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Abstract

To explain predictions made by complex machine learning models, many feature
attribution methods have been developed that assign importance scores to input
features. Some recent work challenges the robustness of these methods by showing
that they are sensitive to input and model perturbations, while other work addresses
this issue by proposing robust attribution methods. However, previous work on
attribution robustness has focused primarily on gradient-based feature attributions,
whereas the robustness of removal-based attribution methods is not currently
well understood. To bridge this gap, we theoretically characterize the robustness
properties of removal-based feature attributions. Specifically, we provide a unified
analysis of such methods and derive upper bounds for the difference between intact
and perturbed attributions, under settings of both input and model perturbations.
Our empirical results on synthetic and real-world data validate our theoretical
results and demonstrate their practical implications, including the ability to increase
attribution robustness by improving the model’s Lipschitz regularity.

1 Introduction

In recent years, machine learning has shown great promise in a variety of real-world applications. An
obstacle to its widespread deployment is the lack of transparency, an issue that has prompted a wave
of research on interpretable or explainable machine learning [45, 51, 53, 56, 60, 67]. One popular
way of explaining a machine learning model is feature attribution, which assigns importance scores to
input features of the model [45, 51, 53, 56, 60]. Many feature attribution methods can be categorized
as either gradient-based methods that compute gradients of model predictions with respect to input
features [6], or removal-based methods that remove features to quantify each feature’s influence [17].
While substantial progress has been made and current tools are widely used for model debugging
and scientific discovery [10, 18, 37, 50], some important concerns remain. Among them is unclear
robustness properties: feature attributions are vulnerable to adversarial attacks, and even without an
adversary appear unstable under small changes to the input or model.

As a motivating example, consider the work of Ghorbani et al. [28], which shows that minor
perturbations to an image can lead to substantially different feature attributions while preserving the
original prediction. Similar to adversarial examples designed to alter model predictions [29, 43, 61],
this phenomenon violates the intuition that explanations should be invariant to imperceptible changes.
A natural question, and the focus of this work, is therefore: When can we guarantee that feature
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attributions are robust to small changes in the input or small changes in the model? In answering
this question, we find that previous theoretical work on this topic has primarily focused on gradient-
based methods. Hence, in this work we provide a unified analysis to characterize the robustness
of removal-based feature attributions, under both input and model perturbations, and considering a
range of existing methods in combination with different approaches to implement feature removal.

Related work. Recent work has demonstrated that gradient-based attributions for neural networks are
susceptible to small input perturbations that can lead to markedly different attributions [21, 28, 41].
Theoretical analyses have established that this issue relates to model smoothness, and approaches like
stochastic smoothing of gradients, weight decay regularization, smoothing activation functions, and
Hessian minimization have been shown to generate more robust gradient-based attributions [4, 21,
22, 65]. As for the robustness of removal-based attributions under input perturbations, Alvarez-Melis
and Jaakkola [5] empirically assess the robustness of LIME, SHAP, and Occlusion with the notion of
Lipschitz continuity in local neighborhoods. Khan et al. [40] provide theoretical guarantees on the
robustness of SHAP, RISE, and leave-one-out attributions using Lipschitz continuity, in the specific
setting where held-out features are replaced with zeros. Agarwal et al. [3] study the robustness of
discrete attributions for graph neural networks and establish Lipschitz upper bounds for the robustness
of GraphLIME and GraphMASK. Our analysis of input perturbations is most similar to Khan et al.
[40], but we generalize this work by considering alternative techniques for both feature removal and
importance summarization (e.g., LIME’s weighted least squares approach [53]).

Other works have considered model perturbations and manipulated neural networks to produce
targeted, arbitrary gradient-based attributions [7, 34]. Anders et al. [7] explain this phenomenon
through the insight that neural network gradients are underdetermined with many degrees of freedom
to exploit, and they demonstrate better robustness when gradient-based attributions are projected onto
the tangent space of the data manifold. As for removal-based attributions, it has been demonstrated
that models can be modified to hide their reliance on sensitive features in LIME and SHAP [20, 58];
however, Frye et al. [27] show that such hidden features can be discovered if features are removed
using their conditional distribution, suggesting a key role for the feature removal approach in
determining sensitivity to such attacks. Our work formalizes these results through the lens of
robustness under model perturbations, and provides new theoretical guarantees.

Contribution. The main contribution of this work is to develop a comprehensive characterization of
the robustness properties of removal-based feature attributions, focusing on two notions of robustness
that have received attention in the literature: stability under input changes and stability under model
changes. Our specific contributions are the following: (1) We provide theoretical guarantees for the
robustness of model predictions with the removal of arbitrary feature subsets, under both input and
model perturbations. (2) We analyze the robustness of techniques for summarizing each feature’s
influence (e.g., Shapley values) and derive best- and worst-case robustness within several classes of
such techniques. (3) We combine the analyses above to prove unified attribution robustness properties
to both input and model perturbations, where changes in removal-based attributions are controlled
by the scale of perturbations in either input space or function space. (4) We validate our theoretical
results and demonstrate practical implications using synthetic and real-world datasets.

2 Background

Here, we introduce the notation used in the paper and review removal-based feature attributions.

2.1 Notation

Let f : Rd 7→ R be a model whose predictions we seek to explain. We consider that the input variable
x consists of d separate features, or x = (x1, . . . ,xd). Given an index set S ⊆ [d] ≡ {1, . . . , d}, we
define the corresponding feature subset as xS ≡ {xi : i ∈ S}. The power set of [d] is denoted by
P(d), and we let S̄ ≡ [d] \ S denote the set complement. We consider the model’s output space to
be one-dimensional, which is not restrictive because attributions are typically calculated for scalar
predictions (e.g., the probability for a given class). We use the bold symbols x,xS to denote random
variables, the symbols x, xS to denote specific values, and p(x) to represent the data distribution
with support on X ⊆ Rd. We assume that all explanations are generated for inputs such that x ∈ X .
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2.2 Removal-based feature attributions

Our work focuses on a class of methods known as removal-based explanations [17]. Intuitively,
these are algorithms that remove subsets of inputs and summarize how each feature affects the
model. This framework describes a large number of methods that are distinguished by two main
implementation choices: (1) how feature information is removed from the model, and (2) how the
algorithm summarizes each feature’s influence.2 This perspective shows a close connection between
methods like leave-one-out [67], LIME [53] and Shapley values [45], and enables a unified analysis
of their robustness properties. Below, we describe the two main implementation choices in detail.

Feature removal. Most machine learning models require all feature values to generate predictions, so
we must specify a convention for depriving the model of feature information. We denote the prediction
given partial inputs by f(xS). Many implementations have been discussed in the literature [17], but
we focus here on three common choices. Given a set of observed values xS , these techniques can all
be viewed as averaging the prediction over a distribution q(xS̄) for the held-out feature values:

f(xS) := Eq(xS̄) [f(xS ,xS̄)] =

∫
f(xS , xS̄)q(xS̄)dxS̄ . (1)

Specifically, the three choices we consider are:

• (Baseline values) Given a baseline input b ∈ Rd, we can set the held-out features to their
corresponding values bS̄ [59]. This is equivalent to letting q(xS̄) be a Dirac delta centered at bS̄ .

• (Marginal distribution) Rather than using a single replacement value, we can average across
values sampled from the input’s marginal distribution, or let q(xS̄) = p(xS̄) [45].

• (Conditional distribution) Finally, we can average across replacement values while conditioning
on the available features, which is equivalent to setting q(xS̄) = p(xS̄ | xS) [27].

The first two options are commonly implemented in practice because they are simple to estimate, but
the third choice is viewed by some work as more informative to users [1, 17, 27]. The conditional
distribution approach requires more complex and error-prone estimation procedures (see [12] for a
discussion), but we assume here that all three versions of f(xS) can be calculated exactly.

Summary technique. Given a feature removal technique that allows us to query the model with
arbitrary feature sets, we must define a convention for summarizing each feature’s influence. This
is challenging due to the exponential number of feature sets, or because |P(d)| = 2d. Again,
many techniques have been discussed in the literature [17], with the simplest option comparing
the prediction with all features included and with a single feature missing [67]. We take a broad
perspective here, considering a range of approaches that define attributions as a linear combination
of predictions with different feature sets. These methods include leave-one-out [67], RISE [51],
LIME [53], Shapley values [45], and Banzhaf values [13], among other possible options.

All of these methods yield per-feature attribution scores ϕi(f, x) ∈ R for i ∈ [d]. For example, the
Shapley value calculates feature attribution scores as follows [45]:

ϕi(f, x) =
1

d

∑
S⊆[d]\{i}

(
d− 1

|S|

)−1 (
f(xS∪{i})− f(xS)

)
. (2)

The specific linear combinations for the other approaches we consider are shown in Table 3. The
remainder of the paper uses the notation f(xS) to refer to predictions with partial information, and
ϕ(f, x) = [ϕ1(f, x), . . . , ϕd(f, x)] ∈ Rd to refer to feature attributions. We do not introduce separate
notation to distinguish between implementation choices, opting instead to make the relevant choices
clear in each result.

2.3 Problem formulation

The problem formulation in this work is straightforward: our goal is to understand the stability of
feature attributions under input perturbations and model perturbations. Formally, we aim to study

2The framework also considers the choice to explain different model behaviors (e.g., the loss calculated over
one or more examples) [17], but we focus on methods that explain individual predictions.
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1. whether ∥ϕ(f, x)− ϕ(f, x′)∥ is controlled by ∥x− x′∥ (input perturbation), and
2. whether ∥ϕ(f, x)− ϕ(f ′, x)∥ is controlled by ∥f − f ′∥ (model perturbation).

The following sections show how this can be guaranteed using certain distance metrics, and under
certain assumptions about the model and/or the data distribution.

3 Preliminary results

As an intermediate step towards understanding explanation robustness, we first provide results for
sub-components of the algorithms. We begin by addressing the robustness of predictions with partial
information to input and model perturbations, and we then discuss robustness properties of the
summary technique. Proofs for all results are in the Appendix.

Before proceeding, we introduce two assumptions that are necessary for our analysis.
Assumption 1. We assume that the model f is globally L-Lipschitz continuous, or that we have
|f(x)− f(x′)| ≤ L · ∥x− x′∥2 for all x, x′ ∈ Rd.
Assumption 2. We assume that the model f has bounded predictions, or that there exists a constant
B such that |f(x)| ≤ B for all x ∈ Rd.

The first assumption holds for most deep learning architectures, because they typically compose a
series of Lipschitz continuous layers [63]. The second assumption holds with B = 1 for classification
models. These are therefore mild assumptions, but they are discussed further in Section 6.

We also define the notion of a functional norm, which is useful for several of our results.
Definition 1. The Lp norm for a function g : Rd 7→ R is defined as ∥g∥p ≡ (

∫
|g(x)|pdx)1/p, where

the integral is taken over Rd. ∥g∥p,X ′ denotes the same integral taken over the domain X ′ ⊆ Rd.

Our results adopt this to define a notion of distance between functions ∥g − g′∥p, focusing on the
cases where p = 1 for the L1 distance and p = ∞ for the Chebyshev distance.

3.1 Prediction robustness to input perturbations

Our goal here is to understand how the prediction function f(xS) for a feature set xS behaves under
small input perturbations. We first consider the case where features are removed using the baseline or
marginal approach, and we find that Lipschitz continuity is inherited from the original model.
Lemma 1. When removing features using either the baseline or marginal approaches, the prediction
function f(xS) for any feature set xS is L-Lipschitz continuous:

|f(xS)− f(x′
S)| ≤ L · ∥xS − x′

S∥2 ∀ xS , x
′
S ∈ R|S|.

Next, we consider the case where features are removed using the conditional distribution approach.
We show that the continuity of f(xS) depends not only on the original model, but also on the
similarity of the conditional distribution for the held-out features.
Lemma 2. When removing features using the conditional approach, the prediction function f(xS)
for a feature set xS satisfies

|f(xS)− f(x′
S)| ≤ L · ∥xS − x′

S∥2 + 2B · dTV

(
p(xS̄ | xS), p(xS̄ | x′

S)
)
,

where the total variation distance is defined via the L1 functional distance as

dTV

(
p(xS̄ | xS), p(xS̄ | x′

S)
)
≡ 1

2

∥∥∥p(xS̄ | xS)− p(xS̄ | x′
S)
∥∥∥
1
.

Lemma 2 does not immediately imply Lipschitz continuity for f(xS), because we have not bounded
the total variation distance in terms of ∥xS − x′

S∥2. To address this, we require the following
Lipschitz-like continuity property in the total variation distance.
Assumption 3. We assume that there exists a constant M such that for all S ⊆ [d], we have

dTV

(
p(xS̄ | xS), p(xS̄ | x′

S)
)
≤ M · ∥xS − x′

S∥2 ∀xS , x
′
S ∈ R|S|.
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Intuitively, this says that the conditional distribution p(xS̄ | xS) cannot change too quickly as a
function of the observed features. This property does not hold for all data distributions p(x), and it
may hold in some cases only for large M ; in such scenarios, the function f(xS) is not guaranteed to
change slowly. However, there are cases where it holds. For example, we have M = 0 if the features
are independent, and the following example shows a case where it holds with dependent features.
Example 1. For a Gaussian random variable x ∼ N (µ,Σ) with mean µ ∈ Rd and covariance
Σ ∈ Rd×d, Assumption 3 holds with M = 1

2

√
λmax(Σ−1)− λmin(Σ−1). If x is assumed to be

standardized, this captures the case where independent features yield M = 0. Intuitively, it also
means that if one dimension is roughly a linear combination of the others, or if λmax(Σ

−1) is large,
the conditional distribution can change quickly as a function of the conditioning variables.

Now, assuming that this property holds for p(x), we show that we can improve upon Lemma 2.
Lemma 3. Under Assumption 3, the prediction function f(xS) defined using the conditional ap-
proach is Lipschitz continuous with constant L+ 2BM for any feature set xS .

Between Lemmas 1 and 3, we have established that the function f(xS) remains Lipschitz continuous
for any feature set xS , although in some cases with a larger constant that depends on the data
distribution. These results are summarized in Table 1. In Appendix B we show that our analysis can
be extended to account for sampling in eq. (1) when the expectation is not calculated exactly.

Table 1: Lipschitz constants induced by each
feature removal technique.

Baseline Marginal Conditional

L L L+ 2BM

Table 2: Relevant functional distances for
each feature removal technique.

Baseline Marginal Conditional

∥f − f ′∥∞ ∥f − f ′∥∞ ∥f − f ′∥∞,X

3.2 Prediction robustness to model perturbations

Our next goal is to understand how the function f(xS) for a feature set xS behaves under small
changes to the model. The intuition is that if two models make very similar predictions with all
features, they should continue to make similar predictions with a subset of features. We first derive a
general result involving the proximity between two models f and f ′ within a subdomain.
Lemma 4. For two models f, f ′ : Rd 7→ R and a subdomain X ′ ⊆ Rd, the prediction functions
f(xS), f

′(xS) for any feature set xS satisfy

|f(xS)− f ′(xS)| ≤ ∥f − f ′∥∞,X ′ ·QxS
(X ′) + 2B ·

(
1−QxS

(X ′)
)
,

where QxS
(X ′) is the probability of imputed samples lying in X ′ based on the distribution q(xS̄):

QxS
(X ′) ≡ Eq(xS̄) [I {(xS ,xS̄) ∈ X ′}] .

The difference in predictions therefore depends on the distance between the models only within
the subdomain X ′, as well as the likelihood of imputed sampled lying in this subdomain. This
result illustrates a point shown by Slack et al. [58]: that two models which are equivalent on a small
subdomain, or even on the entire data manifold X , can lead to different attributions if we use a
removal technique that yields a low value for QxS

(X ′). In fact, when QxS
(X ′) → 0, Lemma 4

reduces to a trivial bound |f(xS)− f ′(xS)| ≤ 2B that follows directly from Assumption 2.

The general result in Lemma 4 allows us to show two simpler ones. In both cases, we choose the
subdomain X ′ and removal technique q(xS̄) so that QxS

(X ′) = 1.
Lemma 5. When removing features using the conditional approach, the prediction functions
f(xS), f

′(xS) for two models f, f ′ and any feature set xS satisfy

|f(xS)− f ′(xS)| ≤ ∥f − f ′∥∞,X .

The next result is similar but involves a potentially larger upper bound ∥f − f ′∥∞ ≥ ∥f − f ′∥∞,X .
Lemma 6. When removing features using the baseline or marginal approach, the prediction functions
f(xS), f

′(xS) for two models f, f ′ and any feature set xS satisfy

|f(xS)− f ′(xS)| ≤ ∥f − f ′∥∞.
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Table 3: Summary technique linear operators used by various removal-based explanations.

Summary Method AiS (i ∈ S) AiS (i /∈ S) ∥A∥1,∞ ∥A∥2

Leave-one-out Occlusion [67] I {|S| = d} −I {|S| = d− 1} 2
√
d

√
d+ 1

Shapley value SHAP [45] (|S|−1)!(d−|S|)!
d!

− |S|!(d−|S|−1)!
d!

2
√
d

√
2/d

Banzhaf value Banzhaf [13] 1/2d−1 −1/2d−1 2
√
d 1/2d/2−1

Mean when included RISE [51] 1/2d−1 0
√
d

√
(d+ 1)/2d

Weighted least squares LIME [53] Depends on implementation choices (see Appendix D)

The relevant functional distances for Lemma 5 and Lemma 6 are summarized in Table 2.

Remark 1. Lemma 6 implies that if two models f, f ′ are functionally equivalent, or f(x) = f(x′)
for all x ∈ Rd, they remain equivalent with any feature subset xS . In Section 4, we will see that this
implies equal attributions for the two models—a natural property that, perhaps surprisingly, is not
satisfied by all feature attribution methods [47, 55], and that has been described in the literature as
implementation invariance [60]. This property holds automatically for all removal-based methods.

Remark 2. In contrast, Lemma 5 implies the same for models that are equivalent only on the data
manifold X ⊆ Rd. This is a less stringent requirement to guarantee equal attributions, and it is
perhaps reasonable that models with equal predictions for all realistic inputs receive equal attributions.
To emphasize this, we propose distinguishing between a notion of weak implementation invariance
and strong implementation invariance, depending on whether equal attributions are guaranteed when
we have f(x) = f ′(x) everywhere (x ∈ Rd) or almost everywhere (x ∈ X ).

3.3 Summary technique robustness

We previously focused on the effects of the feature removal choice, so our goal is now to understand
the role of the summary technique. Given a removal approach that lets us query the model with any
feature set, the summary generates attribution scores ϕ(f, x) ∈ Rd, often using a linear combination
of the outputs f(xS) for each S ⊆ [d]. We formalize this in the following proposition.

Proposition 1. The attributions for each method can be calculated by applying a linear operator
A ∈ Rd×2d to a vector v ∈ R2d representing the predictions with each feature set, or

ϕ(f, x) = Av,

where the linear operator A for each method is listed in Table 3, and v is defined as vS = f(xS) for
each S ⊆ [d] based on the chosen feature removal technique.

In this notation, the entries of v are indexed as vS for S ⊆ [d], and the entries of A are indexed as
AiS for i ∈ [d] and S ⊆ [d]. The operation Av can be understood as summing across all subsets, or
(Av)i =

∑
S⊆[d] AiS · vS . Representing the attributions this way is convenient for our next results.

The entries for the linear operator in Table 3 are straightforward for the first four methods, but
LIME depends on several implementation choices: these include the choice of weighting kernel,
regularization, and intercept term. The first three methods are in fact special cases of LIME [17].
The class of weighting kernel used in practice is difficult to characterize analytically, but its default
parameters for tabular, image and text data approach limiting cases where LIME reduces to other
methods (Appendix H). For simplicity, the remainder of this section focuses on the other methods.

Perturbing either the input or model induces a change in v ∈ R2d , and we must consider how the
attributions differ between the original vector v and a perturbed version v′. Proposition 1 suggests
that we can bound the attribtuion difference via the change in model outputs ∥v − v′∥ and properties
of the matrix A. We can even do this under different distance metrics, as we show in the next result.

Lemma 7. The difference in attributions given the same summary technique A and different model
outputs v, v′ can be bounded as

∥Av −Av′∥2 ≤ ∥A∥2 · ∥v − v′∥2 or ∥Av −Av′∥2 ≤ ∥A∥1,∞ · ∥v − v′∥∞,

where ∥A∥2 is the spectral norm, and the operator norm ∥A∥1,∞ is the square root of the sum of
squared row 1-norms, with values for each A given in Table 3.
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For both inequalities, smaller norms ∥A∥ represent stronger robustness to perturbations. Neither
bound is necessarily tighter, and the choice of which to use depends on how v − v′ is bounded. The
first bound using the Euclidean distance ∥v − v′∥2 is perhaps more intuitive, but the second bound is
more useful here because the results in Sections 3.1 and 3.2 effectively relate to ∥v − v′∥∞.

This view of the summary technique’s robustness raises a natural question, which is whether the
approaches used in practice have relatively good or bad robustness (Table 3). The answer is not
immediately clear, because within the class of linear operators we can control the robustness arbitrarily:
we can achieve ∥A∥2 = ∥A∥1,∞ = 0 by setting A = 0 (strong robustness), and we can likewise get
∥A∥2, ∥A∥1,∞ → ∞ by setting entries of A to a large value (weak robustness). These results are not
useful, however, because neither limiting case results in meaningful attributions.

Rather than considering robustness within the class of all linear operators A ∈ Rd×2d , we therefore
restrict our attention to attributions that are in some sense meaningful. There are multiple ways to
define this, but we consider solutions that satisfy one or more of the following properties, which are
motivated by axioms from the literature on game-theoretic credit allocation [46, 54].

Definition 2. We define the following properties for linear operators A ∈ Rd×2d that are used for
removal-based explanations:

• (Boundedness) For all v ∈ R2d , the attributions are bounded by each feature’s smallest and
largest contributions, or minS ̸∋i(vS∪{i} − vS) ≤ (Av)i ≤ maxS ̸∋i(vS∪{i} − vS) for all i ∈ [d].

• (Symmetry) For all v ∈ R2d , two features that make equal marginal contributions to all feature
sets must have equal attributions, or (Av)i = (Av)j if vS∪{i} = vS∪{j} for all S ⊆ [d].

• (Efficiency) For all v ∈ R2d , the attributions sum to the difference in predictions for the complete
and empty sets, or 1⊤Av = v[d] − v{}.

Among these properties, we prioritize boundedness because this leads to a class of solutions that
are well-known in game theory, and which are called probabilistic values [46]. We now show that
constraining the summary technique to satisfy different combinations of these properties yields clear
bounds for the robustness. We first address the operator norm ∥A∥1,∞, which is the simpler case.

Lemma 8. When the linear operator A satisfies the boundedness property, we have ∥A∥1,∞ = 2
√
d.

The above result applies to several summary techniques shown in Table 3, including leave-one-
out [67], Shapley values [45] and Banzhaf values [13]. We now address the case of the spectral norm
∥A∥2, beginning with the case where boundedness and symmetry are satisfied.

Lemma 9. When the linear operator A satisfies the boundedness and symmetry properties, the
spectral norm is bounded as follows,

1

2d/2−1
≤ ∥A∥2 ≤

√
d+ 1,

with 1/2d/2−1 achieved by the Banzhaf value and
√
d+ 1 achieved by leave-one-out.

This shows that the Banzhaf value is the most robust summary within a class of linear operators,
which are known as semivalues [46]. Its robustness is even better than the Shapley value, a result that
was recently discussed by Wang and Jia [64]. However, the Banzhaf value is criticized for failing to
satisfy the efficiency property [25], so we now address the case where this property holds.

Lemma 10. When the linear operator A satisfies the boundedness and efficiency properties, the
spectral norm is bounded as follows,√

2

d
≤ ∥A∥2 ≤

√
2 + 2 · cos

(
π

d+ 1

)
,

with
√

2/d achieved by the Shapley value.

We therefore observe that the Shapley value is the most robust choice within a different class of linear
operators, which are known as random-order values [46]. In comparison, the worst-case robustness
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is achieved by a method that has not been discussed in the literature, but which is a special case
of a previously proposed method [26]. The upper bound in Lemma 10 is approximately equal to
2, whereas the upper bound in Lemma 9 grows with the input dimensionality, suggesting that the
efficiency property imposes a minimum level of robustness but limits robustness in the best case.

Finally, we can trivially say that ∥A∥2 =
√

2/d when boundedness, symmetry and efficiency all
hold, because the Shapley value is the only linear operator to satisfy all three properties [46, 54].
Lemma 11. When the linear operator A satisfies the boundedness, symmetry and efficiency proper-
ties, the spectral norm is ∥A∥2 =

√
2/d.

4 Feature attribution robustness: main results

We now shift our attention to the robustness properties of entire feature attribution algorithms. These
results build on those presented in Section 3, combining them to provide general results that apply to
existing methods, and to new methods that combine their implementation choices arbitrarily.

Our first main result relates to the robustness to input perturbations.
Theorem 1. The robustness of removal-based explanations to input perturbations is given by the
following meta-formula,

∥ϕ(f, x)− ϕ(f, x′)∥2 ≤ g(removal) · h(summary) · ∥x− x′∥2,
where the factors for each method are defined as follows:

g(removal) =
{
L if removal = baseline or marginal
L+ 2BM if removal = conditional,

h(summary) =
{
2
√
d if summary = Shapley, Banzhaf, or leave-one-out√

d if summary = mean when included.

We therefore observe that the explanation functions themselves are Lipschitz continuous, but with a
constant that combines properties of the original model with implementation choices of the attribution
method. The model’s inherent robustness interacts with the removal choice to yield the g(removal)
factor, and the summary technique is accounted for by h(summary).

Our second result takes a similar form, but relates to the robustness to model perturbations.
Theorem 2. The robustness of removal-based explanations to model perturbations is given by the
following meta-formula,

∥ϕ(f, x)− ϕ(f ′, x)∥2 ≤ h(summary) · ∥f − f ′∥,
where the functional distance and factor associated with the summary technique are specified as
follows:

∥f − f ′∥ =

{
∥f − f ′∥∞ if removal = baseline or marginal
∥f − f ′∥∞,X if removal = conditional,

h(summary) =
{
2
√
d if summary = Shapley, Banzhaf, or leave-one-out√

d if summary = mean when included.

Similarly, we see here that the attribution difference is determined by the strength of the model
perturbation, as measured by a functional distance metric that depends on the feature removal
technique. This represents a form of Lipschitz continuity with respect to the model f . These results
address the case with either an input perturbation or model perturbation, but we can also account for
simultaneous input and model perturbations, as shown in Corollary 1 in Appendix E. The remainder
of the paper empirically verifies these results and discusses their practical implications.

5 Summary of experiments

Due to space constraints, we defer our experiments to Appendix A but briefly describe the results here.
First, we empirically validate our results using synthetic data and a logistic regression classifier, where
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(a)

(b)

Figure 1: Shapley attribution difference for networks trained with increasing weight decay, under
input perturbations with varying perturbation norms. The results include (a) the wine quality dataset
with FCNs and baseline, marginal, and conditional feature removal; and (b) MNIST with CNNs and
baseline feature removal with either training set means or zeros. Error bars show the mean and 95%
confidence intervals across explicand-perturbation pairs.
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Figure 2: Sanity checks for attributions using cascading randomization for the FCN trained on the
wine quality dataset. Attribution similarity is measured by Pearson correlation and Spearman rank
correlation. We show the mean and 95% confidence intervals across 10 random seeds.

the model’s Lipschitz constant and the upper bound for the total variation constant M can be readily
computed. This allows us to verify the robustness bound under input perturbations (Theorem 1).
Using the same setup, we construct logistic regression classifiers where the functional distance on the
data manifold is small, and we show that feature removal with the conditional distribution is indeed
more robust to model perturbations than baseline or marginal removal, as implied by Theorem 2.

Next, we demonstrate two practical implications of our findings with the UCI wine quality [14, 24],
MNIST [44], CIFAR-10 [42] and Imagenette datasets [19, 36]. (1) Removal-based attributions are
more robust under input perturbations for networks trained with weight decay, which encourages a
smaller Lipschitz constant. Formally, this is because a network’s Lipschitz constant is upper bounded
by the product of its layers’ spectral norms [61], which are respectively upper bounded by each layer’s
Frobenius norm. These results are shown for Shapley value attributions in Figure 1 for the wine
quality and MNIST datasets, where we see a consistent effect of weight decay across feature removal
approaches. We speculate that a similar effect may be observed with other techniques that encourage
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Lipschitz regularity [8, 30, 63]. (2) Viewing the sanity check with parameter randomization proposed
by Adebayo et al. [2] as a form of model perturbation, we show that removal-based attributions
empirically pass the sanity check, in contrast to certain gradient-based methods [55, 60]. Figure 2
shows results for the wine quality dataset, where the similarity for removal-based methods decays
more rapidly than for IntGrad and Grad × Input. Results for the remaining datasets are in Appendix A.

6 Discussion

Our analysis focused on the robustness properties of removal-based feature attributions to perturba-
tions in both the model f and input x. For input perturbations, Theorem 1 shows that the attribution
change is proportional to the input perturbation strength. The Lipchitz constant is determined by the
attribution’s removal and summary technique, as well as the model’s inherent robustness. We find
that both implementation choices play an important role, but our analysis in Section 3 reveals that
the associated factors in our main result can only be so small for meaningful attributions, implying
that attribution robustness in some sense reduces to model robustness. Fortunately, there are many
existing works on improving a neural network’s Lipschitz regularity [8, 30, 63].

For model perturbations, Theorem 2 shows that the attribution difference is proportional to functional
distance between the perturbed and original models, as measured by the Chebyshev distance (or
infinity norm). Depending on the removal approach, the distance may depend on only a subdomain
of the input space. One practical implication is that attributions should remain similar under minimal
model changes, e.g., accurate model distillation or quantization. Another implication is that bringing
the model closer to its correct form (e.g., the Bayes classifier) results in attributions closer to
those of the correct model; several recent works have demonstrated this by exploring ensembled
attributions [23, 31, 37, 48], which are in some cases mathematically equivalent to attributions of an
ensembled model.

Our robustness results provide a new lens to compare different removal-based attribution methods. In
terms of the summary technique, our main proof technique relies on the associated operator norm,
which does not distinguish between several approaches (Shapley, leave-one-out, Banzhaf); however,
our results for the spectral norm suggest that the Banzhaf value is in some sense most robust. This
result echoes recent work [64] and has implications for other uses of game-theoretic credit allocation,
but we also find that the Shapley value is most robust within a specific class of summary techniques.
Our findings regarding the removal approach are more complex: the conditional distribution approach
has been praised by some works for being more informative than baseline or marginal [17, 27], but
this comes at a cost of worse robustness to input perturbations. On the other hand, it leads to improved
robustness to model perturbations, which has implications for fooling attributions with imperceptible
off-manifold model changes [58].

Next, we make connections between current understanding of gradient-based methods and our findings
for removal-based methods. Overall, the notion of Lipschitz continuity is important for robustness
guarantees under input perturbations. Our results for removal-based attributions rely on Lipschitz
continuity of the model itself, whereas gradient-based attributions rely on Lipschitz continuity of the
model’s gradient (i.e., Lipschitz smoothness) [22]. Practically, both are computationally intensive
to determine for realistic networks [30, 63]. Empirically, weight decay is an effective approach
for generating robust attributions, for both removal-based methods (our results) and gradient-based
methods (see Dombrowski et al. [22]), as the Frobenius norms of a neural network’s weights upper
bound both the network’s Lipschitz constant and Hessian norm. Under model perturbations, removal-
based attributions are more robust when features are removed such that xS stay on the data manifold,
whereas gradient-based attributions are more robust when gradients are projected on the tangent
space of the data manifold [21].

Finally, we consider limitations of our analysis. Future work may consider bounding attribution
differences via different distance measures (e.g., ℓp norms for p ̸= 2). The main limitation to our
results is that they are conservative. By relying on global properties of the model, i.e., the Lipschitz
constant and global prediction bounds, we arrive at worst-case bounds that are in many cases overly
conservative, as reflected in our experiments. An alternative approach can focus on localized versions
of our bounds. Analogous to recent work on certified robustness [38, 39, 52, 57, 62], tighter bounds
may be achievable with specific perturbation strengths, unlike our approach that provides bounds
simultaneously for any perturbation strength via global continuity properties.
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A Experiments

This section conducts a range of experiments to provide empirical validation for our theoretical
results, and to examine their practical implications for common machine learning models. Code is
available at https://github.com/suinleelab/removal-robustness.

A.1 Synthetic data with input perturbation

First, we empirically validate our results from Section 4 using synthetic data and a logistic regression
classifier, where the model’s Lipschitz constant L and the data distribution’s total variation constant
M can be readily computed for the bound in Theorem 1.

Setup. For each input x ∈ R4 in the synthetic dataset, features are generated from a multivariate
Gaussian distribution with zero mean, x3,x4 independent from each other and from x1,x2, and with
a correlation ρ between x1,x2. That is, the covariance matrix Σ ∈ R4×4 has the following form:

Σ =

1 ρ 0 0
ρ 1 0 0
0 0 1 0
0 0 0 1

 .

The binary label y ∈ {0, 1} for each input is sampled from a Bernoulli distribution with probability
σ(β⊤x), where σ(·) is the sigmoid function and β⊤ = [5, 0, 3, 1]. Unless stated otherwise, we
consider ρ = 1, zeros are used for baseline feature removal, and the exact Gaussian distributions are
used for marginal and conditional feature removal with 20,000 samples.

A logistic regression classifier was trained with 500 samples, and removal-based feature attributions
were computed for 50 test samples (i.e., explicands) with and without input perturbation. In our
experiment, perturbations are randomly sampled from standard Gaussian distributions with ℓ2 norms
normalized to values ranging between 0 to 2 with a total of 50 different values. For each perturbation
norm, 50 perturbations are generated and applied to each explicand, resulting in 2,500 total explicand-
perturbation pairs. As illustrated in Figure 3, a line is drawn to map the maximum ℓ2 difference
between original and perturbed attributions at each perturbation norm. The slope of such a line
estimates the dependency of the upper bound of attribution differences with respect to the perturbation
norm. Theorem 1 guarantees a specific slope, and this experiment aims to verify this property.

Furthermore, note that the sigmoid function σ(·) is 1/4-Lipschitz because its largest derivative is 1/4.
A logistic regression classifier is a composition of a linear function and sigmoid function σ(·), so the
model is L-Lipschitz with L = ∥β̂∥2/4, where β̂ is the trained model coefficients. Finally, because
the input features follow a Gaussian distribution, the total variation constant M derived in Example 1
applies here. Hence, we have specific values for all terms in Theorem 1 bound, which allows a direct
comparison between theoretical and empirical results.
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Figure 3: Shapley attribution differences under input perturbation with various perturbation norms
in our synthetic data experiment. Lines bounding the maximum attribution difference at each
perturbation norm are shown as empirical upper bounds. Theoretical upper bounds are included
for baseline and marginal feature removal and omitted for conditional feature removal because it is
infinite for ρ = 1.
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Results. As shown in Figure 3, for all three feature removal approaches, the theoretical upper bounds
for the Shapley value are indeed greater than the corresponding empirical upper bounds. We also
observe that the empirical upper bound with conditional feature removal exceeds those with baseline
and marginal feature removal, as expected due to our results involving the conditional distribution’s
total variation distance (Lemma 2).

Moreover, we vary the Lipschitz constant L of the trained logistic regression classifier by a factor
of α = {0.05, 0.1, 0.5, 1, 2}, which is done by multiplying the trained coefficients β̂ by α. Figure 4
shows that the perturbation norm-dependent slope of the empirical bound increases linearly with α,
aligning with our theoretical results. Also, Example 1 suggests that increasing ρ would lead to a
larger upper bound for conditional feature removal, which is observed in the empirical bound with
ρ = {0, 0.25, 0.5, 0.75, 1} (see Figure 4 right).

Overall, these empirical results validate our theoretical bound from Theorem 1. We note that gaps
between our theoretical and empirical bounds exist, likely because we use the global Lipschitz
constant to provide guarantee under all input perturbation strengths, instead of local constants for
specific input regions and perturbation strengths, and also due to looseness in the total variation
constant M . For example, our bound for multivariate Gaussian distributions in Example 1 suggests
that M = ∞ when ρ = 1, which is far more conservative than our empirical results (see Figure 3
right); this is due to looseness in Pinsker’s inequality (Appendix B). Similar results are observed for
Occlusion, Banzhaf, RISE, and LIME attributions, and these are included in Appendix I.
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Figure 4: Slopes of empirical and theoretical upper bounds with respect to the input perturbation
norm, for Shapley value attribution difference in the synthetic experiment. The parameter α varies the
logistic regression Lipschitz constant, and ρ varies the correlation between the two synthetic features
x1,x2.

A.2 Synthetic data with model perturbation

Here, we construct a logistic regression classifier as well as a perturbed version such that their
functional distance on the data manifold is small. We use this construction to empirically verify that
removing features with the conditional distribution leads to attributions that are more robust against
model perturbation, as suggested by Theorem 2.

Setup. The synthetic data generation follows that of Appendix A.1. A logistic regression classifier f
is constructed with coefficients [5, 0, 3, 1], and its perturbed counterpart f ′ has coefficients [0, 5, 3, 1].
Because the synthetic features x1,x2 are identical with the default value ρ = 1, we have the functional
distance ∥f − f ′∥∞,X = 0, so our theoretical bound suggests that ∥ϕ(f, x) − ϕ(f ′, x)∥2 = 0 for
conditional feature removal. When we consider smaller values for ρ, we still expect better robustness
for conditional rather than marginal removal due to Lemma 4, because significant probability mass
lies in a subdomain where f and f ′ are functionally close (near the hyperplane where x1 = x2).
Feature attributions are computed for 100 explicands with the same feature removal settings as in
Appendix A.1.

Results. As suggested by our theoretical bound for model perturbation when ρ = 1, the Shapley
attribution difference between f, f ′ is near zero when features are removed using their conditional
distribution, whereas the attribution difference can be large with baseline and marginal feature
removal (Figure 5). When we decrease ρ in the synthetic data generation, the models f, f ′ become
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Figure 5: Shapley value attribution differences between the logistic regression classifiers f, f ′ as
constructed in Appendix A.2 with baseline, marginal, and conditional feature removal, and varying
correlation ρ.

more likely to generate different outputs, and we observe that the robustness gap between conditional
vs. baseline and marginal feature removal reduces. These empirical results corroborate Lemma 4.
Similar results are observed for Occlusion, Banzhaf, RISE, and LIME attributions and are included
in Appendix I. It is worth noting that the arbitrarily large bound for baseline and marginal feature
removal underpins the adversarial attacks on LIME and SHAP demonstrated by Slack et al. [58].
Our theory and synthetic experiments for model perturbation are similar to those in Frye et al. [27],
but we provide a unified analysis for removal-based attribution methods instead of focusing on the
Shapley value, and we consider cases where models disagree even on the data manifold (Lemma 4).

A.3 Implication I: robust attributions for regularized neural networks

Our theoretical upper bound for input perturbation decreases with the model’s Lipschitz constant
(Theorem 1), suggesting that training a model with better Lipschitz regularity can help obtain
more robust removal-based feature attributions. Weight decay is one way to achieve this, as it
encourages lower Frobenius norm for the individual layers in a neural network, and the product of
these Frobenius norms upper bounds the network’s Lipschitz constant [66]. We therefore examine
whether neural networks trained with weight decay produce attributions that are more robust against
input perturbation.

Datasets. The UCI white wine quality dataset [14, 24] consists of 4,898 samples of white wine, each
with 11 input features for predicting the wine quality (whether the rating > 6). Two subsets of 500
samples are randomly chosen as the validation and test set. For datasets with larger input dimension,
we use MNIST [44], CIFAR-10 [42], and ten classes of ImageNet [19] (i.e., Imagenette3). From the
official training set of MNIST and CIFAR-10, 10,000 images are randomly chosen as the validation
set.

Setup. Fully connected networks (FCNs) and convolutional networks (CNNs) are trained with
a range of weight decay values for the wine quality dataset and MNIST, respectively, where we
use the values {0, 0.001, 0.0025, 0.005, 0.01}. ResNet-18 networks [33] are trained for CIFAR-10,
with weight decay values {0.0075, 0.01, 0.025, 0.05, 0.075}. ResNet-50 networks pre-trained on
ImageNet are fine-tuned for Imagenette, with weight decay values {0.005, 0.01, 0.025, 0.05}. The
test set accuracy does not differ much with these weight decay values for the wine quality dataset,
MNIST, and CIFAR-10 (Figure 20 and Figure 21), but large weight decay values can worsen the
performance of ResNet-50 on Imagenette (Figure 21). Details on model architectures and other
hyperparameters are in Appendix J. Removal-based attributions are computed for the 500 test samples
and all features in the wine quality dataset, and for 100 test images with non-overlapping patches of
size 4× 4 as features in MNIST and CIFAR-10, and of size 16× 16 as features in Imagenette (see
Appendix G for a discussion of how our theory extends to the use of feature groups). For the wine
quality dataset, removal-based attributions are computed exactly with all 211 feature subsets. For
MNIST, certain attributions must be estimated rather than calculated exactly: Occlusion attributions
are computed exactly, whereas Shapley, Banzhaf, LIME, and RISE are estimated with 10,000 random
feature sets, and Shapley and Banzhaf use a least squares regression similar to KernelSHAP [45].

3https://github.com/fastai/imagenette
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For CIFAR-10 and Imagenette, we focus on Occlusion, RISE, and Shapley values, computed with
the same settings as for MNIST, except RISE and Shapley values are estimated with 20,000 random
feature sets for Imagenette due to its large number of features.

(a)

(b)

Figure 6: Identical to Figure 1 and shown here again for readability. Shapley attribution difference
for networks trained with increasing weight decay, under input perturbations with perturbation norms
{0.1, 0.5, 1, 2}. The results include (a) the wine quality dataset with FCNs and baseline (replacing
with training set minimums), marginal, and conditional feature removal; and (b) MNIST with CNNs
and baseline feature removal with either training set means or zeros. Error bars show the mean and
95% confidence intervals across explicand-perturbation pairs.
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Figure 7: Attribution difference for ResNet-18 networks trained on CIFAR-10 with increasing weight
decay, under input perturbations with perturbation norms {0.1, 0.5, 1, 2}. Error bars show the means
and 95% confidence intervals across explicand-perturbation pairs.
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When using baseline feature removal, features are replaced with the training set minimums for the
wine quality dataset, with the training set means or zeros for MNIST and CIFAR-10, and with zeros
(identical to the training set means due to normalization) for Imagenette. The wine quality training set
is used for removing features with their marginal distributions, while a conditional variational autoen-
coder (CVAE) is trained following the procedure in Frye et al. [27] to approximate feature removal
with the conditional distribution (details in Appendix J). For both marginal and conditional feature
removal in the wine quality dataset, 250 samples are used. Marginal and conditional feature removal
are computationally expensive and less common for image data, so we use only baseline feature
removal as is often done in practice. Finally, input perturbations are generated as in Appendix A.1,
with 10 random perturbations applied per explicand and with perturbation norms {0.1, 0.5, 1, 2} for
the wine quality dataset, MNIST, and CIFAR-10. For Imagenette, 5 random perturbations with norms
{50, 100, 200, 400} are applied per explicand to obtain similar perturbation strength per input.

Results. Figure 6 shows that Shapley value attribution differences decrease with increasing weight
decay, across different feature removal techniques, for both the wine quality dataset and MNIST,
and for all perturbation norms in {0.1, 0.5, 1, 2}. This demonstrates the practical implication that
removal-based attributions can be made more robust against input perturbation by training with weight
decay. Interestingly, weight decay has also been shown to improve the robustness of gradient-based
attributions [22]. In Appendix K, similar results are observed for Occlusion, Banzhaf, RISE, and
LIME attributions, and also when we measure explanation similarity using Pearson or Spearman rank
correlation rather than ℓ2 distance. For ResNet-18 networks trained on CIFAR-10 and ResNet-50
networks trained on Imagenette, similar trends are observed for Occlusion, RISE, and Shapley
attributions (Figure 7 and Figure 8).
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Figure 8: Attribution difference for ResNet-50 networks trained on Imagenette with increasing weight
decay, under input perturbations with perturbation norms {50, 100, 200, 400}. Error bars show the
means and 95% confidence intervals across explicand-perturbation pairs.

A.4 Implication II: sanity checks for removal-based attributions

The robustness bound for model perturbation in Theorem 2 suggests that the attribution difference
between an intact and perturbed model should be small if the model perturbation is small. Similarly,
we expect that if the perturbation intensifies, the attribution differences may become larger. One way
to perturb a neural network with increasing intensity is to sequentially randomize its parameters from
the output to input layer, a procedure known as cascading randomization introduced by Adebayo
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et al. [2] for sanity checking feature attributions. Here, we study whether removal-based attributions
indeed pass the parameter randomization check, as suggested by our theoretical bound.
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Figure 9: Identical to Figure 2 and shown here again for readability. Sanity checks for attributions
using cascading randomization for the FCN trained on the wine quality dataset. Attribution similarity
is measured by Pearson correlation and Spearman rank correlation. We show the mean and 95%
confidence intervals across 10 random seeds.
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Figure 10: Sanity checks for attributions using cascading randomization for the CNN trained on
MNIST. Attribution similarity is measured by Pearson correlation and Spearman rank correlation.
We show the mean and 95% confidence intervals across 10 random seeds.

Datasets. We use the same datasets and splits as in Appendix A.3.

Setup. The best performing networks from Appendix A.3 are used here. The settings for removal-
based attributions are the same as in Appendix A.3, except 50,000 random feature sets are used for
more stable Shapley estimations in Imagenette. Parameters for each network are randomized in a
cascading fashion from the output to input layer as in Adebayo et al. [2], with attributions computed
after randomizing each layer and compared to the original attributions using Pearson correlation
and Spearman rank correlation. Randomization is performed using the layer’s default initialization.
Feature attributions with the original model are computed twice and compared to capture variations
due to sampling in feature removal and in attribution estimation using feature sets. This experiment
is run 10 times with different random seeds for the wine quality dataset, MNIST, and CIFAR-10, and
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3 times for Imagenette. Gradient-based attribution methods such as Vanilla Gradients [56], Integrated
Gradients [60], and Grad × Input [55] are included as references, as they were the focus of the
original work on sanity checks [2].

Results. As suggested by our robustness bound for model perturbation, the original and perturbed
removal-based attributions become dissimilar as more parameters are randomized, leading to near-
zero correlations when the entire network is re-initialized (Figure 9). This shows that removal-based
attributions reliably pass the model randomization sanity check. In contrast, we observe that for
Integrated Gradients and Grad × Input, the correlation between intact and perturbed attributions
remains around 0.5 even when the entire network is randomized. Similarly, for the CNN trained
on MNIST, the original and perturbed removal-based attributions have lower correlations as more
parameters are randomized, whereas the correlations decrease only slightly for Integrated Gradients
and Grad × Input (Figure 10). Similar trends are observed for the ResNet-18 trained on CIFAR-10
and ResNet-50 trained on Imagenette (Figure 11, Figure 12, and Figure 29).
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Figure 11: Sanity checks for attributions using cascading randomization for the ResNet-18 trained on
CIFAR-10. Features are removed by replacing them with training set means. Attribution similarity
is measured by Pearson correlation and Spearman rank correlation. We show the means and 95%
confidence intervals across 10 random seeds. Missing points correspond to undefined correlations
due to constant attributions under model randomization.
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Figure 12: Sanity checks for attributions using cascading randomization for the ResNet-50 trained
on Imagenette. Features are removed by replacing them with zeros (identical to training set means
due to normalization). Attribution similarity is measured by Pearson correlation and Spearman rank
correlation. We show the means and 95% confidence intervals across 3 random seeds. Missing points
correspond to undefined correlations due to constant attributions under model randomization.
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B Proofs: prediction robustness to input perturbations

We now re-state and prove our results from Section 3.1.

Lemma 1. When removing features using either the baseline or marginal approaches, the prediction
function f(xS) for any feature set xS is L-Lipschitz continuous:

|f(xS)− f(x′
S)| ≤ L · ∥xS − x′

S∥2 ∀ xS , x
′
S ∈ R|S|.

Proof. The key insight for this result is that removing features using either the baseline or marginal
approach is equivalent to using a distribution q(xS̄) that does not depend on the observed features.
Because of that, we have:

|f(xS)− f(x′
S)| =

∣∣∣ ∫ f(xS , xS̄)q(xS̄)dxS̄ −
∫

f(x′
S , xS̄)q(xS̄)dxS̄

∣∣∣
≤
∫ ∣∣f(xS , xS̄)− f(x′

S , xS̄)
∣∣ · q(xS̄)dxS̄

≤ L · ∥xS − x′
S∥2 ·

∫
q(xS̄)dxS̄

= L · ∥xS − x′
S∥2.

Lemma 2. When removing features using the conditional approach, the prediction function f(xS)
for a feature set xS satisfies

|f(xS)− f(x′
S)| ≤ L · ∥xS − x′

S∥2 + 2B · dTV

(
p(xS̄ | xS), p(xS̄ | x′

S)
)
,

where the total variation distance is defined via the L1 functional distance as

dTV

(
p(xS̄ | xS), p(xS̄ | x′

S)
)
≡ 1

2

∥∥∥p(xS̄ | xS)− p(xS̄ | x′
S)
∥∥∥
1
.

Proof. In this case, we must be careful to account for the different distributions used when marginal-
izing out the removed features.

|f(xS)− f(x′
S)| =

∣∣∣ ∫ f(xS , xS̄)p(xS̄ | xS)dxS̄ −
∫

f(x′
S , xS̄)p(xS̄ | x′

S)dxS̄

∣∣∣
≤
∫ ∣∣f(xS , xS̄)p(xS̄ | xS)− f(x′

S , xS̄)p(xS̄ | x′
S)
∣∣dxS̄

≤
∫ ∣∣f(xS , xS̄)p(xS̄ | xS)− f(x′

S , xS̄)p(xS̄ | xS)
∣∣dxS̄

+

∫ ∣∣f(x′
S , xS̄)p(xS̄ | xS)− f(x′

S , xS̄)p(xS̄ | x′
S)
∣∣dxS̄

≤
∫ ∣∣f(xS , xS̄)− f(x′

S , xS̄)
∣∣ · p(xS̄ | xS)dxS̄

+

∫ ∣∣f(x′
S , xS̄)

∣∣ · ∣∣p(xS̄ | xS)− p(xS̄ | x′
S)
∣∣dxS̄

≤ L · ∥xS − x′
S∥2 ·

∫
p(xS̄ | xS)dxS̄ +B ·

∫ ∣∣p(xS̄ | xS)− p(xS̄ | x′
S)
∣∣dxS̄

= L · ∥xS − x′
S∥2 + 2B · dTV

(
p(xS̄ | xS), p(xS̄ | x′

S)
)
.

22



Example 1. For a Gaussian random variable x ∼ N (µ,Σ) with mean µ ∈ Rd and covariance
Σ ∈ Rd×d, Assumption 3 holds with M = 1

2

√
λmax(Σ−1)− λmin(Σ−1). If x is assumed to be

standardized, this captures the case where independent features yield M = 0. Intuitively, it also
means that if one dimension is roughly a linear combination of the others, or if λmax(Σ

−1) is large,
the conditional distribution can change quickly as a function of the conditioning variables.

Proof. Consider a Gaussian random variable x with mean µ ∈ Rd and positive definite covariance
Σ ∈ Rd×d. We can partition the variable into two parts, denoted x1 and x2, and then partition the
variable and parameters as follows:

x =

(
x1

x2

)
µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

We can then consider the distribution for x1 conditioned on a specific x2 value. The conditional
distribution is x1 | x2 ∼ N (µ̄, Σ̄) with the parameters defined as

µ̄ = µ1 +Σ12Σ
−1
22 (x2 − µ2) Σ̄ = Σ11 − Σ12Σ

−1
22 Σ21.

Our goal is to understand the total variation distance when conditioning on different values x2, x
′
2.

Pinsker’s inequality gives us the following upper bound based on the KL divergence:

dTV

(
p(x1 | x2), p(x1 | x′

2)
)
≤
√

1

2
DKL

(
p(x1 | x2) || p(x1 | x′

2)
)
.

The KL divergence between Gaussian distributions has a closed-form solution, and in the case with
equal covariance matrices reduces to the following:

DKL

(
p(x1 | x2) || p(x1 | x′

2)
)
=

1

2
(x2 − x′

2)
⊤Σ−1

22 Σ21

(
Σ11 − Σ12Σ

−1
22 Σ21

)−1
Σ12Σ

−1
22 (x2 − x′

2)

To provide an upper bound on this term based on ∥x2 − x′
2∥2, it suffices to find the maximum

eigenvalue of the above matrix. To characterize the matrix, we observe that it is present in the formula
for the block inversion of the joint covariance matrix:

Σ−1 =

( (
Σ11 − Σ12Σ

−1
22 Σ21

)−1 −
(
Σ11 − Σ12Σ

−1
22 Σ21

)−1
Σ12Σ

−1
22

−Σ−1
22 Σ21

(
Σ11 − Σ12Σ

−1
22 Σ21

)−1
Σ−1

22 +Σ−1
22 Σ21

(
Σ11 − Σ12Σ

−1
22 Σ21

)−1
Σ12Σ

−1
22

)

We therefore have the following, because the matrix we’re interested in is a principal minor:

λmax

(
Σ−1

22 +Σ−1
22 Σ21

(
Σ11 − Σ12Σ

−1
22 Σ21

)−1
Σ12Σ

−1
22

)
≤ λmax(Σ

−1).

Weyl’s inequality also gives us:

λmin(Σ
−1
22 ) + λmax

(
Σ−1

22 Σ21

(
Σ11 − Σ12Σ

−1
22 Σ21

)−1
Σ12Σ

−1
22

)
≤ λmax

(
Σ−1

22 +Σ−1
22 Σ21

(
Σ11 − Σ12Σ

−1
22 Σ21

)−1
Σ12Σ

−1
22

)
Combining this with the previous inequality, we arrive at the following:
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λmax

(
Σ−1

22 Σ21

(
Σ11 − Σ12Σ

−1
22 Σ21

)−1
Σ12Σ

−1
22

)
≤ λmax(Σ

−1)− λmin(Σ
−1
22 )

For the subtractive term, we can write:

λmin(Σ
−1
22 ) =

1

λmax(Σ22)
≥ 1

λmax(Σ)
= λmin(Σ

−1).

We therefore have the following upper bound on the KL divergence:

DKL

(
p(x1 | x2) || p(x1 | x′

2)
)
≤ 1

2
· ∥x2 − x′

2∥22 ·
(
λmax(Σ

−1)− λmin(Σ
−1)
)
.

Combining this with Pinsker’s inequality, we arrive at the final result:

dTV

(
p(x1 | x2), p(x1 | x′

2)
))

≤ 1

2
· ∥x2 − x′

2∥2 ·
√
λmax(Σ−1)− λmin(Σ−1).

This means that we have M = 1
2

√
λmax(Σ−1)− λmin(Σ−1).

Notice that this does not imply M = 0 when the features x are independent: it only captures this for
the case of isotropic variance. However, if we assume that x is standardized, so that each dimension
has variance equal to 1, M = 0 is implied for independent features because we have Σ = I .

Lemma 3. Under Assumption 3, the prediction function f(xS) defined using the conditional ap-
proach is Lipschitz continuous with constant L+ 2BM for any feature set xS .

Proof. The result follows directly from Lemma 2 and Assumption 3:

|f(xS)− f(x′
S)| ≤ L · ∥xS − x′

S∥2 + 2B · dTV

(
p(xS̄ | xS), p(xS̄ | x′

S)
)

≤ L · ∥xS − x′
S∥2 + 2BM · ∥xS − x′

S∥2
= (L+ 2BM) · ∥xS − x′

S∥2.
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C Proofs: prediction robustness to model perturbations

We now re-state and prove our results from Section 3.2.
Lemma 4. For two models f, f ′ : Rd 7→ R and a subdomain X ′ ⊆ Rd, the prediction functions
f(xS), f

′(xS) for any feature set xS satisfy

|f(xS)− f ′(xS)| ≤ ∥f − f ′∥∞,X ′ ·QxS
(X ′) + 2B ·

(
1−QxS

(X ′)
)
,

where QxS
(X ′) is the probability of imputed samples lying in X ′ based on the distribution q(xS̄):

QxS
(X ′) ≡ Eq(xS̄) [I {(xS ,xS̄) ∈ X ′}] .

Proof. The main idea here is that when integrating over the difference in function outputs, we can
separate the integral over (xS ,xS̄) values falling in the domains X ′ and Rd \ X ′. Because we have a
single value for the observed variables xS , the distribution q(xS̄) is identical for both terms regardless
of the removal technique.

|f(xS)− f ′(xS)| =
∣∣∣ ∫ f(xS , xS̄)q(xS̄)dxS̄ −

∫
f ′(xS , xS̄)q(xS̄)dxS̄

∣∣∣
≤
∫ ∣∣f(xS , xS̄)− f ′(xS , xS̄)

∣∣ · q(xS̄)dxS̄

=

∫ ∣∣f(xS , xS̄)− f ′(xS , xS̄)
∣∣ · I {(xS ,xS̄) ∈ X ′} · q(xS̄)dxS̄

+

∫ ∣∣f(xS , xS̄)− f ′(xS , xS̄)
∣∣ · I {(xS ,xS̄) /∈ X ′} · q(xS̄)dxS̄

≤ ∥f − f ′∥∞,X ′

∫
I {(xS ,xS̄) ∈ X ′} · q(xS̄)dxS̄

+ 2B ·
∫

I {(xS ,xS̄) /∈ X ′} · q(xS̄)dxS̄

= ∥f − f ′∥∞,X ′ ·QxS
(X ′) + 2B ·

(
1−QxS

(X ′)
)

Lemma 5. When removing features using the conditional approach, the prediction functions
f(xS), f

′(xS) for two models f, f ′ and any feature set xS satisfy

|f(xS)− f ′(xS)| ≤ ∥f − f ′∥∞,X .

Proof. The result follows directly from Lemma 4 when we set X ′ = X . Note that when we remove
features using the conditional distribution, we have QxS

(X ) = 1 for all xS lying on the data manifold,
or where there exists xS̄ such that p(xS , xS̄) > 0.

Lemma 6. When removing features using the baseline or marginal approach, the prediction functions
f(xS), f

′(xS) for two models f, f ′ and any feature set xS satisfy

|f(xS)− f ′(xS)| ≤ ∥f − f ′∥∞.

Proof. The result follows directly from Lemma 4 when we set X ′ = Rd, because we have
QxS

(Rd) = 1 for all xS ∈ R|S|.

25



D Proofs: summary technique robustness

We now re-state and prove our results from Section 3.3.
Proposition 1. The attributions for each method can be calculated by applying a linear operator
A ∈ Rd×2d to a vector v ∈ R2d representing the predictions with each feature set, or

ϕ(f, x) = Av,

where the linear operator A for each method is listed in Table 3, and v is defined as vS = f(xS) for
each S ⊆ [d] based on the chosen feature removal technique.

Proof. This result follows directly from the definition of each method. Following the approach of
Covert et al. [17], we disentangle between each method’s feature removal implementation and how it
generates attribution scores. Assuming a fixed input x where f(xS) denotes the prediction with a
feature set, each method’s attributions are defined as follows.

• Occlusion [67]: this method simply compares the prediction given all features and the prediction
with a single missing feature. The attribution score ϕi(f, x) is defined as

ϕi(f, x) = f(x)− f(x[d]\{i}).

We refer to this summary technique as “leave-one-out” in Table 3.

• Shapley value [45, 54]: this method calculates the impact of removing a single feature, and then
averages this over all possible preceding subsets. The attribution score ϕi(f, x) is defined as

ϕi(f, x) =
1

d

∑
S⊆[d]\{i}

(
d− 1

|S|

)−1(
f(xS∪{i})− f(xS)

)
.

• Banzhaf value [9, 13]: this method is similar to the Shapley value, but it applies a uniform
weighting when averaging over all preceding subsets. The attribution score ϕi(f, x) is defined as

ϕi(f, x) =
1

2d−1

∑
S⊆[d]\{i}

(
f(xS∪{i})− f(xS)

)
.

• RISE [51]: this method is similar to the Banzhaf value, but it does not subtract the value for
subsets where a feature is not included. The attribution score ϕi(f, x) is defined as

ϕi(f, x) =
1

2d−1

∑
S⊆[d]\{i}

f(xS∪{i}).

We refer to this summary technique as “mean when included” in Table 3

• LIME [53]: this method is more flexible than the others and generally involves solving a
regression problem that treats the features as inputs and the predictions as labels. LIME can be
viewed as a removal-based explanation when the features are represented in a binary fashion,
indicating whether they are provided to the model or not [17]. There is also a choice of weighting
kernel w(S) ≥ 0, of a regularization term, and of whether to fit an intercept term.

We assume that the regularization is omitted and that we fit an intercept term. Denoting the
model’s coefficients as (β0, . . . , βd), the problem is the following:

min
β0,...,βd

∑
S⊆[d]

w(S)
(
β0 +

∑
i∈S

βi − f(xS)
)2

.

We can rewrite this problem in a simpler fashion to derive its solution. First, we let W ∈
[0, 1]2

d×2d be a diagonal matrix containing the weights w(S) for each subset. Next, we let
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the predictions be represented by a vector v ∈ R2d where vS = f(xS), and we let the matrix
Z ∈ {0, 1}2d×d enumerate all subsets in a binary fashion. Finally, to accommodate the intercept
term, we let β = (β0, . . . , βd) ∈ Rd+1 represent the parameters, and we prepend a columns of
ones to Z, resulting in Z ′ ∈ {0, 1}2d×(d+1). The problem then becomes:

min
β

(Z ′β − v)⊤W (Z ′β − v′) =
∥∥Z ′β − v

∥∥2
W
.

Assuming that Z ′⊤WZ ′ is invertible, which is guaranteed when w(S) > 0 for all S ⊆ [d], this
problem has a closed-form solution:

β∗ = (Z ′⊤WZ ′)−1Z ′⊤Wv.

LIME’s attribution scores are given by ϕi(f, x) = β∗
i , for i = 1, ..., d, where we discard the

intercept term. We can therefore conclude that each attribution is a linear function of v, with
coefficients given by all but the first row of (Z ′⊤WZ ′)−1Z ′⊤W . If we denote all but the first
row of (Z ′⊤WZ ′)−1 as (Z ′⊤WZ ′)−1

[1:], then we have A = (Z ′⊤WZ ′)−1
[1:]Z

′⊤W .

The formula for the attributions remains roughly the same if we do not fit an intercept term:
if the intercept is zero, we have A = (Z⊤WZ)−1Z⊤W . We can similarly allow for ridge
regularization: given a penalty parameter λ > 0, we then have A = (Z⊤WZ + λI2d)

−1Z⊤W .

These coefficients depend on the specific choice of weighting kernel w(S), and previous work
has shown that leave-one-out, Shapley and Banzhaf values all correspond to specific weighting
kernels [17]. Our analysis of those methods therefore pertains to LIME, at least in certain special
cases. However, LIME often uses a heuristic exponential kernel in practice, which is more difficult
to characterize analytically. We therefore omit the specific entries and norms for LIME in Table 3,
but show norms for the exponential kernel in our computed results.

We refer to this summary technique as “weighted least squares” in Table 3.

We can therefore see that in each method, ϕi(f, x) is a linear function of the predictions for each
S ⊆ [d]. Across all methods, we can let the predictions be represented by a vector v ∈ R2d and the
coefficients by a matrix A ∈ Rd×2d .

Lemma 7. The difference in attributions given the same summary technique A and different model
outputs v, v′ can be bounded as

∥Av −Av′∥2 ≤ ∥A∥2 · ∥v − v′∥2 or ∥Av −Av′∥2 ≤ ∥A∥1,∞ · ∥v − v′∥∞,

where ∥A∥2 is the spectral norm, and the operator norm ∥A∥1,∞ is the square root of the sum of
squared row 1-norms, with values for each A given in Table 3.

Proof. We first derive the two matrix inequalities. The first inequality follows from the definition of
the spectral norm, which is defined as the maximum singular value:

∥A∥2 ≡ sup
u̸=0

∥Au∥2
∥u∥2

= σmax(A) =
√
λmax(AA⊤).

We prove the second bound using Holder’s inequality as follows, where Ai denotes the ith row:

∥Au∥2 =

√√√√ d∑
i=1

(A⊤
i u)

2 ≤

√√√√ d∑
i=1

∥Ai∥21 · ∥u∥2∞ = ∥u∥∞ ·

√√√√ d∑
i=1

∥Ai∥21 = ∥u∥∞ · ∥A∥1,∞.

In the special case where all of A’s row 1-norms are equal, or where we have ∥Ai∥1 = ∥Aj∥1 for all
i, j ∈ [d], we can use the simplified expression ∥A∥1,∞ = ∥A1∥1 ·

√
d.

27



Next, we derive the specific norm values for each linear operator in Table 3.

Beginning with the operator norm ∥A∥1,∞, we remark that several methods have equal 1-norms
across all rows: following their interpretation as semivalues [46], leave-one-out, Shapley and Banzhaf
all have ∥Ai∥1 = 2 for all i ∈ [d]. Similarly, RISE has ∥Ai∥1 = 1 for all i ∈ [d]. This yields the
norms ∥A∥1,∞ = 2

√
d for leave-one-out, Banzhaf and Shapley, and ∥A∥1,∞ =

√
d for RISE.

For the spectral norm, we consider each method separately. We find that for all methods, it is simplest
to calculate AA⊤ and then λmax(AA⊤) to find the maximum singular value σmax(A). Note that the
entries of the matrix are determined by the inner product (AA⊤)ij = A⊤

i Aj .

For leave-one-out, we derive AA⊤ as follows:

(AA⊤)ij =

{
2 if i = j

1 otherwise.

The matrix AA⊤ is therefore the sum of a rank-one component and an identity term, and we have
AA⊤ = 1d1d + Id. Recognizing that 1d is the leading eigenvector, we get the following result:

σmax(A) =
√
λmax(AA⊤) =

√
(1d1d + Id)1d

∥1d∥2
=

√
1dd+ 1d

∥1d∥2
=

√
d+ 1.

For the Banzhaf value, we derive AA⊤ as follows:

(AA⊤)ij =

{
1/22d−2 if i = j

0 otherwise.

The max eigenvalue is therefore λmax(AA⊤) = 1/2d−2, which yields ∥A∥2 = 1/2d/2−1.

For the mean when included technique used by RISE, we derive AA⊤ as follows:

(AA⊤)ij =

{
1/2d−1 if i = j

1/2d otherwise.

The matrix AA⊤ is therefore the sum of a rank-one component and an identity term, or we have
AA⊤ = 1d1d/2

d + Id/2
d. Recognizing that 1d is the leading eigenvector, we get the following

result:

σmax(A) =
√
λmax(AA⊤) =

√
(1d1d/2d + Id/2d)1d

∥1d∥2
=

√
1dd/2d + 1d/2d

∥1d∥2
=

√
d+ 1

2d
.

For the Shapley value, we derive AA⊤ by first considering the diagonal entries:
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(AA⊤)ii = A⊤
i Ai =

∑
S:i∈S

(
(|S| − 1)!(d− |S|)!

d!

)2

+
∑
S:i/∈S

(
|S|!(d− |S| − 1)!

d!

)2

=

d∑
k=0

[(
d− 1

k − 1

)(
(k − 1)!(d− k)!

d!

)2

+

(
d− 1

k

)(
k!(d− k − 1)!

d!

)2
]

=
1

d

d∑
k=1

(k − 1)!(d− k)!

d!
+

1

d

d−1∑
k=0

k!(d− k − 1)!

d!

=

d−1∑
k=1

(k − 1)!(d− k − 1)!

d!
+

2

d2︸︷︷︸
k=0,k=d

=
1

d(d− 1)

d−1∑
k=1

(
d− 2

k − 1

)−1

+
2

d2

We next consider the off-diagonal entries:

(AA⊤)ij = A⊤
i Aj =

∑
S:i∈S,j∈S

(|S| − 1)!(d− |S|)!
d!

(|S| − 1)!(d− |S|)!
d!

−
∑

S:i∈S,j /∈S

(|S| − 1)!(d− |S|)!
d!

|S|!(d− |S| − 1)!

d!

−
∑

S:i/∈S,j∈S

|S|!(d− |S| − 1)!

d!

(|S| − 1)!(d− |S|)!
d!

+
∑

S:i/∈S,j /∈S

|S|!(d− |S| − 1)!

d!

|S|!(d− |S| − 1)!

d!

=

d∑
k=0

(
d− 2

k − 2

)
(k − 1)!(d− k)!

d!

(k − 1)!(d− k)!

d!

− 2

d∑
k=0

(
d− 2

k − 1

)
(k − 1)!(d− k)!

d!

k!(d− k − 1)!

d!

+

d∑
k=0

(
d− 2

k

)
k!(d− k − 1)!

d!

k!(d− k − 1)!

d!

=

d∑
k=2

(k − 1)

d(d− 1)

(k − 1)!(d− k)!

d!

− 2

d−1∑
k=1

1

d(d− 1)

k!(d− k)!

d!

+

d−2∑
k=0

(d− k − 1)

d(d− 1)

k!(d− k − 1)!

d!

We first focus on the case where d > 2, and we later return to the case where d = 2. We can group
terms that share the same k values to simplify the above:
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A⊤
i Aj =

1

d(d− 1)

− d−2∑
k=2

(k − 1)!(d− k − 1)!

(d− 1)!
+

2(d− 1)

d︸ ︷︷ ︸
k=0,k=d

− 2

d− 1︸ ︷︷ ︸
k=1,k=d−1


= − 1

d(d− 1)

d−2∑
k=2

(k − 1)!(d− k − 1)!

(d− 1)!
+

2

d2
− 2

d(d− 1)2

= − 1

d(d− 1)2

d−2∑
k=2

(
d− 2

k − 1

)−1

+
2

d2
− 2

d(d− 1)2
.

By convention, we let the summation above evaluate to zero for d = 3. We therefore have the
following result for AA⊤:

(AA⊤)ij =

{
1

d(d−1)

∑d−1
k=1

(
d−2
k−1

)−1
+ 2

d2 if i = j

− 1
d(d−1)2

∑d−2
k=2

(
d−2
k−1

)−1
+ 2

d2 − 2
d(d−1)2 otherwise.

From this, we can see that AA⊤ is the sum of a rank-one component and an identity term, or that we
have AA⊤ = 1d1db+ Id(c− b) with values for b = (AA⊤)ij and c = (AA⊤)ii given above. This
matrix has two eigenvalues, c− b and db+ (c− b), and we must consider which of the two is larger.
Under our assumption of d > 2, we can observe that b > 0:

b = (AA⊤)ij =
2

d2
− 1

d(d− 1)2

d−2∑
k=2

(
d− 2

k − 1

)−1

− 2

d(d− 1)2

≥ 2

d2
− 1

d(d− 1)2

d−2∑
k=2

(
d− 2

1

)−1

− 2

d(d− 1)2

=
2

d2
− d− 3

d(d− 1)2(d− 2)
− 2

d(d− 1)2

=
2(d− 1)2(d− 2)− d(d− 3)− 2d(d− 2)

d2(d− 1)2(d− 2)

It can be verified that the numerator of the above fraction is positive for d > 2. This implies that
db+ (c− b) is the larger eigenvalue. We can therefore calculate λmax(AA⊤) as follows:

λmax(AA⊤) = db+ (c− b) = c+ (d− 1)b

=
2

d2
+

2

d(d− 1)︸ ︷︷ ︸
k=1,k=d−1

+
2(d− 1)

d2
− 2

d(d− 1)

=
2(d− 1) + 2(d− 1)2

d2(d− 1)

=
2

d

On the other hand, when we have d = 2 we have the following entries for AA⊤:

(AA⊤)ij =

{
1 if i = j

0 otherwise.
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This yields λmax(AA⊤) = 1, which coincides with the formula λmax(AA⊤) = 2/d derived above.
Finally, this let us conclude that the spectral norm for the Shapley value is the following:

∥A∥2 =
√

λmax(AA⊤) =

√
2

d
.

Lemma 8. When the linear operator A satisfies the boundedness property, we have ∥A∥1,∞ = 2
√
d.

Proof. Following Theorem 1 in Monderer and Samet [46], solution concepts satisfying linearity and
the boundedness property (also known as the Milnor axiom) are probabilistic values. This means that
each attribution is the average of a feature’s marginal contributions, or that for each feature i ∈ [d]
there exists a distribution pi(S) with support on the power set of [d] \ {i}, such that the attributions
are given by

ϕi(f, x) = Epi(S)

[
f(xS∪{i})− f(xS)

]
=

∑
S⊆[d]\{i}

pi(S)
(
f(xS∪{i})− f(xS)

)
. (D.0.1)

The corresponding matrix A ∈ Rd×2d therefore has rows Ai with entries AiS ≥ 0 when i ∈ S and
AiS ≤ 0 when i /∈ S, where the positive and negative entries sum to 1 and -1 respectively. We can
therefore conclude that each row satisfies ∥Ai∥1 = 2, and that ∥A∥1,∞ = 2

√
d.

Lemma 9. When the linear operator A satisfies the boundedness and symmetry properties, the
spectral norm is bounded as follows,

1

2d/2−1
≤ ∥A∥2 ≤

√
d+ 1,

with 1/2d/2−1 achieved by the Banzhaf value and
√
d+ 1 achieved by leave-one-out.

Proof. Following Monderer and Samet [46], solution concepts satisfying linearity, boundedness and
symmetry are semivalues. This means that they are probabilistic values for which the probability
distribution pi(S) depends only on the cardinality |S| (see the definition of probabilistic values
above). As a result, we can parameterize the summary technique by how much weight it places on
each cardinality.

Let α ∈ Rd denote a probability distribution over the cardinalities k = 1, . . . , d. We can write the
attributions generated by any semivalue as follows:

ϕi(f, x) =

d∑
k=1

αk

∑
S⊆[d]\{i}
|S|=k−1

(
d− 1

k − 1

)−1(
f(xS∪{i})− f(xS)

)
.

Note that this resembles eq. (D.0.1), only with coefficients that are shared between all subsets with
the same cardinality. Due to each attribution being a linear combination of the predictions, we can
associate a matrix A ∈ Rd×2d with each semivalue, similar to Proposition 1. Furthermore, we can let
A be a linear combination of basis elements corresponding to each cardinality. We define the basis
matrix A(k) ∈ Rd×2d for each cardinality k = 1, . . . , d as follows:

A
(k)
iS =


(

d−1
|S|−1

)−1
if i ∈ S and |S| = k

−
(
d−1
|S|
)−1

if i /∈ S and |S| = k − 1

0 otherwise.
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With this, we can write the matrix associated with any semivalue as a function of the cardinality
weights α:

A(α) =

d∑
k=1

αkA
(k).

An important insight is that by composing a linear function with the convex spectral norm func-
tion [11], we can see that ∥A(α)∥2 is a convex function of α. This lets us find both the upper and
lower bound of ∥A(α)∥2 subject to α being a valid probability distribution.

For the lower bound, we refer readers to Theorem C.3 from Wang and Jia [64], who prove that
the Banzhaf value achieves the minimum with α∗ such that α∗

k =
(
d−1
k−1

)
/2d−1 and spectral

norm ∥A(α∗)∥2 = 1/2d/2−1. Notice that this is a valid probability distribution because we have∑d
k=1

(
d−1
k−1

)
= 2d−1. Also note that the proof in [64] parameterizes α slightly differently.

For the upper bound, we can leverage convexity to make the following argument. The fact that
spectral norm is convex with α representing probabilities lets us write the following for any α value:

σmax

(
A(α)

)
= σmax

(
d∑

k=1

αk ·A(k)

)
≤

d∑
k=1

αk · σmax

(
A(k)

)
≤ max

k

{
σmax

(
A(k)

)}
.

Finding the upper bound therefore reduces to finding the basis element with the largest spectral norm.
For each basis element A(k), we can derive the spectral norm by first finding the maximum eigenvalue
of A(k)A(k)⊤ ∈ Rd×d. In deriving this matrix, we first consider the diagonal entries:

(
A(k)A(k)⊤)

ii
=

∑
S:i∈S,|S|=k

(
d− 1

|S| − 1

)−2

+
∑

S:i/∈S,|S|=k−1

(
d− 1

|S|

)−2

=

(
d− 1

k − 1

)(
d− 1

k − 1

)−2

+

(
d− 1

k − 1

)(
d− 1

k − 1

)−2

= 2

(
d− 1

k − 1

)−1

.

Next, we consider the off-diagonal entries:

(
A(k)A(k)⊤)

ij
=

∑
S:i∈S,j∈S,|S|=k

(
d− 1

|S| − 1

)−2

+
∑

S:i/∈S,j /∈S,|S|=k−1

(
d− 1

|S|

)−2

=

(
d− 2

k − 2

)(
d− 1

k − 1

)−2

+

(
d− 2

k − 1

)(
d− 1

k − 1

)−2

=
k − 1

d− 1

(
d− 1

k − 1

)−1

+
d− k

d− 1

(
d− 1

k − 1

)−1

=

(
d− 1

k − 1

)−1

.

To summarize, the entries of this matrix are the following:

(
A(k)A(k)⊤)

ij
=

{
2
(
d−1
k−1

)−1
if i = j(

d−1
k−1

)−1
otherwise.
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We therefore see that A(k)A(k)⊤ is equal to a rank-one matrix plus an identity matrix, or A(k)A(k)⊤ =

b1d1
⊤
d + (c − b)Id, with values for b =

(
A(k)A(k)⊤)

ij
and c =

(
A(k)A(k)⊤)

ii
given above.

Recognizing that b > 0 and therefore that 1d is the leading eigenvector, we have the following
expression for the maximum eigenvalue:

λmax

(
A(k)A(k)⊤) = c+ (d− 1)b

=
(
A(k)A(k)⊤)

ii
+ (d− 1) ·

(
A(k)A(k)⊤)

ij

= (d+ 1)

(
d− 1

k − 1

)−1

.

Finally, we must consider how to maximize this as a function of k. Setting k = 1 or k = d achieves
the same value of d+ 1, which yields the following spectral norm:

∥A(d)∥2 =

√
λmax

(
A(d)A(d)⊤

)
=

√
d+ 1.

The case with k = d corresponds to leave-one-out (see Lemma 7), and k = 1 corresponds to an
analogous leave-one-in approach that has been discussed in prior work [15, 17].

Lemma 10. When the linear operator A satisfies the boundedness and efficiency properties, the
spectral norm is bounded as follows,√

2

d
≤ ∥A∥2 ≤

√
2 + 2 · cos

(
π

d+ 1

)
,

with
√

2/d achieved by the Shapley value.

Proof. Following Monderer and Samet [46], solution concepts satisfying linearity, boundedness and
efficiency are random-order values (or quasivalues). This means that the attributions are the average
marginal contributions across a distribution of feature orderings. Reasoning about such orderings
requires new notation, so we use π to denote an ordering over [d], and π(i) to denote the position
of index i within the ordering. We also let Pre(π, i) denote the set of all elements preceding i in the
ordering, or Pre(π, i) ≡ {j : π(j) < π(i)}. Similarly, we let Pre(π, i, j) be an indicator of whether j
directly precedes i in the ordering, or Pre(π, i, j) ≡ I{π(j) = π(i)− 1}. Finally, we use Π to denote
the set of all orderings, where |Π| = d!.

Now, given a distribution over orderings p(π), we can write the attributions for any random-order
value as follows:

ϕi(f, x) =
∑
π∈Π

p(π)
(
f(xPre(π,i)∪{i})− f(xPre(π,i))

)
=

∑
S⊆[d]\{i}

( ∑
π:Pre(π,i)=S

p(π)
)(

f(xS∪{i})− f(xS)
)
.

Based on this formulation, we can associate a matrix A ∈ Rd×2d with each random-order value based
on the coefficients applied to each prediction. The entries are defined as follows:

AiS =

{∑
π:Pre(π,i)=S\{i} p(π) if i ∈ S

−
∑

π:Pre(π,i)=S p(π) otherwise.

Furthermore, we can view A as a linear combination of basis elements A(π) ∈ Rd×2d corresponding
to each individual ordering. We define the basis matrix A(π) associated with each π ∈ Π as follows:
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A
(π)
iS =


1 if Pre(π, i) = S \ {i}
−1 if Pre(π, i) = S

0 otherwise.

With this, we can write the linear operator A corresponding to a distribution p(π) as the following
linear combination:

A(p) =
∑
π∈Π

p(π) ·A(π).

By composing a linear operation with the convex spectral norm function [11], we can see that
∥A(p)∥2 is a convex function of the probabilities p(π) assigned to each ordering. This will allow us
to derive a form for both the upper and lower bound on ∥A(p)∥2.

Beginning with the upper bound, we can use convexity to write the following:

σmax

(
A(p)

)
= σmax

(∑
π∈Π

p(π) ·A(π)
)
≤
∑
π∈Π

p(π) · σmax

(
A(π)

)
≤ max

π∈Π

{
σmax

(
A(π)

)}
.

Finding the upper bound therefore reduces to finding the basis element with the largest spectral norm.
For an arbitrary ordering π, we can derive the spectral norm via the matrix A(π)A(π)⊤, whose entries
are given by:

(
A(π)A(π)⊤

)
ij
=


2 if i = j

−1 if i ̸= j and Pre(π, i, j)
−1 if i ̸= j and Pre(π, j, i)
0 otherwise.

Within these matrices, the diagonal entries are always equal to 2, most rows contain two −1’s, and
two rows (corresponding to the first and last element in the ordering π) contain a single −1. We can
see that the matrices A(π)A(π)⊤ are identical up to a permutation of the rows and columns, or that
they are similar matrices. They therefore share the same eigenvalues.

Without loss of generality, we choose to focus on the ordering π′ that places the indices in their
original order, or π′(i) = i for i ∈ [d]. The corresponding matrix A(π′)A(π′)⊤ has the following
form:

A(π′)A(π′)⊤ =



2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0

0 0
. . . . . . . . .

...
...

...
. . . −1 2 −1

0 · · · · · · 0 −1 2


This is a tridiagonal Toeplitz matrix, a type of matrix whose eigenvalues have a known closed-form
solution [49]. The maximum eigenvalue is the following:

λmax

(
A(π′)A(π′)⊤

)
= 2 + 2

√
(−1) · (−1) cos

(
π

d+ 1

)
= 2 + 2 · cos

(
π

d+ 1

)
.
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We therefore have the following upper bound on the spectral norm for a random-order value:

∥A∥2 ≤

√
2 + 2 · cos

(
π

d+ 1

)
.

This value tends asymptotically towards 2, and it is achieved by any random-order value that places all
its probability mass on a single ordering. Such a single-order value approach has not been discussed
in the literature, but it is a special case of a proposed variant of the Shapley value [26].

Next, we consider the lower bound. We now exploit the convexity of ∥A(p)∥2 to argue that a specific
distribution achieves a lower spectral norm than any other distribution.

Consider an arbitrary distribution p(π) over orderings, with the associated linear operator A(p) and
spectral norm ∥A(p)∥2. Our proof technique is to find other distributions that result in different
linear operators A that share the same spectral norm. For any ordering π′ ∈ Π, we can imagine
permuting the distribution p(π) in the following sense: we generate a new distribution pπ′(π) such
that pπ′(π) = p(π(π′)), where π(π′) is a modified ordering with π(π′)(i) = π(π′(i)). That is, the
probability mass is reassigned based on a permutation of the indices.

Crucially, the linear operator A(pπ′) is different from A(p) but shares the same spectral norm. This is
because A(pπ′)A(pπ′)⊤ is similar to A(p)A(p)⊤, or they are equal up to a permutation of the rows
and columns. We therefore have ∥A(pπ′)∥2 = ∥A(p)∥2, and due to convexity we have

∥∥A(p/2 + pπ′/2
)∥∥

2
≤ 1

2
∥A(pπ′)∥2 +

1

2
∥A(p)∥2 = ∥A(p)∥2.

This does not imply that p/2 + pπ′/2 is a minimizer, but we can now generalize this technique to
identify a lower bound. Rather than generating a single permuted distribution, we propose generating
all possible permuted distributions. That is, we consider the set of all d! permutations π′ ∈ Π and
generate the corresponding distributions {pπ′ : π′ ∈ Π}. Notice that when we take the mean of these
distributions, the result is identical regardless of the original distributions p(π), and that it assigns
uniform probability mass to all orderings, because we have:

1

d!

∑
π′∈Π

pπ′(π) =
1

d!

∑
π′∈Π

p(π′) =
1

d!
.

We can then exploit convexity to write the following inequality:

∥∥∥A( ∑
π′∈Π

pπ′/d!
)∥∥∥

2
≤ ∥A(p)∥2.

We can make this argument for any original distribution p, so this provides a global lower bound. The
random-order value with uniform weighting is the Shapley value, whose spectral norm was derived
in Lemma 7. We therefore conclude with the following lower bound for random-order values, which
is achieved by the Shapley value:

∥A∥2 ≥
√

2

d
.

Lemma 11. When the linear operator A satisfies the boundedness, symmetry and efficiency proper-
ties, the spectral norm is ∥A∥2 =

√
2/d.

Proof. The result follows from the spectral norm result in Lemma 7, and the fact that the Shapley
value is the only solution concept to satisfy linearity, boundedness, symmetry and efficiency [46].
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E Proofs: main results

We now re-state and prove our results from Section 4.

Theorem 1. The robustness of removal-based explanations to input perturbations is given by the
following meta-formula,

∥ϕ(f, x)− ϕ(f, x′)∥2 ≤ g(removal) · h(summary) · ∥x− x′∥2,

where the factors for each method are defined as follows:

g(removal) =
{
L if removal = baseline or marginal
L+ 2BM if removal = conditional,

h(summary) =
{
2
√
d if summary = Shapley, Banzhaf, or leave-one-out√

d if summary = mean when included.

Proof. Given two inputs x and x′, the results in Lemma 1 and Lemma 3 imply the following bound
for any feature set xS ,

|f(x′
S)− f(x′

S)| ≤ L′ · ∥xS − x′
S∥2,

where we have L′ = L when using the baseline or marginal approach and L′ = L + 2BM when
using the conditional approach. This bound depends on the specific subset, we also have a bound
across all subsets because ∥xS − x′

S∥2 ≤ ∥x− x′∥2 for all S ⊆ [d]. In terms of the corresponding
vectors v, v′ ∈ R2d , this implies the following bound:

∥v − v′∥∞ = max
S⊆[d]

|vS − v′S | ≤ L′ · ∥x− x′∥2.

Next, Lemma 7 shows that we have the following bound on the difference in attributions:

∥ϕ(f, x)− ϕ(f, x′)∥2 = ∥Av −Av′∥2 ≤ ∥A∥1,∞ · ∥v − v′∥∞,

where the norm ∥A∥1,∞ depends on the chosen summary technique. Combining these bounds, we
arrive at the following result:

∥ϕ(f, x)− ϕ(f, x′)∥2 ≤ ∥A∥1,∞ · L′ · ∥x− x′∥2.

Substituting in the specific values for L′ and ∥A∥1,∞ completes the proof.

Theorem 2. The robustness of removal-based explanations to model perturbations is given by the
following meta-formula,

∥ϕ(f, x)− ϕ(f ′, x)∥2 ≤ h(summary) · ∥f − f ′∥,

where the functional distance and factor associated with the summary technique are specified as
follows:

∥f − f ′∥ =

{
∥f − f ′∥∞ if removal = baseline or marginal
∥f − f ′∥∞,X if removal = conditional,

h(summary) =
{
2
√
d if summary = Shapley, Banzhaf, or leave-one-out√

d if summary = mean when included.
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Proof. Given two models f and f ′, the results in Lemmas 5 and 6 imply the following bound for any
feature set xS ,

|f(xS)− f ′(xS)| ≤ ∥f − f ′∥,

where the specific norm is ∥f−f ′∥∞ when using the baseline or marginal approach and ∥f−f ′∥∞,X

when using the conditional approach. In terms of the corresponding vectors v, v′ ∈ R2d , this implies
the following bound:

∥v − v′∥∞ = max
S⊆[d]

|vS − v′S | ≤ ∥f − f ′∥.

Next, Lemma 7 showed that we have the following bound on the difference in attributions:

∥ϕ(f, x)− ϕ(f ′, x)∥2 = ∥Av −Av′∥2 ≤ ∥A∥1,∞ · ∥v − v′∥∞,

where the norm ∥A∥1,∞ depends on the chosen summary technique. Combining these bounds, we
arrive at the following result:

∥ϕ(f, x)− ϕ(f ′, x)∥2 ≤ ∥A∥1,∞ · ∥f − f ′∥.

Substituting in the specific values for ∥f − f∥ and ∥A∥1,∞ completes the proof.

Next, we present a corollary that considers the case of simultaneous input and model perturbations.
While this case has received less attention in the literature, we include this result for completeness
because it is easy to analyze given our previous analysis.
Corollary 1. The robustness of removal-based explanations to simultaneous input and model pertur-
bations is given by the following meta-formula,

∥ϕ(f, x)− ϕ(f ′, x′)∥2 ≤ g(removal) · h(summary) · ∥x− x′∥2 + h(summary) · ∥f − f ′∥,

where the functional distance and factors associated with the removal and summary technique are
given in Theorems 1 and 2.

Proof. This result follows from triangle inequality:

∥ϕ(f, x)− ϕ(f ′, x′)∥2 ≤ ∥ϕ(f, x)− ϕ(f, x′)∥2 + ∥ϕ(f, x′)− ϕ(f ′, x′)∥2.

The bounds for the first and second terms are given by Theorem 1 and Theorem 2, respectively.
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F The role of sampling when removing features

In this section, we present results analyzing the impact of sampling when removing features. Sampling
is often required in practice to integrate across the distribution q(xS̄) for removed features (see eq. (1)),
and this can create further discrepancy between attributions for similar inputs.

F.1 Theory

Here, we provide a probabilistic bound for the difference between the model prediction f(xS) with a
subset of features xS and its estimator f̂(xS) with m independent samples from q(xS̄).

Lemma 12. Let f̂(xS) ≡ 1
m

∑m
i=1 f(xS , x

(i)

S̄
) be the empirical estimator of f(xS) in eq. (1), where

x
(i)

S̄

i.i.d.∼ q(xS̄). For any δ ∈ (0, 1) and ε > 0, if the sample size m satisfies m ≥ 2B2 log(2/δ)
ε2 , then

P
(
|f̂(xS)− f(xS)| ≤ ε

)
≥ 1− δ.

Proof. With Assumption 2, we have −B
m ≤ f(xS ,x

(i)

S̄
)

m ≤ B
m . Also, E[f̂(xS̄)] = f(xS̄) because x

(i)

S̄
are sampled from q(xS̄). Applying Hoeffding’s inequality [35], we obtain the probabilistic bound

P(|f̂(xS)− f(xS)| ≥ ε) ≤ 2 exp

(
− 2ε2∑m

i=1

(
2B
m

)2
)

= 2 exp

(
−mε2

2B2

)
≤ 2 exp

−

(
2B2 log(2/δ)

ε2

)
ε2

2B2

 = δ,

and hence for the complement event we have

P(|f̂(xS)− f(xS)| ≤ ε) ≥ 1− δ.

Lemma 12 can be applied to bound the difference between the original and perturbed attributions
when the integral in eq. (1) is estimated via sampling. For example, under input perturbations, the
difference |f̂(xS)− f̂(x′

S)| decomposes into |f̂(xS)−f(xS)|+ |f(xS)−f(x′
S)|+ |f(x′

S)− f̂(x′
S)|

by the triangle inequality. The first and last terms can be bounded with high probability using
Lemma 12 and the union bound, and the middle term is bounded using results from Section 3.1 (e.g.,
Lemma 1 or Lemma 3). Intuitively, by combining probabilistic bounds over all the feature subsets, it
is possible to derive a final probabilistic upper bound with the following meta-formula:

∥ϕ(f, x)− ϕ(f, x′)∥2 ≤ g(removal) · h(summary) · ∥x− x′∥2 + gsampling(removal), (F.1.1)

where gsampling(removal) is a function of δ, ε,m when removal = marginal or conditional, and
gsampling(baseline) = 0 because no sampling is needed. Similarly, for our bound under model
perturbations, the term gsampling(removal) can be included to account for sampling in feature removal.

F.2 Empirical observations

In eq. (F.1.1), the sampling-dependent term gsampling(removal) does not depend on the input pertur-
bation strength ∥x − x′∥2, so we empirically estimate gsampling(removal) with the intercept of the
empirical upper bound (as illustrated in Figure 3) when ∥x− x′∥2 = 0. As shown in Figure 13 (left),
gsampling(baseline) is indeed zero, whereas gsampling(marginal) and gsampling(conditional) empirically
decrease with increasing sample size for feature removal as expected. We observe that the sampling
error tends to be lower for the conditional approach compared to the marginal approach, potentially
due to lower variances in the conditional versus marginal distributions. Finally, Figure 13 (right)
confirms that the perturbation-dependent term g(removal) · h(summary) · ∥x− x′∥2 does not depend
on the removal sample size.
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Figure 13: Intercepts and slopes of empirical and theoretical upper bounds with respect to the input
perturbation norm, for Occlusion, Banzhaf, Shapley, RISE, and LIME attribution differences in the
synthetic experiment in Appendix A.1, and with varying sample size for estimating feature removal.
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G Feature grouping

Rather than generate attribution scores for each feature xi, another option is to partition the feature set
and generate group-level scores. This is common in practice for images [12, 16, 53], where removing
individual pixels is unlikely to produce meaningful prediction differences, and reducing the number
of features makes attributions less computationally intensive. For example, LIME pre-computes
superpixels using a basic segmentation algorithm [53], and ViT Shapley uses grid-shaped patches
defined by a vision transformer [16].

When computing group-level attributions, we require a set of feature index groups that we denote as
{G1, . . . , Gg}, where each group satisfies Gi ⊆ [d]. We assume that the g groups are non-overlapping
and cover all the indices, so that we have Gi∩Gj = {} for i ̸= j and G1∪ . . .∪Gg = [d]. Under this
approach, the attributions are a vector of the form ϕ(f, x) ∈ Rg , and we compute them by querying
the model only with subsets that are unions of the groups. For this, we let T ⊆ [g] denote a subset of
group indices and denote the corresponding union of groups as GT =

⋃
i∈T Gi ⊆ [d]. Using this

notation and taking the Shapley value as an example, the attribution for the ith group Gi is defined as

ϕi(f, x) =
1

g

∑
T⊆[g]\{i}

(
g − 1

|T |

)−1 (
f(xGT∪{i})− f(xGT

)
)
,

where f(xGT
) is defined based on the chosen feature removal approach.

To generalize our earlier results to this setting, we first remark that querying the model with each subset
induces a vector v ∈ R2g containing the predictions for each union GT with T ⊆ [g]. The attributions
are then calculated according to ϕ(f, x) = Av, where A ∈ Rg×2g is the linear operator associated
with each summary technique (see Table 3). Our approach for bounding the attribution difference
under either input or model perturbation is similar here, because we can use the same inequalities
from Lemma 7, or ||A(v − v′)||2 ≤ ||A||2 · ||v − v′||2 and ||A(v − v′)||2 ≤ ||A||1,∞ · ||v − v′||∞,
depending on which norm is available for the vectors of predictions ||v − v′||.
Following the same proof techniques used previously, we can guarantee the following bounds in the
feature grouping setting.

Input perturbation. Lemma 1 and Lemma 3 guarantee that f(xS) is Lipschitz continuous for any
subset S ⊆ [d]. These results automatically apply to the specific subsets induced by feature grouping.
If f(xS) is L′-Lipschitz continuous for all S ⊆ [d], we therefore have the following inequality,

|f(xGT
)− f(x′

GT
)| ≤ L′ · ||xGT

− x′
GT

||2,

for all group subsets T ⊆ [g]. As a result, we can guarantee that the induced vectors v, v′ ∈ R2g for
two inputs x, x′ have the following bound:

||v − v′||∞ ≤ L′ · ||x− x′||2.

Finally, we see that Theorem 1 only needs to be changed by replacing d with g in the h(summary)
term. This bound may even be tighter when we use feature groups, because the Lipschitz constant
may be smaller when we restrict our attention to a smaller number of subsets.

Model perturbation. Lemma 5 and Lemma 6 guarantee that the predictions f(xS) and f ′(xS) for
two models f, f ′ can differ by no more than the functional difference ||f − f ′||, where the specific
norm depends on the feature removal approach. These results apply to all subsets S ⊆ [d], so they
automatically apply to those induced by feature grouping. We therefore have the following inequality,

|f(xGT
)− f ′(xGT

)| ≤ ||f − f ′||,

for all x and all group subsets T ⊆ [g]. For the induced vectors v, v′ ∈ R2g , we also have

||v − v′||∞ ≤ ||f − f ′||.

Finally, we see that Theorem 2 applies as well, where the only change required is replacing d with g
in the h(summary) term.
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H LIME weighted least squares linear operator

In this section, we discuss the linear operator A ∈ Rd×2d associated with LIME [53]. We begin with
a theoretical characterization that focuses on LIME’s default implementation choices, and we then
corroborate these points with empirical results.

H.1 Theory

The observation that LIME is equivalent to a linear operator A ∈ Rd×2d is discussed in Appendix D.
We pointed out there that LIME’s specific operator depends on several implementation choices,
including the choice of weighting kernel, regularization and intercept term. Here, we consider that no
regularization is used, that an intercept term is fit, and we focus on the default weighting kernel in
LIME’s popular implementation.4 The default is the following exponential kernel,

w(S) = exp

−

(
1−

√
|S|/d

)2
σ2

 , (H.1.1)

where σ2 > 0 is a hyperparameter. The user can set this parameter arbitrarily, but LIME also
considers default values for each data type: σ2 = 0.25 for images, σ2 = 25 for language, and
σ2 = 0.75

√
d for tabular data. We find that these choices approach two limiting cases, σ2 → ∞ and

σ2 → 0, where LIME reduces to other summary techniques; namely, we find that these limiting cases
respectively recover the Banzhaf value [9] and leave-one-out [67] summary techniques. We argue
this first from a theoretical perspective, and Appendix H.2 then provides further empirical evidence.

Limiting case σ2 → ∞. In this case, it is easy to see from eq. (H.1.1) that we have w(S) → 1 for all
S ⊆ [d]. The weighted least squares objective for LIME then reduces to an unweighted least squares
problem, which according to results from Hammer and Holzman [32] recovers the Banzhaf value.
We might expect that the default settings of σ2 approach this outcome in practice (e.g., σ2 = 25),
and we verify this in our empirical results.

Limiting case σ2 → 0. As we let σ2 approach 0, increasing weight is applied to w(S) when the
cardinality |S| is large. Similar to a softmax activation, the differences between cardinalities become
exaggerated with low temperatures; for very low temperatures, the weight applied to |S| = d is much
larger than the weight applied to |S| = d− 1, which is much larger than the weight for |S| = d− 2,
etc. In this regime, applying weight only to the subset S = [d] leaves the problem undetermined, so
the small residual weight on |S| = d−1 plays an important role. The problem begins to resemble one
where only subsets with |S| ≥ d−1 are taken into account, which yields a unique solution: following
Covert et al. [17], this reduces LIME to leave-one-out (Occlusion). More formally, if we denote
ALIME(σ

2) as the linear operator resulting from a specific σ2 value, we argue that limσ2→0 ALIME(σ
2)

is the operator associated with leave-one-out. We do not prove this result due to the difficulty of
deriving ALIME(σ

2) for a specific σ2 value, but Appendix H.2 provides empirical evidence for this
claim.

H.2 Empirical analysis

Here, we denote the LIME linear operator with the exponential kernel as ALIME instead of
ALIME(σ

2) for brevity. Recall from Appendix D that the LIME linear operator has the form
ALIME = (Z ′⊤WZ ′)−1

[1:]Z
′⊤W , where Z ′ = {0, 1}2d×(d+1) is a binary matrix with all ones in

the first column and the other columns indicating whether each feature is in each subset, and
W ∈ R2d×2d is a diagonal matrix with WS,S = w(S) for all S ∈ [d] and zeros elsewhere.

To empirically compare the linear operator of LIME to those of the Banzhaf value and leave-one-out
(Occlusion), we first derive closed-form expressions of Z ′⊤WZ ′ and Z ′⊤W as in the following
proposition.

4https://github.com/marcotcr/lime
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Proposition 2. Define

a0 ≡
d∑

k=0

(
d

k

)
exp

(
−
(
1−

√
k/d
)2

/σ2

)
,

a1 ≡
d∑

k=1

(
d− 1

k − 1

)
exp

(
−
(
1−

√
k/d
)2

/σ2

)
, and

a2 ≡
d∑

k=2

(
d− 2

k − 2

)
exp

(
−
(
1−

√
k/d
)2

/σ2

)
.

Then (Z ′⊤WZ ′) is a (d+ 1)× (d+ 1) matrix with the following form:

(Z ′⊤WZ ′) =

(
a0 B
B⊤ C

)
,

where B = (a1, ..., a1) ∈ R1×d , and C is a d× d matrix with a1 on the diagonal entries and a2 on
the off-diagonal entries. Furthermore, for all S ∈ [d]

(Z ′⊤W )iS =

{
w(S), if i = 1

1{i− 1 ∈ S}w(S) otherwise.

Proof. We first find an expression for each element in Z ′⊤WZ ′. Consider the first diagonal entry:

(Z ′⊤WZ ′)11 = Z ′⊤
1 WZ ′

1 = 1⊤
2dW12d

=
∑
S⊆[d]

w(S)

=

d∑
k=0

(
d

k

)
exp

(
−
(
1−

√
k/d
)2

/σ2

)
= a0.

For the rest of the diagonal entries, we have:

(Z ′⊤WZ ′)ii = Z ′⊤
i WZ ′

i =
∑

S:i−1∈S

w(S)

=

d∑
k=1

(
d− 1

k − 1

)
exp

(
−
(
1−

√
k/d
)2

/σ2

)
= a1,

for i = 2, ..., d+ 1. For the off-diagonal entries, we have:

(Z ′⊤WZ ′)1i = (Z ′⊤WZ ′)i1 = 1⊤
2dWZ ′

i =
∑

S:i−1∈S

w(S) = a1,

for i = 2, ..., d+ 1. Finally, consider the rest of the off-diagonal entries:

(Z ′⊤WZ ′)ij = Z ′⊤
i WZ ′

j =
∑

S:i−1∈S,j−1∈S

w(S)

=

d∑
k=2

(
d− 2

k − 2

)
exp

(
−
(
1−

√
k/d
)2

/σ2

)
= a2,

for i, j = 2, ..., d + 1 such that i ̸= j. Taken all these together, Z ′⊤WZ ′ has the closed form
expression as shown in the proposition.

We now proceed to find an expression for each element in Z ′⊤W , which has the first row entries:

(Z ′⊤W )1S = 1⊤
2dWS = w(S),

for all S ⊆ [d], whereas the rest of the rows have entries:

(Z ′⊤W )iS = Z ′⊤
i WS = 1{i− 1 ∈ S}w(S),

for i = 2, ..., d+ 1. Hence the closed form expression of Z ′⊤W in the proposition follows.
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Figure 14: Frobenius norm of the difference between the LIME linear operator ALIME and the Banzhaf
linear operator ABanzhaf, with varying LIME exponential kernel hyperparameter σ2 and number of
features. We include reference lines for the default LIME hyperparameters: σ2 = 0.25 for images,
σ2 = 0.75

√
d for tabular data, and σ2 = 25 for text data.

With closed form expressions for Z ′⊤WZ ′ and Z ′⊤W , we numerically compute the LIME linear
operator ALIME = (Z ′⊤WZ ′)−1

[1:]Z
′⊤W and compare it to the linear operators of the Banzhaf value

(ABanzhaf) and Occlusion (AOcclusion) with both large and small σ2 values.

As shown in Figure 14, as σ2 increases, the Frobenius norm difference between the LIME and
Banzhaf linear operators approaches zero, verifying our theoretical argument for the limiting case of
σ2 → ∞. Furthermore, we observe that ALIME and ABanzhaf have near zero difference for all default
σ2 values when there are {10, 15, 20, 25} features. As σ2 approaches zero, the Frobenius norm
difference between the LIME and Occlusion linear operators empirically approaches zero (Figure 15),
confirming our intuition for the limiting case where σ2 → 0. Based on our computational results,
LIME with the default σ2 values indeed has similar spectral norm ∥·∥2 and the operator norm ∥·∥1,∞
compared to the Banzhaf value (Figure 16).
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Figure 15: Frobenius norm of the difference between the LIME linear operator ALIME and the
Occlusion linear operator AOcclusion, with varying LIME parameter σ2 and number of features.
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I Additional results for synthetic experiments
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Figure 18: Slopes of empirical and theoretical upper bounds with respect to the input perturbation
norm, for Occlusion, Banzhaf, RISE, and LIME attribution differences in the synthetic experiment.
The parameter α varies the logistic regression Lipschitz constant, and ρ varies the correlation between
the two synthetic features x1,x2.
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Figure 19: Occlusion, Banzhaf, RISE, and LIME attribution differences between the logistic regres-
sion classifiers f, f ′ as constructed in Appendix A.2 with baseline, marginal, and conditional feature
removal, and varying correlation ρ.

J Implementation details

Fully connected networks. For the wine quality dataset, we trained FCNs with varying levels of
weight decay. The architecture consists of 3 hidden layers of width 128 with ReLU activations and
was trained with Adam for 50 epochs with learning rate 0.001. We also trained a conditional VAE
(CVAE) following the procedure in Frye et al. [27] to approximate conditional feature removal. The
CVAE encoder and decoder both consist of 2 hidden layers of width 64 with ReLU activations and
latent dimension 8. We trained the CVAE using a prior regularization strength of 0.5 for at most 500
epochs with Adam and learning rate 0.0001, with early stopping if the validation mean squared error
did not improve for 100 consecutive epochs. All models were trained with NVIDIA GeForce RTX
2080 Ti GPUs with 11GB memory.

Convolutional networks. We trained CNNs for MNIST with varying levels of weight decay.
Following the LeNet-like architecture in Adebayo et al. [2], our network has the following structure:
Input → Conv(5 × 5, 32) → MaxPool(2 × 2) → Conv(5 × 5, 64) → MaxPool(2 × 2) → Flatten
→ Linear(1024, 1024) → Linear(1024, 10). We trained the model with Adam for 200 epochs with
learning rate 0.001. The same GPUs for FCN training were used to train the CNNs.
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ResNets. We trained ResNet-18 networks for CIFAR-10 from scratch with Adam for 500 epochs
with learning rate 0.00005. The same GPUs for FCN training were used to train the ResNet-18
networks. We used a ResNet-50 network pre-trained on ImageNet and fine-tuned it for Imagenette
with Adam for 20 epochs with learning rate 0.0005. The ResNet-50 networks were trained with
NVIDIA Quadro RTX6000 GPUs with 24GB memory.

K Additional results for practical implications
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Figure 20: Test accuracy of FCN trained on the wine quality dataset and CNN trained on MNIST
with varying degree of weight decay.

Figure 21: Test accuracy of ResNet-18 trained on CIFAR-10 and ResNet-50 fine-tuned on Imagenette
with varying degree of weight decay.
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Figure 22: Attribution difference for networks trained with increasing weight decay, under input
perturbations with perturbation norms {0.1, 0.5, 1, 2}. The results include the wine quality dataset
with FCNs and baseline (replacing with training set minimums), marginal, and conditional feature
removal. Error bars show the mean and 95% confidence intervals across explicand-perturbation pairs.

48



0.96

0.97

0.98

0.99

1.00

Oc
clu

sio
n

Pe
ar

so
n 

Co
rre

la
tio

n

||x x′||2 = 0.1

0.80

0.85

0.90

0.95

1.00
||x x′||2 = 0.5

0.6

0.7

0.8

0.9

||x x′||2 = 1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9
||x x′||2 = 2.0

Baseline
Marginal
Conditional

0.995

0.996

0.997

0.998

0.999

1.000

Sh
ap

le
y

Pe
ar

so
n 

Co
rre

la
tio

n

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.825

0.850

0.875

0.900

0.925

0.950

0.975

0.6

0.7

0.8

0.9

0.9980

0.9985

0.9990

0.9995

1.0000

Ba
nz

ha
f

Pe
ar

so
n 

Co
rre

la
tio

n

0.95

0.96

0.97

0.98

0.99

1.00

0.850

0.875

0.900

0.925

0.950

0.975

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.9980

0.9985

0.9990

0.9995

RI
SE

Pe
ar

so
n 

Co
rre

la
tio

n

0.95

0.96

0.97

0.98

0.99

1.00

0.850

0.875

0.900

0.925

0.950

0.975

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.0000 0.0025 0.0050 0.0075 0.0100

Weight Decay

0.9980

0.9985

0.9990

0.9995

1.0000

LI
M

E

Pe
ar

so
n 

Co
rre

la
tio

n

0.0000 0.0025 0.0050 0.0075 0.0100

Weight Decay

0.95

0.96

0.97

0.98

0.99

1.00

0.0000 0.0025 0.0050 0.0075 0.0100

Weight Decay

0.850

0.875

0.900

0.925

0.950

0.975

0.0000 0.0025 0.0050 0.0075 0.0100

Weight Decay

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Figure 23: Pearson correlation of attributions for networks trained with increasing weight decay, un-
der input perturbations with perturbation norms {0.1, 0.5, 1, 2}. The results include the wine quality
dataset with FCNs and baseline (replacing with training set minimums), marginal, and conditional fea-
ture removal. Error bars show the means and 95% confidence intervals across explicand-perturbation
pairs.
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Figure 24: Spearman rank correlation of attributions for networks trained with increasing weight
decay, under input perturbations with perturbation norms {0.1, 0.5, 1, 2}. The results include the
wine quality dataset with FCNs and baseline (replacing with training set minimums), marginal,
and conditional feature removal. Error bars show the means and 95% confidence intervals across
explicand-perturbation pairs.
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Figure 25: Attribution difference for networks trained with increasing weight decay, under input
perturbations with perturbation norms {0.1, 0.5, 1, 2}. The results include MNIST with CNNs and
baseline feature removal with either training set means or zeros. Error bars show the means and 95%
confidence intervals across explicand-perturbation pairs.
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Figure 26: Pearson correlation of attributions for networks trained with increasing weight decay,
under input perturbations with perturbation norms {0.1, 0.5, 1, 2}. The results include MNIST with
CNNs and baseline feature removal with either training set means or zeros. Error bars show the
means and 95% confidence intervals across explicand-perturbation pairs.
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Figure 27: Spearman rank correlation of attributions for networks trained with increasing weight
decay, under input perturbations with perturbation norms {0.1, 0.5, 1, 2}. The results include MNIST
with CNNs and baseline feature removal with either training set means or zeros. Error bars show the
means and 95% confidence intervals across explicand-perturbation pairs.
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Figure 28: Sanity checks for attributions using cascading randomization for the CNN trained on
MNIST. Features are removed by replacing them with zeros. Attribution similarity is measured by
Pearson correlation and Spearman rank correlation. We show the means and 95% confidence intervals
across 10 random seeds.
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Figure 29: Sanity checks for attributions using cascading randomization for the ResNet-18 trained on
CIFAR-10. Features are removed by replacing them with zeros. Attribution similarity is measured
by Pearson correlation and Spearman rank correlation. We show the means and 95% confidence
intervals across 10 random seeds. Missing points correspond to undefined correlations due to constant
attributions under model randomization.
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