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Abstract

Methods for training models on graphs distributed across multiple clients have
recently grown in popularity, due to the size of these graphs as well as regulations
on keeping data where it is generated. However, the cross-client edges naturally
exist among clients. Thus, distributed methods for training a model on a single
graph incur either significant communication overhead between clients or a loss of
available information to the training. We introduce the Federated Graph Convolu-
tional Network (FedGCN) algorithm, which uses federated learning to train GCN
models for semi-supervised node classification with fast convergence and little
communication. Compared to prior methods that require extra communication
among clients at each training round, FedGCN clients only communicate with
the central server in one pre-training step, greatly reducing communication costs
and allowing the use of homomorphic encryption to further enhance privacy. We
theoretically analyze the tradeoff between FedGCN’s convergence rate and commu-
nication cost under different data distributions. Experimental results show that our
FedGCN algorithm achieves better model accuracy with 51.7% faster convergence
on average and at least 100× less communication compared to prior work1.

1 Introduction

Graph convolutional networks (GCNs) have been widely used for applications ranging from fake
news detection in social networks to anomaly detection in sensor networks (Benamira et al., 2019;
Zhang et al., 2020). This data, however, can be too large to store on a single server, e.g., records of
billions of users’ website visits. Strict data protection regulations such as the General Data Protection
Regulation (GDPR) in Europe and Payment Aggregators and Payment Gateways (PAPG) in India
also require that private data only be stored in local clients. In non-graph settings, federated learning
has recently shown promise for training models on data that is kept at multiple clients (Zhao et al.,
2018; Yang et al., 2021). Some papers have proposed federated training of GCNs (He et al., 2021a;
Zhang et al., 2021). Typically, these consider a framework in which each client has access to a subset
of a large graph, and clients iteratively compute local updates to a semi-supervised model on their
local subgraphs, which are occasionally aggregated at a central server. Figure 1(left) illustrates the
federated node classification task of predicting unknown labels of local nodes in each client.

1Code in https://github.com/yh-yao/FedGCN

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/yh-yao/FedGCN
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Figure 1: Federated GCN training schematic for node classification, with colors indicating the known
labels of some nodes. Nodes in a graph (shown as circles) are distributed across clients, and dashed
lines show cross-client edges between nodes at different clients. Arrows in the left figure indicate
that each client can exchange updates with a central server during the training process to predict
the unknown labels of the grey nodes in each client. At right, we show a graph with i.i.d (top) and
non-i.i.d. (bottom) data distribution across clients, which affects the number of cross-client edges.

The main challenge of applying federated learning to GCN training tasks involving a single large
graph is that cross-client edges exist among clients. In Figure 1, for example, we see that some edges
will connect nodes in different clients. We refer to these as “cross-client edges”.

Such cross-client edges typically are stored in both clients. Intuitively, this is due to the fact that
edges are generated when nodes at clients interact with each other. Thus, the interaction record,
though not personal node characteristics, is then naturally stored at both nodes, i.e., in both clients.
For example, a graph may represent buying behaviors (edges) that exist between users (nodes) in two
countries (clients). Users in one country want to buy items in another country. The records of these
transactions between users in different countries (i.e., the cross-client edges) are then stored in both
clients. Due to the General Data Protection Regulation, however, sensitive user information (node
features including name, zip code, gender, birthday, credit card number, email address, etc.) cannot
be stored in another country. Yet these cross-client edges cannot be ignored: including cross-country
transactions (cross-client edges) is key for training models that detect international money laundering
and fraud. Another example is online social applications like Facebook and LinkedIn. Users in
different countries can build connections with each other (e.g., a person in the United States becoming
Facebook friends with a person in China). The users in both the U.S. and China would then have a
record of this friendship link, while the personal user information cannot be shared across countries.

However, GCNs require information about a node’s neighbors to be aggregated in order to construct
an embedding of each node that is used to accomplish tasks such as node classification and link
prediction. Ignoring the information from neighbors located at another client, as in prior federated
graph training algorithms (Wang et al., 2020a; He et al., 2021b), may then result in less accurate
models due to loss of information from nodes at other clients.

Prior works on federated or distributed graph training reduce cross-client information loss by commu-
nicating information about nodes’ neighbors at other clients in each training round (Scardapane et al.,
2020; Wan et al., 2022; Zhang et al., 2021), which can introduce significant communication overhead
and reveal private node information to other clients. We instead realize that the information needed to
train a GCN only needs to be communicated once, before training. This insight allows us to further
alleviate the privacy challenges of communicating node information between clients (Zhang et al.,
2021). Specifically, we leverage Homomorphic Encryption (HE), which can preserve client privacy in
federated learning but introduces significant overhead for each communication round; with only one
communication round, this overhead is greatly reduced. Further, in practice each client may contain
several node neighbors, e.g., clients might represent social network data in different countries, which
cannot leave the country due to privacy regulations. Each client would then receive aggregated feature
information about all of a node’s neighbors in a different country, which itself can help preserve
privacy through accumulation across multiple nodes. In the extreme case when nodes only have one
cross-client neighbor, we can further integrate differential privacy techniques (Wei et al., 2020). We
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propose the FedGCN algorithm for distributed GCN training based on these insights. FedGCN
greatly reduces communication costs and speeds up convergence without information loss, compared
with existing distributed settings (Scardapane et al., 2020; Wan et al., 2022; Zhang et al., 2021)

In some settings, we can further reduce FedGCN’s required communication without compromising
the trained model’s accuracy. First, GCN models for node classification rely on the fact that nodes
of the same class will have more edges connecting them, as shown in Figure 1(right). If nodes with
each class tend to be concentrated at a single client, a version of the non-i.i.d. (non-independent and
identically distributed) data often considered in federated learning, then ignoring cross-client edges
discards little information, and FedGCN’s communication round may be unnecessary. The model,
however, may not converge, as federated learning may converge poorly when client data is non-
i.i.d. (Zhao et al., 2018). Second, GCN models with multiple layers require accumulated information
from nodes that are multiple hops away from each other, introducing greater communication overhead.
However, such multi-hop information may not be needed in practice.

We analytically quantify the convergence rate of FedGCN with various degrees of communication,
under both i.i.d. and non-i.i.d. client data. To the best of our knowledge, we are the first to analytically
illustrate the resulting tradeoff between a fast convergence rate (which intuitively requires more
information from cross-client edges) and low communication cost, which we do by considering a
stochastic block model (Lei and Rinaldo, 2015; Keriven et al., 2020) of the graph topology. We thus
quantify when FedGCN’s communication significantly accelerates the GCN’s convergence.

In summary, our work has the following contributions:

• We introduce FedGCN, an efficient framework for federated training of GCNs to solve
node-level prediction tasks with limited communication and information loss, which also
leverages Fully Homomorphic Encryption for enhanced privacy guarantees.

• We theoretically analyze the convergence rate and communication cost of FedGCN com-
pared to prior methods, as well as its dependence on the data distribution. We can thus
quantify the usefulness of communicating different amounts of cross-client information.

• Our experiments on both synthetic and real-world datasets demonstrate that FedGCN out-
performs existing distributed GCN training methods in most cases with a fast convergence
rate, higher accuracy, and orders-of-magnitude lower communication cost.

We outline related works in Section 2 before introducing the problem of node classification in graphs
in Section 3. We then introduce FedGCN in Section 4 and analyze its performance theoretically
(Section 5) and experimentally (Section 6) before concluding in Section 7.

2 Related Work

Graph neural networks aim to learn representations of graph-structured data (Bronstein et al., 2017).
GCNs (Kipf and Welling, 2016), GraphSage (Hamilton et al., 2017), and GAT (Veličković et al.,
2017) perform well on node classification and link prediction. Several works provide a theoretical
analysis of GNNs based on the Stochastic Block Model (Zhou and Amini, 2019; Lei and Rinaldo,
2015; Keriven et al., 2020). We similarly adopt the SBM to quantify FedGCN’s performance.

Federated learning was first proposed in McMahan et al. (2017)’s widely adopted FedAvg algorithm,
which allows clients to train a model via coordination with a central server while keeping training data
at local clients. However, FedAvg may not converge if data from different clients is non-i.i.d. (Zhao
et al., 2018; Li et al., 2019a; Yang et al., 2021). We show similar results for federated graph training.

Federated learning on graph neural networks is a topic of recent interest (He et al., 2021a). Unlike
learning tasks in which multiple graphs each constitute a separate data sample and are distributed
across clients (e.g., graph classification (Zhang et al., 2018), image classification (Li et al., 2019b),
and link prediction (Yao et al., 2023), FedGCN instead considers semi-supervised tasks on a single
large graph (e.g., for node classification). Existing methods for such tasks generally ignore the
resulting cross-client edges (He et al., 2021a). Scardapane et al. (2020)’s distributed GNN proposes
a training algorithm communicating the neighbor features and intermediate outputs of GNN layers
among clients with expensive communication costs. BDS-GCN (Wan et al., 2022) proposes to sample
cross-client neighbors. These methods may violate client privacy by revealing per-node information
to other clients. FedSage+ (Zhang et al., 2021) recovers missing neighbors for the input graph based
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on the node embedding, which requires fine-tuning a linear model of neighbor generation and may
not fully recover the cross-client information. It is further vulnerable to the data reconstruction attack,
compromising privacy.

All of the above works further require communication at every training round, while FedGCN enables
the private recovery of cross-client neighbor information with a single, pre-training communication
round that utilizes HE. We also provide theoretical bounds on FedGCN’s convergence.

3 Federated Semi-Supervised Node Classification

In this section, we formalize the problem of node classification on a single graph and introduce the
federated setting in which we aim to solve this problem.

We consider a graph G = (V, E), where V = [N ] is the set of N nodes and E is the set of edges. The
graph is equivalent to a weighted adjacency matrix A ∈ RN×N , where Aij indicates the weight of
an edge from node i to node j (if the edge does not exist, the weight is zero). Every node i ∈ V has a
feature vector xi ∈ Rd, where d represents the number of input features. Each node i in a subset
Vtrain ⊂ V has a corresponding label yi used during training. Semi-supervised node classification
aims to assign labels to nodes in the remaining set V\Vtrain, based on their feature vectors and edges
to other nodes. We train a GCN model to do so.

GCNs (Kipf and Welling, 2016) consist of multiple convolutional layers, each of which constructs a
node embedding by aggregating the features of its neighboring nodes. Typically, the node embedding
matrix H(l) for each layer l = 1, 2, . . . , L is initialized to H(0) = X , the matrix of features for each
node (i.e., each row of X corresponds to the features for one node), and follows the propagation rule
H(l+1) = ϕ(AH(l)W (l)). Here W (l) are parameters to be learned, A is the weighted adjacency
matrix, and ϕ is an activation function. Typically, ϕ is chosen as the softmax function in the last layer,
so that the output can be interpreted as the probabilities of a node lying in each class, with ReLU
activations in the preceding layers. The embedding of each node i ∈ V at layer l + 1 is then

h
(l+1)
i = ϕ

∑
j∈Ni

Aijh
(l)
j W (l)

 , (1)

which can be computed from the previous layer’s embedding h
(l)
j for each neighbor j and the weight

Aij on edges from node i to node j. For a GCN with L layers in this form, the output for node i will
depend on neighbors up to L steps away (i.e., there exists a path of no more than L edges to node i).
We denote this set by NL

i (note that i ∈ NL
i ) and refer to these nodes as L-hop neighbors of i.

To solve the node classification problem in federated settings (Figure 1), we consider, as usual in
federated learning, a central server with K clients. The graph G = (V, E) is separated across the
K clients, each of which has a sub-graph Gk = (Vk, Ek). Here

⋃K
k=1 Vk = V and Vi

⋂
Vj = ∅ for

∀i ̸= j ∈ [K], i.e., the nodes are disjointly partitioned across clients. The features of nodes in the set
Vk can then be represented as the matrix Xk. The cross-client edges of client k, Ec

k, for which the
nodes connected by the edge are at different clients, are known to the client k. We use Vtrain

k ⊂ Vk

to denote the set of training nodes with associated labels yi. The task of federated semi-supervised
node classification is then to assign labels to nodes in the remaining set Vk\Vtrain

k for each client k.

As seen from (1), in order to find the embedding of the i-th node in the l-th layer, we need the
previous layer’s embedding h

(l)
j for all neighbors of node i. In the federated setting, however, some

of these neighbors may be located at other clients, and thus their embeddings must be iteratively sent
to the client that contains node i for each layer at every training round. He et al. (2021a) ignore these
neighbors, considering only Gk and Ek in training the model, while Scardapane et al. (2020); Wan
et al. (2022); Zhang et al. (2021) require such communication, which may lead to high overhead and
privacy costs. FedGCN provides a communication-efficient method to account for these neighbors.

4 Federated Graph Convolutional Network

In order to overcome the challenges outlined in Section 3, we propose our Federated Graph Convolu-
tional Network (FedGCN) algorithm. In this section, we first introduce our federated training method
with communication at the initial step and then outline the corresponding training algorithm.
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Federating Graph Convolutional Networks. In the federated learning setting, let c(i) denote the
index of the client that contains node i and W

(l)
c(i) denote the weight matrix of the l-th GCN layer of

client c(i). The embedding of node i at layer l + 1 is then h
(l+1)
i = ϕ

(∑
j∈Ni

Aijh
(l)
j W

(l)
c(i)

)
.

Note that the weights W (l)
c(i) may differ from client to client, due to the independent local training

in federated learning. For example, we can then write the computation of a 2-layer federated GCN
as ŷi = ϕ

(∑
j∈Ni

Aijϕ
(∑

m∈Nj
AjmxT

mW
(1)
c(i)

)
W

(2)
c(i)

)
. To evaluate this 2-layer model, it then

suffices for the client k = c(i) to receive the message
∑

m∈Nj
AjmxT

m. We can write these messages
as ∑

j∈Ni

Aijxj , and

 ∑
m∈Nj

Ajmxj


j∈Ni/i

, (2)

which are the feature aggregations of 1- and 2-hop neighbors of node i respectively. This information
does not change with the model training, as it simply depends on the (fixed) adjacency matrix A and
node features x. The client also naturally knows {Aij}∀j∈Ni , which is included in Ek

⋃
Ec
k.

One way to obtain the above information is to receive the following message from clients z that
contain at least one two-hop neighbor of k:∑

j∈Ni

Iz(c(j))Aijxj , and∀j ∈ Ni,
∑

m∈Nj

Iz(c(m)) ·Ajmxm. (3)

Here the indicator Iz(c(m)) is 1 if z = c(m) and zero otherwise. More generally, for a L-layer GCN,
each layer requires ∀j ∈ NL

i /NL−1
i ,

∑
m∈Nj

Iz(c(m)) · Ajmxm. Further, EL−1
i , i.e., the set of

edges up to L− 1 hops away from node i, is needed for normalization of A.

To avoid the overhead of communicating between multiple pairs of clients, which can also induce
privacy leakage when there is only one neighbor node in the client, we can instead send the aggregation
of each client to the central server. In the 2-layer GCN example, the server then calculates the sum of
neighbor features of node i as

∑
j∈Ni

Aijxj =
∑K

k=1

∑
j∈Ni

Ik(c(j)) ·Aijxj . The server can then
send the required feature aggregation in (2) back to each client k. Thus, we only need to send the
accumulated features of each node’s (possibly multi-hop) neighbors, in order to evaluate the GCN
model. If there are multiple neighbors stored in other clients, this accumulation serves to protect their
individual privacy2. For the computation of all nodes Vk stored in client k with an L-layer GCN, the
client needs to receive {

∑
j∈Ni

Aijxj}i∈NL
Vk

, where NL
Vk

is the set of L-hop neighbors of nodes Vk.

FedGCN is based on the insight that GCNs require only the accumulated information of the L-hop
neighbors of each node, which may be communicated in advance of the training. In practice, however,
even this communication may be infeasible. If L is too large, L-hop neighbors may actually consist
of the entire graph (social network graphs have diameters < 10), which might introduce prohibitive
storage and communication requirements. Thus, we design FedGCN to accommodate three types of
communication approximations, according to the most appropriate choice for a given application:

• No communication (0-hop): If any communication is unacceptable, e.g., due to overhead,
each client simply trains on Gk and ignores cross-client edges, as in prior work.

• One-hop communication: If some communication is permissible, we may use the accu-
mulation of feature information from nodes’ 1-hop neighbors, {

∑
j∈Ni

Aijxj}i∈Vk
, to

approximate the GCN computation. 1-hop neighbors are unlikely to introduce significant
memory or communication overhead as long as the graph is sparse, e.g. social networks.

• Two-hop communication: To further improve model performance, we can communicate
the information from 2-hop neighbors, {

∑
j∈Ni

Aijxj}i∈NVk
and perform the aggregation

of L-layer GCNs. As shown in Figure 2, the 2-hop approximation does not decrease model
accuracy in practice compared to L-hop communication for L-hop GCNs, up to L ≤ 10.

2In the extreme case when the node only has one neighbor stored in other clients, we can drop the neighbor,
which likely has minimal effect on model performance, or add differential privacy to the communicated data.
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Figure 2: Test Accuracy of GCNs with different numbers of layers, using centralized and FedGCN
training on Cora (left) and Ogbn-Arxiv (right) datasets with 10 clients and non-i.i.d partition. Com-
municating 2-hop information in FedGCN is sufficient for up to 10-layer GCNs. In Ogbn-Arxiv,
BatchNorm1d is added between GCN layers to ensure consistent performance (Hu et al., 2020).

Why Not L-hop Communication? Although FedGCN supports L-hop communication, commu-
nicating L-hop neighbors across clients requires knowledge of the L− 1 hop neighborhood graph
structures, which may incur privacy leakage. If L is large enough, L-hop neighbors may also cover
the entire graph, incurring prohibitive communication and computation costs. Thus, in practice
we restrict ourselves to 2-hop communication, which only requires knowledge of 1-hop neighbors.
Indeed, Figure 2 shows that even on the Ogbn-Arxiv dataset, which has more than one million edges,
adding more layers and k-hop communication does not increase model accuracy for L ≥ 3 and k ≥ 2.
Thus, it is reasonable to use 0, 1, or 2-hop communication with L ≤ 3-layer GCNs in practice.

Secure Neighbor Feature Aggregation. To guarantee privacy during the aggregation process of
accumulated features, we leverage Homomorphic Encryption (HE) to construct a secure neighbor
feature aggregation function. HE (Brakerski et al., 2014; Cheon et al., 2017) allows a computing
party to perform computation over ciphertext without decrypting it, thus preserving the plaintext data.

The key steps of the process can be summarized as follows: (i) all clients agree on and initialize a HE
keypair, (ii) each client encrypts the local neighbor feature array and sends it to the server, and (iii)
upon receiving all encrypted neighbor feature arrays from clients, the server performs secure neighbor
feature aggregation

[[∑
j∈Ni

Aijxj

]]
=

∑K
k=1

[[∑
j∈Ni

Ik(c(j)) ·Aijxj

]]
, where [[·]] represents

the encryption function. The server then distributes the aggregated neighbor feature array to each
client, and (iv) upon receiving the aggregated neighbor feature array, each client decrypts it and
moves on to the model training phase. We can also use HE for a secure model gradient aggregation
function during the model’s training rounds, which provides extra privacy guarantees.

Since model parameters are often floating point numbers and node features can be binary (e.g.,
one-hot indicators), a naïve HE scheme would use CKKS (Cheon et al., 2017) for parameters and
integer schemes such as BGV (Brakerski et al., 2014) for features. To avoid the resulting separate
cryptographic setups, we adopt CKKS with a rounding procedure for integers and also propose an
efficient HE file optimization, Boolean Packing, that packs arrays of boolean values into integers
and optimizes the cryptographic communication overhead. The encrypted features then only require
twice the communication cost of the raw data, compared to 20x overhead with general encryption.

Training Algorithm. Based on the insights in the previous section, we introduce the FedGCN
training algorithm (details are provided in Appendix A):

• Pretraining Communication Round The algorithm requires communication between
clients and the central server at the initial communication round.

1. Each client k sends its encrypted accumulations of local node features,
[[{
∑

j∈Ni
Ik(c(j)) ·Aijxj}i∈Vk

]], to the server.
2. The server then accumulates the neighbor features for each node i, [[

∑
j∈Ni

Aijxj ]] =∑K
k=1[[

∑
j∈Ni

Ik(c(j)) ·Aijxj ]].
3. Each client receives and decrypts the feature aggregation of its one-hop,

[[{
∑

j∈Ni
Aijxj}i∈Vk

]], and if needed two-hop, neighbors [[{
∑

j∈Ni
Aijxj}i∈NVk

]].

• Federated Aggregation After communication, FedGCN uses the standard FedAvg algo-
rithm McMahan et al. (2017) to train the models. Other federated learning methods, e.g., as
proposed by Reddi et al. (2020); Fallah et al. (2020), can easily replace this procedure.
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5 FedGCN Convergence and Communication Analysis

In this section, we theoretically analyze the convergence rate and communication cost of FedGCN
for i.i.d. and non-i.i.d. data with 0-, 1-, and 2-hop communication.

We first give a formal definition of the i.i.d. and non-i.i.d. data distributions, using distribution-based
label imbalance (Hsu et al., 2019; Li et al., 2022). Figure 3 visualizes eight example data distributions
across clients. For simplicity, we assume the number of clients K exceeds the number of node label
classes C, though Section 6’s experiments support any number of clients. We also assume that each
class contains the same number of nodes and that each client has the same number of nodes.
Definition 5.1. Each client k’s label distribution is defined as [p1 p2 . . . pC ] ∈ RC , where pc
denotes the fraction of nodes of class c at client k and

∑
c pc = 1.

Definition 5.2. Clients’ data distributions are i.i.d. when nodes are uniformly and randomly assigned
to clients, i.e., each client’s label distribution is [1/C . . . 1/C]. Otherwise, they are non i.i.d.

Non-i.i.d. distributions include that of McMahan et al. (2017) in which pi = 1 − p + p
C for

some i = 1, 2, . . . , C and p
C otherwise, where p ∈ [0, 1] is a control parameter; or the Dirichlet

distribution (Hsu et al., 2019) Dir(β/C), where β ≥ 0 is a control parameter. With these distributions,
each client has one dominant class. If p = 0 or β → ∞, all nodes at a client have the same class.

Client
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Client
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Figure 3: Example client data distributions. Different colors represent different node label classes.
Client data is generated from the data distribution with different parameters p and β respectively.
We use ∥x∥ to denote the ℓ2 norm if x is a vector, and the Frobenius norm if x is a matrix. Given
model parameters w and K clients, we define the local loss function fk(w) for each client k, and the
global loss function f(w) =

∑K
k=1 fk(w), which has minimum value f∗.

Assumption 5.3. (λ-Lipschitz Continuous Gradient) There exists a constant λ > 0, such that
∥∇fk(w)−∇fk(v)∥ ≤ λ∥w − v∥, ∀w,v ∈ Rd, and k ∈ [K].
Assumption 5.4. (Bounded Global Variability) There exists a constant σG ≥ 0, such that the global
variability of the local gradients of the cost function ∥∇fk(wt)−∇f(wt)∥ ≤ σG, ∀k ∈ [K], ∀t3

Assumption 5.5. (Bounded Gradient) There exists a constant G ≥ 0, such that the local gradients of
the cost function ∥∇fk(wt)∥ ≤ G, ∀k ∈ [K], ∀t.

Assumptions 5.3, 5.4 and 5.5 are standard in the federated learning literature (Li et al., 2019a; Yu
et al., 2019; Yang et al., 2021). We consider a two-layer GCN, though our analysis can be extended
to more layers. We work from Yu et al. (2019)’s convergence result for FedAvg4 to find:
Theorem 5.6. (Convergence Rate for FedGCN) Under the above assumptions, while training with K
clients, T global training rounds, E local updates per round, and a learning rate η ≤ 1

λ , we have

1

T

T∑
t=1

E
[
∥∇f (wt−1)∥2

]
≤ 2

ηT
(f (w0)− f∗) +

λ

K
η∥Ilocal − Iglob∥2 + 4η2E2G2λ2, (4)

where f∗ is the minimum value of f , Ilocal = KXT
k A

T
kA

T
kAkAkXk, Iglob = XTATATAAX .

The convergence rate is thus bounded by the difference of the information provided by local and
global graphs ∥Ilocal − Iglob∥, which upper bounds the global variability ∥∇fk(w)−∇f(w)∥. By
1- and 2-hop communication, the local graph Ak is closer to A, resulting in faster convergence.

Table 1 bounds ∥Ilocal − Iglob∥ for FedGCN trained on an SBM (stochastic block model) graph, in
which we assume N nodes with C classes. Nodes in the same (different) class have an edge between
them with probability α (µα). Appendix D details the full SBM. Appendix H derives Table 1’s

3Clients with i.i.d. label distributions may still have global variability σG > 0 due to having finite samples.
4Our analysis applies to any federated training algorithm with bounded global variability (Yang et al., 2021).
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Non-i.i.d. i.i.d.

0-hop (1− 1
K4 )

N5

C5 ∥B4∥+ (1− 1
C
)
5
2 (1− p)5 (1− 1

K4 )
N5

C5 ∥B4∥
1-hop (1− 1

K4 (1 + cαp+ cµ)
2)N

5

C5 ∥B4∥+ (1− 1
C
)
5
2 (1− p)5 (1− 1

K4 (1 + cα + cµ)
2)N

5

C5 ∥B4∥
2-hop (1− 1

K4 (1 + cαp+ cµ)
6)N

5

C5 ∥B4∥+ (1− 1
C
)
5
2 (1− p)5 (1− 1

K4 (1 + cα + cµ)
6)N

5

C5 ∥B4∥

Table 1: Convergence rate bounds of FedGCN with the Stochastic Block Model and data distribution
from McMahan et al. (2017) We define cα = (1−µ)αN(K−1)

CK and cµ = µαN(K−1)
K for the SBM; αN

is a constant, cα ≫ cµ and cµ ≃ 0. More hops speed up the convergence from the order of 2 to 6
(highlighted as purple and green). Communication helps more when data is more i.i.d with factor
cαp (highlighted as blue). Non-i.i.d. data implies a longer convergence time with factor (1− p)5.

results; the SBM structure allows us to develop intuitions about FedGCN’s convergence with different
hops, simply by knowing the node features and graph adjacency matrix (i.e., without knowing the
model). Appendix F derives corresponding expressions for the required communication costs. We
validate these results in experiments and Appendix G, and make the following key observations:

• Faster convergence with more communication hops: 1-hop and 2-hop communication
accelerate the convergence with factors (1 + cαp+ cµ)

2 and (1 + cαp+ cµ)
6, respectively.

When the i.i.d control parameter p increases, the difference among no (0-hop), 1-hop, and
2-hop communication increases: communication helps more when data is more i.i.d.

• More hops are needed for cross-device FL: When the number of clients K increases, as
in cross-device federated learning (FL), the convergence takes longer by a factor 1

K4 , but
2-hop communication can recover more edges in other clients to speed up the training.

• One-hop is sufficient for cross-silo FL: If the number of clients K is small, approximation
methods via one-hop communication can balance the convergence rate and communication
overhead. We experimentally validate this intuition in the next section.

6 Experimental Validation

We experimentally show that FedGCN converges to a more accurate model with less communication
compared to previously proposed algorithms. We further validate Section 5’s theoretical observations.

6.1 Experiment Settings

We use the Cora (2708 nodes, 5429 edges), Citeseer (3327 nodes, 4732 edges), Ogbn-ArXiv (169343
nodes, 1166243 edges), and Ogbn-Products (2449029 nodes, 61859140 edges) datasets to predict
document labels and Amazon product categories (Wang et al., 2020b; Hu et al., 2020).

Methods Compared. Centralized GCN assumes a single client has access to the entire graph.
Distributed GCN (Scardapane et al., 2020) trains GCN in distributed clients, which requires commu-
nicating node features and hidden states of each layer. FedGCN (0-hop) (Section 4) is equivalent to
federated training without communication (FedGraphnn) (Wang et al., 2020a; Zheng et al., 2021;
He et al., 2021a). BDS-GCN (Wan et al., 2022) randomly samples cross-client edges in each global
training round, while FedSage+ (Zhang et al., 2021) recovers missing neighbors by learning a linear
predictor based on the node embedding, using cross-client information in each training round. It is
thus an approximation of FedGCN (1-hop), which communicates the 1-hop neighbors’ information
across clients. FedGCN (2-hop) communicates the two-hop neighbors’ information across clients.

We consider the Dirichlet label distribution with parameter β, as shown in Figure 3. For Cora and
Citeseer, we use a 2-layer GCN with Kipf and Welling (2016)’s hyper-parameters. For Ogbn-Arxiv
and Ogbn-Products, we respectively use a 3-layer GCN and a 2-layer GraphSage with Hu et al.
(2020)’s hyper-parameters. We average our results over 10 experiment runs. Detailed experimental
setups and extended results, including an evaluation of the HE overhead, are in Appendix E and G.

6.2 Effect of Cross-Client Communication

We first evaluate our methods under i.i.d. (β = 10000) and non-i.i.d. (β = 100, 1) Dirichlet data
distributions on the four datasets to illustrate FedGCN’s performance relative to the centralized,
BDS-GCN, and FedSage+ baselines under different levels of communication.
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Cora, 10 clients Citeseer, 10 clients
Centralized GCN 0.8069±0.0065 0.6914±0.0051

β = 1 β = 100 β = 10000 β = 1 β = 100 β = 10000
FedGCN(0-hop) 0.6502±0.0127 0.5958±0.0176 0.5992±0.0226 0.617±0.0118 0.5841±0.0168 0.5841±0.0138
BDS-GCN 0.7598±0.0143 0.7467±0.0117 0.7479±0.018 0.6709±0.0184 0.6596±0.0128 0.6582±0.01
FedSage+ 0.8026±0.0054 0.7942±0.0075 0.796±0.0075 0.6977±0.0097 0.6856±0.0121 0.688±0.0086
FedGCN(1-hop) 0.81±0.0066 0.8009±0.007 0.8009±0.0077 0.7006±0.0071 0.6891±0.0067 0.693±0.0069
FedGCN(2-hop) 0.8064±0.0043 0.8084±0.0051 0.8087±0.0061 0.6933±0.0067 0.6953±0.0069 0.6948±0.0032

Ogbn-Arxiv, 10 clients Ogbn-Products, 5 clients
Centralized GCN 0.7±0.0082 0.7058±0.0008

β = 1 β = 100 β = 10000 β = 1 β = 100 β = 10000
FedGCN(0-hop) 0.5981±0.0094 0.5809±0.0017 0.5804±0.0015 0.6789±0.0031 0.658±0.0008 0.658±0.0008
BDS-GCN 0.6769±0.0086 0.6689±0.0024 0.6688±0.0015 0.6996±0.0019 0.6952±0.0012 0.6952±0.0009
FedSage+ 0.7053±0.0073 0.6921±0.0014 0.6918±0.0024 0.7044±0.0017 0.7047±0.0009 0.7051±0.0006
FedGCN(1-hop) 0.7101±0.0078 0.6989±0.0038 0.7004±0.0031 0.7049±0.0016 0.7057±0.0003 0.7057±0.0004
FedGCN(2-hop) 0.712±0.0075 0.6972±0.0075 0.7017±0.0081 0.7053±0.002 0.7057±0.0009 0.7055±0.0006

Table 2: Test Accuracy on four datasets, for i.i.d.(β = 10000) and non-i.i.d. (β = 100, 1) data.
FedGCN (1-hop,2-hop) performs best on i.i.d. and non-i.i.d. data, and FedGCN (0-hop) has the most
information loss. We assume FedSage+’s linear approximator perfectly learns neighbor information.

As shown in Table 2, FedGCN(1-, 2-hop) has higher test accuracy than FedSage+ and BDS-GCN,
reachiing the same test accuracy as centralized training in all settings. FedGCN(1-, 2-hop) is able to
converge faster to reach the same accuracy with the optimal number of hops depending on the data
distribution. In such cross-silo setting (10 clients), FedGCN(1-hop) achieves a good tradeoff between
communication and model accuracy. FedGCN (0-hop) performs worst in the i.i.d. and non-i.i.d.
settings, due to information loss from cross-client edges.

Why Non-i.i.d Has Better Accuracy in 0-hop? In Table 2 with 10 clients, 0-hop has better accuracy
since non-i.i.d. has fewer cross-client edges (less information loss) than i.i.d as in theoretical analysis.
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Figure 4: Test accuracy vs. communication cost until convergence of algorithms in the i.i.d., partial-
i.i.d. and non-i.i.d. settings for the OGBN-ArXiv dataset. FedGCN uses orders of magnitude less
communication (at least 100×) than BDS-GCN and FedSage+, while achieving higher test accuracy.

Communication Cost vs. Accuracy. Figure 4 shows the communication cost and test accuracy
of different methods on the OGBN-ArXiv dataset. FedGCN (0-, 1-, and 2-hop) requires little
communication with high accuracy, while Distributed GCN, BDS-GCN and FedSage+ require
communication at every round, incurring over 100× the communication cost of any of FedGCN’s
variants. FedGCN (0-hop) requires much less communication than 1- and 2-hop FedGCN, but
has lower accuracy due to information loss, displaying a convergence-communication tradeoff.
Both 1- and 2-hop FedGCN achieve similar accuracy as centralized GCN, indicating that a 1-hop
approximation of cross-client edges is sufficient in practice to achieve an accurate model.
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Figure 5: Test accuracy with the number of clients on the Cora dataset.
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Cross-Silo and Cross-Device Training. As shown in Figure 5 (left), 1-hop and 2-hop communication
achieve similar test accuracy in the cross-silo setting with few clients, though 1-hop communication
has lower communication costs. However, in the cross-device setting with many clients (Fig-
ure 5 right), the 1-hop test accuracy drops with more clients, indicating that 2-hop communication
may be necessary to maintain high model accuracy, as suggested by our theoretical analysis.

7 Conclusion & Future Directions

We propose FedGCN, a framework for federated training of graph convolutional networks for semi-
supervised node classification. The FedGCN training algorithm is based on the insight that, although
distributed GCN training typically ignores cross-client edges, these edges often contain information
useful to the model, which can be sent in a single round of communication before training begins.
FedGCN allows for different levels of communication to accommodate different privacy and overhead
concerns, with more communication generally implying less information loss and faster convergence,
and further integrates HE for privacy protection. We quantify FedGCN’s convergence under different
levels of communication and different degrees of non-i.i.d. data across clients and show that FedGCN
achieves high accuracy on real datasets, with orders of magnitude less communication than previous
algorithms.

Although the FedGCN can overcome the challenges mentioned above, it mainly works on training
accumulation-based models like GCN and GraphSage. There are several open problems in federated
graph learning that need to be explored.

Federated Training of Attention-based GNNs Attention-based GNNs like GAT (Graph attention
network) require calculating the attention weights of edges during neighbor feature aggregation,
where the attention weights are based on the node features on both sides of edges and attention
parameters. The attention parameters are updated at every training iteration and cannot be simply fixed
at the initial round. How to train attention-based GNNs in a federated way with high performance
and privacy guarantees is an open challenge and promising direction.

Neighbor Node and Feature Selection to Optimize System Performance General federated graph
learning optimizes the system by only sharing local models, without utilizing cross-device graph
edge information, which leads to less accurate global models. On the other hand, communicating
massive additional graph data among devices introduces communication overhead and potential
privacy leakage. To save the communication cost without affecting the model performance, one can
select key neighbors and neighbor features to reduce communication costs and remove redundant
information. For privacy guarantee, if there is one neighbor node, it can be simply dropped to avoid
private data communication. FedGCN can be extended by using selective communication in its
pre-training communication round.

Integration with L-hop Linear GNN Approximation methods To speed up the local com-
putation speed, L-hop Linear GNN Approximation methods use precomputation to reduce
the training computations by running a simplified GCN (ALXW in SGC Wu et al. (2019),
[AXW ,A2XW , . . . ,ALXW ] in SIGN Frasca et al. (2020), and ΠXW in PPRGo Bojchevski
et al. (2020) where Π is the pre-computed personalized pagerank), but the communication cost is not
reduced if we perform these methods alone. They are thus a complementary approach for efficient
GNN training. FedGCN (2-hop, 1-hop) changes the model input (A and X) to reduce communication
in the FL setting, but the GCN model itself is not simplified. FedGCN can incorporate these methods
to speed up the local computation, especially in constrained edge devices.

8 Acknowledgement

This research was supported by the National Science Foundation under grant CNS-1909306, Cloud-
bank support through CNS-1751075, and the Lee-Stanziale Ohana Fellowship by the ECE department
at Carnegie Mellon University. The authors would like to thank Jiayu Chang, Cynthia (Xinyi) Fan,
and Shoba Arunasalam for helping with the coding.

10



References
Adrien Benamira, Benjamin Devillers, Etienne Lesot, Ayush K Ray, Manal Saadi, and Fragkiskos D

Malliaros. 2019. Semi-supervised learning and graph neural networks for fake news detection. In
2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, 568–569.

Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais, Benedek
Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020. Scaling graph neural networks
with approximate pagerank. In Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2464–2473.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT) 6, 3 (2014),
1–36.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine 34, 4
(2017), 18–42.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homomorphic encryption for
arithmetic of approximate numbers. In International conference on the theory and application of
cryptology and information security. Springer, 409–437.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. 2020. Personalized federated learning with
theoretical guarantees: A model-agnostic meta-learning approach. Advances in Neural Information
Processing Systems 33 (2020), 3557–3568.

Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein, and Federico
Monti. 2020. Sign: Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198
(2020).

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems. 1025–1035.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao Sun, Lifang He,
Liangwei Yang, Philip S Yu, Yu Rong, et al. 2021a. Fedgraphnn: A federated learning system and
benchmark for graph neural networks. arXiv preprint arXiv:2104.07145 (2021).

Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and Salman Avestimehr.
2021b. Spreadgnn: Serverless multi-task federated learning for graph neural networks. arXiv
preprint arXiv:2106.02743 (2021).

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the effects of non-identical
data distribution for federated visual classification. arXiv preprint arXiv:1909.06335 (2019).

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. 2020. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems 33 (2020), 22118–22133.

Nicolas Keriven, Alberto Bietti, and Samuel Vaiter. 2020. Convergence and stability of graph
convolutional networks on large random graphs. arXiv preprint arXiv:2006.01868 (2020).

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016).

Jing Lei and Alessandro Rinaldo. 2015. Consistency of spectral clustering in stochastic block models.
The Annals of Statistics 43, 1 (2015), 215–237.

Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. 2019b. Deepgcns: Can gcns go
as deep as cnns?. In Proceedings of the IEEE/CVF international conference on computer vision.
9267–9276.

11



Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. 2022. Federated learning on non-iid data
silos: An experimental study. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE). IEEE, 965–978.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. 2019a. On the conver-
gence of fedavg on non-iid data. arXiv preprint arXiv:1907.02189 (2019).

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
2017. Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics. PMLR, 1273–1282.

Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Konečnỳ,
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