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Abstract

Recently, the bias-related issues in GNN-based link prediction have raised widely
spread concerns. In this paper, we emphasize the bias on links across different
node clusters, which we call cross-links, after considering its significance in both
easing information cocoons and preserving graph connectivity. Instead of following
the objective-oriented mechanism in prior works with compromised utility, we
empirically find that existing GNN models face severe data bias between internal-
links (links within the same cluster) and cross-links, and this inspires us to rethink
the bias issue on cross-links from a data perspective. Specifically, we design a
simple yet effective twin-structure framework, which can be easily applied to most
GNNs to mitigate the bias as well as boost their utility in an end-to-end manner.
The basic idea is to generate debiased node embeddings as demonstrations and fuse
them into the embeddings of original GNNs. In particular, we learn debiased node
embeddings with the help of augmented supervision signals, and a novel dynamic
training strategy is designed to effectively fuse debiased node embeddings with
the original node embeddings. Experiments on three datasets with six common
GNNs show that our framework can not only alleviate the bias between internal-
links and cross-links but also boost the overall accuracy. Comparisons with other
state-of-the-art methods also verify the superiority of our method.

1 Introduction
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Figure 1: A toy graph for illustrating the concept
of topological communities. The proportions of
two kinds of links also are provided on the right.

Recently, due to the strong capability in learning
the latent representation of graph structure data,
Graph Neural Networks (GNNs)-based link pre-
diction methods have received increasing research
interests and show excellent performance in recom-
mendation systems [33, 34], bioinformatics [7, 16],
and knowledge graph [24, 40]. However, these link
prediction methods often prioritize performance
without considering potential bias on the sensitive
attributes of nodes, such as genders or regions, thus
leading to social risks or the creation of informa-
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tion cocoons. For instance, in social recommendations, models tend to recommend users with friends
belonging to the same region, limiting users’ opportunities to connect with the outside world [46].
Similarly, in political news recommendations, recommenders prefer to deliver content that aligns
with users’ partisan beliefs, filtering out different perspectives and narrowing users’ scopes [23]. To
tackle these issues, researchers have put forward several solutions. For example, FLIP [28] employs
adversarial learning to encourage the model to predict outcomes that are independent of sensitive
attributes. Similarly, CFC [4] aims to debias the node embeddings with compositional adversarial
constraints. FairAdj [20] learns edge weights to generate a fair adjacency matrix, which is used for
subsequent link prediction tasks. UGE [38] explores unbiased node embeddings from an unobserved
graph, and proposes two kinds of methods based on reweighting and regularization constraints.

Top 10 commonest label

C
om
m
un
ity
ID

Figure 2: Distributions for top 10 la-
bels in 10 different communities de-
tected by Louvain on LastFM

Although these methods make great progress in mitigating
the bias in link prediction, there are two issues remaining
unsolved: 1) All these methods generally modify the objec-
tive functions, like adding regularization constraints [4, 28]
or reweighting [38] for mitigating the bias. However, the
mechanism of simply modifying objective function may in-
fluence the optimization trajectory of the model and result in
convergence towards a sub-optimal status. The experimental
trade-off between debias and utility on multiple prior works
[4, 20, 28, 38] also supports this claim. 2) Existing methods
simply focus on sensitive attributes of nodes while ignoring
the bias based on graph topology. In fact, due to GNNs’ heavy
dependence on the aggregation of neighborhood messages,
for the link prediction tasks, GNNs tend to wire new links inside the local community2 (denoted as
internal-links), while ignoring the links connecting different communities (denoted as cross-links),
and this kind of bias may leave the graph in danger of being trapped in information cocoons or
disconnected [21, 28], as shown in Figure 1. Empirical evidence can also be provided in Figure 2, in
which we illustrate the top 10 commonest labels’ distributions in different communities. It can be seen
that each community contains its own specific information pattern [26], making it challenging for one
single community to encompass all diverse information in a network. This observation implies the
propensity of graphs to form information cocoons with insufficient cross-links as bridges3. Motivated
by these findings, we aim to design a GNN model that could boost the link prediction performance
on cross-links and mitigate the bias between internal-links and cross-links without sacrificing utility.

By rethinking the problem of bias between internal-links and cross-links with a fresh insight from
the data perspective, we statistics the proportion of internal-links and cross-links in three real-world
datasets in Figure 1, and we can find that the number of internal-links far exceeds that of cross-
links. This kind of data bias may be further enlarged and perpetuated by stacking GNN aggregation
operations and finally leads to a biased link prediction. In light of this, we propose a simple yet
effective twin-structure framework, which consists of two independent GNN models to mitigate the
bias between internal-links and cross-links. Specifically, we first divide the whole graph into multiple
communities that share similar topological locations and differentiate links into internal-links and
cross-links. After that, in order to alleviate the data bias between internal-links and cross-links,
supervision augmentation based on multiple rules is proposed to increase the supervised signals
for cross-links, which could help the GNNs to better capture the patterns of cross-links and further
generate debiased node embeddings. Subsequently, to avoid utility degradation, we design an
embedding fusion module to merge original node embeddings and debiased node embeddings with a
dynamic training strategy. In this way, the embedding fusion module could effectively preserve the
performance of internal-links while alleviating the bias between internal-links and cross-links. Our
main contributions can be summarized as follows:

• We reveal a significant link prediction bias based on the graph topology, i.e. the bias between
internal-links and cross-links, and design a model-agnostic framework, which can help most of the
GNNs address such bias without compromising utility.

2Generally, it refers to a cluster of nodes that enjoy similar topological location, which can be detected by
community detection algorithms. In this paper, we deploy the Louvain algorithm [2] as the default detection
method.

3Further analysis on elaborating the role of cross-links is provided in Section A of the Appendix.
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• We propose three core components in our framework, including supervision augmentation, twins-
GNN, and embedding fusion module. The combination of supervision augmentation and twins-
GNN can generate debiased embeddings from a data aspect as demonstrations, while the embedding
fusion module can effectively filter out the noise and preserve the utility of GNN.

• We evaluate our method on three real-world datasets with six common GNNs as base models and
as well as compare them with other state-of-the-art baselines. The experimental results consistently
demonstrate that our framework could effectively reduce the bias between internal-links and
cross-links with even improved overall performance.

2 Related Work

Link Prediction As one of the most important applications in graph learning, link prediction
algorithms have received extensive attention in the last two decades [3, 12, 14, 29]. The traditional
link prediction methods are mainly based on some heuristic metrics on the graph structure, such as
CN [25], AA [1], and Jaccard coefficient. In recent years, shallow embedding-based link prediction
methods such as DeepWalk [29], Node2Vec [12], and LINE [36] have also emerged. With the
powerful capability in representation learning on graph structure data, GNNs have achieved great
progress in link prediction tasks as well [3, 13, 14, 19, 37, 48]. For example, LightGCN discovers the
redundancy of non-linear activation and feature transformation and achieves better performance on
recommendations [14]. PPRGo [3] uses a Personalized Page Rank matrix to efficiently approximate
the multi-hop aggregation, which breaks the classical message-passing paradigm of GNNs. Following
LightGCN, UltraGCN [27] approximates the infinite-layer aggregation for better recommendations.
Besides, instead of learning from the whole graph, another line of research focuses on learning from
relatively small subgraphs, such as SEAL [44] and SUREL+ [42], which also achieve remarkable
performance in link prediction.

Bias Related Issues in GNNs Recently, bias-related issues have been widely concerned in graph
neural networks, termed as "debias" or "fairness". Concentrating on node classification tasks, there is
a branch of works on achieving fair results that are uncorrelated with sensitive attributes, including
FairGNN [8], FairVGNN [39], EDITS [9], and EqGNN [32]. As for bias in link prediction, based
on node2vec [12], Fairwalk [30] proposes a more fair random walk strategy, but fails to avoid the
decrease in models’ utility after achieving satisfactory fairness. Both FLIP [28] and CFC [4] try
to mitigate the dyadic bias by proposing adversarial constraints in the loss function. Li et al. [20]
designed a model named FairAdj, which could generate a fair adjacency matrix with different edge
weights to address the dyadic bias with competitive utility. Similar to FairAdj, UGE [38] derives
unbiased embeddings from an unobserved graph that involves no sensitive attribute information.
However, all these methods modify the original objective functions and face a trade-off between
debias and utility.

3 Methodologies

3.1 Problem Formulation

In this work, a graph is denoted by G = (V, E), and it consists of N = |V| vertices and |E| links. In
the real world, nodes on the graph spontaneously form local communities [26], such as social circles
in social networks, and various bundles of also-buy items on product graphs. We use C(v) ∈ N to
denote the community membership of a given node v and define cross-links and internal-links:
Definition 1. Cross-links and Internal-links. Given a link ⟨u, v⟩, it belongs to cross-links Ecr if its
endpoints’ memberships satisfy C(u) ̸= C(v); otherwise, it belongs to internal-links Ein as it satisfies
C(u) = C(v). So according to the endpoints’ memberships, the links E in a graph could be divided
into Ein and Ecr two sets exclusively, i.e. Ein ∩ Ecr = ∅ and Ein ∪ Ecr = E .

Centering on the link prediction based on GNNs, each node will be mapped to an D dimensional
embedding vector z ∈ RD by a GNN encoder. The dot product score of a pair of nodes’ embeddings
implies the GNN model’s confidence on whether there will be a potential link between two given
vertices. Our goal is to mitigate the bias between internal-links and cross-links, i.e.:
Definition 2. Bias between internal-links and cross-links (Bias). Given a trained GNN model,
a confidence matrix P ∈ RN×N can be inferred by calculating the dot product of endpoints’
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embeddings, and a higher Puv indicates that model predicts that it very likely exists a link between
node u and node v. Let the notationM represent an evaluation metric in link prediction tasks, and
we use the difference between two kinds of links’ average performance to define the bias:

Bias = |E[M(P)|E = Ein]− E[M(P)|E = Ecr]| (1)

Task definition. To address such bias, a GNN recommender should balance the performance on
internal-links and cross-links, so that the final model could show equivalent capability on mining true
internal-links and cross-links. The goal of this paper is to design a model-agnostic framework, which
can enhance the embedding ability of a given GNN model so that the bias metrics are reduced while
the accuracy metrics are at least not decreased:

Bias(M(P|Z)) < Bias(M(P|Z′)), M(P|Z) ≥M(P|Z′) (2)

where Z′ represents the original node embeddings given by a GNN, and Z represents the node
embeddings enhanced by our framework.

3.2 Framework Overview

GNN GNN

… …

Embedding Fusion

…

DebiasOriginal

Auxiliary lossAuxiliary loss

Final loss

Augmented SupervisionOriginal Supervision

Figure 3: The overview of our framework

We propose a twin-structure GNN-enhancement
framework, which can reduce the bias between cross-
links and internal-links without hurting the overall
performance. An overview of our framework is il-
lustrated in Figure 3. Its key components include
supervision augmentation, Twins GNNs, and an em-
bedding fusion module. Details will be provided in
the following sections. In traditional graph embed-
ding models, existing links on the graph are used as
supervision signals. In our framework, we first gen-
erate a certain number of pseudo cross-links and form
the augmented supervision signals. Then, we use two
GNNs with the same architecture to model the two
sets of supervision signals (original supervision and
augmented supervision) independently, leading to original node embeddings and debiased node
embeddings. Lastly, to avoid the impact of noise during supervision augmentation, an embedding
fusion module is proposed, which ensures that the final embeddings will retain the merits of both
original node embeddings and debiased node embeddings.

3.3 Supervision Augmentation

As revealed in Figure 1, in most datasets, usually the vast majority of links on the graph are internal-
links, and this kind of disparity may cause the learned model to be biased to internal-links while
neglecting the performance of the cross-links in order to obtain better overall metrics. Therefore, we
design an augmentation step to alleviate the supervision signal sparsity issue.

Jaccard based augmentation. Inspired from the concept of edge strength [11], a set of K pairs of
nodes {⟨û1, v̂1⟩, ..., ⟨ûK , v̂K⟩}, which satisfy C(ûi) ̸= C(v̂i), ∀i ∈ {1, ...,K}, and have the top K
highest Jaccard coefficient score J (û, v̂), are wired as pseudo cross-links. Specifically, the J (û, v̂)
can be formulated as:

J (û, v̂) = |N (û) ∩N (v̂)|
|N (û) ∪N (v̂)|

(3)

and K = k ∗ (|Ein| − |Ecr|), where k is a hyper-parameter to control the supervision augmentation
size K, and N (·) represents the neighbor nodes of a given node. J (·, ·) measures the proportion of
common neighbors between two nodes, and intuitively, a pair of nodes with more common neighbors
are more likely to form a potential link, which ensures the high confidence of augmented signals.

Random walk based augmentation. However, when a network is extremely dense, adopting Jaccard-
based augmentation will consume too much computing resource due to the "neighbor explosion"
issue. What’s more, the Jaccard-based supervision augmentation may easily only cover nodes around
the border of communities, and nodes in the center of a community may still fail to benefit from the
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augmentation. To solve these problems, we propose a new supervision augmentation method based
on random walks. Specifically, we take random walks in the original graph, and each pair of nodes
⟨û, v̂⟩ that appear in the same walk path will be recorded. Next, cross-community node pairs, i.e.,
C(û) ̸= C(v̂), with the top K highest co-occurrence frequency will be screened out as augmented
supervision signals. Similarly, K = k ∗ (|Ein| − |Ecr|) represents the supervision augmentation size.

Note that, we only generate pseudo supervision signals, and the original graph structure, which is
used for message passing in GNNs, remains unchanged. We believe that the lack of supervision plays
a much more important role in causing the bias between internal-links and cross-links and adding
supervision signals is a more straightforward way to alleviate this kind of bias. Let EP denote the
newly constructed edge set. The original supervision signals, which are the original links on the graph,
are denoted by EO, and the final augmented supervision signals are denoted by EA = EO ∪ EP .

3.4 Twins GNNs

Recently, the retrieval-based learning paradigm, in which the core idea is to provide supporting
examples that can be used as references for the model, has extracted increasing research interest
in the field of natural language processing [35]. Inspired by this, it would be a promising way to
generate debiased node embeddings as references for our framework to mitigate the bias between
internal-links and cross-links. Specifically, we let EO and EA to guide the training of two twin GNNs,
respectively. The two twin GNNs share the same model architecture but have independent sets of
parameters. To this end, the twin-structure GNNs could generate two kinds of embeddings named
original node embeddings ZO and debiased node embeddings ZA, respectively. In order to make sure
that the twin-structure GNNs could precisely generate original embeddings and debiased embeddings
for further embedding fusion, we follow the literature [14, 34] and employ one of the most classic
loss functions in recommendation systems - BPRLoss to design our two auxiliary loss functions for
the twin-structure GNNs, which can be generalized as:

L = − 1

|E|
∑

⟨u,v⟩∈E

log σ(ru,v − ru,v̂) (4)

where E could be EO or EA depending on the type of generated embeddings, and the auxiliary loss
functions, are denoted as LO and LA, respectively. σ is an activation function like sigmoid. ⟨u, v̂⟩
denotes a negative sample, and ru,v denotes the prediction score of a given node pair ⟨u, v⟩. Note
that, other alternative loss functions with multiple negative samples can be also easily deployed
to our method, which is determined by the practitioners according to their practical applications.
Intuitively, with the balanced proportion of two types of links in EA after supervision augmentation,
the debiased node embeddings ZA could show excellent capability in eliminating the bias between
internal-links and cross-links. The debiased node embeddings ZA will become a good demonstration
for subsequent embedding fusion modules in the further learning of final embeddings.

3.5 Embedding Fusion

Although we set several heuristic rules in Section 3.3 to ensure that the generated signals have high
confidence, the supervision augmentation stage will inevitably introduce noise. Thus, ZA is trained
with impure supervision. If fusing ZA into ZO in a naive way, such as a simple averaging, although
the performance on the cross-links can be improved, the internal-links’ will be considerably degraded.

Thus, we adopt an embedding fusion module F (·) that merges two kinds of embeddings, i.e. original
node embeddings ZO and debiased node embeddings ZA, to refine meaningful information from the
debiased embeddings and fuse them into the original embeddings:

Hi = CONCAT(ZO
i ,Z

A
i ) (5)

Zi = F (Hi, θ
F ) = W2 σ(W1Hi + b1) + b2 (6)

where W1 ∈ RD×2D, b1 ∈ RD, W2 ∈ RD×D, b2 ∈ RD are the trainable parameters of F (·),
and can be abbreviated as θF for conciseness. σ is the activation function and D is the embedding
dimension. Note that, both ZO

i and ZA
i are output embeddings from GNN models supervised by

auxiliary loss, and we believe that there is no need to further deploy a complex network during
embedding fusion, hence we simply show a 2-layer MLP in Eq.(6).
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As the core component of our framework, we argue that the final embeddings Z after embedding
fusion function F (·) should filter signal noise in EA while preserving as much correct augmented
information as possible. Therefore, we optimize embedding fusion module F (·) and twin-GNNs by
minimizing the following objective function :

LF = − 1

|EO|
∑

⟨u,v⟩∈EO

log σ(ru,v − ru,v̂) (7)

Algorithm 1 Proposed training process

Input: Graph G with link set EO. Hyper-parameters: α, β, and T , learning rate γO, γA.
Output: Twin GNNs’ parameters θO, θA, and embedding fusion module parameters θF

1: Randomly initialize twins GNN models with θO, θA, embedding fusion module with θF .
2: Split G into |C| communities and categorize links into internal-links and cross-links.
3: Select augmented supervision signals EA by the Jaccard coefficient or co-occurrence frequency.
4: while not converged do
5: Compute LO and LA by Eq.(4)
6: Update twins GNN models: θO ← θO + γO · ∇θOLO, θA ← θA + γA · ∇θALA

7: Compute learning rate γF
t and step size St by Eq.(8)

8: for step = 1 to St do
9: Compute LF by Eq.(7)

10: Update embedding fusion module: θF ← θF + γF
t · ∇θFLF

11: Update twins GNN models: θO ← θO + γF
t · ∇θOLF , θA ← θA + γF

t · ∇θALF

12: end for
13: end while
14: return θO, θA, θF

Algorithm 2 Proposed inference process

Input: Graph G with link set EO. Trained Twin GNNs’ parameters θO, θA, and embedding fusion
module parameters θF

1: Get node embeddings ZO through parameters θO
2: Get node embeddings ZA through parameters θA
3: Get node embeddings Z through combining ZO and ZA with embedding fusion module θF

4: Evaluation through test node pairs with node embeddings Z

3.6 Implementation Algorithms

For a better understanding of our method, here we summarize the detailed training process and
inference process, and the pseudo codes are provided in Algorithm 1 and Algorithm 2, respectively.

Training process: Firstly, during the preprocessing stage, C = |C| communities are detected through
Louvain algorithm [2] and all links are categorized into internal-links or cross-links, respectively
(line 2). In addition, newly constructed supervision signals EP are also generated during supervision
augmentation (line 3). After that, original node embeddings ZO and debiased node embeddings ZA

are generated by minimizing the auxiliary loss functions in Section 3.4 (lines 5-6) with learning rate
γO and γA, respectively. The two sets of generated embeddings will be forwarded to the embedding
fusion module F (·) to get the final embeddings Z = F (ZO,ZA), and minimize the final loss function
with multiple training steps (lines 8-12.) Essentially, the embedding fusion module F (·) is highly
related to the quality of original embeddings ZO and debiased embeddings ZA, thus we introduce a
dynamic training strategy to avoid excessive training for embedding fusion module when ZO and ZA

have not been stable yet. Specifically, the learning rate γF
t and training step St for F (·) at epoch t is:

γF
t = α ∗ 1

1 + e−(t−T )
, St = β ∗ 1

1 + e−(t−T )
(8)

where α, β, and T are hyper-parameters to control the learning rate, training steps, and the epoch that
F (·) can believe the quality of input embeddings have been stable, respectively.

6



Inference process: During the inference stage, we use the node embeddings Z for evaluation (line 4),
which are the output of the embedding fusion module. Specifically, we first get node embeddings ZO

and ZA through the trained twins GNN in advance (lines 1-2), and then perform embedding fusion
operation (line 3) to get the final node embeddings Z.

4 Experiment

4.1 Experimental Settings

Table 1: Dataset Statistics

Datasets Users Items Interactions Density Type
Epinions 75,879 - 508,837 0.000088 User-user
DBLP 317,080 - 1,049,866 0.000010 User-user

LastFM 1,892 17,632 92,834 0.002783 User-item

Datasets. We conduct our experiments on three
real-world networks from SNAP4 and RecBole5

[47] public datasets. Specifically, to verify our
framework’s extendibility, we choose two kinds
of networks according to the types of interaction
between nodes, including user-user (Epinions,
DBLP), and user-item (LastFM). Epinions is a
who-trust-whom social network extracted from
the online review site Epinions.com. Each node represents a consumer, and each directed link
represents a consumer-to-consumer trust connection. DBLP is a co-author social network, which is
collected from the DBLP computer science bibliography, and two author nodes are connected if they
used to publish at least one paper together. LastFM dataset contains users’ listening information
from the Last.fm online music system and each listening event represents a user-artist interaction.
The detailed statistics for these three datasets are reported in Table 1, and other experimental settings
on datasets are described in Section B in the Appendix.

Base models. Because our proposed method is a model-agnostic framework, which is compatible
with almost all GNN-based link prediction models, here we choose six common and effective GNNs
as our base models, including GraphSAGE [13], GIN [41], GAT [37], LightGCN [14], PPRGo
[3], and UltraGCN [27]. We verify if our framework could mitigate the bias between internal-links
and cross-links without hurting the original overall performance.

Reproducibility. All experiments are run on machines with the same configuration: Intel(R) Xeon(R)
CPU E5-2680 and Tesla V100 GPU with 32GB memory. How to detect the communities of a
network is not the research focus of this paper, and here we apply the Louvain algorithm [2] to detect
the communities in a graph after considering its high speed and effectiveness. Other alternative
community detection algorithms and hyper-parameters will be discussed in the Appendix. The source
code and data are available at https://github.com/CGCL-codes/Cross-links-Bias.

4.2 Main Results

In this part, we show the performance of our method in terms of both link prediction utility and debias
effectiveness after applying it to various GNN models.

The main results on three datasets are reported in Table 2. For Epinions and DBLP, we use Jaccard-
based augmentation here, and considering the high density of LastFM, we use random walk-based
augmentation. More results with random walk-based augmentation on Epinions and DBLP are listed
in Section C in the Appendix for reference. The internal-links performance (Internal.), cross-links
performance (Cross.), and overall performance (Overall) are calculated on internal-links in the test set,
the cross-links in the test set, and the whole test set respectively. To verify our method’s capability of
addressing the bias, Bias in Eq.(1) is also computed to evaluate the performance difference between
internal-links and cross-links. Table 2 shows the results of our approach and base models, and we can
have the following observations:

• The performance of internal-links outperforms that of cross-links under all settings, which indicates
the link prediction bias between internal-links and cross-links is widespread. Note that, after
proposing our framework, we can only ease this kind of bias to some extent, which inspires us the
reasons for the poor performance on cross-links may not only come from the data perspective, and
we leave this problem as a future work.

4https://snap.stanford.edu/data/index.html
5https://recbole.io/index.html
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Table 2: Link prediction performance (Hits@50) of internal-links, cross-links, and the whole link set
of our methods and corresponding base models on three real-world datasets. The results are reported
in percentage (%). We bold the results when our framework improves the base GNN model.

Epinions DBLP LastFM
Internal.↑ Cross.↑ Overall↑ Bias↓ Internal.↑ Cross.↑ Overall↑ Bias↓ Internal.↑ Cross.↑ Overall↑ Bias↓

SAGE
Orig. 31.68 28.91 30.69 2.77 69.27 14.62 56.41 54.65 32.84 14.84 26.80 18.00
Debias 36.98 34.45 36.08 1.63 77.18 31.54 66.23 45.64 32.73 15.13 26.80 17.60

GIN
Orig. 33.49 30.97 32.59 2.52 56.66 16.86 47.29 39.80 33.63 16.91 28.00 16.72
Debias 40.56 39.39 40.20 1.26 60.61 34.03 54.35 26.58 32.13 19.88 28.00 12.25

GAT
Orig. 39.30 34.90 37.73 4.40 66.25 22.47 55.94 43.78 32.28 12.76 25.70 19.52
Debias 39.58 36.13 38.35 3.45 75.66 37.46 66.66 38.20 34.24 16.32 28.20 17.92

PPRGo
Orig. 42.86 28.75 37.83 14.11 85.71 41.14 75.28 44.58 34.84 17.51 29.00 17.33
Debias 47.44 42.34 45.62 5.10 90.54 55.64 82.32 34.90 35.14 19.88 30.00 15.26

LightGCN
Orig. 46.43 37.11 43.11 9.32 85.95 47.41 76.88 38.54 38.16 16.62 30.90 21.54
Debias 51.49 45.31 49.29 6.18 93.55 65.33 86.90 28.22 38.31 17.51 31.30 20.80

UltraGCN
Orig. 30.62 5.81 21.78 24.81 95.74 63.82 88.22 31.92 32.73 15.73 27.10 17.00
Debias 44.13 43.66 43.96 0.67 97.14 71.71 91.15 25.43 35.29 18.40 29.60 16.89

• After proposing our method, all base models get improved on both internal-links and cross-links
in most cases, which results in an improvement in the overall performance. The reasons for this
impressive improvement are two-fold. For one thing, supervision augmentation directly helps boost
the performance of cross-links. For another, the augmented supervisions play a regularization role
in the learning of node embeddings, thus, the overall quality of representations can be improved.

• The increase of cross-links is much higher than that of internal-links, and this contributes to
the decrease of bias. For instance, when our framework is applied to LightGCN on DBLP, the
performance of internal-links improves from 85.95% to 93.55%, and the performance of cross-links
improves from 47.41% to 65.33%, thus the bias decreases from 38.54% to 28.22%.

4.3 Ablation Study

Table 3: Ablation studies with LightGCN as the base
model. The results (Hits@50) are reported in percent-
age (%). The best results are bold, and the runner-up is
underlined.

Epinions DBLP

Internal.↑ Cross.↑ Overall↑ Internal.↑ Cross.↑ Overall↑
Original 46.43 37.11 43.11 85.95 47.41 76.88
Ours 51.49 45.31 49.29 93.55 65.33 86.90

- Augment 49.43 40.97 46.77 92.76 60.97 85.24
- Fusion 44.31 46.39 44.87 72.92 66.97 71.53
- Auxiliary Loss 49.63 41.55 46.75 85.31 60.61 84.85
- Dynamic 48.63 41.58 46.12 93.09 59.08 85.08

In this section, we want to explore: 1)
the impact of supervision augmentation
on our framework; 2) the impact of the
embedding fusion module on our frame-
work; 3) the impact of two auxiliary loss
functions in Eq.(4); 4) the impact of dy-
namic training strategy during training
embedding fusion module. As an exam-
ple, we show the results of LightGCN on
two datasets in Table 3. All results are
based on Jaccard-based augmentation.

We first replace the augmented cross-
links signals, which are selected through
Jaccard coefficient, with random node pairs across different communities, and denote this variant
as "-Augment". There are two main observations: 1) After adding random-augmented signals,
the overall performance still shows a significant improvement compared to the base model, which
indicates that the embedding fusion module can effectively filter out useful information from the
augmented embeddings and fuse it into the original embeddings; 2) Compared with our framework,
the random-augmented framework demonstrates unsatisfactory results on reducing the performance
disparity between cross-links and internal-links, such as slightly reducing this kind of bias on Epin-
ions dataset from 9.32% (46.43% - 37.11%) to 8.46% (49.43% - 40.97%), and this indicates the
importance of our supervision augmentation method on debias.

Secondly, after removing the embedding fusion module (denoted as "-Fusion"), although the cross-
links performance of LightGCN gets significant improvement, i.e., from 37.11% to 46.39% on the
Epinions dataset and from 47.41% to 66.97% on the DBLP dataset, the internal-links performance
and overall performance get severe influence comparing with our framework. Especially on DBLP,
the internal-links performance of LightGCN is deceased by 13.03% (from 85.95% to 72.92%), while
our framework could even slightly improve the performance of internal-links. It indicates that, after
proposing the embedding fusion module, our framework could effectively filter out noisy augmented
signals to avoid performance deterioration.
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Finally, after discarding the two auxiliary loss functions of twin GNNs in Eq.( 4) ("-Auxiliary Loss")
or setting a fixed learning rate γF∗ and training step S∗ in the embedding fusion module ("-Dynamic"),
all metrics deteriorate slightly compared to our proposed framework. This matches our expectation,
because both the lack of guidance from auxiliary loss and a fixed training strategy would inevitably
influence the quality of two sets of input embeddings, thus influencing the final embeddings.

4.4 Comparison with Other Competitors

Table 4: Comparison with several competitors on both utility
and debias. The average results (in Hits@50) are reported in
percentage (%) after repeating each method three times. The
best results are bold, and the runner-up is underlined.

Epinions DBLP LastFM
Overall↑ Bias↓ Overall↑ Bias↓ Overall↑ Bias↓

FairWalk 23.75 ± 1.1 7.16 ± 0.7 48.81 ± 1.3 50.00 ± 2.1 23.05 ± 0.6 21.78 ± 1.0
CFC 27.35 ± 0.4 2.01 ± 0.3 54.12 ± 2.1 49.37 ± 1.6 24.28 ± 0.5 17.79 ± 0.3

FairAdj – – – – 23.97 ± 1.2 19.05 ± 0.9
FLIP 25.65 ± 0.6 4.65 ± 0.5 55.23 ± 1.3 45.93 ± 1.1 22.73 ± 0.4 18.23 ± 0.5
UGE 27.22 ± 0.9 1.20 ± 0.2 54.66 ± 1.8 54.36 ± 2.3 25.50 ± 0.9 14.00 ± 0.7

GraphSAGE 30.69 ± 0.9 2.77 ± 0.3 56.41 ± 1.5 54.65 ± 1.6 26.80 ± 0.5 18.00 ± 0.6
Debias-SAGE 36.08 ± 0.7 1.63 ± 0.2 66.23 ± 1.9 45.64 ± 1.7 26.80 ± 0.4 17.60 ± 0.3

In this section, we aim to compare
our methods with several powerful
competitors on reducing the bias be-
tween internal-links and cross-links.
Specifically, we choose five highly
related methods as our baselines,
including FairWalk [30], CFC [4],
FairAdj [20], FLIP [28], and UGE
[38], and we replace the required sen-
sitive attributes in these methods with
community memberships detected by
Louvain algorithm [2] in advance. To
be fair, all models’ embedding dimensions are set to 64, and other details on hyper-parameters are
listed in Section B in the Appendix for saving space. Note that, due to the algorithm’s requirement
on the multiplication of the adjacency matrix, FairAdj reports "OOM" errors when deployed on
Epinions and DBLP. For comparison, we report the results of GraphSAGE [13] trained with our
framework (denoted as Debias-SAGE). The same as Section 4.2, we take Jaccard-based augmentation
on Epinions and DBLP and take random walk-based augmentation on LastFM.

As is shown in Table 4, our method achieves state-of-the-art results on overall performance with
top-ranking debias results. Especially on the DBLP dataset, our method’s overall performance far
exceeds that of all other baselines, while achieving the best results in reducing the bias between
internal-links and cross-links. We believe the reasons are two-fold: 1) With the model-agnostic design
of our framework, we could easily deploy our method on many powerful GNN models. 2) Instead
of adding extra constraints in the loss function or modifying the objective functions, our method
aims at addressing the bias between internal-links and cross-links from a data perspective, and the
supervision augmentation plays a regularization role in boosting the overall performance.

4.5 Empirical Findings on Easing Information Cocoons

With emphasizing the performance on cross-links, one merit of our model is the potential capability
to ease information cocoons, which can be empirically verified from the following two aspects.

Debiased Recommendation. In this part, we further explicitly reveal whether our framework can
provide debiased recommendations for nodes to ease the information cocoons. In detail, we train

(a) Epinions (b) DBLP

Figure 4: The internal-links proportion of histori-
cal distribution and multiple GNNs’ recommenda-
tions before and after applying our method. “His.”,
“Rec.”, and "Ours." denote the historical interac-
tions, original recommendations, and our debiased
recommendations, respectively.

several powerful GNN models, including Light-
GCN [14], PPRGo [3], and UltraGCN [27] on
Epinions and DBLP. Next, we randomly select
2000 source nodes and observe the average pro-
portion of internal-links in their historical data
and their recommendation lists given by GNNs.
As is shown in Figure 4, the recommendation
lists given by GNN models significantly mag-
nify the nodes’ original preference on internal-
links. From the perspective of the users (or
nodes receiving recommendations), such biased
recommendations will distort users’ true pref-
erence by ignoring their niche interests (cross-
links) while emphasizing the mainstream inter-
ests (internal-links), and make users feel con-
fined to limited domains. For comparison, we provide the results of our enhanced GNN models as
well, and it can be seen that after proposing our method (denoted as "Ours"), the distributions of
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Base

Ours

(a) Epinions (b) DBLP (c) LastFM

Modurity = 0.620 Modurity = 0.631 Modurity = 0.832 Modurity = 0.855 Modurity = 0.860

Modurity = 0.323

Modurity = 0.850

Modurity = 0.490 Modurity = 0.743 Modurity = 0.781 Modurity = 0.768 Modurity = 0.756

Figure 5: The visualization of subgraphs reconstructed by the embeddings learned through the base
model (above) and ours (below). Note that, each column shows the visualization of the same subgraph,
and subgraphs generated by our approach show minor topological isolation phenomenons.

recommendations become closer to that of historical data, which indicates that our approach could
effectively address GNN models’ biased recommendation and thus ease the information cocoons.

Visualization of Breaking Filter Bubbles. To visualize our proposed framework’s effect on allevi-
ating information cocoons, we use Gephi6 to show the graphs reconstructed by node embeddings
learned through the base model and our model, respectively. To be specific, we take UltraGCN
[27] as the base model here and only a subset of nodes from different communities are shown for
conciseness. Note that, all the hyper-parameters in the Gephi platform are set to be the same, and
the visualization results reflect the natural layout of the reconstructed networks. The visualization
results are shown in Figure 5, and node colors represent the community tags. To better understand
the visualization results, we also provide the modularity value in each subgraph, which measures
the strength of the division of a network. It can be seen that after proposing our framework, except
for some extreme outliers, the connections between most communities are becoming closer, and the
isolation between communities is broken down. The reduced modularity values can also support our
claims. These results indicate that the embedding generated by our model can effectively facilitate
the generation of cross-links in a network, thus alleviating information cocoons.

5 Conclusion

In this paper, we aim to address the bias in GNN-based link prediction, especially the bias based
on cross-links (links cross communities) after considering its specific roles in easing information
cocoons and connecting different communities. We further break the paradigm of modifying objective
functions in prior works while pursuing debiased performance, and turn to address the bias issue on
cross-links from a data perspective, which could effectively alleviate the bias by even boosting models’
prediction utility. Specifically, by borrowing the concept in retrieval-based learning paradigms,
debiased node embeddings are generated as demonstrations. An embedding fusion module with
dynamic training strategies is also proposed to ensure that the final embeddings could retain the merits
of both original embeddings and debiased embeddings. Experiments on three real-world datasets
with six base GNNs indicate that our framework could not only reduce the performance disparity
between internal-links and cross-links but also significantly improve the overall performance, and
further alleviate the potential information cocoons.

Limitations & Discussions. Firstly, although we have greatly reduced the bias between internal-links
and cross-links, the experimental results indicate that the bias is not clearly eliminated, which implies
that data bias may not be the only reason. What’s more, despite the supervision augmentation having
a potential regularization effect, and leading to improved performance on internal-links, we currently
lack theoretical underpinnings and rigorous analysis for this phenomenon. However, we find some
potential connections between our work and counterfactual learning. In our settings, supervision
augmentation will introduce plenty of unobserved/counterfactual samples for GNN learning. This
kind of counterfactual learning may help GNN to better capture the intrinsic relationships between a
pair of nodes, thus giving a more accurate prediction.

6https://gephi.org/
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A Further Analysis on the Role of Cross-links

A.1 The relationship between cross-links and information cocoons

To fully understand the relationship between cross-links and information cocoons, we conduct the
following experiments for analysis.

• Experimental settings. Based on the communities detected by Louvain algorithm [2] in advance,
we get the internal-links and cross-links of a network, and here we take Epinions and DBLP, two
real-world social networks as examples. The detailed dataset information is described in Section 4.1.
Next, we borrow the concept of message propagation from the Friedkin-Johnsen dynamics model
[6] and revise its formula to simulate the information propagation with randomly initialized node
embeddings:

Zt
i =

Zt−1
i +

∑
j∈Ni

wijZ
t−1
j

|Ni|+ 1
(9)

where Zt
i denotes the embedding of node i at iteration t, and Ni represent the neighbors of node i.

wij is a manually controllable reweight scaler determined by the type of link ⟨i, j⟩. At each iteration,
each node will update its embedding with the weighted average embeddings from its neighbors
and itself. For simulating the lack of cross-links, we weaken the role of cross-links in information
propagation by tuning the w for cross-links from 1 to 0, and setting w for internal-links to 1.

(a) Epinions (b) DBLP

Figure C1: The distribution of CH index score
wrt. the weight of cross-links during propaga-
tion. A higher value indicates more severe infor-
mation cocoons. The dashed lines indicate the
CH index score under a normal setting.

We further use Calinski-Harabasz (CH) index
[5, 10] to measure the extent of the information
cocoons phenomenon in a network, which can be
calculated as follows:

CHC =
SSBC(Z

t)

SSWC(Zt)
· N − C

C − 1
(10)

where SSWC and SSBC are functions to measure
the within-cluster dispersion and between-cluster
dispersion, respectively [10]. N denotes the num-
ber of nodes, and C denotes the number of com-
munities. A higher CH index score indicates that
node embeddings are more polarized among com-
munities, which further illustrates the extent of
the information cocoon problem in the current net-
work.

• Experimental results and analysis. In Figure C1 we show the CH index scores with node embed-
dings at different propagation iteration t, and we can observe that, as the information propagation
weight w for cross-links decreases, the CH index score increases consistently and far exceeds that
in normal settings (w = 1), which indicates that the final node embeddings present more serious
polarization problems among communities. Since the information in a single community is relatively
limited as shown in Figure 2, the information cocoon problem actually becomes more severe with the
lack of cross-links.

A.2 The relationship between cross-links and graph conectivity

By borrowing the concept of network diffusion, we try to explore the role of cross-links in graph
connectivity in this part. Specifically, we apply a classic model in network diffusion: the SI model
[18], to simulate the process of information propagation. In this model, each node is randomly
initialized with a status called susceptible or infected at the beginning. During the diffusion iteration
process, SI assumes that each infected node could infect its susceptible neighbors with probability p,
and once a node becomes infected, it stays infected until the end of network diffusion, i.e. there are
no more new infected nodes in a new iteration.

In order to provide a clear and vivid illustration, we take one of the most representative social
networks – Zachary’s karate club7 as an example. All nodes are divided into four non-overlapping

7https://en.wikipedia.org/wiki/Zachary%27s_karate_club

15

https://en.wikipedia.org/wiki/Zachary%27s_karate_club


(a) Original graph (b) Drop links randomly (c) Drop cross-links

Figure C2: The visualization of diffusion simulation with SI model. Red nodes denote infected nodes,
and green nodes represent susceptible nodes. (a) The original graph of the karate club. Nodes with the
same color denote a community. (b) Infected graph after dropping some random edges. (c) Infected
graphs after dropping some cross-links.

communities by Louvain algorithm [2] in advance, and node #0, which stands for the instructor in
this club, is initialized as the only infected node at iteration 0. We further randomly remove 80%
cross-links in the graph before starting the simulation. For getting a more convincing conclusion,
the network diffusion process on a graph with the same number of random edges removed is also
simulated for comparison.

The final visualization results are shown in Figure C2. It can be seen that although we remove some
edges randomly from the whole graph, the infected node #0 still propagates its information to almost
all nodes in the club (red nodes in the figure) successfully. In contrast, after removing the same
number of cross-links, there appears to be an obvious information isolation phenomenon, and nearly
half of the nodes remain susceptible. In other words, cross-links plays a role in bridging two different
communities during network diffusion, and it would be hard for a node to send or receive messages
from other communities without enough cross-links. In this way, the existence of cross-links plays a
key role in preserving graph connectivity.

B Additional Experimetal Settings

B.1 Base Models and Baselines

Here we introduce additional details for the base models and baselines used in our experiments.

(1) Base models

• GraphSAGE [13]: GraphSAGE is an inductive learning framework for generating node embed-
dings, which samples a fixed number of neighbors during aggregation to alleviate the "neighborhood
explosion" issues.

• GIN [41]: GIN is a graph neural network that is theoretically as powerful as the Weisfeiler-Lehman
test with injective aggregation, combination, and readout functions.

• GAT [37]: GAT deploys the attention mechanism during aggregation to capture the neighborhood
information with different weights.

• PPRGo[3]: By utilizing a Personalized Page Rank matrix to approximate the propagation and
aggregation steps with multi-layer graph convolution, PPRGo greatly improves the efficiency and
effectiveness on large graphs.

• LightGCN [14]: LightGCN empirically finds the redundancy of feature transformation and
non-linear activation functions, and greatly simplifies the model architecture with even higher
performance on the recommendation tasks.

• UltraGCN [27]: Based on LightGCN, UltraGCN further theoretically simplifies the model archi-
tecture with approximating the infinite-layer information propagation and aggregation.

(2) Baselines
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• FairWalk [30]: Instead of a random walk in node2vec, FairWalk chooses its next hop by consider-
ing the sensitive attributes in the neighborhood, which successfully mitigates the unfairness related
to the sensitive attribute.

• CFC [4]: To ensure that the learned embeddings are not correlated with sensitive attributes, such
as age or gender, CFC introduces an adversarial framework to enforce fairness constraints.

• FairAdj [20]: With learning to assign each edge with different weights, FairAdj generates a fair
adjacency matrix and greatly improves the dyadic fairness with comparable utility in link prediction
tasks.

• FLIP [28]: Concentrating on bursting the filter bubbles in social networks from a dyadic fairness
perspective, FLIP also utilizes an adversarial learning framework to generate non-sensitive node
embeddings for further link prediction.

• UGE [38]: UGE aims at learning unbiased graph embeddings from an unobserved graph, which
involves no sensitive information, and further derives three kinds of variants namely UGE-w,
UGE-r, and UGE-c.

B.2 Evaluation Metric

In this work, we apply Hits@50, which is widely adopted in other research [43, 45] and OGB
leaderboard [15], as our main evaluation metric to measure the link prediction performance of
different GNN models. The Hits@50 can be computed by:

Hits@50 =
1

Ntest

Ntest∑
i=1

I(ranki < 50) (11)

where Ntest represents the sample size of test set, and I represents an indicator function. ranki
denotes the similarity ranking of the ith sample.

B.3 Reproducibility

Dataset. For each dataset, we randomly sample and remove 5% of links in the original graph to
construct the validation set and test set, and the remaining links are treated as the training set. Each
true sample will be ranked among a set of 100000 randomly sampled negative links for evaluation8.
Note that, there is no side information, such as node features or link attributes, involved during our
experiments, and we assign each node on the graph with a learnable embedding vector for training.

Hyper-parameters. As a model-agnostic framework, we deploy six kinds of GNN models as
backbones, including GraphSAGE [13], GIN [41], GAT [37], PPRGo [3], LightGCN [14], and
UltraGCN [27]. For all these models, we set the output embedding dimension as 64. The layer of the
embedding fusion module is set to 1. The learning rates for twin GNNs are both set as 0.001 after
grid search. As for the hyper-parameters in Eq.(8), α is set to be 0.005, and T is selected from {10,
25, 50} depending on the datasets and base models, and β is set to be 20. Augmentation ratio k is
searched from {0.75, 1.0, 1.25} for each dataset. Both weight decay and dropout rate are set to 0.

In particular, for GraphSAGE, we adopt a mean-pooling during aggregation; for GIN, we apply a
linear layer to update node features and use max-pooling during aggregation; for GAT, we use 4
attention heads in each layer; for PPRGo, we set α as 0.3, the walk length as 100; for LightGCN, we
set the layer number as 2 and use the final layer’s output as embeddings; for UltraGCN, we set the
number of negative samples as 64, λ as 0.8, γ as 3.5.

For Fairwalk, we follow the settings in the original paper and set the walk number to 20, and the
window length to 80; for CFC, we set the training steps of the discriminator as 5; for FairAdj, we
set T2 to 15 and λ to 10; for FLIP, we take the suggestions in the original implementation, and the
settings are α(0.1), β(0.2); for UGE, we deploy the weighting-based variant as our baseline given
that there is no non-sensitive attribute in our settings.

B.4 Details on LastFM Dataset

Due to the heterogeneity of the recommendation datasets, it is hard to directly deploy community de-
tection algorithms on the original networks and define the corresponding internal-links and cross-links.

8Here we follow the evaluation protocol in OGB [15], which is widely used in research.
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Table C1: The comparison between our implemen-
tations and normal implementations on LastFM.
The average results are reported after repeating
each method five times.

LastFM (Hits@50)

LightGCN
Original 29.82%± 0.25

Ours 29.30%± 0.21

UltraGCN
Original 28.50%± 0.28

Ours 27.32%± 0.19

To this end, inspired by ItemCF [22, 31], we
first generate an item-item graph according to
the co-occurrence relationship. For example,
given a pair of items < v1, v2 >, if they both
have interactions with user u at least O times,
where O is a hyperparameter to control the con-
fidence of generated item-item graph, there will
form a link between v1 and v2. Next, we can de-
ploy our framework on the generated item-item
graph for learning debiased item embeddings
I ∈ R|V |×D, where |V | represents the num-
ber of items and D represents the embedding
dimension. After that, item similarity matrix
I2 ∈ R|V |×|V | is calculated, which is further used for the final recommendation:

P = A× I2 (12)

where P ∈ R|U |×|V | denotes the predicted confidence matrix between users and items, and A ∈
R|U |×|V | represents the adjacency matrix of the original user-item graph.

In order to prove that our implementation will not affect the performance of the original GNN
models, we compare our implementation (denoted as "Ours"), where O is set to be 1, with GNNs
trained on the user-item graph normally (denoted as "Original") in Table C1. The results indicate
that our implementation does not sacrifice the capability of base GNN models severely to adapt our
framework.

C Further Experiments and Analysis

C.1 Hyper-parameter Analysis
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Figure C3: The impact of augmentation size

As the core component in our frame-
work, supervision augmentation plays a
key role in mitigating the bias between
internal-links and cross-links. To explore
its impact in a finer granularity, we vary
the augmentation ratio k and see how
the performance of our method changes.
Specifically, we take LightGCN as the
base model and investigate the perfor-
mance on internal-links (Internal.), cross-
links (Cross.), and the whole link set
(Overall) by varying k in {0, 0.25, 0.5,
0.75, 1, 1.25}. Without losing generality,
here we take Jaccard-based supervision augmentation. As shown in Figure C3, the performance of
the two kinds of links increasingly improves as k grows, accompanied by a steady decrease in the
difference between them. This is expected because we introduce a large amount of augmented cross-
links signals to mitigate the bias. And when k reaches 1, which means |Ein| ≈ |Ecr|, the framework
gradually converges to a stable status. Empirically, a setting k = 1 would be a near-optimal option.

C.2 Alternative Community Detection Algorithm

In this part, we aim to conduct an ablation study on different community detection methods to
prove the usefulness of our proposed framework. Since we emphasize the bias from a topological
perspective, we prefer to use the community detection algorithm based on graph structure. Specifically,
to illustrate the universality of our framework, we conduct experiments based on the METIS [17]
algorithm as an ablation study, and the results on three GNNs are shown in Table C2. Specifically,
the number of communities is set to be 50 in advance for METIS, and all other hyper-parameters
are set to be the same as that in Louvain-based experiments, which can be found in Section B.3. All
results are based on Jaccard-based augmentation.
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Table C2: Ablation study with METIS community detection
algorithm on two real-world datasets (Hits@50)

Epinions DBLP
Internal.↑ Cross.↑ Overall↑ Bias↓ Internal.↑ Cross.↑ Overall↑ Bias↓

SAGE
Orig. 36.97 19.48 30.75 17.49 69.80 19.00 54.28 50.80
Debias 39.06 28.93 35.89 10.13 78.67 34.65 65.22 44.02

GAT
Orig. 38.33 34.77 37.15 3.56 68.62 28.15 56.26 40.47
Debias 39.96 36.88 38.86 3.08 75.94 42.77 65.81 33.17

UlltraGCN
Orig. 27.27 11.62 20.77 15.65 97.34 70.57 89.16 26.77
Debias 46.92 38.18 44.04 8.74 97.47 73.67 90.20 23.80

The results indicate that, although
we change the community detec-
tion algorithm, our framework still
successfully mitigates the bias be-
tween internal-links and cross-links,
and achieves competitive results com-
pared with the Louvain-based results,
which verifies our work’s compatibil-
ity.

C.3 Supervision Augmentation
Analysis

In Section 3.3, we design two kinds of data augmentation methods for generating pseudo cross-links
supervision signals. Intuitively, if the pseudo supervision signals have a high confidence level, they
can provide significant benefits to our framework. To this end, we aim to verify our hypothesis and
analyze the impact of different supervision augmentation methods on our framework.

Table C3: The average hop distance between node pairs gen-
erated by different supervision augmentation methods

Epinions DBLP
Jaccard based 2.00 2.00

Random walk based 2.69 3.14

Table C4: Link prediction performance (Hits@50) of internal-
links, cross-links, and the whole link set of our methods with
random walk based augmentation and corresponding base
models on two real-world datasets. The results are reported
in percentage (%). We bold the results when our framework
improves the base GNN model.

Epinions DBLP
Internal.↑ Cross.↑ Overall↑ Bias↓ Internal.↑ Cross.↑ Overall↑ Bias↓

SAGE
Orig. 31.68 28.91 30.69 2.77 69.27 14.62 56.41 54.65
Fair. 31.72 29.17 31.28 2.55 80.28 28.63 68.12 51.65

GIN
Orig. 33.49 30.97 32.59 2.52 56.66 16.86 47.29 39.80
Fair. 38.35 36.89 37.12 1.46 68.12 32.07 59.64 36.05

GAT
Orig. 39.30 34.90 37.73 4.40 66.25 22.47 55.94 43.78
Fair. 40.02 36.29 37.98 3.73 75.03 32.18 64.94 42.85

PPRGo
Orig. 42.86 28.75 37.83 14.11 85.71 41.14 75.28 44.58
Fair. 45.36 40.12 43.49 5.24 90.48 49.51 80.47 42.08

LightGCN
Orig. 46.43 37.11 43.11 9.32 85.95 47.41 76.88 38.54
Fair. 48.15 40.45 45.41 7.65 92.16 57.55 84.01 34.61

UlltraGCN
Orig. 30.62 5.81 21.78 24.81 95.74 63.82 88.22 31.92
Fair. 52.16 51.99 52.10 0.17 96.47 66.25 89.35 30.22

We first statistic the average hop dis-
tance between the node pairs gener-
ated with different supervision aug-
mentation methods. As shown in Ta-
ble C3, since we only choose node
pairs with the most common neigh-
bors in Jaccard-based augmentation,
the hop distance is fixed to 2. When
we use random walk-based augmen-
tation, the average distance increases
consistently on two datasets, which
verifies its effectiveness in covering
nodes that are not located in the
boundary of communities.

Table C4 further presents the per-
formance of our framework with
random walk-based augmentation,
which is literally described in Sec-
tion 3.3. Specifically, for providing
fair comparison, all hyper-parameters
in random walk-based experiments,
including augmentation ratio k and
others are set to be the same as that
in Jaccard-based experiments. Com-
pared to Table 2, it can be shown that
the random walk-based framework
shows less improvement on cross-links, which results in worse debias results. This observation can be
explained by the hop distance in Table C3, which implies that the random walk-based augmentation
may have lower confidence due to the longer topological distance between node pairs. However,
compared with the base GNNs, the random walk-based framework can still consistently reduce the
bias between internal-links and cross-links with improved overall performance.
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