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In this appendix, we provide additional details about the theoretical and empirical results included in
the manuscript. These indicate that masked pre-training optimizes according to a stochastic gradient of
the model’s log-marginal likelihood. We remark that our main proof relies on a previous observation
from Fong and Holmes (2020), who shows that log-marginal likelihood (LML) is equivalent to an
exhaustive cross-validation score over all training-test data partitions in the dataset. While Fong and
Holmes’ formal proof uses properties of probability to link cross-validation on observations with
marginal likelihood, we use them to prove that self-conditional probabilities across masked features
also lead to the model’s LML. Additionally, we include the code for experiments and extra details on
the tractable linear model as well as the initial setup of hyperparameters for the reproducibility of our
results.

A Proof of Proposition

Proof. Consider an i.i.d. dataset x1:n, where each ith object xi ∈ XD for some continuous or
discrete domain X . We define a latent variable model where the likelihood function is defined as
pθ(x|z), where z ∈ ZK are the latent objects for some domain Z and the prior distribution is p(z).
These assumptions lead us to a log-marginal likelihood (LML) of the model that factorises across
observations, such that log pθ(x1:n) =

∑n
i=1 log pθ(xi), where pθ(xi) =

∫
pθ(xi|zi)p(zi)dzi.

Using the properties of probability, we can rewrite the LML of each ith object as a sum of conditional
distributions between dimensions or features. This sum is of the form

log pθ(x) =

D∑
t=1

log pθ (xt|xt+1:D) , (A.1)

where we omitted the ith subscript to keep the notation uncluttered. Here, we see that the value of
log pθ(x) is invariant to the choice of the conditional probabilities in (A.1) if these ones follow the
chain-rule of probability according to the D dimensions of x. Additionally, this indicates that we
have D! different choices for the sum of conditional probabilities in (A.1), which allows us to write

log pθ(x) =
1

D!

D!∑
π=1

D∑
t=1

log pθ

(
x
(π)
M(t)|x

(π)
M(t+1:D)

)
. (A.2)

Here, we definedM as the indexing mask, which consists of indices drawn from {1, 2, . . . , D}, and
we initially assume in (A.2) that |M| = D. The πth superscript indicates the order of indices used to
produce the conditional chain-rule.
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If we then swap the order of sums in (A.2) and we fix the index (t) in (A.2), we can see that there are
(D − t+ 1) choices for the tokens under evaluation by the probability distribution and

(
D
t−1
)

choices
for the rest of conditional factors. We can then write

D!∑
π=1

log pθ

(
x
(π)
M(t)|x

(π)
M(t+1:D)

)
=

Ct∑
π=1

D−t+1∑
j=1

log pθ

(
x
(π)
M(j)|x

(π)
M(t+1:D)

)
.

To match notation with masked pre-training (MPT), we setM to be the masked subset of indices
sampled from {1, 2, . . . , D}, such that M < D and the rest of unmasked indices shape the com-
plementary subsetR = {1, 2, . . . , D} \M. Using the previous sum and notation in (A.2), we can
finally state that the LML is a cumulative sum of averages, such that

log pθ(x) =

D∑
t=1

1

Ct

Ct∑
π=1

1

D − t+ 1

D−t+1∑
j=1

log pθ

(
x
(π)
M(j)|x

(π)
R(t+1:D)

)
. (A.3)

Setting M = D − t+ 1 and rearranging Ct as CM =
(

D
D−M

)
gives us the formal result included in

Proposition 1.

B Full view of Probabilistic PCA

Probabilistic PCA (PPCA) (Tipping and Bishop, 1999) is a latent variable model in which the
marginal likelihood distribution is tractable and the maximum likelihood solution for the parameters
can be analytically found. The model also assumes that the data are D-dimensional observations
x. Additionally, we assume that there exists a low-dimensional, where each sample has a latent
representation z∈Z for each datapoint, where Z = RK . The relationship between the latent variables
and the observed data is linear and can be expressed as

x =Wz + µ+ ε,

where ε ∼ N (0, σ2
0I), µ ∈ RD and W ∈ RD×K . The likelihood model for observations x can be

then written as
p(x|z,W ,µ, σ2

0) = N (Wz + µ, σ2
0I),

and more importantly, it allows the integration of the latent variables in closed-form. Thus, we can
obtain the following marginal likelihood per datapoint in an easy manner

pθ(x) = p(x|W ,µ, σ2
0) = N (x|µ,WW> + σ2

0I),

where we used θ = {W ,µ, σ2
0}. Moreover, under the independence assumption taken in PPCA

across n observations x1:n, the global log-marginal likelihood of the model can be expressed using
the following sum

pθ(x1:n) =

n∏
i=1

pθ(xi).

Posterior predictive probabilities. The predictive distribution between the dimensions of xi can
be obtained from both latent variable integration or by properties of Gaussian conditionals. In our
case, we use the latter example. Thus, having both maskM and rest R indices according to our
previous notation, we can look to the multivariate normal distribution pθ(x) using block submatrices,
such that

pθ(x) = N
([
xM
xR

] ∣∣∣ [µMµR
]
,

[
SMM SMR
S>MR SRR

])
,

where we also defined S = WW> + σ2
0I. Using the properties of conditional probabilities

on normal distributions, we can write the posterior predictive densities in closed-form, such that
pθ(xM|xR) = N (mM|R,vM|R), where parameters are obtained from

mM|R = µM + S>MRS
−1
RR(xR − µR), vM|R = SMM + S>MRS

−1
RRSMR.
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C Experiments

The code for experiments is written in Python 3.9 and uses the Pytorch syntax for the automatic
differentiation of the models. It can be found in the repository https:github.com/pmorenoz/
MPT-LML, where we also included the scripts used to evaluate BERT (Devlin et al., 2018) and the
area under the MPT curve for different masking rates and test subsets. All figures included in the
manuscript are reproducible and we also provide seeds, the setup of learning hyperparameters as well
as the initial values of parameters in the tractable model.

C.1 Longer discussion on the role of masking rates.

The fact that fixed size held-out sets induce a biased estimation of the marginal likelihood in cross-
validation was previously observed in Moreno-Muñoz et al. (2022) and Fong and Holmes (2020).
The former used this property to characterize stochastic approximations in Gaussian process models.
On the other hand, the latter identified this effect as a result of the non-uniform sampling of the size
of the held-out sets, e.g. setting it fixed, which in their formal results led to the biased estimate of the
cumulative cross-validation term included in the Appendix.

In this paper, we make a similar observation on the biased estimation of the marginal likelihood in
masked pre-training, where we are fixing the masking rate instead. Our empirical results with tractable
models allow us to accurately identify this bias and prove that it does not affect the maximisation
of the LML. Mainly, due to the bias is fixed during optimization (see Fig. 2). One important detail
to consider is that this bias can be computed for tractable models, as it is the expected log-marginal
likelihood on the unmasked tokens of the data.

C.2 Datasets

Our experiments make use of three well-known datasets: MNIST (LeCun et al., 1998), FM-
NIST (Xiao et al., 2017) and GLUE (Wang et al., 2019). The datasets MNIST and FMNIST
were downloaded from the torchvision repository included in the Pytorch library. GLUE can
be accessed via the public repository at https://github.com/nyu-mll/GLUE-baselines or
https://gluebenchmark.com/. These particular datasets are not subject to use constraints related
to our experiments or they include licenses which allow their use for research purposes.

0 200 400 600 800
Epochs

−60

−50

−40

−30

−20

−10

N
e
g

a
t
iv

e
m

p
t

l
o
ss

Training curves / # tokens = 10 / # masks = 1

True model lml

Cumulative mpt

lml

(a) UNIFORM SAMPLING
(0%− 100%)

0 200 400 600 800
Epochs

−50

−40

−30

−20

−10

N
e
g

a
t
iv

e
m

p
t

l
o
ss

Training curves / # tokens = 10 / # masks = 1

True model lml

Cumulative mpt

lml

(b) UNIFORM SAMPLING
(50%− 100%)

0 200 400 600 800
Epochs

−60

−50

−40

−30

−20

−10

0

N
e
g

a
t
iv

e
m

p
t

l
o
ss

Training curves / # tokens = 10 / # masks = 1

True model lml

Cumulative mpt

lml

(c) UNIFORM SAMPLING
(0%− 50%)

Figure 1: Training curves of the negative cumulative MPT loss in PPCA vs. the ground truth (GT) LML.
The number of samples is N = 2000 and the number of tokens is D = 10. All plots used P = 1 per
epoch and five different initializations. (Left). The rate of masking is unfixed and it varies according
to the range between 1% and 100%. It is obtained at each epoch via uniform sampling. (Center).
The masking rate is uniformly samples in the range between 50% and 100%. (Right). The masking
rate is uniformly samples in the range between 0% and 50%.

C.3 Additional results on uniform masking rate sampling

The aim of the experiments is to answer the question around the effect of uniformly sampling with
MPT losses. So far, we have observed that the cumulative MPT is equivalent to an unbiased estimate
of the log-marginal likelihood when we consider all possible numbers for the amount of masked
tokens. To avoid having a biased estimate when fixing the masking rate (e.g., to 20%), one option
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is to use an uniform distribution. In this way, we sampled the rate of masking at each epoch in the
range (0%− 100%) as it’s shown in Fig. 1a. These results indicate that we are able to obtain such
unbiased target losses. Importantly, we should also notice that the cumulative losses oscillate around
the true value of the LML, that is being also maximised. For completeness of the experiments, we also
included the empirical results when the masking rate is sampled in different ranges (e.g., 0%− 50%).
In this case, we have two different biases in the losses shows in Fig. 1b and Fig. 1c. These biases are
related to the areas under the curves described in Sec. 3.2 and Fig. 4 of the main paper.
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