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Abstract

LiDAR-based 3D detection methods currently use bird’s-eye view (BEV) or range
view (RV) as their primary basis. The former relies on voxelization and 3D con-
volutions, resulting in inefficient training and inference processes. Conversely,
RV-based methods demonstrate higher efficiency due to their compactness and
compatibility with 2D convolutions, but their performance still trails behind that of
BEV-based methods. To eliminate this performance gap while preserving the effi-
ciency of RV-based methods, this study presents an efficient and accurate RV-based
3D object detection framework termed RangePerception. Through meticulous
analysis, this study identifies two critical challenges impeding the performance
of existing RV-based methods: 1) there exists a natural domain gap between the
3D world coordinate used in output and 2D range image coordinate used in input,
generating difficulty in information extraction from range images; 2) native range
images suffer from vision corruption issue, affecting the detection accuracy of the
objects located on the margins of the range images. To address the key challenges
above, we propose two novel algorithms named Range Aware Kernel (RAK) and
Vision Restoration Module (VRM), which facilitate information flow from range
image representation and world-coordinate 3D detection results. With the help of
RAK and VRM, our RangePerception achieves 3.25/4.18 higher averaged L1/L2
AP compared to previous state-of-the-art RV-based method RangeDet, on Waymo
Open Dataset. For the first time as an RV-based 3D detection method, RangePer-
ception achieves slightly superior averaged AP compared with the well-known
BEV-based method CenterPoint and the inference speed of RangePerception is 1.3
times as fast as CenterPoint.

1 Introduction

In recent years, LiDAR-based 3D perception [1, 2, 3, 4, 5] has made tremendous advances in the
field of autonomous driving. One primary task in this area is 3D detection [1, 2, 6, 7, 8, 9, 10],
which involves predicting the 3D locations of objects of interest, as well as their geometric and
motional properties, including categories, 3D sizes, headings, and velocities. Despite sharing some
similarities, there is a fundamental difference between LiDAR-based 3D detection and image-based
2D detection [11, 12, 13, 14, 15, 16]: RGB images are inherently well-structured matrices, whereas
LiDAR signals are sets of sparse and unordered points in 3D space. Considering modern computer
vision techniques, such as Convolutional Neural Networks (CNNs) [17, 18] and Vision Transformers
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(ViTs) [19, 20] require well-structured matrices as inputs, an essential process in LiDAR-based 3D
detection is to effectively organize the unstructured LiDAR points.

To effectively organize LiDAR points and facilitate the use of established computer vision techniques,
two major representations have been adopted: bird’s-eye view (BEV) and range view (RV). Shown in
Fig. 1(a-d) is a frame of top LiDAR signal from Waymo Open Dataset (WOD) [21], represented in RV
and BEV accordingly. BEV-based 3D detectors [1, 2, 6] convert sparse LiDAR points into 3D voxel
grids, extract features with a 3D convolution backbone, and perform classification and regression after
mapping the extracted 3D features to the BEV. With the aid of well-organized voxel representation
and compatibility with well-developed detection paradigms, BEV-based methods exhibit the highest
detection accuracy among contemporary LiDAR-based 3D object detectors. However, it is worth
pointing out that a LiDAR sensor in autonomous driving scenarios [22, 23, 24] uniformly samples
from a spherical coordinate system, and the cartesian-coordinated voxel representation has certain
incompatibility with LiDAR sensors, as evidenced by two factors. First, as the distance from LiDAR
grows longer, the distribution of voxels becomes a lot sparser, despite that LiDAR beams are uniformly
distributed in the spherical coordinate. Second, when the horizontal length of farthest beam extends to
the time of l, the space of the voxel representation has to increase to the time of l2 to contain complete
information. As a result, BEV-based methods have certain drawbacks in their applications, such as
the requirement for complex and time-consuming sparse 3D convolutions as their backbones, limiting
their efficiency. Moreover, if users aim to augment horizontal perception range, the computational
complexity of BEV-based detectors must increase quadratically, which poses a challenge for real-time
implementation.

The range-view (RV) representation, on the other hand, is naturally generated from the scanning
mechanism of the LiDAR sensor [25, 26, 27, 28]. Each pixel in the range image corresponds to
an optical response of the LiDAR beam, making the range view the most compact and informative
way to represent LiDAR signals. The compactness of range images also enables RV-based 3D
detectors [29, 30, 9, 10] to enjoy more compact feature spaces and higher inference speeds, compared
to the BEV-based 3D detectors. However, in the aspect of detection accuracy, pioneering RV-based
3D detectors significantly lag behind the top-performing BEV-based detectors, with a performance
gap of more than 10 average L1 AP on WOD validation set. More recently, RangeDet [9] proposed
several modules with stronger representation power, narrowing the performance gap to 2.77 average
L1 3D AP on WOD, compared with state-of-the-art BEV-based method CenterPoint [6]. On top of
the arts above, FCOS-LiDAR [10] develops a multi-frame RV-based detection pipeline on nuScenes
dataset [31, 32]. Despite being 90% faster than CenterPoint, FCOS-LiDAR’s overall validation AP is
3.32 lower, evaluated with multi-frame setting on nuScenes dataset.

To better exploit the potential of the range-view representation, a detailed analysis of existing
RV-based detection methods is conducted, which reveals two critical unsolved challenges.

Spatial Misalignment. Existing RV-based detectors treat range images the same way as RGB images,
by directly feeding them into 2D convolution backbones. This workflow neglects the nature that range
images contain rich depth information, and even two range pixels are adjacent in range coordinate,
their actual distance in 3D space could be more than 30 meters. As visualized in Fig. 1(e), foreground
pixels on the margins of vehicles and pedestrians are often far from their neighboring background
pixels in 3D space. Directly processing such 3D-space-uncorrelated pixels with 2D convolution
kernels can only produce noisy features, hindering geometric information extraction from the margins
of foreground objects. This phenomenon will be termed as Spatial Misalignment in further discussion
of this paper.

Vision Corruption. When objects of interest are located on the margins of range images, as shown
in Fig. 1(c,f), their corresponding foreground range pixels are separately distributed around the left
and right borders of the range image. Since CNNs have limited receptive fields, features around
the left border cannot be shared with features around the right border and vice versa, when 2D
convolution backbones are used as feature extractors. This phenomenon, called Vision Corruption,
can significantly impact the detection accuracy of objects on the margins of range images. Previous
RV-based detection methods have overlooked this issue and directly processed range images with 2D
convolution backbones without compensating for the corrupted areas.

In this paper, we demonstrate an efficient and accurate RV-based 3D detection framework, termed
RangePerception. To overcome the key challenges above, two novel algorithms named Range Aware
Kernel (RAK) and Vision Restoration Module (VRM) are proposed and integrated into RangePer-
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(a) Range of LiDAR points (RV)

(b) Intensity of LiDAR points (RV)

(c) Foreground LiDAR points of Vehicles (RV)

(d) LiDAR points (BEV) (f) Vision Corruption phenomena (RV)

(e) Range distribution of foreground points (RV)
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Figure 1: (a-d) A sample frame of top LiDAR signal, represented in RV and BEV respectively. (e)
Spatial Misalignment phenomena. (f) Vision Corruption phenomena.

ception framework, both facilitating information flow from range image representation and world-
coordinate 3D detection results. With the help of RAK and VRM, our RangePerception presents
73.62 & 80.24 & 70.33 L1 3D AP for vehicle & pedestrian & cyclist, on WOD, achieving state-of-
the-art performance as a range-view-based 3D detection method. The contributions of this paper are
presented as follows.

RangePerception Framework. A novel high-performing 3D detection framework, named RangePer-
ception, is introduced in this paper. RangePerception is the first RV-based 3D detector to achieve
74.73/69.17 average L1/L2 AP on WOD, outperforming the previous state-of-the-art RV-based
detector RangeDet, which has average L1/L2 APs of 71.48/64.99, presenting an improvement of
3.25/4.18. RangePerception also demonstrates slightly superior performance compared to widely-
used BEV-based method CenterPoint [6], which has average L1/L2 APs of 74.25/68.04. Notably,
RangePerception’s inference speed is 1.3 times as fast as CenterPoint, justifying better fitness for
real-time deployment on autonomous vehicles.2

Range Aware Kernel. As part of RangePerception’s feature extractor, Range Aware Kernel (RAK)
is a trailblazing algorithm tailored to RV-based networks. RAK disentangles the range image space
into multiple subspaces, and overcomes the Spatial Misalignment issue by enabling independent
feature extraction from each subspace. Experimental results show that RAK lifts the average L1/L2
AP by 5.75/5.99, while incurring negligible computational cost.

2Project website is available at https://rangeperception.github.io, to enhance the accessibility and
comprehension of this study.
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Figure 2: The RangePerception framework takes a range image I as input and generates dense
predictions. To improve representation learning, the framework sequentially integrates the VRM and
RAK modules before the Range Backbone. Subsequently, a specially devised Redundancy Pruner is
used to remove redundancies in the deep features, thereby mitigating the computational cost in the
subsequent Region Proposal Network and post-processing layers.

Vision Restoration Module. To resolve the Vision Corruption issue, Vision Restoration Module
(VRM) is brought to light in this study. VRM extends the receptive field of the backbone network by
restoring previously corrupted areas. VRM is particularly helpful to the detection of vehicles, as will
be illustrated in the experiment section.

2 Preliminary of Range-view Representation

This section provides a brief overview of the range view representation of LiDAR data. Specifically,
LiDAR data can be represented as an m× n matrix, known as a range image, where m represents
the number of beams emitted and n represents the number of measurements taken during one scan
cycle. Each column of the range image corresponds to a shared azimuth, while each row corresponds
to a shared inclination, indicating the relative vertical and horizontal angles of a returned point
with respect to the LiDAR’s original point. Each pixel in the range image contains at least three
geometric values, namely range r, azimuth θ, and inclination φ, which define a spherical coordinate
system. The widely-used point cloud data with Cartesian coordinates is derived from the spherical
coordinate system: x = r cos(φ) cos(θ), y = r cos(φ) sin(θ), z = r sin(φ), where x, y, z denote the
Cartesian coordinates of the points. Considering modern LiDAR sensors [33, 34, 35] often measure
magnitude of the returned laser pulse named intensity η and elongation ρ, range view of LiDAR
signal can be engineered as I ∈ Rm×n×8, with each pixel being Ij,k = {r, x, y, z, θ, φ, η, ρ}. This
study additionally defines range matrix as R ∈ Rm×n, with each pixel being Rj,k = r, for the sake
of further discussion. To provide a better illustration, Fig. 1(a) presents a sample frame of range
matrix R and Fig. 1(b) shows intensity values in the corresponding range image I .

3 Methodology

The RangePerception framework, depicted in Fig. 2, takes range image I as input and produces dense
predictions. To enhance representation learning, VRM and RAK are sequentially incorporated before
the Range Backbone. Afterwards, a carefully designed Redundancy Pruner is employed to eliminate
redundancies in deep features, which minimizes computational costs in subsequent Region Proposal
Network (RPN) and post-processing layers. This section begins with comprehensive explanations of
RAK and VRM, followed by an in-depth elaboration of RangePerception architecture.
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(a) Perception Windows for RAK

(c) Range of LiDAR points in range image 𝐼

(d) Intensity of LiDAR points in range image 𝐼

(e) Intensity of LiDAR points in subspace 𝐾!

(f) Intensity of LiDAR points in subspace 𝐾"(b) Remedy for Spatial Misalignment

Figure 3: Range Aware Kernel disentangles the range image space into multiple subspaces, and
overcomes the Spatial Misalignment issue by enabling independent feature extraction from each
subspace.

3.1 Range Aware Kernel

As a key component of RangePerception’s feature extractor, Range Aware Kernel is an innovative
algorithm specifically designed for RV-based networks. RAK disentangles the range image space
into multiple subspaces, and overcomes the Spatial Misalignment issue by enabling independent
feature extraction from each subspace. Shown in Fig. 3(a), Range Aware Kernel comes with a set of l
predefined Perception Windows, formulated as W = {w1, w2, ..., wl−1, wl}, where each Perception
Window is a range-conditioned interval wi = [ri1, ri2].

Given a frame of range image I ∈ Rm×n×8, RAK first calculates binary mask M ∈ Zl×m×n×8
according to Perception Windows W = {w1, w2, ..., wl−1, wl}, where each Mi ∈ Zm×n×8 is a
pixel-wise mask for range image I , indicating whether each range value Rj,k = Ij,k,1 stays in
current Perception Window wi. Subsequently, RAK defines a tensor K ∈ Rl×m×n×8 representing l
subspaces, and derives each subspace Ki =Mi � I . Detailed computing logic of RAK is illustrated
in Algorithm 1, note that though inference process of RAK seems to incur O(lmn) time complexity,
GPU implementation of RAK can readily achieve O(1) with proper parallelism.

As elaborated above, RAK divides range image I into multiple subspaces K, where each subspace
Ki contains LiDAR points that belong to Perception Window wi. To provide a clearer visualization,
Fig. 3(c,d) displays range and intensity values of a frame of input range image I . By further processing
range image I with RAK, tensor K is computed, from which intensity values of subspaces K1 and
K4 are presented in Fig. 3(e,f). RAK effectively separates foreground vehicle points from their
background counterparts, thus minimizing Spatial Misalignment and facilitating feature extraction
from range view. Fig. 3(b) provides further evidence of the efficacy of RAK, by clearly disentangling
previously indistinguishable vehicles from noisy background points.

In the architecture of RangePerception, Range Aware Kernel is positioned directly before backbone
network. Subspaces K ∈ Rl×m×n×8, generated from Range Aware Kernel, is subsequently fed into
the backbone network for non-linear feature extraction. Experimental results demonstrate that RAK
increases the average L1/L2 AP by 5.75/5.99, while incurring negligible computational cost.

3.2 Vision Restoration Module

As described in Sec. 2, each column in range image I corresponds to a shared azimuth θ ∈ [0, 2π],
indicating the spinning angle of LiDAR. Specifically, θ = 0 at left margin of range image and θ = 2π
at right margin of range image. Due to the periodicity of LiDAR’s scanning cycle, azimuth values
0 and 2π correspond to beginning and end of each scanning cycle, both pointing in the opposite
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Algorithm 1 Range Aware Kernel
1: input range image I ∈ Rm×n×8
2: init range matrix R ∈ Rm×n
3: init i, j, k ∈ Z
4: for j ∈ [1,m], k ∈ [1, n] do
5: Rj,k ← Ij,k,1
6: init tensor K ∈ Rl×m×n×8
7: init binary mask M ∈ Zl×m×n×8
8: for wi ∈W do
9: for Rj,k in R do

10: if Rj,k ∈ wi then
11: Mi,j,k ← 1
12: else if Rj,k /∈ wi then
13: Mi,j,k ← 0

14: Ki ←Mi � I
15: output tensor K

𝜃 = 𝛿 𝜃 = −𝛿

𝜃 = 0
Figure 4: Spherical Coordinate of VRM.

direction of the ego vehicle. As illustrated in Fig. 4, objects located behind ego vehicle are often
separated by ray with θ = 0, resulting in Vision Corruption phenomena elaborated in Fig. 1(c,f).

To resolve Vision Corruption issue, Vision Restoration Module is brought to light in this study.
By predefining a restoration angle δ, VRM builds an extended spherical space with azimuth θ ∈
[−δ, 2π + δ]. In this way, visual features originally corrupted by LiDAR’s sampling process are
restored on both sides of range image I , significantly easing the feature extraction from the margins of
I . This restoration process is clearly visualized in Fig. 5(a,b), where VRM-extended range images can
be termed as Ir. In the architecture of RangePerception, restored range images Ir are subsequently
processed by RAK and range backbone for deeper pattern recognition. Note that in Sec. 3.1, input
range image of RAK is still denoted as I instead of Ir, for the sake of simplicity.

It is straightforward to observe from Fig. 5(a,b) that VRM introduces redundancies to range view:
region with azimuth θ ∈ [−δ, δ], appears twice in restored range image Ir. Though this duplication
helps information extraction from the margins of I , redundancies persist in feature space F r learnt by
RAK and range backbone, leading to unnecessary computational costs for subsequent region proposal
network and post-processing layers. To address this issue and improve efficiency, Redundancy Pruner
(RP) is designed and equipped with RangePerception framework. Operating on feature space F r, RP
performs inverse function of VRM, by pruning F r from azimuth interval [−δ, 2π+ δ] back to [0, 2π].

To better explain the process above, a pseudo VRM-extended image Ir is rendered in Fig. 5(c).
Vanilla pixels in I are filled with zeros, while pixels generated by VRM are filled with ones. A pseudo
feature space F r is subsequently computed, via inputting pseudo image Ir to RAK and backbone.
Finally, RP drops redundancies in pseudo F r, resulting in pruned feature space F . As observed
from lower part of Fig. 5(c), visual information that belongs to VRM-restored spaces readily flows to
vanilla space, thanks to the layered convolution kernels. This justifies that Redundancy Pruner solely
decreases computational costs, without causing any loss in visual features.

3.3 RangePerception Framework

For the sake of efficiency, RangePerception is designed as an anchor-free single-stage detector, as
presented in Fig. 2. Given a frame of range image I , RangePerception framework first compensates
the corrupted regions with VRM, resulting in restored image Ir ∈ Rm×µ×8, where µ = m(δ+π)

π .
Subsequently, RAK converts Ir into subspaces K ∈ Rl×m×µ×8, disentangling misaligned pixels.
Range Backbone, derived from DLA-34 [36], is adopted to extract non-linear features F r ∈ Rm×µ×c
from subspaces. Further, RP eliminates redundant features, generating pruned features F ∈ Rm×n×c.
RPN learns dense predictions {C,B,U} on top of deep features F , representing class predictions,
box predictions, and IoU predictions accordingly. Finally, Weight NMS is employed to aggregate
dense predictions, where IoU predictions U are treated as per-box confidence scores.
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(a) Vision Restoration of range matrix

(b) Vision Restoration of foreground points

Redundancy	Pruner

RAK	&	Backbone

(c) Pseudo feature propagation
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Figure 5: Vision Restoration Module. By predefining a restoration angle δ, VRM builds an extended
spherical space with azimuth θ ∈ [−δ, 2π + δ]. As a result, Vision Corruption issues are resolved on
both sides of range image I , significantly easing the feature extraction from the margins of I .

4 Related Work

BEV-based 3D Detection. The majority of the highest-performing LiDAR-based 3D detectors are
categorized as BEV-based detection, where the initial step involves the conversion of the point cloud
into BEV (Bird’s Eye View) images. VoxelNet [37] is the pioneering end-to-end BEV-based detector
that utilizes PointNet [38] for inner-voxel representation and 3D convolutions for high-level feature
generation, where high-level features are further processed by region proposal network (RPN). To
reduce the computational burden of 3D convolutions, SECOND [1] introduces the usage of sparse
convolutions. Another common approach is to eliminate voxelization along the elevation axis and
convert the point cloud into pillars instead of voxels, as proposed by [2]. By leveraging either voxel-
based or pillar-based BEV representation, CenterPoint [6] achieves state-of-the-art performance levels
in a center-based anchor-free manner. However, complex and time-consuming sparse 3D convolutions
in these methods hinder their practical applications, and lightweight 3D detectors urgently need to be
developed.

Multi-view-based 3D Detection. Most top-performing multi-view-based (MV-based) 3D detec-
tors [7, 8] adopt a two-stage approach, where the first stage typically employs a BEV-based detector,
and point-view features are subsequently utilized in the second stage for proposal refinement. PV-
RCNN [7] combines 3D voxel CNN and PointNet-based [38] set abstraction to learn discriminative
features from point clouds. Part-A2 [8] introduces part-awareness multi-view aggregation, achieving
outstanding performance by sequentially predicting coarse 3D proposals and accurate intra-object part
locations. However, despite the excellent detection performance achieved by MV-based methods, their
inference speed remains impractical for real-time deployment on vehicles due to the computational
complexity of their structure.

Range-view-based 3D Detection. In light of the compactness of the RV representation, certain
approaches endeavor to perform detection based on RV. VeloFCN [39] was the first work to perform
3D object detection using RV, which involves transforming the point cloud to a range image and
then applying 2D convolution to detect 3D objects. Subsequent research endeavors [29, 30, 9, 10]
are put forth to improve the efficacy of RV-based detectors. For instance, LaserNet [29] models the
distribution of 3D box corners to capture their uncertainty, resulting in more accurate detections.
RCD [30] introduces the range-conditioned dilation mechanism to dynamically adjust the dilation
rate based on the measured range, thereby alleviating the scale-sensitivity issue of RV-based detectors.
Moreover, RangeDet [9] proposes the Range Conditioned Pyramid to mitigate the scale-variation issue
and utilizes the Meta-Kernel convolution to better exploit the 3D geometric information of the points.
Despite outperforming all previous RV-based methods, RangeDet lags behind the widely-used BEV-
based method CenterPoint by 2.77 average AP, evaluated on WOD. Recently, FCOS-LiDAR [10]
proposes a novel range view projection mechanism, and demonstrates the benefits of fusing multi-
frame point clouds for a range-view-based detector. Although FCOS-LiDAR is 90% faster than
CenterPoint, its overall validation AP is 3.32 lower, evaluated with multi-frame setting on nuScenes
dataset.
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Table 1: Detection performance measured by 3D AP/APH on WOD validation set, along with
inference speed measured by FPS. All experiments are conducted under single-frame setting.

Method View Stage Vehicle Pedestrian Cyclist Average FPS

L1 L2 L1 L2 L1 L2 L1 L2

Second B one 72.25/71.67 63.84/63.32 68.69/58.12 60.73/51.26 60.61/59.27 58.35/57.03 67.18/63.02 60.97/57.20 29.51
PointPillar B one 71.76/71.25 63.50/62.93 69.65/47.41 61.68/41.27 59.03/52.95 56.81/51.38 66.81/57.20 60.66/51.65 41.64
CenterPoint B one 74.58/74.04 66.42/65.93 76.17/69.98 68.33/62.63 72.00/70.80 69.39/68.23 74.25/71.61 68.05/65.60 34.73

PV-RCNN B+P two 76.70/76.11 68.44/67.95 73.95/63.20 65.68/55.86 67.95/66.25 65.54/63.79 73.47/68.52 66.55/62.53 3.17
Part-A2-anchor B+P two 77.03/76.49 68.46/67.98 75.26/66.89 66.19/58.63 68.61/67.37 66.13/64.93 73.63/70.25 66.93/63.85 8.25

RangeDet R one 72.85/72.33 64.03/63.57 75.94/71.94 67.60/63.89 65.67/64.39 63.33/62.08 71.48/69.55 64.99/63.18 34.88

RangePerception R one 73.62/73.11 66.47/66.00 80.24/76.12 72.29/68.54 70.33/68.93 68.75/67.43 74.73/72.72 69.17/67.32 45.85

5 Experiments

Dataset. The experiments in this study utilize the WOD dataset, which is the only dataset that
provides native range images. WOD consists of 798 training sequences and 202 validation sequences,
with each sequence containing approximately 200 frames. The 64-beam top LiDAR signals are
utilized to train and evaluate the RangePerception and baseline models. Scan per cycle of WOD’s top
LiDAR is 2650, resulting in range image represented by I ∈ R64×2650×8. The metrics of L1/L2 3D
AP/APH are calculated and reported following the official evaluation protocol of WOD.

Data Augmentation. Data augmentation techniques are employed during training to improve the
model’s generalization capabilities. Range images and point clouds are randomly flipped along both
the x and y axes and rotated within the range of [−π/4, π/4]. Additionally, a random global scaling
factor between [0.95, 1.05] is applied. The ground-truth copy-paste data augmentation [1] approach
is also utilized.

Implementation Details. The RangePerception framework is implemented on top of OpenPCDet
codebase [40]. Since OpenPCDet only supports voxel-based and point-based models, range-view
data pipeline and detection models are built from scratch. For Vision Restoration Module, restoration
angle δ is predefined as 0.086π, generating Ir ∈ R64×2880×8. For Range Aware Kernel, six Percep-
tion Windows are adopted: W = {[0, 15], [10, 20], [15, 30], [20, 40], [30, 60], [45,∞)}, resulting in
Subspaces K ∈ R6×64×2880×8 and transformed Subspaces K ′ ∈ R64×2880×48. DLA-34 network is
adopted as Range Backbone, by updating the input convolution kernel’s fan in to 48 channels. Models
are learned using Adam optimizer with an initial learning rate of 3e−3, scheduled with the one-cycle
learning rate policy. The decay weight is set to 0.01, and momentum range is [0.95, 0.85]. All models
are trained with 30 epochs on WOD training set, where batch size is 32 and frame sampling rate is
100%. Inference speed is examined with one NVIDIA A100 GPU with batch size set to 1.

Baseline Methods. As shown in Table 1, state-of-the-art BEV-based [1, 2, 6], MV-based [7, 8], and
RV-based [9] detectors are selected as baseline methods. All BEV-based and MV-based baselines
are trained and evaluated with OpenPCDet’s official PyTorch implementation. Since official open-
sourced version of RangeDet is coded with MxNet [41], we reimplement RangeDet with PyTorch and
integrate RangeDet-PyTorch into OpenPCDet framework. We train RangeDet-PyTorch according to
settings presented in their paper and measure its inference speed under OpenPCDet framework. The
detection AP/APH of RangeDet is listed according to experimental results in their paper.

Main Results. Detection performance measured by 3D AP/APH is reported in Table 1, where
RangePerception is compared against state-of-the-art BEV-based (B), RV-based (R), and MV-based
(B+P) methods. Inference speed measured by frame per second (FPS) is also presented. It is evident
that RangePerception’s average AP/APH surpass all baselines, which highlights the strong detection
functionality of RangePerception framework. Furthermore, RangePerception achieves state-of-the-art
performance in pedestrian AP/APH. We attribute this to the fact that range images better preserve
visual features of small objects, while voxelization introduces quantization errors to originally sparse
foreground points. The results also demonstrate that RangePerception has the fastest inference speed
among all methods. Specifically, RangePerception is 1.32 times as fast as CenterPoint, which is
already a highly efficient BEV-based detector. Additionally, RangePerception is the first RV-based
detector to achieve higher average AP/APH compared to CenterPoint, outperforming the previous
state-of-the-art RV-based method by a large margin.

Ablation Study. Presented in Table 2, an ablation study is conducted to assess the effectiveness of
our proposed designs, specifically RAK and VRM. Firstly, the study investigates the impact of RAK
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Table 2: Ablation study of RangePerception, measured by 3D AP/APH on WOD validation set.
Setting Vehicle Pedestrian Cyclist Average

L1 L2 L1 L2 L1 L2 L1 L2

A1 without RAK 70.46/70.01 63.45/62.89 72.86/68.88 64.56/60.72 63.63/62.43 61.44/60.25 68.98/67.11 63.18/61.29
A2 2D Convolution 70.48/70.03 63.46/62.90 72.86/68.87 64.56/60.71 63.64/62.43 61.45/60.26 68.99/67.11 63.16/61.29
A3 Meta-Kernel 72.95/72.43 65.98/65.37 75.95/71.96 67.63/63.90 66.76/65.46 64.57/63.38 71.88/69.95 66.06/64.21
A4 4 Perception Windows 73.13/72.62 65.97/65.51 80.15/76.03 72.17/68.42 70.15/68.85 68.42/67.10 74.48/72.50 68.85/67.01
A5 8 Perception Windows 73.59/73.08 66.45/65.98 80.25/76.13 72.30/68.56 70.31/68.92 68.74/67.42 74.72/72.71 69.16/67.32

A6 without VRM & RP 72.50/71.97 66.40/65.91 80.20/76.08 72.27/68.53 70.31/68.92 68.74/67.42 74.34/72.32 69.13/67.29

RangePerception 73.62/73.11 66.47/66.00 80.24/76.12 72.29/68.54 70.33/68.93 68.75/67.43 74.73/72.72 69.17/67.32

by removing it from our framework (A1) and replacing it with a 1×1 Convolution layer of equal
dimension (A2). The results show a significant decrease of more than 5 average L1 AP for both
cases, highlighting the crucial role of RAK in achieving strong detection performance. Secondly,
we compare the performance of RAK and Meta-Kernel by replacing RAK with Meta-Kernel in our
framework (A3). Comparison reveals that the RAK setting outperforms the Meta-Kernel setting by an
improvement of 2.85 average L1 AP, further validating the efficacy of RAK in our approach. Thirdly,
we investigate the optimality of the Perception Window setting in RAK by varying the number of
Perception Windows to 4 and 8, respectively (A4, A5). Analysis indicates that reducing the number
of Perception Windows leads to a subtle decrease in detection AP, while increasing the number of
Perception Windows brings no further performance gain. Lastly, to evaluate the efficacy of VRM, we
disable VRM and RP during training and inference processes (A6). Notably, decreases in detection
AP are observed for all classes, particularly for vehicles. We attribute this observation to the fact that
vehicles, being relatively large objects, are more susceptible to Vision Corruption.

(a)

(b)

(c)

(d)

(e)

Figure 6: Qualitative detection results of RangePerception, on a validation frame of WOD. (a) Input
range image. (b,c) Dense class predictions for vehicles and pedestrians. (d) Predicted boxes from
BEV. (e) Ground-truth boxes from BEV. For (a-c), ego vehicle heads towards the middle of the range
image. For (d,e), ego vehicle is visually highlighted in red.
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Figure 7: Qualitative vehicle detection results from RangePerception, on a validation frame of WOD.
Notably, the vehicles in this frame are significantly occluded by trees and barriers. Despite these
challenges, RangePerception exhibits remarkable detection performance by effectively extracting
features from the range view.

Qualitative Results. Detection results on a WOD validation frame are visualized in Fig. 6. Notably,
the sparse pedestrian foreground points are accurately preserved in RV, which eases the detection
process of RangePerception. Additionally, Fig. 7 showcases RangePerception’s capability of handling
highly occluded foreground objects.

6 Limitations

RangePerception is designed to be highly compatible with point clouds generated from a single
viewpoint. Similar to other existing RV-based detectors, RangePerception may not be suitable for
perception tasks involving point clouds generated from multiple viewpoints, such as those obtained
from multiple autonomous vehicles. However, it is important to emphasize that the occurrence of
such multi-viewpoint point clouds is rare in autonomous driving scenarios. Therefore, this limitation
does not affect the real-world deployment and application of RangePerception framework.

7 Conclusion

This paper presents RangePerception, an RV-based 3D detection framework that effectively addresses
Spatial Misalignment and Vision Corruption challenges. By introducing RAK and VRM, RangePer-
ception achieves superior detection performance on WOD, showcasing its potential for efficient and
accurate real-world deployment.

10
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