.

Model-free Label Error Detection (SimiFeat) [34]. Unlike other methods, SimiFeat does not need
a (pre-)trained model to identify labeling errors. Instead, it utilizes labels of the k nearest neighbors
to identify labeling errors based on the clusterability assumption, i.e. data points with similar features
should have the same true label with high probability.

There are many methods to detect labeling errors, but we choose these methods as a starting point
because they are recent, state-of-the-art, and have different inputs and core assumptions. While all
these methods have existing public implementations, through AQuA, our goal is to create a one-stop
shop for using and evaluating open-source label error detection models.

4.3 Evaluation

There is significant variance in the ways that label cleaning methods are evaluated. To rigorously,
fairly, and systematically assess these models, we unify the breadth of experimental settings through
the following three dimensions of evaluation.

Supervision. Identifying labeling errors in practice is an unsupervised problem since we do not know
which data points are mislabeled. Hence, evaluating these methods is a challenging endeavor. Most
studies in the literature gather noise labels either from human experts (human-in-the-loop evaluation)
or by introducing synthetic label noise by design (synthetic label noise).

In human-in-the-loop evaluation, one or more human experts are asked to independently assess the
true labels of data points identified as having erroneous labels [39, 4]. While this is a straightforward
and precise evaluation method, it is in general unscalable, expensive, time-consuming, and limited to
only measuring the precision of models (and not recall), because the experts are typically only shown
data points which a model considers erroneous.

A much more common and scalable way of evaluating these methods is to introduce various kinds
of synthetic label noise and measure a model’s ability to detect them. There are many ways of
introducing label noise, but injected noise may not always be reflective of the true noise that occurs
in natural datasets, and hence identifying realistic noise injection strategies is an active area of
research [33, 34, 39, 41, 76, 77]. Moreover, model evaluation may still be noisy because there may
be mislabeled examples for which our pseudo-noise labels are negative (or correctly labeled).

Hypotheses. In general, existing studies evaluate two hypotheses: (1) cleaning labels on the train set
improves the performance of the downstream classifier on the test set, and (2) cleaning methods can
accurately identify mislabeled data on the train set. Hypothesis 1 is practical since the primary goal
of identifying labeling errors is to train accurate and unbiased classifiers. However, appropriately
regularized deep learning models are known to be naturally robust to some label noise. Hence,
hypothesis 2 allows researchers to directly measure the efficacy of label cleaning techniques.

6



Measures of goodness. Different studies use different measures of predictive accuracy. While some
measure error rate [24], others report the accuracy [33] or ROC-AUC [29] of their classification
models. Similarly, for their cleaning methods, some studies report the F1 score while others report
the precision or recall [23, 24].

More gaps in evaluation. In addition to the lack of consistency, we believe that the experimental
settings in many studies are occasionally (1) unrealistic, e.g., adding label noise to more than half
(sometimes up to 80%) of the data points [24, 23]; and (2) uni-dimensional, e.g., reporting only one
metric of predictive performance.

AQuA’s design. To enable a realistic, multi-faceted and holistic evaluation of label error detec-
tion models, we implement 7 popular label noise injection techniques and multiple metrics of
predictive performance. Specifically, for single-label datasets, we implement asymmetric [34], class-
dependent [76], instance-dependent [33], and uniform [76] noise, and for datasets with labels from
multiple annotators, we implement dissenting label, dissenting worker, and crowd majority [39]. In
terms of metrics of predictive accuracy, we implement F1, accuracy, (weighted) precision, recall, area
under ROC curve (ROC-AUC), average precision (PR-AUC), and error rate. We are in the process
of implementing some other metrics beyond predictive accuracy, such as generalization [78] and
robustness [79] of models. Our hope is that AQuA’s config-driven design will allow non-technical
users to integrate it into their labeling workflows and researchers to add new models, datasets, and
evaluation pipelines seamlessly. Our choice of datasets and downstream classifiers ensures that the
computational complexity of running experiments is not prohibitive. Finally, we make all code,
pre-trained models, and experimental logs open-source to enable rigorous and fair evaluation of
models.

5 Experiments, Results and Discussion

Datasets Uniform Asymmetric Class-dependent Instance-dependent
AUM CIN CON SIM AUM CIN CON SIM AUM CIN CON SIM AUM CIN CON SIM

CIFAR-10 73.3 74.1 45.6 76.7 74.3 70.8 47.7 75.5 93.5 80.5 42.6 93.6 68.0 69.9 44.8 70.9
Clothing-100K 75.0 70.0 76.6 76.5 74.2 68.4 73.6 75.7 76.3 71.2 74.0 81.2 69.4 65.1 72.9 71.6

NoisyCXR 75.2 74.4 43.2 74.5 73.7 71.5 39.5 73.5 84.7 78.7 31.4 88.4 68.0 69.8 43.3 72.1
IMDb 75.6 73.3 58.4 78.5 75.7 74.3 59.5 78.7 92.1 91.0 62.8 95.0 69.7 70.2 56.4 74.5

TweetEval 75.3 75.2 58.9 77.7 75.8 76.0 57.4 77.6 69.2 67.9 52.4 70.2 69.6 69.6 62.4 73.2
Credit Fraud 75.8 75.8 73.3 78.1 75.7 75.8 80.0 76.7 63.3 63.0 87.2 72.0 69.5 69.4 74.3 73.5

Adult 75.7 75.8 72.9 78.5 75.8 75.8 66.9 77.5 63.6 64.6 61.2 64.9 69.6 70.2 68.7 72.4
Dry Bean 75.7 91.6 42.1 82.2 75.7 84.9 39.0 80.3 87.2 95.0 35.4 92.1 69.5 83.1 35.8 77.5

Car Evaluation 75.3 83.5 77.4 84.1 75.6 80.2 75.7 81.6 77.3 87.5 83.2 81.2 70.1 78.8 78.5 77.0
Mushrooms 76.0 82.5 62.7 85.2 75.7 80.7 66.3 83.0 99.3 100 75.5 99.8 69.5 75.4 64.1 74.3
COMPAS 75.8 74.9 63.2 75.9 75.8 74.8 64.6 76.5 55.5 57.1 52.9 57.7 69.5 69.4 61.0 73.1

Crop 76.0 79.0 16.3 73.1 75.8 73.6 16.2 70.1 29.1 40.8 51.2 63.7 69.5 63.2 16.3 63.8
Electric Devices 75.8 82.2 35.0 79.3 75.7 78.6 35.3 75.8 37.8 50.5 55.9 68.3 69.9 71.5 32.7 69.2

MIT-BIH 75.6 88.4 49.7 83.3 75.7 83.0 51.3 78.4 68.2 75.7 45.4 80.6 69.6 78.4 48.1 75.2
PenDigits 75.8 89.0 23.1 73.4 75.7 83.1 23.4 72.7 46.7 44.9 53.5 78.4 69.9 76.0 19.8 68.1

WhaleCalls 75.6 74.9 60.3 77.3 75.7 75.5 61.8 77.2 42.3 44.7 52.4 47.1 69.6 69.1 59.2 71.2

Table 2: Performance evaluation of cleaning methods to detect erroneous labels across different types
of synthetic noise added to the train set in terms of weighted F1, averaged across noise rates and
downstream models.

(i) (ii) (iii)

(iv) (v) (vi)

Figure 5: Critical difference diagrams representing rankings of cleaning methods across: (i) all
datasets, (iii) only image or (iv) only text datasets. (v) also shows the ranking of cleaning methods
across all datasets when accuracy is measured instead of weighted F1 (c.f. i). Finally, (ii) represents
the performance of downstream models trained using cleaned labels, and (vi) performance of all
cleaning methods disaggregated by noise type.
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Datasets No Noise Injected Uniform Asymmetric Class-dependent Instance-dependent
NON AUM CIN CON SIM NON AUM CIN CON SIM NON AUM CIN CON SIM NON AUM CIN CON SIM NON AUM CIN CON SIM

CIFAR-10 74.3 74.1 73.0 46.0 73.5 63.2 62.6 65.0 36.9 63.4 58.1 63.1 62.2 38.3 63.1 71.0 71.7 70.5 46.2 67.5 57.7 60.2 62.1 34.0 56.8
Clothing-100K 90.9 90.7 90.5 90.8 90.8 82.5 79.5 83.2 85.4 83.2 82.8 81.4 79.2 79.4 83.1 80.8 83.3 82.1 83.8 86.1 78.9 74.6 71.7 81.6 81.6

NoisyCXR 56.0 56.5 56.7 25.2 57.0 49.6 49.4 52.2 19.1 48.2 49.6 48.8 50.6 18.0 47.9 54.2 54.8 55.8 18.6 53.8 46.4 46.7 48.3 18.9 46.7

IMDb 84.9 87.5 89.2 69.6 90.3 69.3 65.6 68.2 64.5 70.8 74.9 67.7 76.8 66.4 80.6 87.1 85.5 89.1 84.4 87.4 65.3 62.3 69.2 64.4 64.5
TweetEval 73.6 73.6 77.1 65.1 76.8 71.3 72.4 74.2 53.8 73.2 71.3 68.4 71.9 61.8 72.4 77.7 74.8 70.6 49.8 67.4 68.5 69.4 71.7 71.5 63.1

Credit Fraud 100 99.9 99.9 99.9 99.9 99.9 99.9 99.9 88.8 99.9 99.9 99.9 99.9 99.8 99.9 99.6 66.6 99.8 99.9 66.6 99.9 99.8 99.9 88.7 99.8
Adult 84.0 84.0 84.0 79.9 84.0 82.1 82.1 83.0 75.0 81.9 83.3 83.0 83.0 77.9 83.0 81.8 82.3 83.1 81.9 80.4 82.5 80.6 81.5 73.1 81.1

Dry Bean 91.9 90.9 91.2 57.2 90.6 89.5 90.9 91.4 60.6 78.6 85.6 87.0 89.3 55.1 87.4 91.4 91.0 90.5 29.8 90.4 87.3 83.6 84.5 40.0 87.5
Car Evaluation 93.4 92.5 85.9 57.6 92.0 83.8 82.5 80.0 66.5 81.1 86.1 85.2 74.1 62.7 82.6 86.9 83.2 78.0 57.6 83.9 82.6 81.5 75.3 60.2 80.5

Mushrooms 99.7 99.9 99.6 99.7 99.9 98.3 98.2 97.8 89.0 98.7 97.9 97.5 98.4 87.3 96.5 99.5 100 99.3 99.1 99.9 95.3 96.9 96.4 81.1 95.8
COMPAS 67.2 67.3 66.2 63.7 66.6 65.6 62.1 65.9 58.6 65.3 66.1 64.4 66.2 46.9 65.6 54.3 65.1 63.8 35.5 66.2 61.6 63.0 61.8 48.6 63.7

Crop 39.1 38.7 35.5 8.4 37.8 33.1 37.2 36.2 7.3 37.9 34.1 31.5 32.8 7.2 33.4 32.3 31.2 29.5 7.3 28.9 27.7 27.8 29.9 5.7 34.5
Electric Devices 45.3 48.0 48.0 29.8 46.7 41.8 42.6 44.8 27.3 42.1 42.5 41.3 41.3 26.9 42.7 30.9 30.9 32.1 24.2 31.7 39.3 36.6 38.3 23.1 40.4

MIT-BIH 72.7 65.1 81.2 55.7 72.5 73.2 70.1 80.1 61.7 74.7 71.3 68.4 69.2 46.3 69.6 72.6 73.9 74.4 56.9 78.0 63.6 68.1 70.9 52.2 71.5
PenDigits 64.8 65.2 64.3 39.5 64.5 62.6 64.7 64.4 24.6 64.3 58.1 59.1 57.8 22.9 59.0 43.9 46.5 46.4 15.3 45.3 59.2 56.4 57.7 14.8 59.7

WhaleCalls 68.2 34.3 50.9 52.7 53.0 48.7 44.5 51.0 43.7 50.4 48.8 53.6 47.4 45.3 47.2 42.5 43.3 47.1 41.6 42.4 48.5 50.9 58.5 44.5 47.5

Table 3: Impact of label noise and each cleaning method on weighted F1 score of a downstream model
for each modality on the test set, averaged across noise rates and downstream models. Highlighted
cells indicate better performance than that obtained without label cleaning (NON).

We conduct several experiments to support AQuA’s design choices and demonstrate its utility in
providing a comprehensive and holistic evaluation of machine learning models in the presence of
label noise.

Experimental Setup and Hyper-Parameter Tuning. We run experiments for all combinations
of cleaning methods (AUM (AUM), confident learning (CON), CINCER (CIN) and SimiFeat (SIM),
including no label cleaning (NON), noise types (asymmetric, class-dependent, instance-dependent
and uniform); for four different noise rates (0%, 2%, 10% and 40%), for a total of 2400 unique
experiments. We conduct experiments using three distinct classification architectures for image
and time-series data, and two different architectures for text and tabular data. To account for class
imbalance in some datasets, we report the F1 weighted by the support of each class. Results for
all other evaluation metrics can be found in App. A.8. We also adopt critical difference diagrams
[80] to succinctly represent comparisons between multiple cleaning methods and other independent
variables (e.g., data modality and noise type) on multiple datasets. These diagrams represent the
average ranks of methods across datasets while grouping those with insignificant difference5. We
tuned hyper-parameters of all the classification and cleaning methods till they performed reasonably
well on average on all the datasets using hyper-parameter grids used by prior work and reported
in App. A.56. Finally, all our experiments were carried out on a computing cluster, with a typical
machine having 128 AMD EPYC 7502 CPUs, 503 GB of RAM, and 8 NVIDIA RTX A6000 GPUs.

Research Questions. We aim to answer the following research questions through our experiments:

• Which is the best cleaning method in terms of (i) its ability to identify synthetically injected label
noise, and (ii) performance of the downstream classifier trained its cleaned labels?

• Do the rankings of cleaning methods differ across different (i) types of synthetic label noise, (ii)
data modalities, and (iii) evaluation metrics (weighted F1 versus accuracy)?

5.1 Insights from Large-scale Experiments using AQuA

Tables 3, 2, and Fig. 5 report results from all our experiments aggregated by noise rate, and down-
stream classification models. Below we highlight some of our key findings. Due to lack of space, we
defer finer grained results to App. A.8.

Best cleaning method. Overall, we found SimiFeat (SIM) [34] to be the best cleaning method
in terms of its ability to identify synthetically injected label noise, closely followed by CINCER
(CIN) [30] (Fig. 5(i)). However, these differences shrink when evaluating cleaning methods using
the performance of the downstream model trained using their cleaned labels (Fig. 5(ii)). Confident
learning (CON) [23] consistently performed the worst among all the evaluated methods.

5To form cliques, we abandon the posthoc test in favor of pairwise tests with Holm’s correction for multiple
testing based on prior work [81, 82]

6We deliberately did not perform extensive hyper-parameter tuning to not overfit to already existing label
noise in the original datasets. Also, in practice it is unclear how to tune these cleaning methods well, without
explicit knowledge of where the label errors are.
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Deep learning models are inherently robust to label noise. Perhaps unsurprisingly, we found
that most downstream classifiers were reasonably robust to synthetic label noise, as can be seen
from the insignificant difference between the setting where datasets were not explicitly cleaned
(NON), compared to when they were cleaned using SIM, CIN and AUM. These results also illustrate
the importance of measuring both hypotheses (performance of cleaning methods versus downstream
models) when evaluating the performance of ML models in the presence of label noise.

Adding label noise can sometimes improve model performance. In the context of class-dependent
or uniform noise, label noise serves as regularization to prevent models from overfitting. This
phenomenon is not specific any one modality, but happens for multiple modalities, datasets, and noise
types too, for example Electric Devices (time-series) under uniform noise, MIT-BIH (time-series), and
Dry Bean (tabular) for class-dependent noise, in Table 16. Moreover, deep learning optimization is
highly non-convex, so adding some noise might help the model reach the global minima by traversing
an alternative path within the loss landscape.

Impact of AQuA’s design choices. We found that cleaning methods perform differently for different
data modalities. For instance, all cleaning methods barring CON perform on par on image datasets
(iii), but on tabular data (iv), AUM performs significantly worse than CIN and SIM. This may be due
to a variety of reasons beyond cleaning methods: size and nature of datasets, inductive biases of
downstream classifier, and the quality of feature representations [34]. We also observed that some
types of label noise are easier to detect than others. For example, uniform noise and asymmetric noise
were the easiest to detect, cleaning methods found it much hard to detect instance and class-dependent
noise (vi). Finally, we noticed differences in model rankings when measuring different evaluation
metrics. As an example, the difference between CIN and AUM vanishes when we measure the accuracy
(v) of the cleaning methods instead of their weighted F1 (i). These findings highlight the need to
evaluate label error detection methods across multiple datasets from different modalities, noise types
and evaluation metrics.

6 Conclusion and Future Work

We propose the first benchmark designed to rigorously evaluate machine learning models in the
presence of label noise. We also elucidate the design space of these methods to not only enable ML
practitioners to choose the right label cleaning tool for their data, but also foster academic research on
the label noise problem. We demonstrate AQuA’s utility by running large-scale experiments to glean
several interesting findings. We believe that, as a benchmarking toolkit, AQuA would benefit from
more cleaning methods, datasets, synthetic label noise injection strategies, and evaluation metrics.

Our short-term goals include experimenting with multi-annotator label noise, measuring the impact of
feature noise on time-series and image data in comparison to label noise, incorporating several metrics
for model generalization, robustness and fairness, and including audio datasets. While other types of
noise are beyond the scope of this work, we believe that multi-annotator, multi-class multi-label, and
noise in regression problems are exciting avenues of future work, and AQuA’s modular design will
enable researchers to experiment with both multi-annotator and multi-class multi-label classification
problems easily. We restrict ourselves to multi-class but single-label classification (as opposed to
multi-label classification).

We believe that future work on label error detection should address label issues in the multi-label
classification and regression settings. We believe that our work on AQuA can both harness and
facilitate the development of foundation models in the two ways: (1) foundation models can be used
to identify labeling errors, without explicit supervision, and (2) methods within AQuA can be use
to identify labeling errors which can affect foundation model pre-training and fine-tuning. We also
believe that future work shoul

7 Limitations, Biases, and Social Impacts

We acknowledge the potential adverse impact of large-scale experimentation on the environment, but
believe that our publicly accessible code and experimental findings can significantly reduce resource
consumption for ML practitioners in this field. Label error detection models might perpetuate existing
biases and impact the fairness of models. We included the Adult dataset, that is frequently used in
the fairness literature, in AQuA, to evaluate the impact of label errors on the fairness of models. We
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would also like to acknowledge that our experiments were carried without extensive hyper-parameter
tuning. Moreover, hyper-parameters for cleaning methods and downstream classifiers were chosen
based on model performance on the observed training set and fixed throughout the training process.
We futher discuss these design choices and their limitations in Appendix A.6.
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