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Abstract

We consider the problem of sampling transition paths between two given metastable1

states of a molecular system, e.g. a folded and unfolded protein or products and2

reactants of a chemical reaction. Due to the existence of high energy barriers3

separating the states, these transition paths are unlikely to be sampled with standard4

Molecular Dynamics (MD) simulation. Traditional methods to augment MD with5

a bias potential to increase the probability of the transition rely on a dimensionality6

reduction step based on Collective Variables (CVs). Unfortunately, selecting7

appropriate CVs requires chemical intuition and traditional methods are therefore8

not always applicable to larger systems. Additionally, when incorrect CVs are9

used, the bias potential might not be minimal and bias the system along dimensions10

irrelevant to the transition. Showing a formal relation between the problem of11

sampling molecular transition paths, the Schrödinger bridge problem and stochastic12

optimal control with neural network policies, we propose a machine learning13

method for sampling said transitions. Unlike previous non-machine learning14

approaches our method, named PIPS, does not depend on CVs. We show that our15

method successful generates low energy transitions for Alanine Dipeptide as well16

as the larger Polyproline and Chignolin proteins.17

1 Introduction18

Molecular Dynamics (MD) is a central tool in the (bio-)chemistry toolbox. By integrating Newton’s19

equations of motion on a molecular scale, MD can provide insight into chemical processes and20

systems without requiring expensive lab testing [Frenkel and Smit, 2001, Hollingsworth and Dror,21

2018]. However, MD is limited when interested in transitions between two metastable configurations22

of a system, such as the folding of a protein, general conformational changes, and chemical reactions.23

These meta-stable states are separated by regions of high energy which are unlikely to be sampled24

within a reasonable timespan. While machine learning based approximations of the interatomic forces25

using neural force fields [Unke et al., 2021] have pushed the boundary in terms of system scale, it26

does not address the problem of sampling molecular transition paths directly [Fu et al., 2022].27

To overcome this issue, prior work in computational and physical chemistry has developed several28

methods for the enhanced sampling of molecular transitions such as transition path sampling [Bolhuis29

et al., 2002], umbrella sampling[Torrie and Valleau, 1977] and meta-dynamics [Laio and Parrinello,30

2002]. Most of these methods speed up the sampling of transition paths by augmenting the MD31

simulation with a (learned) bias potential that pushes the system to cross the energy barrier separating32

two states. However, due to the large configuration space of molecular trajectories, finding such a33

bias potential is in itself a computationally expensive task.34

To circumvent this problem, prior methods depend on Collective Variables (CVs). CVs are functions35

of atomic coordinates that have been identified as playing a role within the transition period. Biasing36
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methods rely on these CVs to reduce the complexity of the bias potential by only biasing the system37

along them. Limiting the bias potential to act on the CVs is an intuitive approach since the most38

common reason to sample transition paths, deriving transition dependent quantities such as reaction39

free-energy and reaction rate, are functions of CVs themselves [Bussi and Branduardi, 2015]. See40

fig. 1 for an illustration of the free-energy barrier separating two metastable states of the Alanine41

Dipeptide protein for which the dihedral angles ϕ and ψ are known to be CVs.42

φ Ψ

Figure 1: Free-energy surface of Alanine
Dipeptide as a function of CV dihedral angles
ϕ and ψ highlighting the high energy barrier
separating the two metastable states. White
stars indicate saddle points in the high energy
barrier where the transition is likely to occur.

However, while sensible, depending on CVs to reduce43

the dimensitionality of bias potential search space is44

not always suitable. While some methodological ap-45

proaches are available [Hooft et al., 2021] for smaller46

systems, selecting CVs often relies on prior expert47

knowledge. This limits the applicability of bias po-48

tential enhanced sampling to systems for which this49

information is available. Additionally, when CVs are50

incorrectly chosen, depending the bias potential on51

these CVs might result in errors in determining de-52

pendent quantities [Bolhuis et al., 2000] and incorrect53

interpretation of the transition process.54

For this purpose, we propose PIPS, a Path Integral55

stochastic optimal control [Kappen, 2005, Kappen56

and Ruiz, 2016] method for Path Sampling of molecu-57

lar transitions. PIPS leverages stochastic optimal con-58

trol theory to train a parameterised bias potential that,59

unlike previous methods from computational chem-60

istry, operates on the entire geometry of the molecule61

instead of depending on predetermined CVs. This62

way, PIPS can be scaled to larger systems.63

Contributions and outline Our contributions are organised as follows. First, we introduce the64

problem of sampling transition paths in section 2. Second, we formally show in section 3 the65

relationship between the problem of sampling transitions paths, the Schrodinger Bridge Problem66

(section 3.1) and Stochastic Optimal Control (SOC) (section 3.3). Following this, we use the gained67

insights regarding SOC in section 4 to propose PIPS; a method based on the PICE algorithm designed68

for sampling molecular transition paths that does not depend on Collective Variables. Lastly, we69

demonstrate the efficacy of PIPS on conformational transitions in three molecular systems of varying70

complexity, namely Alanine Dipeptide, Polyproline, and Chignolin in section 5.71

2 Preliminaries, Problem Setup, and Related Work72

2.1 Molecular Dynamics73

Given the state of a molecular system xt := (rt,vt) consisting of positions rt ∈ R3n and74

velocities vt ∈ R3n at time t with n atoms sampled from the Gibbs distribution πG(xt) =75

exp(− 1
kBT H(rt,vt)), Molecular Dynamics (MD) describe the time evolution of the state over time.76

H is known as the Hamiltonian H(rt,vt) = U(rt) +K(vt), where U(rt) and K(vt) =
1
2mv2,77

with mass m, respectively denote the Potential and Kinetic Energy of the system. The potential78

energy of a system is defined by a parameterized sum of pairwise empirical potential functions, such79

as harmonic bonds, angle potentials, inter-molecular electrostatic and Van der Waals potentials.80

One common approach of integrating the molecular dynamics is Langevin Dynamics [Bussi and81

Parrinello, 2007] which couple the deterministic Newtonian equations of motion with a stochastic82

thermostat that acts like a heat bath. Langevin dynamics obey the following SDEs83

dr = v · dt (1)

dv =
−∇rU(r)

m
· dt− γv · dt+

√
2mγkBT dW , (2)

where kB is the Boltzmann constant, T the temperature of the heath bath, and dW standard Brownian84

Motion. γ, the friction term, couples the dynamics and the heat bath. Following this SDE samples85

samples from the Canonical of NVT ensemble with constant temperature.86
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2.2 Sampling Transition Path Sampling87

By sampling an initial configuration x0 = (r0,v0) ∼ πG and following the MD simulation for88

a fixed amount of time, one can generate trajectories x0:τ = {x0, . . . ,xτ}, of length τ . These89

trajectories represent samples from the probability distribution over trajectories given by:90

π(x0:τ ) = πG(x0) ·
τ∏

t=1

N (xt|µt−1,Σt−1), (3)

with µt = (vt · dt, −∇rU(rt)
m · dt− γvt · dt)T and Σ = diag(0, 2mγkBT ).91

However, in the context of sampling transition paths, we are interested in trajectories with a predefined92

an initial and final state. Ie. r0 ∈ R ⊂ R3n and rτ ∈ P ⊂ R3n. For example, R can describe the set93

of reactants and P the set of products of a chemical reaction. Or, R can be the set of stable native94

states of a protein while P is the set of folded proteins.95

We will refer to the distribution over trajectories with restricted initial and target states as the96

Transition Path (TP) distribution [Dellago et al., 1998].97

Definition 1 (Transition Path (TP) distribution). Given a set of initial states R, target states P ,98

potential energy U and a transition length τ the Transition Path (TP) distribution is defined as;99

π∗(x0:τ ) =
1

Z
1R(r0) · π(x0:τ ) · 1P (rτ ) (4)

where 1R and 1P are indicator functions and π(x0:τ ) is defined according to eq. (3).100

We can naively apply rejection sampling to sample from the TP distribution by sampling a system101

x0 ∼ 1R(r0) · πG(x0), evolving it for τ steps according to the MD in eq. (1) and rejecting it when102

rτ /∈ P . Unfortunately, when using standard molecular dynamics, it is very unlikely for any trajectory103

starting in a state r0 ∈ R to terminate with rτ ∈ P due to the two sets of states being separated by104

a high-energy barrier. Ie. for all x0:τ ∼ π∗ some xt has U(rt) >> U(r0). To be able to obtain a105

representative number of trajectories, one is thus forced to generate a high number of trajectories,106

making naive sampling from the TP distribution computationally very expensive.107

2.3 Bias Potential Enhanced Sampling108

To solve the problem caused by high-free energy barriers and to sample from the TP distribution109

various enhanced sampling approaches are available. These will be further discussed in the related110

work section. In this work, we will focus on a specific branch of enhanced sampling methods111

called Bias Potential Enhanced Sampling (BPES). In BPES approaches, the stochastic dynamics are112

enhanced with a bias potential b(r,v) such that when a system x0 ∼ 1R(r0) ·πG(x0) is transformed113

according to the biased dynamics114

dr = v · dt (5)

dv =
−∇r

(
U(r) + b(r,v)

)
m

· dt− γv · dt+
√
2mγkBT dW , (6)

a trajectory, of length τ , always terminates with rτ ∈ P .115

Trajectories sampled by following these bias potential enhanced dynamics are sampled according to116

what we refer to as the Bias Potential enhanced Transition Path (BPTP) distribution117

πb(x0:τ ) = 1R(r0) · πG(x0) ·
τ∏

t=1

N (xt|µ̂t−1, Σ̂t−1), (7)

with µ̂t = (vt · dt,
−∇r

(
U(rt)+b(rt,vt)

)
m · dt− γvt · dt)T and Σ̂ = diag(0, 2mγkBT ).118

Finding the bias potential b(r,v) such that trajectories sampled from the BPTP distribution are119

distributed according to the TP distribution is referred to as the BPTP problem.120

Definition 2 (BPTP problem). Given a set of initial states R, target states P and a Potential121

Energy function U , the BPTP problem describes the task of finding an optimal bias potential b∗ such122

that trajectories sampled from the BPTP distribution πb∗ are close to samples sampled to the TP123

distribution π∗, ie.124

b∗ = argmin
b

DKL(π
b|π∗). (8)
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2.3.1 Related Enhanced Sampling Methods125

CV dependent Enhanced Sampling Most closely related to our work are the metadynamics [Laio126

and Parrinello, 2002, Bussi and Branduardi, 2015, Barducci et al., 2008] and the Adaptive Biasing127

Force (ABF) methods [Darve and Pohorille, 2001, Comer et al., 2015]. In metadynamics, the bias128

potential is iteratively built as a sum of Gaussians centered at conformational states previously visited129

during the MD simulation. This consecutively pushes the system outwards to regions of higher energy130

not previously visited. Contrarily to metadynamics, ABF does not aim to learn the bias potential131

b(r,v), but instead aims to control the system through the bias force b(r,v) = ∇rb(r,v) ∈ R3n.132

The intuition behind ABF is to learn a bias force that cancels out the deterministic force from133

the molecular potential. As a result, the only remaining driving force is the stochastic Langevin134

thermostat which is not affected by the high energy barriers. Other approaches to sampling transition135

paths using a bias potential include umbrella sampling Torrie and Valleau [1977], hyper-MD [Voter,136

1997], the Wang-Landau method [Wang and Landau, 2001] and various less commonly applied137

others [Sprik and Ciccotti, 1998, Grubmüller, 1995, Huber et al., 1994, Carter et al., 1989]. All these138

methods depend on dimensionality reduction steps using CVs while our proposed method does not.139

CV free Enhanced Sampling In addition to the CV dependent methods a different family of MCMC140

based approaches for direct sampling from the TP distributions is available. These methods, such141

as Transition Path Sampling [Dellago et al., 1998, Bolhuis et al., 2002] and Nudge Elastic Band142

sampling [Henkelman et al., 2000], generally do not use a bias potential or CVs.143

Recently, several machine learning solutions for the BPTP and related problems have been proposed.144

For example, Das et al. [2021] use Reinforcement Learning to sample from the TP distribution under145

Brownian dynamics, Schneider et al. [2017] consider the modelling of the free-energy surface using146

neural networks, and Sultan et al. [2018] use neural networks as generalizable CVs.147

3 Sampling Transition Paths using Stochastic Optimal Control theory148

In this section we will discuss the relationship between the BPTP problem and two topics from the149

machine learning literature; the Schrodinger Bridge problem and Stochastic Optimal Control.150

3.1 The BPTP problem is a Schrodinger Bridge Problem151

First introduced by Schrodinger [Schrödinger, 1931, 1932], the Schrodinger Bridge (SB) problem152

studies the transition between two distributions over time under some fixed drift and diffusion153

components. Formally, the SP problem is defined as154

Definition 3 (Schrodinger Bridge (SB) problem). Given a reference distribution π
(
x0:τ

)
over155

trajectories with predefined marginals π0 and πτ , the Schrodinger Bridge (SB) Problem aims to find156

an alternative distribution π̂
(
x0:τ

)
such that157

π̂∗(x0:τ

)
:= argmin

π̂(x0:τ )∈D(π0,πτ )

DKL

(
π̂
(
x0:τ

)
∥π

(
x0:τ

))
(9)

where D(π0, πτ ) is the space of path measures with marginals π0 and πτ .158

Recently, machine learning approaches for parameterizing this alternative distribution π̂ to approxi-159

mate the reference distribution π have received attention [Vargas et al., 2021, De Bortoli et al., 2021].160

In the following theorem, we show that these approaches also provide a solution to the BPTP problem161

when the correct marginal distributions are specified.162

Theorem 3.1 (BPTP problem is a SB problem). Let b be the set of functions such that π0 =163

πG(x0) · 1R(r0) and πτ = πG(xτ ) · 1R(rτ ), we have that a solution to the SB problem with164

reference distribution π∗ is also a solution to the BPTP problem, ie.165

argmin
b

DKL(π
b|π∗) = argmin

πb∈D(π0,πτ )

DKL

(
πb

∥∥π∗
)

(10)

Proof. This follows from the definition of the BPTP and SB problems.166

Following this theorem, we can use proposed solutions for solving the SBP to solve the BPTP167

problem using a bias potential. In this work, we will specifically focus on Stochastic Optimal Control168

theory, which has been shown to solve the SBP in [Chen et al., 2016].169
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3.2 Background: Stochastic Optimal Control170

Given an arbitrarily controlled dynamical system171

dxt = f(xt) dt+G(xt) ·
(
u(xt) dt+ dW

)
, x0 ∼ π0, (11)

where f : Rd × R+ → Rd and G : Rd × R+ → Rd×d are deterministic functions representing the172

drift and volatility of the system and dW is Brownian Motion with variance ν, Stochastic Optimal173

Control theory aims to find a policy u(xt) that minimizes some expected cost C over the trajectories:174

u∗ = argmin
u

Ex0:τ∼πu

[
C(x0:τ )

]
(12)

Here πu represents the distribution over trajectories similar to eq. (7) with µt = xt + f(xt, t) dt+175

G(xt)(u(xt) dt) and Σt = G(xt)
T νG(xt).176

In this work we will specifically rely on a branch of SOC called Path Integral Control (PISOC), first177

introduced by Kappen [2007]. In PISOC the cost of a trajectory is defined as178

C(x0:τ ) =
1

λ

(
φ(xτ ) +

τ−1∑
t=0

1

2
u(xt)

TRu(xt) + u(xt)
TRεt

)
(13)

where εt = G−1(xt)(dx− f(xt) dt)−u(xt), φ denotes the terminal cost, λ is a constant and R is179

the cost of taking action u in the current state and is given as a weight matrix for a quadratic control180

cost. To clarify, εt ∼ dW is the noise introduced into the trajectories by the Langevin thermostat.181

3.3 SOC solves the BPTP problem182

We can see that SOC dynamical system (eq. (11)) is similar to the dynamics of the BPTP distribution183

(eq. (5). In fact, as we will see next, with a properly defined φ, minimizing the trajectory cost184

(eq. (13)) results in finding a control u that solves the BPTP problem.185

Theorem 3.2 (SOC solves the BPTP problem). Given xt = (rt,vt)
T , f(xt) = (vt,

−∇rtU(rt)

m −186

γvt)
T , G(xt) = (03n, I3n)T , u(xt) =

−∇rtb(rt,vt)

m , ν =
√
2mγkBT , and π0 = πG, such that the187

SOC dynamics (eq. (11)) describe the dynamics of the BPTP distribution πb (eq. (5)).188

If we define φ(xτ ) = −λ log(1P (rτ )), R = λν−1 = λ(2mγkBT )
−1 and assume r0 ∈ R, we have189

argmin
b

Ex0:τ∼πb

[
C(x0:τ )

]
= argmin

b
DKL(π

b|π∗), (14)

where π∗ is the TP distribution.190

Proof. See appendix A. The proof relates πb and π0 using Girsanov’s theorem to rewrite the expecta-191

tion over cost C as the summation of the terminal cost and a KL divergence.192

4 PIPS: Path Integral SOC for Path Sampling193

Previously, we have seen how SOC solutions are also solutions for the BPTP problem. Using this194

insight, we will design a SOC approach to finding a parameterized bias potential bθ, that solves the195

BPTP problem. We refer to this method as PIPS: Path Integral Path Sampling. PIPS is an adaptation196

of the Path Integral Cross Entropy (PICE) [Kappen and Ruiz, 2016] method to the setting of sampling197

molecular transition paths where we have a single initial R = {r∗0} and target P = {r∗τ} system.198

Background: Path Integral Cross Entropy Kappen and Ruiz [2016] introduced the Path Integral199

Cross Entropy (PICE) method for solving Equation (12). The PICE method derives an explicit200

expression for the distribution πu∗ under optimal control u∗ when λ = νR given by:201

πu∗
=

1

η(x, t)
πu

(
x0:τ

)
exp(−C(x0:τ )) (15)

where η(τ) = Ex0:τ∼π0 [exp(− 1
λφ(xτ )] is the normalization constant. This establishes the optimal202

distribution πu∗
as a reweighing of any distribution induced by an arbitrary control u.203
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PICE, subsequently, achieves this by minimizing the KL-divergence between the optimal controlled204

distribution πu∗
and a parameterized distribution πuθ using gradient descent as follows:205

∂DKL(π
u∗ |πuθ )

∂θ
= −1

η
Ex0:τ∼πuθ

[exp(−C(x0:τ ,uθ))

τ∑
t=0

(Rεt ·
∂uθ

∂θ
)] (16)

Similar to the optimal control in eq. (15), the gradient used to minimize the KL-divergence is found206

by reweighing for each sampled trajectory, x0:τ , the gradient of the control policy uθ by the cost of207

the trajectory. See Algorithm 1 in the appendix for an algorithmic description of PICE.208

4.1 Adaptations to PICE209

In this section we will specify the adaptations made to the PICE algorithm to apply it to solve the210

BPTP problem for the molecular transition path setting.211

Smoothing the loss function As shown in the previous section, when using the target loss φ(xτ ) =212

−λ log(1P (rτ )), SOC solves the BPTP problem. However, while optimal, this loss function is hard213

to use in the PICE optimization task as it is infinite for all x0:τ where rτ ̸= r∗τ . As such, we instead214

use a smoothed version φ(rt) = exp
∑n

i,j

(
dij(rt)− dij(rτ )

)2
where dij(rt) = ∥(rt)i − (rt)j∥22.215

This exponentiated pairwise distance between the atoms is a commonly used distance metric [Shi216

et al., 2021] that is invariant to rotations and translations of the molecular system.217

Architectural considerations The learnable component of PIPS is the bias potential b. However,218

as the BPTP dynamics show in eq. (5), instead of using the bias potential directly, MD depends on219

the bias force — the gradient of the bias potential b(r,v) = ∇rb(r,v) ∈ R3n. This consideration220

allows for two different modelling approaches for the bias force similar to the distinction between221

metadynamics and adaptive bias force discussed in section 2.3.1. One can either parameterise the bias222

force directly b(r,v) = bθ(r,v) or , alternatively, model bθ(r,v) the bias potential and calculate223

the corresponding bias force by backpropagation, b(r,v) = ∇rbθ(r,v). The advantage of the latter224

is that the forces are conservative by construction.225

In section 5.1 we will compare both these modelling approaches. In both cases we will use a MLP226

with ReLU activation for either the parameterized bias force or bias potential. Alternatively, bθ or bθ227

could be implemented using recent advances in physics inspired equivariant neural networks [Cohen228

and Welling, 2016, Satorras et al., 2021] that take into account the SE(3) symmetry of the system.229

We provide details for training the control network uθ in Appendix B.230

Integration with MD simulation frameworks To efficiently calculate the Potential U(x) and231

integrate the MD in eq. (1), various optimized simulation frameworks are available. In our work232

we use the OpenMM framework [Eastman et al., 2017]. The bias force b(r,v) is integrated in233

OpenMM as a custom external force. Implementing the control this way allows us to use the234

τ Temp. EPD (↓) THP (↑) ETP (↓)
fs K nm× 10−3 % kJmol−1

Bias Force Prediction 500 300 2.07 41.1 % 0.68
Bias Potential Prediction 500 300 1.25 89.2 % -5.21

MD w. fixed timescale 500 300 7.92 0% -
500 1500 7.47 0% -
500 4500 6.33 0% -
500 9000 6.82 1.7 % 1019.83

MD w/ fixed timescale 34810 1500 1.88 100% 551.51
48683 4500 2.01 100% 1647.35

Table 1: Benchmark scores for the proposed method and extended MD baselines. From-left-to-right:
Time-horizon τ representing the trajectory length (note that we take one policy step every 1 fs),
simulation temperature, Expected Pairwise distance (EPD), Target Hit Percentage (THP), and Energy
Transition Point (ETP). ETP can only be calculate when a trajectory reaches the target. All metrics are
averaged over 1000 trajectories except for MD w/ fixed timescale which is ran only for 10 trajectories.
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Figure 2: Visualization of a trajectory sampled with PIPS. Left: The sampled trajectory projected
on the free energy landscape of AD as a function of two CVs Right: Conformations along the
sampled trajectory: A) starting conformation showing the CV dihedral angles, B-D) intermediate
conformations with C being the highest energy point on the trajectory, and E) final conformation,
which closely aligns with the target conformation. Bottom: Potential energy during transition.

optimized configuration capabilities of OpenMM, such as forcefield definitions (the potential function235

description) and integrators (for the time-discretization of our dynamics).236

One downside of using OpenMM for integrating the MD is that it does not provide access to the noise237

εt ∼
√
2mγkBT dW used in the Langevin thermostat that is needed to calculate the update to the238

policy weights. To circumvent this, we instead sample an additional exploratory noise term ε̂t ∼ dW239

with variance ν̂ that is used to optimize the policy and assume the Langevin noise to be part of the240

drift of the system f . While this loses the formal guarantees presented in section 3, we found this to241

be experimentally stable and provide close to optimal trajectory paths (as shown in section 5.1).242

5 Experiments243

We evaluate PIPS using three molecular systems, namely (i) Alanine Dipeptide, to compare PIPS244

to CV free and CV dependent baselines, (ii) Polyproline, to evaluate PIPS as a method to select245

candidate CVs, and (iii) Chignolin, as a use-case of PIPS scalabilty to proteins without knowns CVs.246

We report the molecule specific OpenMM configuration as well as the used neural network architecture247

to learn the bias potential/force in appendix C. Generally, we run our simulations at 300K and use248

6 layer MLP with the width of the layers dependent on the number of atoms in the molecule under249

consideration. Our code, including a full stand-alone notebook re-implementation, is available here:250

https://github.com/pips4anonymous/pips-anonymous.251

5.1 Alanine Dipeptide252

In this section we evaluate PIPS on the extensive studied Alanine Dipeptide (AD) molecule. AD253

is a relatively small protein for which the CVs (two dihedral angles ϕ and ψ) are readily available254

and is therefore well suited for the development of enhanced sampling methods that require CVs.255

While PIPS does not use the CVs during training, their availability does come in useful to evaluate256

the sampled transition. The transition evaluated here have a 500 fs time horizon.257

5.1.1 Quantitative comparison to CV free baselines258

As discussed, our work is the first to consider CV free sampling of transition paths at this scale and259

as such other baselines or metrics are not available. In table 1 we therefore evaluate PIPS using260

MD simulations with extended time-horizon and increased system temperature as baselines and261

introduce three metrics to evaluate the quality of the transition paths. (i) Expected Pairwise Distance262

(EPD) measures the euclidean distance between the final conformation in the trajectory and the263

target conformation, reflecting the goal of the transition to end in the target state, (ii) Target Hit264

Percentage (THP) assures that the final configuration is also close in terms of CVs by measuring the265

percentage of trajectories correctly transforming these CVs, and (iii) Energy Transition Point (ETP)266

which evaluates the capacity of each method to find transition paths that cross the high-energy barrier267
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Figure 3: Visualization of the Polyproline transformation from PP-II to PP-I. From-top-to-bottom
5 stages of the transition, ψ, ϕ, ω candidate CVs, and Potential Energy. For the candidate CVs
multiple instances of the same dihedral angles can be found in a single molecule. Stars indicate target
candidate CV states. Colored bonds represent the bonds involved in the ω CV.

at a low point by taking the maximum potential energy of the molecule along the trajectory. A good268

trajectory will be one that passes through the minimal high-energy barrier and ETP aims to measure269

this. We provide more details in Appendix C.2.1.270

Results: We find that the trajectories generated by both the policy networks outperform the MD271

baselines, but the more physics-aligned potential predicting policy performs best under our metrics.272

This policy network consistently reaches the target conformation both in terms of full geometry and273

the CVs orientation. Furthermore, our policy network generates these trajectories in a significantly274

shorter time than temperature enhanced MD simulations without a fixed timescale. When we do limit275

MD to run for the same timescale as the proposed method, we found that, in contrast to the proposed276

method, temperature enhanced MD simulations are unable to generate successful trajectories. We277

will use the bias potential predicting policy in the following.278

5.1.2 Qualitative comparison to CV dependent metadynamics279

In fig. 2 we visualise an AD transition sampled by PIPS using the bias potential predicting policy. In280

the top left, we overlay the transition projected onto CV space on the free-energy surface generated281

using metadynamics. The free-energy surface thus serves as a ground-truth generated using a method282

that requires extensive domain knowledge. We aim to show that the trajectory sampled using PIPS283

aligns with the saddle points of the metadynamics free-energy surface.284

Results: The trajectory in Figure 2 demonstrates that the bias potential control policy transforms the285

molecule from the initial position (A) to the final position (E) by transitioning over the same saddle286

point in the free-energy barrier found by metadynamics (C). This shows that the trajectory follows287

the same transition in CV space as metadynamics despite, contrarily to metadynamics, not being288

biased to do so. The potential energy goes up during the transition until it reaches the lowest point of289

the energy barrier (C) and consecutively settles down in its new low-energy state.290

5.2 Polyproline Helix291

Second, we consider a Polyproline trimer with 3 proline residues. Polyproline is a more complex292

protein then AD and as such its CVs are less well understood. We therefore use this protein to293

determine if PIPS biases the system along the correct CVs when a collection of candidate CVs are294

available. Specifically, we consider the peptide bond orientation (ω) and two backbone dihedral295

angles (ϕ and ψ). As initial and target state we provide a single example of Polyprolines PP-I form296

(with cis-isomer peptide bonds) and PP-II form (with trans-isomer peptide bonds) respectively. For297

this transition it is known that the CV of interest are the peptide bond orientation. Additionally, to298

study PIPS resilience to target misspecification, the supplied PP-II form also contains a transformation299

in one of the ψ-dihedral angles which is irrelevant to the transition. The transition time is 5000 fs.300
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Figure 4: Visualization of the Chignolin folding process. Top: 5 stages of the folding process, Middle:
Pairwise distance wrt to the target conformation of the molecule, Bottom: Potential Energy.

Results: We visualize the transformation of the three collective variables (ω, ϕ, ψ) as well as the301

corresponding potential energy of the conformation in Figure 3 for a sampled transition path. We302

observe that the transition correctly occurs along the ω CV going from 180◦ to 0◦. This suggest303

that PIPS could be used for testing the validity of candidate CVs. However, we also observe that in304

addition to the peptide bonds PIPS also biases the system along one of the ψ-dihedral angles due to305

the introduced target misspecification. As the small fluctuations are to be expected when sampling306

a single target from the Boltzmann distribution, alternative methods for specifying the target state307

should be explored in future work.308

5.3 Chignolin309

Lastly, we consider the small β-hairpin protein Chignolin. Chignolin was artificially constructed to310

study protein folding mechanisms [Honda et al., 2004, Seibert et al., 2005]. Due to its small size, its311

folding process is easier to study than larger scale proteins while being similar enough to shed light312

on this complex process. In contrast to Alanine Dipeptide and Polyproline, there is no agreement on313

the transition mechanism describing the folding of Chignolin. Both the CVs involved [Satoh et al.,314

2006, Paissoni and Camilloni, 2021], as well as the sequence of steps [Harada and Kitao, 2011, Satoh315

et al., 2006, Suenaga et al., 2007, Enemark et al., 2012] describing the folding process have multiple316

different interpretations. Chignolin thus serves as a usecase study for scaling PIPS beyond traditional317

CV-based approaches to solve the BPTP-problem. We sample transition paths between the folded318

and unfolded state of the Chignolin protein using a total time horizon of 5000 fs. Note that the typical319

folding time of Chignolin is recorded to be 0.6 µs [Lindorff-Larsen et al., 2011].320

Results: In Figure 4, we visualize the transition of Chignolin at 5 different timesteps during the321

transition path. We observe that to transition the protein from its low energy unfolded state to322

the folded conformation, the proposed method guides the protein into a region of higher energy.323

This increase is initially more steep (0→1500) than in the later stages. Additionally, most of the324

finer-grained folding (2500→4000) occurs with a high potential energy before settling into the lower-325

energy folded state. We notice that for the restricted folding time we use in our experiments (5000 fs326

vs 0.6 µs), the molecule does not end at the final configuration but reaches close to it as shown by the327

plot on pairwise distance. Furthermore, the learned policy network is able to transition through the328

high energy transition barrier in this restricted time. We do not encounter this for molecules with a329

shorter natural transition time (as illustrated by the potential energy of Alanine Dipeptide in fig. 2).330

6 Discussion331

In this work, we have proposed PIPS—a path integral stochastic optimal control method for the332

problem of molecular sampling transition paths using a bias potential. In contrast to prior work, PIPS333

does not require prespecifying CVs along which the system should be biased. We show the benefits334

of PIPS using three different molecular systems of varying sizes. In passing, we gave an introductory335

description of the problem of sampling transition paths and related it to the stochastic optimal control336

and the Schrodinger bridge problem. With this, we hope to not only have motivated our own work but337

also provided a starting point for future work consideration of this important problem by the machine338

learning community. For future work, we specifically note that the use of PIPS for CV discovery and339

the exploration of other approaches for specifying the target state, possibly using an ensemble of340

samples, is a promising direction as exemplified by our Polyproline experiment.341
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A Proof theorem: SOC solves the BPTP problem466

Theorem A.1 (SOC solves the BPTP problem). Given xt = (rt,vt)
T , f(xt) = (vt,

−∇rtU(rt)

m −467

γvt)
T , G(xt) = (03n, I3n)T , u(xt) =

−∇rtb(rt,vt)

m , ν =
√
2mγkBT , and π0 = πG, such that the468

SOC dynamics (eq. (11)) describe the dynamics of the BPTP distribution πb (eq. (5)).469

If we define φ(xτ ) = −λ log(1P (rτ )), R = λν−1 = λ(2mγkBT )
−1 and assume r0 ∈ R, we have470

argmin
b

Ex0:τ∼πb

[
C(x0:τ )

]
= argmin

b
DKL(π

b|π∗), (17)

where π∗ is the TP distribution.471

Proof. Let πb be the BPTP distribution as defined in eq. (7). Crucially, πb can be factored into a472

position and velocity component based on the conditional independence of rt+1 and vt+1 given rt473

and vt, respectively, as474

πb
(
x0:τ

)
= πb

r

(
x0:τ

)
· πb

v

(
x0:τ

)
(18)

with475

πb
r

(
x0:τ

)
=

τ∏
t=0

1[rt+1=rt+vt](rt+1) (19)

πb
v

(
x0:τ

)
=

τ∏
t=0

N (vt+1|µt,Σt). (20)

where µt = (vt · dt,
−∇r

(
U(rt)+b(rt,vt)

)
m · dt− γvt · dt)T and Σ = diag(0, 2mγkBT ).476

Now, if we define π0 to be the BPTP distribution where no additional bias potential is applied, i.e.477

b(rt,xt) = 0 such that π0(x0:τ ) = 1R(r0) · π(x0:τ ), we observe that the position component of the478

factorization are equal: πb
r

(
x0:τ

)
= π0

r

(
x0:τ

)
.479

Following, we use Girsanov’s [Cameron and Martin, 1944] theorem to relate πb
v

(
x0:τ

)
and π0

v

(
x0:τ

)
480

as481

πb
v

(
x0:τ

)
= π0

v

(
x0:τ

)
· exp

( 1

λ

τ−1∑
t=0

1

2
u(xt)

TRu(xt) + u(xt)
TRεt

)
(21)

where ε = G−1(xt)(dx − f(xt) dt) − u(xt). Which, given the previously established equality482

between the velocity components of the BPTP factorization, gives us483

log
πb

(
x0:τ

)
π0

(
x0:τ

) =
1

λ

τ−1∑
t=0

1

2
u(xt)

TRu(xt) + u(xt)
TRεt (22)

where ε = G−1(xt)(dx− f(xt) dt)− u(xt).484

This allows us to rewrite the control cost eq. (13) as485

C(x0:τ ) =
1

λ

(
φ(x0:τ )

)
+ log

πb
(
x0:τ

)
π0

(
x0:τ

) (23)
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Finally, this gives486

argmin
b

Ex0:τ∼πb

[
C(x0:τ )

]
= argmin

b
Ex0:τ∼πb

[ 1
λ

(
φ(xτ )

)
+ log

πb
(
x0:τ

)
π0

(
x0:τ

) ] (24)

= argmin
b

Ex0:τ∼πb

[
− log(1P (rτ )) + log

πb
(
x0:τ

)
π0

(
x0:τ

) ] (25)

= argmin
b

Ex0:τ∼πb

[
log

πb
(
x0:τ

)
1R(rτ ) · π

(
x0:τ

)
· 1P (rτ )

] (26)

= argmin
b

Ex0:τ∼πb

[
log

πb
(
x0:τ

)
π∗

(
x0:τ

) ] (27)

= argmin
b

DKL(π
b|π∗) (28)

where π∗ is the TP distribution as defined in definition 1.487

488

B Algorithms489

Algorithm 1: Training Policy uθ

Input: r0, rT : Initial and target molecular positions,
U(·): Potential Energy function,
γ: Langevin Friction,
φ(·): Terminal cost,
uθ(·, ·): Initial parameterized policy,
N : Number of trajectories sampled per update,
τ : Time horizon,
ν: Variance of Brownian noise,
R: Control cost matrix,
µ: Learning rate,
dt: Time discretization step

while not converged do
▷ Generate trajectories with current policy uθ

λ← Rν ;
n← 0 ;
while n < N do

▷ Initialize initial trajectory state
(rn,0,vn,0, t)← (r0,0, 0);
while t < (τ/dt) do

▷ Sample Brownian noise and action
εn,t ∼ N (0,

√
2mγkBT );

ε̂n,t ∼ N (0, ν);
un,t ← uθ(rn,t, t);
▷ Update positions and velocity
rn,t+1 ← rn,t + vn,t · dt;
vn,t+1 ← vn,t +

(
−∇rU(r)

m
+ un,t − γv + εn,t + ε̂n,t

)
· dt;

t← t+ 1;
end
▷ Determine trajectory cost and gradient
Cn ← 1

λ
(φ(rn,τ ) +

∑τ
i=0 u

T
n,iRun,i + uT

n,iRεn,i);
∆θn ← exp(−Cn) +

∑τ
i=0

∂un,i

∂θ
Rεn,i;

n← n+ 1 ;
end
▷ Determine gradient normalization and perform policy update
η ←

∑N
i=0 exp(−Ci);

θ ← θ + µ
η

∑N
i=0 ∆θi;

end

490
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C Extension Experimental section491

C.1 OpenMM492

General setup: We use the Velocity Verlet with Velocity Randomization (VVVR) integrator [Sivak493

et al., 2013] within OpenMM at a temperature of 300K with a collision rate of 1.0 ps-1. All code is494

implemented in Pytorch and ran on a single GPU (either an NVIDIA RTX3080 or RTX2080).495

Alanine Dipeptide: We use the amber 99sb-ildn force field [Lindorff-Larsen et al., 2010] without496

any solvent, a time-step of 1.0 fs for the VVVR integrator and a cutoff of 1 nm for the Particle Mesh497

Ewald (PME) method [Essmann et al., 1995]. The policy network for 15000 roll-outs with a time498

horizon of 500 fs each consisting of 16 samples. A gradient update was made to the policy network499

after each roll-out with a learning rate of 10−5. The Brownian motion has a standard deviation of 0.1.500

Polyproline Helix: We initialize OpenMM with the amber protein.ff14SBonlysc forcefield and501

gbn2 as the implicit solvent forcefield. The VVVR integrator had a timestep of 2.0 fs and a cutoff502

of 5 nm for PME. The proposed method was ran for a total of 10.000 fs (resulting in 5,000 policy503

steps). The policy networks was trained over 500 rollouts with 25 samples each using a learning rate504

of 3× 10−5 and a standard deviation of 0.1 for the Brownian motion.505

Chignolin: To sample transition paths between the folded and unfolded state of the Chignolin506

protein, we initialize OpenMM using the same forcefield and VVVR integrator as for Polyproline507

with the exception that we sample a new force from our policy network every 1.0 fs. We do this508

5000 times for each rollout for a total time horizon of 5000 fs. The policy network is trained for 500509

roll-outs of 16 samples with a learning rate of 10−4 and a standard deviation of 0.05 for the Brownian510

motion.511

C.2 Alanine Dipeptide512

C.2.1 Discussion Baselines and Evaluation Metrics513

Metrics Three different metrics are used for the comparison covering multiple desiderata for the514

sampled transition trajectories. For each metric we report the score over 1000 trajectories with the515

exception of the Molecular Dynamics without fixed timescale baseline which is only ran until 10516

trajectories are successfully generated.517

Expected Pairwise Distance (EPD) The EPD measures the similarity between the final conformation518

in the trajectory and the target conformation taking into account the full 3D geometry of the molecule.519

Note that the expected pairwise distance for uncontrolled MD with the target as the starting conforma-520

tion has a EPD of 2.25× 10−3. All trajectories with an EPD of less than this can thus be considered521

to transition the molecule within one standard deviation of the target distribution.522

Target Hit Percentage (THP): The second metric under which we evaluate the proposed Transition523

Path Sampler measures the similarity of the final and target conformation in terms of the collective524

variables. The THP measures the percentage of generated trajectories/paths that reach the target state.525

As such, higher hit percentages are preferred. We determine a trajectory to have hit the target in CV526

space when ϕ and ψ are both within 0.75 of the target.527

Energy Transition Point (ETP): The final metric looks at the potential energy of the transition528

point—the conformation in the trajectory with the highest potential energy. This directly evaluates529

the capability of the method to find the transition path that crosses the boundary at the lowest saddle530

point.531

Baselines We compare the proposed Transition Path Sampling method with extended Molecular532

Dynamics simulation using different time-scales and temperature points. As discussed earlier, there533

are currently no other methods available for Transition Path Sampling using the full 3D geometry of534

the molecules.535

Molecular Dynamics with fixed timescale: This set of baselines is limited to the same timescale536

as the proposed Transition Path Sampler, 500 femtoseconds, but uses varying temperatures. With537
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Figure 5: Visualization of a trajectory sampled with the proposed force prediction method. Left:
The sampled trajectory projected on the free energy landscape of Alanine Dipeptide as a function
of two CVs Right: Conformations along the sampled trajectory: A) starting conformation showing
the CV dihedral angles, B-D) intermediate conformations with D being the highest energy point on
the trajectory, and E) final conformation, which closely aligns with the target conformation. Bottom:
Potential energy during transition. Letters represent the same configurations in the transition.

higher temperatures we should have a higher probability of crossing the barrier and hitting the target538

configuration.539

Molecule Dynamics without fixed timescales: In contrast to the other set of baselines, the MD simu-540

lation for this set is not limited to 500 femtoseconds, but is instead ran until the target conformation541

is reached. We consider a trajectory to have reached its target if the following two conditions have542

been met: 1) the current conformation classifies as having hit the target under the conditions of the543

metric described above and 2) the current conformation is within one standard deviation of the target544

distributions mean.545

By running the MD simulations until the target is reached we aim to gain intuition into the speed-up546

that it achieved by the fixed timescale of the proposed Transition Path Sampler.547

C.2.2 Additional results: Visualization Force Prediction548

We observe that the force predicting policy has learned a different trajectory then the energy predicting549

model presented in the main body of the paper. While different, both of the trajectories pass the high550

energy barrier in a locally low point. Previous work on finding transition path has also observed that551

multiple viable paths can be found for Alanine Dipeptide [Hooft et al., 2021].552
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