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Abstract

Masked pre-training removes random input dimensions and learns a model that
can predict the missing values. Empirical results indicate that this intuitive form of
self-supervised learning yields models that generalize very well to new domains. A
theoretical understanding is, however, lacking. This paper shows that masked pre-
training with a suitable cumulative scoring function corresponds to maximizing the
model’s marginal likelihood, which is de facto the Bayesian model selection mea-
sure of generalization. Beyond shedding light on the success of masked pre-training,
this insight also suggests that Bayesian models can be trained with appropriately de-
signed self-supervision. Empirically, we confirm the developed theory and explore
the main learning principles of masked pre-training in large language models.

1 Introduction

Masked pre-training (MPT) is a family of self-supervised learning methods (Dosovitskiy et al., 2020;
Devlin et al., 2018; Caron et al., 2021), that empirically has been demonstrated to result in models
that generalize very well to new settings. In essence, masked pre-training removes random features
of the data and learns a model to recover these from the remaining input. While empirical results
are impressive, a deeper understanding of why pre-trained models generalize so well is lacking. Is
it due to the use of transformer architectures (Vaswani et al., 2017), the vast over-parametrization
(Neyshabur et al., 2019), or something entirely different?

The marginal likelihood or evidence is commonly used as the measure of generalization ability in
Bayesian models (Tenenbaum and Griffiths, 2001; MacKay, 2003). While computationally expensive,
the blessing of the marginal likelihood comes from the probabilistic integration of hypotheses.
Whenever we are considering a latent variable model in the Bayesian framework, such integration
can be thought of as the average over all the possible latent variable mappings, weighted by our
prior beliefs. Since masked pre-training drives generalization so well, the lingering question in the
Bayesian modeling community is then: Is masked pre-training somehow related to the maximization
of the marginal likelihood?

In this paper, we provide a positive answer. We show that masked pre-training optimizes according
to a stochastic gradient of the log-marginal likelihood (LML). Importantly, the log-marginal likelihood
is equivalent to the cumulative sum of masked pre-training losses shaped with different sizes for the
random mask. Even if its practical use avoids this cumulative sum, we demonstrate that choosing a
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fixed masking rate, e.g. 15% as in BERT (Devlin et al., 2018), leads to a stochastic biased estimation
which still maximizes the log-marginal likelihood.

Our proof relies on a previous observation from Fong and Holmes (2020), who show that the
log-marginal likelihood equals the average of exhaustive leave-M -out cross-validation (CV) given
posterior predictive scores. Intuitively, our formal results can be seen as the transposed version
of Fong and Holmes’s results: where CV removes random observations to measure generalization,
masked pre-training removes random features. While the seminal link between CV and the marginal
likelihood was purely a formal result that pointed out the underlying presence of Bayesian principles
in a well-known class of learning, our work extends the theory behind the marginal likelihood to
comprehend the impressive behavior of the latest generative models.

2 Masked pre-training

Masked pre-training (MPT) is a variant of self-supervised learning (Dosovitskiy et al., 2020; Devlin
et al., 2018) that removes random input dimensions (also known as masking) in the observed data
and learns a model that accurately predicts the missing values. This family of methods, well-known
due to their success in natural language understanding, typically adopts a transformer architecture
(Vaswani et al., 2017) as the feature extractor, that together with positional encodings and random
masked dimensions allows capturing the bidirectional context in the data.

In BERT (Devlin et al., 2018), each sentence is usually considered as a D dimensional observation
vector, x = (x1, x2, . . . , xD)⊤, where dimensions xt are named tokens. Given a random mask M of
size M<D, as a set of indices drawn uniformly from {1, . . . , D}, each token whose index belongs
to M is considered to be in the subset xM = {xM(1), xM(2), . . . , xM(M)}. We refer to these as
the masked tokens. The rest of indices R = {1, 2, . . . , D} \M induce the complementary subset
xR, such that x = xM ∪ xR. Under this notation, MPT learns the parameters θ of a model pθ(·) by
maximising an average of the following objective

log pθ(xM|xR) ≈
M∑
t=1

log pθ(xM(t)|xR) (1)

for every observation in the dataset D. The stochastic choice of xM makes predictive conditionals
pθ(xM|xR) to be different for every observation and training step. Once the pre-training of θ has
converged, this naturally allows the model to capture the underlying structure between dimensions of
the data. One additional remark is the number of random masks needed to cover all combinations
between masked and observed tokens, which can be obtained as CM =

(
D
M

)
. In the particular

example of BERT, where the masking rate is 15% with D = 512 and M = 76, the total number of
random masks needed to cover all combinations of tokens is CM ≈ 1.21×1092. This shows the inner
combinatorial problem behind MPT. We provide empirical results on why this is not a limitation for
learning with MPT in Sec. 3.1.

3 A probabilistic perspective, theory, and analysis

Our key objective is to demonstrate that the good generalization of MPT can be explained as an
equivalence with the model’s high marginal likelihood. Indeed, we will prove that MPT implicitly
maximizes marginal likelihood according to some latent variable model of the form pθ(x|z).

Marginal likelihood. For our theory, we consider some dataset D consisting of n i.i.d. observations
x1:n, where each sample xi could be either continuous or discrete and is of dimensionality D. We
also assume that there exists a latent space Z ∈ RK where we can find unobserved variables z1:n
which are part of the generative process of the data. This assumption is inspired in the common
use of latent encodings in recent models fitted with MPT. In this direction, we also consider the
observations to be samples of a likelihood function pθ(x|z), where the mapping between the latent
and observed variable is controlled by some parameters θ, which might also include likelihood or
prior hyperparameters.

Importantly, we consider the parameters θ to be deterministic, while we are interested in integrating
out the latent variables that we cannot observe. Automatically, this leads us to the log-marginal

2



likelihood (LML) of the model, which may factorize as a sum of marginals and can be also written
as log pθ(x1:n) =

∑n
i=1 log pθ(xi), where the ith probability density comes from the integral

pθ(xi) =
∫
pθ(xi|zi)p(zi)dzi. This definition coincides with the target LML used in the lower

bound of variational autoencoders (VAE) (Kingma and Welling, 2013; Rezende et al., 2014) and it is
widely used in probabilistic generative models.

Masking and conditional probabilities. From the properties of probability distributions, we can
decompose the individual LML functions log pθ(xi) as a sum of log-conditionals between tokens.
Omitting the ith observation subscript in x to keep the notation uncluttered, the sum takes the form

log pθ(x) =

D∑
t=1

log pθ (xt|xt+1:D) . (2)

However, the previous sum imposes a particular order on the selection of variables for conditioning,
e.g. {x1|x2, x3, . . . }, {x2|x3, x4, . . . }, etc. Moreover, the order of tokens in the observation vector
remains predetermined, as dimensions are not exchangeable. Thus, we can consider a different com-
bination of conditional probabilities in the sum — for instance, {x4|x1, x2, . . . }, {x3|x1, x2, . . . },
etc. Here, the key insight is that the rules of probability applied to the log-marginal likelihood make
it invariant to the combination of different conditional factors, as we are observing different views of
the same graphical model.

This combinatorial process between tokens in x can be understood as the selection problem of indices.
For that reason, we can assume a mask M of the largest size |M| = D, such that M ≡ {1, 2, · · · , D}.
Using similar properties of combinatorics, we can also obtain D! different choices for M. While all
the indices are always in the set, the order of indices differs between combinations. This principled
order in M indicates how we sum the conditional probabilities in Eq. 2.

Since the LML is invariant to random choices of M, we can re-write the sum in Eq. 2 as an
expectation with a countable set of possible outcomes. Each outcome corresponds to one of the
D! choices for M, such that

log pθ(x) =
1

D!

D!∑
π=1

D∑
t=1

log pθ

(
x
(π)
M(t)|x

(π)
M(t+1:D)

)
=

D∑
t=1

Eπ

[
log pθ(x

(π)
M(t)|x

(π)
M(t+1:D))

]
, (3)

where the superscript (π) denotes which mask M are we using for indexing the tokens. We also
swapped the order of the sums to obtain the desired expectation in the r.h.s. of the formula.

The role of random masking. If we now take a particular index (t) and we look at the πth summand
in the previous expression, we can see that the LML is still invariant to the order of the conditioning
tokens xM(t+1:D) in the log-probabilities: log pθ(xM(t)|xM(t+1:D)) in the sum. Intuitively, we can
use both — {x1|x2}, {x2} or {x2|x1}, {x1}; independently of the conditional factors previously
considered. In practice, this indicates that we can insert a second set of indices to the r.h.s. variables,
which is the key point to link negative MPT loss and LML.

Now, assume that M indexes less than 100% of tokens, while the rest is indexed by R as defined in
Sec. 2. If we match both complementary masks to be aligned with the conditional and conditioning
variables in the log-probabilities, this allows us to rewrite the tth summands in Eq. 2 as

1

D!

D!∑
π=1

log pθ

(
x
(π)
M(t)|x

(π)
M(t+1:D)

)
=

1

D!

D!∑
π=1

log pθ

(
x
(π)
M(t)|x

(π)
R(1:D−t)

)
.

Here, we can easily see that there are
(

D
t−1

)
choices for the unmasked tokens in the r.h.s. of the

conditional distribution, where we have previously fixed the index t. If we set the binomial coefficient
Ct ≡

(
D
t−1

)
as the maximum number of choices, we can obtain the following equality

D!∑
π=1

log pθ

(
x
(π)
M(t)|x

(π)
R(1:D−t)

)
=

Ct∑
π=1

D−t+1∑
j=1

log pθ

(
x
(π)
M(j)|x

(π)
R(1:D−t)

)
, (4)

since D! > Ct ∀t ∈ {1, 2, . . . , D}. Notice that once we have chosen a specific order (π) in the
masking pattern of M and R in Eq. 4, there are still (D − t + 1) choices for the masked tokens
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under evaluation in the probability distribution. Alternatively, we can think of this method as taking
advantage of the properties of probability to split the D! choices in the order of log-conditionals into
the two sums in Eq. 4. The driving idea is then that the two sums in the previous expression still
remain invariant given any t ∈ {1, 2, . . . , D}.

Using the previous notion in Eq. 2, we obtained our main result, which holds under the assumption of
i.i.d. observations with correlated tokens and the previous definition of the LML as the integral over
the stochastic latent variables in the model.

Proposition 1 — The cumulative expected loss of masked pre-training along the sizes of the
mask of tokens M ∈ {1, 2, . . . , D} is equivalent to the log-marginal likelihood of the model
when using self-predictive conditionals probabilities, such that

log pθ(x) =

D∑
M=1

Sθ(x;M), (5)

where the score function Sθ(·;M) corresponds to

Sθ(x;M) :=
1

CM

CM∑
π=1

1

M

M∑
j=1

log pθ(x
(π)
M(j)|x

(π)
R(1:D−j)) =

1

M
EM

 M∑
j=1

log pθ(xM(j)|xR)

 .

Proof: In the supplementary material.

It is remarkably important to link the sum of log-conditionals log pθ(xM(j)|xR) in our proposition
with the main objective used in MPT in Eq. 1. The main message of our result is that the score
function Sθ(·; t) acts as an average over the different random masks. These shape the structure of
conditioning in probabilities. The cumulative sum of the score function Sθ(·; t) over different sizes of
the MPT’s mask formally leads to the true value of the model’s LML. This result is exact whenever we
consider the closed-form self-predictive probabilities of the model and all the possible choices for the
masking pattern M. Since this is usually not affordable, due to the combinatorial cost and the lack
of tractability, we usually have a biased estimator. However, it is still sufficient to prove that MPT
maximizes LML during training as we will show later. This point will be discussed in the following
empirical studies. Further details on the derivations are included in the supplementary material.

3.1 Formal results in tractable models

To verify that masked pre-training effectively maximizes LML, we need a tractable probabilistic
model based on latent variables as the proof-of-concept. Probabilistic PCA (PPCA) (Tipping and
Bishop, 1999) is perhaps the best option here, as it has been previously used to understand other
empirical observations in generative methods, e.g. posterior collapse in VAEs (Lucas et al., 2019), or
even considered as the starting point of GPLVMs (Lawrence, 2005). In particular, the PPCA model
assumes that Gaussian observations map linearly to sets of real-valued latent variables z1:n, such
that x = Wz + µ + ϵ, where ϵ ∼ N (0, σ2

0I). Importantly, the prior is conventionally defined as
isotropic, where p(z) = N (0,1). We are therefore interested in the closed form expression of the
PPCA’s LML, which also factorizes across samples as follows

log pθ(x1:n) =

n∑
i=1

log pθ(xi), where pθ(xi) = N (xi|µ,S), (6)

and we obtain the covariance matrix using S = WW⊤ + σ2
0I. For our analysis, the Gaussian nature

of pθ(xi) is of fundamental importance. Given the random mask M, the self-predictive conditionals
used in MPT naturally emerge from the formulation using properties of Gaussian marginals, such that
pθ(xM|xR) = N (mM|R,vM|R) is parameterized according to

mM|R = S⊤
MRS−1

RRxR, vM|R = SMM + S⊤
MRS−1

RRSMR, (7)

where we split the LML covariance matrix S into the blocks corresponding to the indices included in
M and R. We use these mean and variance parameters of the self-predictive density to recursively
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evaluate the log-probabilities in Prop. 1. In practice, two elements become critical for the computation,
one is the size M of the mask and another is the number of random masks P < CM considered. These
induce a trade-off between accuracy and computational cost. Moreover, their role in approximating
LML using a biased estimate is carefully analyzed in the following empirical studies. We also included
additional details on the previous derivations in the supplementary material.

Fast asymptotic convergence. Our theory indicates that we should evaluate all CM random masks
of the tokens to achieve the exact value of the LML. However, even if the combinatorial nature of
the sum in the r.h.s. of the last equation in Prop. 1 becomes very large when the dimensionality of
data augments, we suspect that it might converge relatively fast to the true value of the LML. This
hypothesis would explain why large models that are fitted with standard MPT generalize well using
just one random mask per training epoch.

Here, we empirically study if the cumulative MPT loss converges to the true value of the LML under
the definition of the PPCA model. In particular, to the LML obtained with the original parameters
that generated the data. The results in Fig. 1 and Tab. 1 indicate that as long as we average over
more random masking patterns, the cumulative MPT loss approximates the LML of the model very
well. Thus, having defined a PPCA model with a latent space of K = 2 dimensions, we observe in
the left and middle plots that the asymptotic convergence happens for both small (D = 5) and large
(D = 50) number of tokens per observation. Additionally, we observe that the estimation of LML is
clearly unbiased if we use the cumulative MPT loss according to Eq. 1, which is an important insight.
Notice that P = 1 is usually set up in MPT in practice. Additionally, we tested the tractable model

Table 1: Evolution of negative MPT loss w.r.t. max. number of random masks P .
TRUE LML (↑) P = 1 P = 10 P = 100

(−60.34) −60.44 ± 0.47 −60.22 ± 0.12 − 60.34 ± 0.03

Figure 1: Asymptotic convergence of the cumulative MPT loss to LML as the number of random
masks P augments. Curves indicate the relative difference, where 0.0 means that MPT equals LML.
(Left). Each observation consists of 5 tokens. (Center) Each observation consists of 50 tokens.
(Right). Observations have 512 tokens and the rate of masking is fixed to 15% (76 tokens). As the
theory indicates, when the size of M is fixed, the cumulative MPT loss becomes a biased estimator of
the LML. The curves converge asymptotically to the bias.

using a dimensionality similar to the input data used in BERT (Devlin et al., 2018), where the number
of tokens is typically D = 512 per observation and the mask rate is fixed to 15%. The fact of fixing
the rate of masking in MPT produces that the sum in Eq. 5 is incomplete. Thus, we have a biased
estimation of the LML. However, this bias is known and constant during the training of parameters θ,
which does not prevent the general maximization of LML. This point is carefully analyzed in the next
empirical study with learning curves. One additional finding here is that as P → CM , the cumulative
MPT loss also converges asymptotically to the biased estimator of the LML as shown in the right plot
in Fig. 1.

LML maximization and biased estimation. We next seek to extend the previous study to under-
stand the behavior of the cumulative MPT loss in training curves. So far, we have observed how
the number of random mask patterns affects the precision around the unbiased estimation of the
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LML. Theory and previous empirical results indicate that we are targeting LML or at least a decent
biased estimate of LML when averaging self-predictive conditionals as in MPT. However, we still
want to examine if this maximizes LML in all cases and under stochastic gradient optimization. This
principal hypothesis is confirmed in Fig. 2, where different training curves are shown for different
initializations and setups of the same PPCA model. The key insight showed by this experiment is
that the exact LML is iteratively maximized at each epoch, in parallel with the maximization of the
negative MPT loss. On the other side, we also have that MPT is an unbiased stochastic approximation
of LML, as in Fig. 1, whenever we consider different rates of random masking M. We can also
observe that as soon as we fix the size of the mask to index the 20% of tokens, the MPT loss becomes
a biased estimate. Intuitively, this is equivalent to fixing M in the sum in Eq. 5. Again, it converges
to the same value from different initializations of parameters θ. Additionally, we highlight that the
LML is still maximized in this case, which is of high similarity to practical uses in larger models.
Overall, this result first confirms the main insight of the work on the link between generalization
when using MPT and the maximization of the model’s LML.

Figure 2: Training curves of the negative cumulative MPT loss in PPCA vs. the ground truth (GT)
LML. The number of samples is N = 2000 and the number of tokens is D = 10. All plots used
P = 1 random masks per epoch and five different initializations. (Left). The rate of masking is
unfixed and it varies from 1% until 100%. The negative MPT loss converges to the GT-LML (dashed
line). Darker curves are the exact LML per epoch. (Center). Convergence with fixed mask to 20% of
tokens. The negative MPT loss is no longer centered around the LML and it converges to a biased
estimate. (Right). Zoomed curves of convergence. The bias is constant and all MPT losses converge
to the same point. The LML per epoch is also maximized and converges to GT-LML.

Beyond tractable models and implicit integration. One remaining question in our analysis is
how the probabilistic theory around MPT adapts to intractable or non-linear models. In practice,
self-predictive probabilities imply integrating out the latent variables, often given the posterior
distribution. In most cases, performing this integration is extremely difficult or not possible in
training time. Therefore, we are interested in finding if alternative approximations qθ to the true
self-conditional probabilities still produce accurate estimation and maximization of the LML. This
point is confirmed in Fig. 3. Inspired by the experiments of Lucas et al. (2019) with linear VAEs, we
set up a Bernoulli likelihood on top of the latent variable model. The tractable formulation in the
Gaussian example coincides with PPCA. Since predictive conditionals are no longer tractable for
us, we use numerical integration to obtain the probabilities of masked tokens. In Fig. 3, we test the
training with the cumulative MPT loss as well as compare with standard variational inference using
the model’s evidence lower bound (ELBO). For the mini-dataset with MNIST samples, we observe
that both models converge to a similar value of the LML. Thus, the fundamental insight here is that
MPT maximizes LML even under training with approximate self-predictive conditional probabilities.
For the LML curves, we also used numerical integration.

Beyond linear models, our theory is useful when applied to non-linear models. Moreover, in Fig. 3
we also include the results for deep VAEs based on NNs. While the estimation of LML was obtained
via Monte Carlo (MC) samples, we used iterative encoding-decoding to produce the self-conditional
probabilities for masked tokens — see Sec. F in Rezende et al. (2014). In this scenario, we also
observe the maximization of the LML according to the evolution of the MPT loss.

Another key insight showed by this study is the ability of MPT to perform implicit integration. The
cumulative sum over the different rates of random masking is another way to see a discrete integral

6



Figure 3: Training curves for linear VAE and deep VAE models with variational inference (VI) and MPT.
Data consist of subsets of MNIST and FMNIST. (Upper Row). A linear VAE model with Bernoulli
likelihood function in N = 2000 samples of MNIST and FMNIST. Shaded curves correspond to the
target losses used in the optimizer (ELBO and MPT). Darker lines indicate the evolution of the LML,
which are approximated via numerical integration in a latent space Z of dimensionality K = 2.
(Lower Row). Vanilla VAE with Gaussian likelihood for MNIST. The LML curves are approximated
via Monte Carlo (MC) samples. Self-predictive conditional probabilities are obtained via recursive
encoding-decoding. The size of the random masking is fixed and set to 33%.

Figure 4: Area under the curve described by Sθ(·;M). The area is approximately equal to the model’s
LML according to the theory. Larger probability values are obtained with smaller rates of masking.
(Left). Area described with P = 1 random masking per epoch. The curve is more noisy and the area
slightly loses precision w.r.t. LML. (Center). Area under the MPT curve for P = 100. (Right).
Latent space is augmented to be of K = 50. Decay of predictive probabilities begins at around 50%
masking rate.

under the curve described by the score function Sθ(·;M) in Eq. 5. In Fig. 4, we show the areas under
the curve and the effect of reducing the number of random masks P . The blue plots correspond to a
trained PPCA model and the area corresponds to the LML estimate. The long tail in the right part of
the curves, when the rate of masking is larger than 90%, indicates that the model is no longer able to
produce good estimates of the tokens with only 10% of the input dimensions observed. This explains,
why the probabilities have an approximately exponential decay. However, this effect is not constant,
and it might depend on the latent structure of the model. In the r.h.s. plot we observe that the decay
of conditional probabilities happens earlier at approximate 50% random masking or larger. The role
of the masking rate is perhaps the missing part in the picture (Wettig et al., 2022), as it is the one that
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determines the approximation to the LML. With the purpose of providing an intuition on how rates of
15% or 85% affect to the area under the curve, we indicate with two black lines the approximate area
that approximates the LML. A longer discussion is provided in the supplementary material.

Table 2: Area under the MPT curve for BERT model and four GLUE datasets.
GLUE DATASETS → AX COLA QNLI MRPC

AREA / RANDOM INIT. (↑) − 5245.31 −5283.52 −5343.98 −5362.21
AREA / PRE-TRAINED (↑) −1715.75 − 1657.68 −1770.28 −1773.45

Figure 5: Evolution of the area under the MPT curve. Comparison between one tractable model
(PPCA) and BERT. The area under the curves is approximately the LML. Random initialization of the
parameters produces MPT curves with similar low probabilities for all % of masking. As the number
of epochs increases, the curve brings higher values of log-probability for lower ratios of masking.
The area also converges to the true value of LML. (Left). PPCA model trained for 600 epochs. Each
curve represents {0, 100, 200, 300, 400, 500, 600} epochs of training with MPT. (Right). Random
initialization and end-of-pretraining curves for the MPT loss w.r.t. the % of masked tokens. Curves
are similar but not identical for the 4 different datasets given the pre-trained BERT model.

3.2 Applied theory on large language models

In this section, we aim to understand how the area under the MPT curve evolves and behaves for large
language models (LLMs). While the direct computation of the LML is not feasible for non-linear
transformer models, we are interested in checking how the rate of masking affects the curve compared
with the tractable PPCA model. The results provided in Fig. 5 and Tab. 2 give us insights into this
behavior. First, we observe that the MPT curve is approximately flat for every rate of masking in the
PPCA when parameters are randomly initialized. Intuitively, this indicates that the model is not able
to correctly predict any token given some context. In some way, it produces noise independently
of the number of conditional tokens, which explains the low log-probabilities. Second, we can also
notice that the curve changes its shape as more training epochs are considered. The curve after 600
epochs produces high probability values for different rates of masking, while the long tail of low
probabilities appears when masking more than 85% of tokens. Moreover, the area under these curves
is the estimation of the LML, which accurately converges to the ground truth value of the LML with
the original generative parameters.

For the study of the curves in LLMs, we used four datasets from the General Language Understanding
Evaluation (GLUE) (Wang et al., 2019). Additionally, we consider a 110M parameters BERT model
using pre-trained checkpoints2 and random initializations. To draw the MPT curves, we computed
the mean cross-entropy per each rate of masking between 1% and 99%. In Fig. 5, we observe that
random initializations of BERT parameters lead to flat curves of low self-predictive probabilities. On
the other hand, the pre-trained curves show similar behavior as in the tractable model, where the area

2Pre-trained parameters for the BERT model are available in the library — https://huggingface.co/.
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is reduced and a long tail of low probabilities happens when the rate of masking becomes larger. This
result supports our hypothesis that MPT in LLMs might be performing implicit integration of the latent
space and maximizing the marginal likelihood of the model.

Results on vision models. In addition to the results shown in Fig. 5 with the BERT model, we
are also interested in the behavior of the theory on large models oriented to vision. For this study
we provide the curves of the area under the MPT loss for VIT-MAE (Dosovitskiy et al., 2020; He
et al., 2022) with different masking rates. In a similar way as in Sec. 3.2, we use an (already)
pre-trained VIT-MAE model loaded from a public repository. To draw the curves shown in Fig. 6,
we computed the losses per each rate of masking between 5% and 95% for samples from three
different test image datasets (FASHION-MNIST, CIFAR-100 and TINY-IMAGENET). We can observe
that the curves described by the pre-trained VIT-MAE model show a similar behaviour to the one
we obtained with BERT and they are also aligned with the analysis done in this work with tractable
models. We highlight that one must be aware that masking on vision models is often performed via
patches. In practice, this could affect the expectation in Proposition 1, so this point should be taken
into consideration if theory is applied to this case.

(a) TINY-IMAGENET (b) FASHION MNIST (c) CIFAR100

Figure 6: Evolution of the area under the MPT curve. Comparison between three different datasets
with VIT-MAE. The area under the curves is approximately the LML. Random initialization of the
parameters produces MPT curves with similar low probabilities for all % of masking. As the number
of epochs increases, the curve brings higher values of log-probability for lower ratios of masking.
The area also converges to the true value of LML.

Reproducibility. All the empirical studies and results are reproducible. We provide the code and
details for every figure in the public repository at https://github.com/pmorenoz/MPT-LML/.

4 Related work

Masked pre-training and large scalability are key elements of the current success of transformer
models (Vaswani et al., 2017) on natural language processing (NLP) tasks. Vision transformers
(ViT) (Dosovitskiy et al., 2020) bridged the architectural gap between NLP and computer vision,
making masked language modeling (MLM) suitable for images. In this regard, BeiT (Bao et al.,
2022) adopted ViT and proposed to mask and predict discrete visual tokens. Most recently, masked
autoencoders (He et al., 2022) also adopted masked pre-training by predicting pixel values for each
masked patch, and BEiT3 (Wang et al., 2022) performs MLM on texts, images, and image-text pairs,
obtaining state-of-the-art performance on all-vision and vision-language tasks. Additionally, masked
pre-training has been successfully adapted to video (Tong et al., 2022), where random temporal cubes
are iteratively masked and reconstructed.

The surprising ability of recent generative models to generalize and do impressive in-context learning
has inspired earlier works to study this phenomenon from the Bayesian lens. The notion that LLMs
might be performing implicit Bayesian inference was first described in Xie et al. (2021) where
in-context learning is described as a mixture of HMMs. However, the equivalence between the
log-marginal likelihood and exhaustive cross-validation was first provided in Fong and Holmes
(2020). Earlier works (Vehtari and Lampinen, 2002; Gelman et al., 2014) also provided a Bayesian
perspective of CV. Additionally, Moreno-Muñoz et al. (2022) leveraged this link for training Gaussian
process models according to a stochastic approximation to the marginal likelihood. Similarly to
current masked pre-training, the size of the conditioning variable (masking rate) was held constant.
This was reported to improve notably upon traditional variational lower bounds.
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5 Discussion and outlook

In this paper, we have shown that masked pre-training implicitly performs stochastic maximization of
the model’s marginal likelihood. The latter is generally acknowledged as being an excellent measure
of a model’s ability to generalize (Fong and Holmes, 2020), and our results help to explain the strong
empirical performance associated with masked pre-training. We have further seen that the developed
theory matches the empirical training behavior well. Moreover, we illustrated the role that the rates
and the number of random samples of masking play in the estimation of the LML. We have also
provided insights and a new perspective to study masked pre-training in tractable models while also
finding strong similarities with LLMs.

Limitations. We have developed a formal probabilistic theory that links masked pre-training with
the Bayesian principles. While we provide evidence that the impressive performance in recent large
models is related to the maximization of the marginal likelihood, these methods usually introduce
new elements of improvement but may not entirely fit the propositions provided in this work. In
practice, this is not a limitation but a remark that there is still room for understanding the abilities of
recent generative modeling. In this regard, one example might be autoregressive modeling between
the masked tokens. While these are not currently analyzed in our work, we hypothesize that they
could also be linked in further development to our formal propositions.

Relevance for large models using masked pre-training. We have shown empirical results of the
connection between MPT and LML. This link sheds light on the understanding of generalization,
particularly in recent pre-trained models. One positive outcome of our studies is the notion of having
biased Bayesian estimators whenever a practitioner fixes the masking rate, e.g. to 15%. Currently,
there is a significant interest in the role of masking rates in LLMs (Wettig et al., 2022). These studies
could benefit from the insights provided in this paper. We also argue that the theory offers hints that
may be beneficial, for instance, for uniformly sampling the mask size, instead of the current fixed-rate
practice. This practice is empirically shown in the supplementary material, and it leads to unbiased
estimation which may result in better performance for certain scenarios (Tay et al., 2023).

Relevance for Bayesian models. Current Bayesian modeling is dominated by approximate methods.
Variational inference foregoes the ambition of training according to the marginal likelihood and
instead resorts to bounds thereof. This inherently yields suboptimal models. Our theory suggests
that if we can design Bayesian models in which conditioning is cheap, then we can stochastically
optimize w.r.t. the true marginal likelihood easily. Beyond shedding light on the success of masked
pre-training, the theory also suggests that large-scale Bayesian models could be successfully trained
in the future with appropriately designed self-supervision.
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