
A Additional related work507

Human decision making, interplay with algorithms. Our work contributes to a vast literature on508

understanding how humans, and particularly human experts, make decisions. We do not attempt to509

provide a comprehensive summary of this work, but refer the reader to Tversky and Kahneman (1974)510

and Camerer and Johnson (1991) for general background. Of particular relevance for our setting is511

work which investigates whether humans make systematic mistakes in their decisions, which has been512

studied in the context of bail decisions (Kleinberg et al. (2017), Rambachan (2022), Lakkaraju et al.513

(2017) and Arnold et al. (2020)), college admissions (Kuncel et al. (2013), Dawes (1971)) and patient514

triage and diagnosis (Currie and MacLeod (2017), Mullainathan and Obermeyer (2019)) among others.515

One common theme in these works is that the decision made by the human expert will often influence516

the outcome of interest; for example, an emergency room doctor’s initial diagnosis will inform the517

treatment a patient receives, which subsequently affects their health outcomes. Furthermore, it is518

often the case that even observing the outcome of interest is contingent on the human’s decision: for519

example, in a college admissions setting, we might only observe historical outcomes for admitted520

students, which makes it challenging to draw inferences about applicants. This one-sided labeling521

problem is a form of endogeneity which has been well studied in the context of causal inference, and522

these works often adopt a causal perspective to address these challenges.523

As discussed in Section 6, our instead work assumes that all outcomes are observable and, importantly,524

that they are not affected by the human predictions. We also do not explicitly grapple with whether the525

human expert has an objective other than maximizing accuracy under a known metric (e.g., squared526

error). Though this is often a primary concern in many high-stakes settings – for example, ensuring527

that bail decisions are not only accurate but also nondiscriminatory – it is outside the scope of our528

work, and we refer the reader instead to Rambachan (2022) for further discussion.529

As discussed in section 1, another closely related theme is directly comparing human performance530

to that of an algorithm (Cowgill (2018), Dawes et al. (1989), Grove et al. (2000)), and developing531

learning algorithms which are complementary to human expertise (Madras et al. (2018), Raghu et al.532

(2019), Mozannar and Sontag (2020), Keswani et al. (2021), Agrawal et al. (2018) and Bastani et al.533

(2021)). A key design consideration when designing algorithms to complement human expertise534

involves reasoning about the ways in which humans may respond to the introduction of an algorithm,535

which may be strategic (e.g. Kleinberg and Raghavan (2018), Perdomo et al. (2020), Cen and536

Shah (2021), Hardt et al. (2015), Liu et al. (2020)) or subject to behavioral biases (Kleinberg et al.537

(2022)). These behaviors can make it challenging to design algorithms which work with humans to538

achieve the desired outcomes, as humans may respond to algorithmic recommendations or feedback539

in unpredictable ways.540

Conditional independence testing. We cast our setting as a special case of conditional independence541

testing, which has been well studied in the statistics community. For background we refer the reader to542

Dawid (1979). It has long been known that testing conditional independence between three (possibly543

high-dimensional) random variables is a challenging problem, and the recent result of Shah and Peters544

(2018) demonstrates that this is in fact impossible in full generality. Nonetheless, there are many545

methods for testing conditional independence under natural assumptions; perhaps the most popular546

are the kernel-based methods introduced by Fukumizu et al. (2004) and subsequently developed in547

Gretton et al. (2007) and Zhang et al. (2011), among others.548

Our work instead takes inspiration from the ‘knockoffs’ framework developed in Candès et al.549

(2016), Barber et al. (2018) and Barber and Candès (2019), as well as the closely related conditional550

permutation test of Berrett et al. (2018). These works leverage the elementary observation that,551

under the null hypothesis that (specialized to our notation) the outcome Y and prediction Ŷ are552

independent conditional on the observed data X , new samples from the distribution of Ŷ | X should553

be exchangeable with Ŷ . Thus, if we know – or can accurately estimate – the distribution of Ŷ | X ,554

it is straightforward to generate fresh samples (‘knockoffs’) which are statistically indistinguishable555

from the original data under the null hypothesis H0 : Y ?? Ŷ | X . Thus, if the observed data appears556

anomalous with respect to these knockoffs, this may provide us a basis on which to reject H0.557

Our work avoids takes inspiration from this framework, but avoids estimating the distribution of558

Ŷ | X by instead leveraging a simple nearest-neighbors style algorithm for generating knockoffs. In559

that sense, our technique builds upon the nearest-neighbors based estimator of Runge (2017), and is560
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nearly identical to the one-nearest-neighbor procedure proposed in the ‘model-powered’ conditional561

independence test of Sen et al. (2017). This algorithm is a subroutine in their more complicated562

end-to-end procedure, which involves training a model to distinguish between the observed data563

and knockoffs generated via swapping the ‘predictions’ (again specializing their general test to our564

setting) associated with instances which are as close as possible under the `2 norm. By contrast,565

we analyze a similar procedure under different smoothness assumptions which allow us to recover566

p-values that are entirely model free.567

B Proof of Theorem 1568

We establish the proof of Theorem 1 following the intuition presented in Section 3. Specifically, we569

first bound the type I error of ExpertTest in the idealized case where the data set contains L identical570

pairs of observations x = x0. We then refine this bound to handle the case, which is more likely in571

practice, that the pairs chosen are merely close together. Our final bound thus includes additional572

approximation error to account for the ‘similarity’ of the pairs – if we succeed in finding L pairs573

which are identical, we get nearly exact type I error control, whereas if we are forced to pair instances574

which are ‘far apart’, we incur additional approximation error. We formalize this intuition below.575

An idealized bound. We first establish that P(⌧K  ↵)  ↵+ 1
K+1 for any ↵ 2 [0, 1] when x = x0576

for every (x, x0) pair chosen by ExpertTest.577

To that end, we observe n data points (xi, yi, ŷi), i 2 [n]. Let L = {i2`�1, i2` : ` 2 [L]} denote578

the indices of the pairs chosen by ExpertTest, with (xi2`�1 , xi2`) for ` 2 [L] denoting the pairs579

themselves.580

By assumption, ExpertTest succeeds in finding identical pairs:581

xi2`�1 = xi2` , 8 ` 2 [L]. (14)
Therefore, from the definition (9) it follows that r((xi2`�1 , ŷi2`�1), (xi2` , ŷi2`)) = 1 for all ` 2 [L].582

As discussed in Section 3, ExpertTest will repeatedly generate n fresh data points, denoted by D̃, as583

follows. For each index i 2 [n]\L, i.e. those not corresponding to those selected in L pairs, we select584

exactly the observed data (xi, yi, ŷi).585

For i 2 L, we sample a data triplet as follows: for i 2 {i2`�1, i2`}, we let586

(xi2`�1, yi2`�1), (xi2`, yi2`) be the observed values but sample the corresponding ŷ values from587

{(ŷ2`�1, ŷ2`), (ŷ2`, ŷ2`�1)} with equal probability. That is, we swap the ŷ values associated with588

(xi2`�1, yi2`�1), (xi2`, yi2`) with probability 1
2 . We argue that this resampling process is implicitly589

generating a fresh, identically distributed dataset from the underlying distribution D conditioned on590

the following event F :591

F = {(xi, yi, ŷi) : i 2 [n]\L} [ {(xi, yi) : i 2 L} [ {(ŷi2`�1 , ŷi2`) _ (ŷi2` , ŷi2`�1) : ` 2 [L]}.
(15)

Why condition on F? As discussed in section 3, a straightforward test would involve simply592

resampling K fresh datasets from the underlying distribution DX ⇥DŶ |X ⇥DY |X and observing593

that, by definition, these datasets are distributed identically to the observed data D0 under H0 : Y ??594

Ŷ | X . While this would form the basis for a valid test along the lines of the one described in Section595

3, it requires knowledge of the underlying distribution which we are unlikely to have in practice.596

Thus, we instead condition on nearly everything in the observed data – the values and exact ordering597

of X and the values and exact ordering of Y , and the values of Ŷ up to a specific set of allowed598

permutations (those induced by swapping 0 or more paired ŷi2`�1 , ŷi2` values). This substantially599

simplifies the resampling problem, as we only need to reason about the correct ‘swap’ probability600

for each such pair. This can be viewed as an alternative factorization of the underlying distribution601

D under H0 – rather than sampling X ⇠ DX , Y ⇠ DY |X , Ŷ ⇠ DŶ |X , instead sample an event602

F ⇠ DF from the induced distribution over events of the form (15), and then sample Ŷ ⇠ DŶ |F .603

First, we show that conditional on F , the resampled dataset D̃ and the observed dataset D0 are indeed604

identically distributed under H0 : Y ?? Ŷ | X (that they are also independent, conditional on F , is605
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clear by construction). To see this, observe that for each ` 2 [L]:606

P((xi2`�1 , yi2`�1 , ŷi2`�1), (xi2` , yi2` , ŷi2`)) (16)
= P(xi2`�1)P(yi2`�1 | xi2`�1)P(ŷi2`�1 | xi2`�1)P(xi2`)P(yi2` | xi2`)P(ŷi2` | xi2`) (17)
= P(xi2`�1)P(yi2`�1 | xi2`�1)P(ŷi2` | xi2`�1)P(xi2`)P(yi2` | xi2`)P(ŷi2`�1 | xi2`) (18)
= P((xi2`�1 , yi2`�1 , ŷi2`), (xi2` , yi2` , ŷi2`�1)) (19)

In above, (17) follows from H0 and the assumption that the data are drawn i.i.d., and (18) follows607

from assumption (14) that xi2`�1 = xi2` . By construction, the events in (16) and (19) are the only608

two possible outcomes after conditioning on F , and this simple argument shows that in fact they are609

equally likely.610

Thus, let D̃1, . . . , D̃K be K independent and identically distributed datasets generated by the above611

procedure. Let D̃0 be one additional sample from this distribution, which we showed was distributed612

identically to D0 under the idealized assumption (14).613

As discussed in Section 3, for any real-valued function F that maps each dataset to R, we have614

⌧K =
1

K

KX

k=1

[F (D̃0) . F (D̃k)] (20)

where we use definition of [· . ·] as in (7).615

Because D̃0, . . . , D̃K are i.i.d., and thus exchangeable, it follows that 1
K

PK
k=1 [F (D̃0) . F (D̃k]616

is uniformly distributed {0, 1
K , . . . , 1}. Therefore, with a little algebra it can be verified that for any617

↵ 2 [0, 1], ⌧K satisfies618

PD̃0,...,D̃K |F (⌧K  ↵)  ↵+
1

K + 1
. (21)

Because D0 and D̃0 are independent and identically distributed under (14), the same holds if we619

replace D̃0 with D0. Thus, ExpertTest provides nearly exact type I error control in the case that620

the idealized assumption (14) holds. This result will serve as a useful building block, as we’ll now621

proceed to relax this assumption and bound the type I error of ExpertTest in terms of the total622

variation distance between D̃0 and D0.623

Fixing the approximation. D̃1, . . . , D̃K are synthetically generated datasets that are independent624

and identically distributed. The argument above replaced the observed dataset D0 with a resam-625

pled ‘idealized’ dataset D̃0, which is also independent and identically distributed with respect to626

D̃1, . . . , D̃K , and then used this fact to demonstrate that PD̃0,...,D̃K |F (⌧  ↵)  ↵ + 1
K+1 . If the627

idealized assumption (14) holds, replacing D0 with D̃0 is immaterial as we showed the two are628

identically distributed conditional on F . Of course, this assumption will not hold in general, and this629

is what we seek to correct next.630

Let D̄0 ⇠ D·|F be a random variable distributed according to the true underlying distribution D,631

conditional on the event F . The observed data D0 can be interpreted as one realization of this632

random variable. One way to quantify the excess type I error incurred by using D̃0 in place of D0633

is to bound the total variation distance between the joint distributions of (D̃0, . . . D̃K) and that of634

(D̄0, D̃1, . . . D̃K). Specifically, it follows from the definition of total variation distance that:635

PD̄0,...,D̃K |F (⌧K  ↵)  PD̃0,...,D̃K |F (⌧K  ↵) + TV(PD̄0,...,D̃K |F ,PD̃0,...,D̃K |F ), (22)

where TV(PD̄0,...,D̃K |F ,PD̃0,...,D̃K |F ) denotes the total variation distance between its arguments.636

Due to the independence of the resampled datasets, this simplifies to:637

TV(PD̄0,...,D̃K |F ,PD̃0,...,D̃K |F ) = TV(PD̄0|F ,PD̃0|F ). (23)
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Therefore, we need only bound the total variation distance between PD̄0|F and PD̃0|F to conclude638

the proof.6639

As defined in (11), the "⇤n,L provides us with a way of bounding the total variation distance between640

the distribution of D̄0 and D̃0. To see this, observe that the distributions of D̃0 and D̄0, conditioned641

on F , can be described as follows. To construct D̃0, we can imagine flipping L fair coins to decide642

the assignment of ŷi in each of the (ŷi2`�2 ŷi2` ) pairs; if it comes up heads, we swap the observed pair643

(ŷi2`�2 ŷi2` ) and if it comes up tails we do not. The observed (xi, yi) as well as ŷi for i 62 L are set in644

D̃0 as they are observed in D0.645

D̄0 is constructed similarly, but we instead flip a coin with bias (1+r((xi2`�1 , ŷi2`�1), (xi2` , ŷi2`)))
�1646

to decide the assignment of (ŷi2`�2 ŷi2` ) – again, heads indicates that we swap the observed ordering,647

and tails indicates that we do not.648

By construction, the distributions of D̄0 and D0 are identical conditioned on F , as649

r((xi2`�1 , ŷi2`�1), (xi2` , ŷi2`)) denotes the true relative odds of observing each of the two possible650

(x, ŷ) pairings. In contrast, the distribution of D̃0 is different, as it was sampled using the simplifying651

assumption (14) – in particular, D̃0 is generated assuming r((xi2`�1 , ŷi2`�1), (xi2` , ŷi2`)) = 1!652

The difference between the biases of these coins is bounded above by "⇤n,L. We’ll use this observation,653

along with the following lemma, to complete the proof.654

Lemma 3 (Bounding the total variation distance between i.i.d. coin flips) Let i 2 [L] index a655

sequence of i.i.d. coin flips u1 . . . uL each with bias pi, and v1 . . . vL be a sequence of i.i.d. coin flips656

with bias qi. Then we can show:657

TV((u1 . . . uL), (v1 . . . vL))  1� (1�max
i

|pi � qi|)L (24)

We defer the proof of lemma 3 to Appendix D. This implies that the total variation distance between658

D̄0 and D̃0 is bounded above by 1� (1� "⇤n,L)
L. This, along with (21), (22) and (23) concludes the659

proof of Theorem 1.660

Corollary 3.1 (Weaker type I error bound)

P(⌧  ↵)  ↵+ "⇤n,LL+
1

K + 1
(25)

Corollary 3.1 is a weaker bound than the one given in Theorem 1, but is easier to interpret and661

manipulate. We will make use of this fact in the following section; the proof is an immediate662

consequence of theorem 1 and provided in Appendix D for completeness.663

C Proof of Theorem 2664

To establish theorem 2, we will argue that "⇤n,L goes to 0 at a rate of O(n� 1
d ). This implies that,665

provided L = o(n
1
d ), the excess type I error established in theorem 1 is o(1) as desired. To do this,666

we first show that each pair (xi2`�1 , xi2`) chosen by ExpertTest will be close under the `2 norm667

(lemmas 4 and 5 below). We then leverage the smoothness assumption (12) to demonstrate that this668

further implies that "⇤n,L concentrates around 0. For clarity we state auxiliary lemmas inline, and669

defer proofs to Appendix D.670

Finding pairs which are close under the `2 norm.671

Let ML to be the set of matchings of size L on x1...xn; i.e. each element of ML is a set of L disjoint672

(x, x0) pairs. Let m⇤
L be the ‘optimal’ matching satisfying:673

m⇤
L 2 argmin

z2ML

max
(x,x0)2z

kx� x0k2. (26)

6This technique is inspired by the proof of type I error control given for the Conditional Permutation Test in
Berrett et al. (2018); see Appendix A.2 of their work for details
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That is, m⇤
L minimizes the maximum distance between any pair of observations in a mutually disjoint674

pairing of 2L observations. Let675

d⇤L = max
(x,x0)2m⇤

L

kx� x0k2. (27)

That is, the smallest achievable maximum `2 distance over all matchings of size L. We’ll first show676

that:677

Lemma 4 (Existence of an optimal matching) If X = [0, 1]d for some d � 1,678

d⇤n
4
= O

⇣
n� 1

d

⌘
(28)

with probability 1.679

That is, there exists a matching of size at least n
4 such the maximum pairwise distance in this680

matching scales like O(n� 1
d ). Lemma 4 demonstrates the existence of a sizable matching in which681

the maximum pairwise distance indeed tends to 0.7 We next demonstrate that this approximates the682

optimal matching, at the cost of a factor of 2 on L.683

Lemma 5 (Greedy approximation to the optimal matching)
max
l2[L]

||x2l�1 � x2l||2  d⇤2L (29)

That is, the maximum distance between any of the L pairs of observations chosen by our algorithm684

will be no more than the maximum such distance in the optimal matching of size 2L.685

Corollary 5.1 For L  n
8 , we have:686

max
l2[L]

||x2l�1 � x2l||2 = O
⇣
n� 1

d

⌘
(30)

This follows immediately by invoking lemma 4 to bound the right hand side of lemma 5. Corollary687

5.1 demonstrates that as n grows large, the maximum pairwise `2 distance between L greedily chosen688

pairs will go to zero at a rate of O
⇣
n� 1

d

⌘
provided L  n

8 . We now show that the smoothness689

condition (12) further implies that, under these same conditions, we recover the asymptotic validity690

guarantee (13).691

From approximately optimal pairings to asymptotic validity.692

With the previous lemmas in place, the proof of theorem 2 is straightforward. Plugging the smoothness693

condition (12) into the definition of the odds ratio (9) yields the following:694

For all (x2`�1, y2`�1), (x2`, y2`),695

r((x2`�1, y2`�1), (x2`, y2`)) 2


1

(1 + C||x2`�1 � x2`||2)2
, (1 + C||x2`�1 � x2`||2)2

�
(31)

Where C > 0 is the same constant in the definition of the smoothness condition (12). Corollary 5.1696

shows that ||x2`�1� x2`||2 = O
⇣
n� 1

d

⌘
, so (31) immediately implies that "⇤n,L, defined in (11), also697

goes to zero at a rate of O
⇣
n� 1

d

⌘
. Thus, if we take L to be a constant and K !1, the type I error698

given in (10) can be rewritten as699

P
�
⌧K  ↵

�
 ↵+ (1� (1� "⇤n,L)

L) +
1

K + 1
(32)

 ↵+ "⇤n,LL+
1

K + 1
(33)

= ↵+O
⇣
n� 1

d

⌘
(34)

7In principle, we could find this optimal matching by binary searching for d⇤L using the non-bipartiate
maximal matching algorithm of Edmonds (1965); for simplicity, our implementation uses a greedy matching
strategy instead.
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Where (33) follows from corollary 3.1. If we instead allow L to scale like o(n
1
d ) (still taking700

K !1), (33) implies:701

P
�
⌧K  ↵

�
 ↵+ o(1) (35)

which concludes the proof of theorem 2.702

D Proofs of auxiliary lemmas703

Proof of Lemma 3.704

Recall that one definition of the total variation distance between two distributions P and Q is to705

consider the set of couplings on these distributions. In particular, the total variation distance can be706

equivalently defined as:707

TV(P,Q) = inf
(X,Y )⇠C(P,Q)

P(X 6= Y ) (36)

Where C(·, ·) is the set of couplings on its arguments. Consider then the following straightforward708

coupling on X ..= (u1 . . . uL) and Y ..= (v1 . . . vL): draw L random numbers independently709

and uniformly from the interval [0, 1]. Denote these by c1 . . . cL. Let ui = [ci  pi], and710

vi = [ci  qi]. It’s clear that X and Y are marginally distributed according to p1 . . . pL and711

q1 . . . qL, respectively. Furthermore, the probability that ui 6= vi is |pi � qi| by construction. Thus712

we have:713

P(X 6= Y ) = 1� P(X = Y ) = 1�⇧i2[L](1� |pi � qi|)  1� (1�max
i

|pi � qi|)L (37)

This concludes the proof.714

Proof of Corollary 3.1.715

In the preceding proof of lemma 3, observe that we could have instead written:716

P(X 6= Y ) =
[

i2[L]

{vi 6= ui} |{z}
union bound

X

i2[L]

|pi � qi|  Lmax
i2[L]

|pi � qi| (38)

Specializing this result to the definitions D̄0 and D̃0 (and, in particular, the definition of "⇤n,L)717

completes the proof.718

Proof of Lemma 4.719

Our proof will proceed via a covering argument. In particular, we cover the feature space [0, 1]d with720

a set of non-overlapping d-dimensional hypercubes, each of which has edge length 0 < b < 1, and721

show that sufficiently many pairs (x, x0) must lie in the same ‘small’ hypercube. To that end, let722

C = {c1 . . . ck} be a set of hypercubes of edge length b with the following properties:723

8c 2 C, c ✓ [�b, 1 + b]d (39)
8c, c0 2 C, c \ c0 = ; (40)
8x 2 D0, 9c 2 C | x 2 c (41)

Where D0 is the observed data. It’s clear that such a covering C must exist, for example by arranging724

c1 . . . ck in a regularly spaced grid which cover [0, 1]d (though note that per condition (39), some of725

these ‘small’ hypercubes may extend outside [0, 1]d if b does not evenly divide 1). Such a covering726

may be difficult to index as care must be exercised around the boundaries of each small hypercube;727

however, as we only require the existence of such a covering, we ignore these details. We now state728

the following elementary facts:729

|C|  b (1 + 2b)d

bd
c (42)

8c 2 C, x, x0 2 c, ||x� x0||2  b
p
d (43)
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Where (42) follows because the volume of each c 2 C is bd, and the total volume of all such730

hypercubes cannot exceed the volume of the containing hypercube [�b, 1 + b]d, which gives us an731

upper bound on the size of the cover C. Furthermore, (43) tells us that for any (x, x0) which lie in the732

same ‘small’ hypercube c, we have kx� x0k2  b
p
d.733

Let nc
..= |{xi | xi 2 c}| denote the number of observations contained in each small hypercube734

c 2 C.735

Corollary 5.2 For any c 2 C, there exist at least bnc
2 c disjoint pairs (x, x0) 2 c such that ||x �736

x0||2  b
p
d.737

With these preliminaries in place, we’ll proceed to prove lemma 4. To do this, we’ll first state one738

additional auxiliary lemma.739

Let Na,b
..= ad

bd � b
ad

bd c, an upper bound on the number of non-overlapping ‘small’ hypercubes with740

edge length b which can fit into [0, a]d. We’ll show for any z > 0, with b ..= zp
d
, a ..= 1 + 2b, we741

have:742

Lemma 6 (Pairwise distance in terms of packing number)

n � 2Na,b ) 9
n

4
pairs satisfying ||x� x0||2  z (44)

That is, the pairwise distance between the closest set of n
4 pairs (half the observed data in total) can743

be written in terms of the appropriately parameterized covering number. We defer the proof of this744

lemma to the following section. For now, we simply plug in the definition of Na,b and rearrange to745

recover:746

n � 2Na,b = 2

⇣
1 + 2 zp

d

⌘d

⇣
zp
d

⌘d ) 2
1
d

p
d

n
1
d � 21+

1
d

 z (45)

Recall that z is the maximum distance between any pairs (x, x0) contained in the same small747

hypercube with edge length zp
d

. The preceding argument holds for all z > 0 which satisfy (45), so in748

particular, it holds for749

z⇤ ..=
2

1
d

p
d

n
1
d � 21+

1
d

. (46)

z⇤ is the maximum pairwise distance corresponding to one possible matching on n
4 (x, x0) pairs, so

this further implies that there exists a matching M of size n
4 such that:

max
(x,x0)2M

||x� x0||2 
2

1
d

p
d

n
1
d � 21+

1
d

= O(n� 1
d )

With probability 1. Thus, it follows that the maximum distance between any pair in the optimal750

matching d⇤n
4

also satisfies:751

d⇤n
4
= O

 
2

1
d

p
d

n
1
d � 21+

1
d

!
= O

⇣
n� 1

d

⌘

With probability 1, as desired. This establishes the existence of a matching of up to L = n
4 disjoint752

pairs (x, x0) 2 [0, 1]d such that the maximum distance between any such pair scales like O
⇣
n� 1

d

⌘
.753

We also consider the case where instead of X ..= [0, 1]d, we instead have P
�
X 2 [0, 1]d

�
� 1� � for754

some � 2 (0, 1). For example, this will capture the case where X is a (appropriately re-centered and755

re-scaled) multivariate Gaussian. In this case, we provide a corresponding high probability version of756

lemma 4.757
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Corollary 6.1 Suppose instead of X ..= [0, 1]d, we have for some � 2 (0, 1):758

P(X 2 [0, 1]d) � 1� � (47)

Define m ..= (1� �)2n759

We can then show:760

P
 
d⇤m

4
 2

1
d

p
d

m
1
d � 21+

1
d

!
� 1� e�

�2(1��)n
2 (48)

That is, we can still achieve a constant factor approximation to the optimal matching in Lemma 4761

with probability that exponentially approaches 1.762

Proof of Corollary 6.1763

Define the set of points which falls in [0, 1]d as follows:764

S0
..= {Xi | Xi 2 [0, 1]d} (49)

and765

n0
..= |S0| (50)

It is clear that in this setting, the proof of lemma 4 holds if we simply replace n with n0, the766

realized number of observations which fall in [0, 1]d. However, n0 is now a random quantity which767

follows a binomial distribution with mean (1 � �)n (recall that we assume (xi, yi, ŷi) are drawn768

i.i.d. throughout). Thus, all that remains is to bound n0 away from 0, which we can do via a simple769

Chernoff bound:770

P(n0  (1� �)2n)  e�
�2(1��)n

2 (51)
Thus, it follows that771

P(n0 � (1� �)2n) � 1� e�
�2(1��)n

2 (52)

Thus, we have shown n0 � m with the desired probability. It is clear that we only require a lower772

bound on n0 to recover the result of Theorem 4, as additional observations which fall in [0, 1]d can773

only improve the quality of the optimal matching d⇤m
4

.774

Proof of Lemma 5775

We will show that the procedure in ExpertTest which greedily pairs the closest remaining pair of776

points L times will always be able to choose at least one of the pairs in an optimal matching of size777

2L. Intuitively, this is because each pair (x, x0) chosen by ExpertTest can only ‘rule out’ at most two778

pairs (x, x00), (x0, x000) in any optimal matching of size 2L. Thus, our greedy algorithm for choosing779

L pairs can perform no worse than an optimal matching of size 2L, the sense of minimizing the780

maximum pairwise distance.781

Let m⇤
2L be an optimal matching of size 2L in the sense of (26). Then suppose towards contradiction782

that:783

max
l2[L]

||x2l�1 � x2l||2 > d⇤2L (53)

Where d⇤2L is the smallest achievable maximum distance for any matching of size 2L as in (27).784

Finally, let lm ..= argminl2[L] ||x2l�1 � x2l||2 > d⇤2L; i.e. the first pair which is chosen by785

ExpertTest that violates (53). Because pairs are chosen greedily to minimize `2 distance, and m⇤
2L786

is a matching of size 2L where all pairs are separated by at most d⇤2L under the `2 norm, it must be787

that none of the pairs which make up m⇤
2L were available to ExpertTest at the lm-th iteration. In788

particular, at least one element of every (x, x0) pair in m⇤
2L must have been selected on a previous789

iteration:790

8(x, x0) 2 m⇤
2L, x 2 {x1 . . . x2lm�2} _ x0 2 {x1 . . . x2lm�2} (54)
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As m⇤
2L contains 2L disjoint pairs – 4L observations total – this implies that 2lm � 2 � 2L )791

lm � 1 � L ) lm > L. This is a contradiction, as ExpertTest only chooses L pairs, so lm only792

ranges in [1, L]. This completes the proof.793

Corollary 6.2 Validity in finite samples794

Theorem 2 implies that we can achieve a bound on the excess type one error in finite samples if we795

knew the constant C in (12). In particular, let796

m⇤ ..= max
`2[L]

||x2`�1 � x2`||2 (55)

✏⇤ ..= max
r2[(1+Cm⇤)�2,(1+Cm⇤)2]

����
1

r + 1
� 1

2

���� (56)

Then (10) implies that we can always construct a valid (if underpowered) test at exactly the nominal797

size ↵ by updating our REJECT threshold to798

↵�
�
1� (1� ✏⇤)L

�
� 1

K + 1

Proof of lemma 6799

let C ..= {c1...ck} denote any set of k ‘small’ nonoverlapping hypercubes of edge length b satisfying800

properties (39), (40) and (41). As discussed in the proof of lemma 4, each element of C is not801

guaranteed to lie strictly in [0, 1]. Rather, each c 2 C must merely intersect [0, 1]d, implying that802

each element of the cover is instead contained in the slightly larger hypercube [�b, 1 + b]d. As in the803

proof of lemma 4, we’ll again let nc denote the number of observations xi which lie in some c 2 C.804

By Corollary 5.2, we have that bnc
2 c pairs in each c 2 C will satisfy ||x� x0||2  b

p
d = z. Thus805

what’s left to show is that:806

n � 2Na,b )
X

j2[k]

b
ncj

2
c � n

4

We can see this via the following argument:807

X

j2[k]

b
ncj

2
c �

X

j2[k]

✓
ncj

2
� 1

2

◆
(57)

=
n

2
� k

2
(58)

� n

2
� Na,b

2
(59)

� n

2
� n

4
=

n

4
(60)

Where (59) follows from (42) and the definition of Na,b, and (60) follows because n � 2Na,b by808

assumption. This completes the proof.809

E Omitted Details from Section 5810

E.1 Identifying relevant patient encounters and classifying outcomes811

As described in Section 5, we consider a set of 3617 patients who presented with signs or symptoms812

of acute gastrointestinal bleeding at the emergency department at a large quaternary academic hospital813

system from January 2014 to December 2018. These patient encounters were identified using a814

database mapping with a standardized ontology (SNOMED-CT) and verified by manual physician815

chart review. Criteria for inclusion were the following: any text that identifies acute gastrointestinal816

bleeding for hematemesis, melena, hematochezia from either patient report or physical exam findings817
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(which were considered equally valid for the purposes of inclusion). Exclusion criteria were the818

following: patients with other reasons for overt bleeding symptoms (e.g. epistaxis) or missingness in819

input variables required to calculate the Glasgow-Blatchford Score.820

This identified a set of 3627 patients, of which a further 10 were removed from consideration due to821

unclear emergency department disposition (neither Admit nor Discharge). As described in Section822

5, we record an adverse outcome (Y = 1) for admitted patients who required some form of hemostatic823

intervention (excluding a diagnostic endoscopy or colonoscopy), or patients who are readmitted or824

die within 30 days. We record an outcome of 0 for all other patients.825

The use of readmission as part of the adverse event definition is subject to two important caveats.826

First, we are only able to observe patients who are readmitted within the same hospital system. Thus,827

although the hospital system we consider is the dominant regional health care network, it is possible828

that some patients subseqeuently presented elsewhere with signs or symptoms of AGIB; such patients829

would be incorrectly classified as not having suffered an adverse outcome. Second, we only record an830

outcome of 1 for patients who are readmitted with signs or symptoms of AGIB, subject to the same831

inclusion criteria defined above. Patients who are readmitted for other reasons are not recorded as832

having suffered an adverse outcome.833

E.2 The special case of binary outcomes and predictions834

In our experiments we define the loss measure F (D) ..= 1
n

P
i [yi 6= ŷi], but it’s worth remarking835

that this is merely one choice within a large class of natural loss functions for which ExpertTest pro-836

duces identical results when Y, Ŷ are binary. In particular, observe that a swap of (y1, ŷ1), (y2, ŷ2)837

can only change the value of F (·) if y1 6= y2 and ŷ1 6= ŷ2 (we’ll assume throughout that all observa-838

tions contribute equally to the loss; i.e. it is invariant to permutations of the indices i 2 [n]). This839

implies that there are only 22 out of 24 possible configurations of (y1, ŷ1, y2, ŷ2) where a swap can840

change the loss at all. Of these, two configurations create a false negative and a false positive in the841

synthetic data which did not exist in the observed data:842

(y1 = 1, ŷ1 = 1, y2 = 0, ŷ2 = 0)| {z }
original data

!
swap

(y1 = 1, ŷ1 = 0, y2 = 0, ŷ2 = 1)| {z }
synthetic data

(y1 = 0, ŷ1 = 0, y2 = 1, ŷ2 = 1) !
swap

(y1 = 0, ŷ1 = 1, y2 = 1, ŷ2 = 0)

The other two configurations which change the loss are symmetric, in that a swap removes both a843

false negative and false positive that exists in the observed data:844

(y1 = 0, ŷ1 = 1, y2 = 1, ŷ2 = 0) !
swap

(y1 = 0, ŷ1 = 0, y2 = 1, ŷ2 = 1)

(y1 = 1, ŷ1 = 0, y2 = 0, ŷ2 = 1) !
swap

(y1 = 1, ŷ1 = 1, y2 = 0, ŷ2 = 0)

Thus, for any natural loss function which is strictly increasing in the number of mistakes
P

i [yi 6=845

ŷi], the first two configurations of (y1, ŷ1, y2, ŷ2) will induce swaps which strictly increase the loss,846

while the latter two will induce swaps that strictly decrease the loss. This means that for a given set of847

L pairs, we can compute the number of swaps which would increase (respectively, decrease) the loss848

for any function in this class of natural losses. In particular, this class includes loss functions which849

may assign arbitrarily different costs to false negatives and false positives. Thus, in the particular850

context of assessing physician triage decisions, our results are robust to variation in the way different851

physicians, patients or other stakeholders might weigh the relative cost of false negatives (failing to852

hospitalize patients who should have been admitted) and false positives (hospitalizing patients who853

could have been discharged to outpatient care).854

F Numerical Experiments855

We first elaborate here on the example 1 presented in the introduction. Consider the following stylized856

data generating process:857
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Example: experts can add value despite poor performance.858

Let X,U, ✏1, ✏2 be independent random variables distributed as follows:859

X ⇠ U([�2, 2]), U ⇠ U([�1, 1]), ✏1 ⇠ N (0, 1), ✏2 ⇠ N (0, 1)

Where U(·) and N (·, ·) are the uniform and normal distribution, respectively. Suppose the true data860

generating process for the outcome of interest Y is861

Y = X + U + ✏1

Suppose a human expert constructs a prediction Ŷ which is intended to forecast Y and can be862

modeled as:863

Ŷ = sign(X) + sign(U) + ✏2

Where sign(X) ..= [X > 0]� [X < 0].864

We compare this human prediction to that of an algorithm f̂(·) which can only observe X , and865

correctly estimates866

f̂(X) = E[Y | X] = X

As described in the introduction, we use this example to demonstrate that ExpertTest can detect867

that the forecast Ŷ is incorporating the unobserved U even though the accuracy of Ŷ is substantially868

worse than that of f̂(X). In particular, we consider the mean squared error (MSE) of each of these869

predictors:870

Algorithm MSE ..=
1

n

X

i

(Yi � f̂(Xi))
2

Human MSE ..=
1

n

X

i

(Yi � Ŷi)
2

We’ll show below that the Algorithm MSE is substantially smaller than the Human MSE. However,871

we may also wonder whether the performance of the human forecast Ŷ is somehow artificially872

constrained by the the relative scale of Ŷ and Y , as the sign(·) operation restricts the range of Ŷ .873

For example, a forecaster who always outputs Ŷ = Y
100 is perfectly correlated with the outcome but874

will incur very large squared error; this is a special case of the more general setting where human875

forecasts are directionally correct but poorly calibrated. To test this hypothesis, we can run ordinary876

least squares regression (OLS) of Y on Ŷ and compute the squared error of this rescaled prediction.877

It is well known OLS estimates the optimal linear rescaling with respect to squared error, and we878

further use the in sample MSE of this rescaled prediction to provide a lower bound on the achievable879

loss. In particular, let:880

(�⇤, c⇤) ..= min
�,c2R

||Y � �Ŷ � c||22 (61)

Rescaled Human MSE ..=
1

n

X

i

(Yi � �⇤Ŷi � c⇤)2 (62)

In Table 3 we report the mean squared error (plus/minus two standard deviations) over 100 draws881

of n = 1000 samples from the data generating process described above. As we can see, both the882

original and rescaled human forecasts substantially underperform f̂(·).883

Table 3: Expert vs Algorithm Performance
Algorithm MSE Human MSE Rescaled Human MSE

1.33 ± 0.12 2.67 ± 0.24 1.92 ± 0.16
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We now assess the power of ExpertTest in this setting by repeatedly simulating n = 1000 draws884

of (X,U, ✏1, ✏2) along with the associated outcomes Y ..= X + U + ✏1 and expert predictions885

Ŷ ..= sign(X) + sign(U) + ✏2. We sample 100 datasets in this manner, and run ExpertTest on each886

one with L,K = 100, and the distance metric m(x, x0) ..=
p
(x� x0)2. The distribution of p-values887

⌧1...⌧100 is plotted in Figure 1.888

Figure 1: distribution of ⌧ is sharply nonuniform when the expert incorporates unobserved information
U in the toy example. The vertical red line indicates a critical threshold of ↵ = .05, and the dashed
line traces a uniform distribution.

We see that ExpertTest produces a highly nonuniform distribution of the p-value ⌧ , and rejects the889

null hypothesis 94% of the time at a critical value of ↵ = .05. To assess whether this power comes at890

the expense of an inflated type I error, we also run ExpertTest with both X and U ‘observed’; in891

particular, suppose the distance measure was instead m((x, u), (x0, u0)) =
p
(x� x0)2 + (u� u0)2892

with everything else defined as above. The distribution of ⌧ in this setting is again plotted in Figure 2.893

Figure 2: distribution of ⌧ is approximately uniform when the expert does not incorporate unobserved
information in the toy example. The vertical red line indicates a critical threshold of ↵ = .05, and the
dashed line traces a uniform distribution.

When both X and U are observed, and thus the null hypothesis should not be rejected, we instead see894

that we instead get an approximately uniform distribution of ⌧ with a false discovery rate of only .03895

at a critical value of ↵ = .05. Thus, the power of ExpertTest to detect that the synthetic expert is896

incorporating some unobserved information U does not come at the expense of inflated type I error,897

at least in this synthetic example.898
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Assessing the power of ExpertTest899

We now present additional simulations to highlight how the power of ExpertTest scales with the900

number of pairs L and the sample size n in a more general setting. In particular, we consider a simple901

synthetic dataset (xi, yi, ŷi), i 2 [n] ⌘ {1, . . . , n} where x1...xn = [1, 1, 2, 2, ...n2 ,
n
2 ]

0 and y1...yn902

is the alternating binary string [0, 1, 0, 1 . . . 0, 1]0 (we consider only even n for simplicity). This903

guarantees that each of the L pairs chosen are such that (x2`�1 = x2`) and y2`�1 6= y2`. Importantly,904

it’s also clear that x is uninformative about the true outcome y – if the expert can perform better than905

random guessing, it must be by incorporating some unobserved signal U .906

We model this unobserved signal by an ‘expertise parameter’ � 2 [0, 1
2 ]. In particular, for each907

pair (y2`�1, y2`) for ` 2 [1 . . . n
2 ], we sample (ŷ2`�1, ŷ2`) such that (ŷ2`�1, ŷ2`) = (y2`�1, y2`) with908

probability 1
2 + � and (y2`, y2`�1) otherwise. Intuitively, � governs the degree to which the expert909

predictions Ŷ incorporate unobserved information – at � = 0, we model an expert who is randomly910

guessing, whereas at � = 1
2 the expert predicts the outcome with perfect accuracy.911

First, we consider the case of n 2 {200, 600, 1200} and fix L at n
8 as suggested by the proof of912

Theorem 2. For each of these cases, we examine how the discovery rate scales with the expertise913

parameter � 2 {0, .05....45, .50}. In particular, we choose a critical threshold of ↵ = .05 and914

compute how frequently ExpertTest rejects H0 over 100 independent draws of the data for each915

value of �. These results are plotted below in Figure 3.916

Figure 3: The power of ExpertTest as a function of sample size n and expertise parameter �. The
horizontal dashed line corresponds to a power of 80%

Unsurprisingly, the power of ExpertTest depends critically on the sample size – at n = 1200,917

ExpertTest achieves 80% power in rejecting H0 when the expert only performs modestly better than918

random guessing (� ⇡ .1). In contrast, at n = 200, ExpertTest fails to achieve 80% power until919

� ⇡ .25 – corresponding to an expert who provides the correct predictions over 75% of the time even920

when the observed x is completely uninformative about the true outcome.921

Next we examine how the power of ExpertTest scales with L. We now fix n = 600 and let � = .2922

to model an expert who performs substantially better than random guessing, but is still far from923

providing perfect accuracy. We then vary L 2 {20, 40 . . . 200} and plot the discovery rate (again at a924

critical value of ↵ = .05, over 500 independent draws of the data) for each choice of L. These results925

are presented below in Figure 4.926

As expected, we see that power is monotonically increasing in L, and asymptotically approaching927

1. With � = .2, we see that ExpertTest achieves power in the neighborhood of only 50% with928

L = 20 pairs, but sharply improves to approximately 80% power once L increases to 40. Beyond929

this threshold we see that there are quickly diminishing returns to increasing L.930
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Figure 4: The power of ExpertTest as a function of L, with n = 600, � = .2. The horizontal dashed
line corresponds to a power of 80%

Excess type I error of ExpertTest931

Recall that, per Theorem 1, ExpertTest becomes more likely to incorrectly reject H0 as L increases932

relative to n. In particular, larger values of L will force ExpertTest to choose (x, x0) pairs which are933

farther apart under any distance metric m(·, ·), and thus induce larger values of "⇤n,L as defined in934

(11). Furthermore, even for fixed "⇤n,L> 0, the type one error bound given in Theorem 1 degrades935

with L. We empirically investigate this phenomenon via the following numerical simulation.936

First, let X = (X1, X2, X3) ⇢ R3 be uniformly distributed over [0, 10]3. Let Y = X1+X2+X3+✏1937

and Ŷ = X1 +X2 +X3 + ✏2, where ✏1, ✏2 are independent standard normal random variables. In938

this setting, it’s clear that H0 : Y ?? Ŷ | X holds.939

We repeatedly sample n = 500 independent observations from this distribution over (X,Y, Ŷ )940

and run ExpertTest for each L 2 {25, 50 . . . 250}. We let K = 50 and m(x, x0) ..= ||x � x0||22941

be the `2 distance. We let the loss function F (·) be the mean squared error of Ŷ with respect to942

Y . For each scenario we again choose a critical threshold of ↵ = .05, and report how frequently943

ExpertTest incorrectly rejects the null hypothesis over 50 independent simulations in Figure 5.944

Figure 5: The type I error rate of ExpertTest as a function of L, with n = 500 and a critical threshold
of .05. The horizontal dashed line corresponds to the nominal false discovery rate of .05
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As we can see, the type I error increases sharply as a function of L, and ExpertTest incurs a false945

discovery rate of 100% at the largest possible value of L = n
2 ! This suggests that significant care946

should be exercised when choosing the value of L, particularly in small samples, and responsible use947

of ExpertTest will involve leveraging domain expertise to assess whether the pairs chosen are indeed948

‘similar’ enough to provide type I error control.949

G Pseudocode for ExpertTest950

In this section we provide pseudocode for ExpertTest. Inputs D0, L,K,↵, F (·),m(·, ·) are as951

defined in Section 3.952

ExpertTest(D0, L,K,↵, F (·),m(·, ·))
X0  {x | (x, ·, ·) 2 D0} . initialize set of remaining observations
P  ; . initialize set of paired predictions

for ` = 1 : L do
(x2`�1, x2`) argmin

(x,x0)
m(x, x0) . find closest remaining pair, breaking ties arbitrarily

X`  X`�1 \ {x2`�1, x2`}
P  P [ {(ŷ2`�1, ŷ2`)} . save predictions associated with closest remaining pair

end for

f0  F (D0) . calculate observed loss

for k = 1 : K do
Dk  swap(D0, P,

1
2 ) . independently swap each (ŷ2`�1, ŷ2`) 2 P with equal probability

fk  F (Dk) . calculate synthetic loss
end for

⌧  1
K

P
k [fk . f0] . calculate quantile of observed loss, breaking ties at random

if ⌧  ↵ then . if ⌧  ↵, H0 is rejected with p-value ↵+ 1
K+1

REJECT
end if
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