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Abstract

High-stakes prediction tasks (e.g., patient diagnosis) are often handled by trained
human experts. A common source of concern about automation in these settings
is that experts may exercise intuition that is difficult to model and/or have access
to information (e.g., conversations with a patient) that is simply unavailable to a
would-be algorithm. This raises a natural question whether human experts add
value which could not be captured by an algorithmic predictor.
We develop a statistical framework under which we can pose this question as a
natural hypothesis test. Indeed, as our framework highlights, detecting human
expertise is more subtle than simply comparing the accuracy of expert predictions
to those made by a particular learning algorithm. Instead, we propose a simple
procedure which tests whether expert predictions are statistically independent from
the outcomes of interest after conditioning on the available inputs (‘features’).
A rejection of our test thus suggests that human experts may add value to any
algorithm trained on the available data, and has direct implications for whether
human-AI ‘complementarity’ is achievable in a given prediction task.
We highlight the utility of our procedure using admissions data collected from
the emergency department of a large academic hospital system, where we show
that physicians’ admit/discharge decisions for patients with acute gastrointestinal
bleeding (AGIB) appear to be incorporating information that is not available to a
standard algorithmic screening tool. This is despite the fact that the screening tool
is arguably more accurate than physicians’ discretionary decisions, highlighting
that – even absent normative concerns about accountability or interpretability –
accuracy is insufficient to justify algorithmic automation.

1 Introduction

Progress in machine learning, and in algorithmic decision aids more generally, has raised the prospect
that algorithms may complement or even automate human decision making in a wide variety of
settings. If implemented carefully, these tools have the potential to improve accuracy, fairness,
interpretability and consistency in many prediction and decision tasks. However, a primary challenge
in nearly all such settings is that some of the relevant inputs – ‘features,’ in machine learning parlance –
are difficult or even impossible to encode in a way that an algorithm can easily consume. For example,
doctors use direct conversations with patients to inform their diagnoses, and sports franchises employ
professional scouts to qualitatively assess prospective players. One can think of these experts as
incorporating information which is practically difficult to provide to an algorithm, particularly as
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tabular data, or perhaps exercising judgment which is infeasible to replicate with a computational
process. Either perspective presents a challenge when deploying predictive algorithmic tools, as any
such model will necessarily fail to incorporate at least some of the information that a human expert
might consider. Thus, as we seek to use algorithms to improve decision-making, we must answer the
following question:

For a given prediction task, do human experts add value which could not be captured by any
algorithmic forecasting rule?

The answer to this question has significant consequences: if experts are incorporating salient but
hard-to-quantify information, we might attempt to somehow ensemble or combine the human and
algorithmic predictions; this is commonly referred to as seeking ‘complementarity’ in the literature
on human-machine interaction. On the other hand, if it appears that an expert is not extracting signal
beyond whatever is contained in the available features, we might consider whether we can automate
the prediction task entirely, or at least reduce the degree to which a human may override algorithmic
recommendations.

At this stage it is worth asking – why not simply compare the prediction accuracy of a human expert
to that of a particular predictive algorithm? If the human expert performs better than a competing
algorithm, we might say the expert adds value which is not captured by the algorithm. However, as
the example presented next illustrates, it is possible for the expert to incorporate information that
could not be captured by any learning algorithm – even when the expert substantially underperforms
a particular algorithm trained to accomplish the same task. Indeed, this is not just a hypothetical: a
large body of prior literature (see e.g. Agrawal (2019) for a comprehensive overview) suggests that
humans reliably underperform even simple statistical models, and in Section 5, we find exactly this
dynamic in real-world patient triage data. Nonetheless, as we highlight next, humans may still add
valuable information in a given forecasting task.

An illustration: experts may add information despite poor predictions. Let Y denote the outcome
of interest and let X,U be features that drive the outcome. Specifically, let

Y = X + U + ϵ1, (1)

where ϵ1 is some exogenous noise. For the purposes of this stylized example, we’ll assume that
X,U, ϵ1 are all zero mean and pairwise independent random variables. Suppose the human expert can
observe both X and U , but only X is made available to a predictive algorithm. An algorithm tasked
with minimizing squared error might then seek to precisely estimate E[Y |X] = X . In contrast, the
expert may instead use simpler heuristics to construct an estimate which can be modeled as

Ŷ = sign(X) + sign(U) + ϵ2, (2)

where ϵ2 is independent zero-mean noise, and can be thought of as modeling idiosyncracies in the
expert’s cognitive process1. As discussed in detail in Appendix F, there exist natural distributions
over (X,U, ϵ1, ϵ2) such that the algorithm performs substantially better than the expert in terms of
predictive accuracy. In fact, we show that there exist natural distributions where the algorithm outper-
forms the expert even under any linear post-processing of Ŷ (e.g., to correct for expert predictions
which are highly correlated with Y but perhaps incorrectly centered or scaled). Nonetheless, the
expert predictions clearly contain information (cf. sign(U)) that is not captured by the algorithm.

However, because U is not recorded in the available data, it is not obvious how to distinguish the
above scenario from one in which the expert only extracts signal from X . For example, they might
instead make predictions as follows:

Ŷ = sign(X) + ϵ2. (3)

While a learning algorithm may outperform the expert in both cases, the expert in scenario (2) still
captures valuable information; the expert in (3) clearly does not. The goal of this work will be to
develop a test which allows us to distinguish between scenarios like these without the strong modeling
assumptions made in this example.

1For example, a well-known study by Eren and Mocan (2018) demonstrates that unexpected losses by the
Louisiana State University football team lead judges to hand out longer juvenile sentences; this is a form of
capricious decision making which will manifest as noise (ϵ2) in an analysis of sentencing decisions.

2



Contributions. To understand whether human experts can add value for a given prediction task, we
develop a statistical framework under which answering this question becomes a natural hypothesis test.
We then provide a simple, data-driven procedure to test this hypothesis. Our proposed algorithm takes
the form of a conditional independence test, and is inspired by the Model-X Knockoffs framework
of Candès et al. (2016), the Conditional Permutation Test of Berrett et al. (2018) and the ‘Model-
Powered’ test of Sen et al. (2017). Our test is straightforward to implement and provides transparent,
interpretable p-values.

Our work is closely related to a large body of literature comparing human performance to that of an
algorithm (Cowgill (2018), Dawes et al. (1989), Grove et al. (2000), among others), and developing
learning algorithms which are complementary to human expertise (Madras et al. (2018), Raghu et al.
(2019), Mozannar and Sontag (2020), Keswani et al. (2021), Agrawal et al. (2018), Bansal et al.
(2020), Rastogi et al. (2022) and Bastani et al. (2021)). However, although similarly motivated, we
address a different problem which is in a sense ‘upstream’ of these works, as we are interested in
testing for whether a human forecaster demonstrates expertise which cannot be replicated by any
algorithm. Thus, we think of our test as assessing as a necessary condition for achieving human-AI
complementarity; success in practice will further depend on the ability of a mechanism designer to
actually incorporate human expertise into some particular algorithmic pipeline or feedback system.
We discuss these connections further in Appendix A.

We apply our test to evaluate whether emergency room physicians incorporate valuable information
which is not available to a common algorithmic risk score for patients with acute gastrointestinal
bleeding (AGIB). To that end, we utilize patient admissions data collected from the emergency
department of a large academic hospital system. Consistent with prior literature, we find that this
algorithmic score is an exceptionally sensitive measure of patient risk – and one that is highly
competitive with physicians’ expert assessments. Nonetheless, our test provides strong evidence that
physician decisions to either hospitalize or discharge patients with AGIB are incorporating valuable
information that is not captured by the screening tool. Our results highlight that prediction accuracy
is not sufficient to justify automation of a given prediction task. Instead, our results make a case for
experts working with a predictive algorithm, even when algorithms might handily outperform their
human counterparts.

Organization. In Section 2, we formalize the problem of auditing for expertise, and in Section 3 we
present our data-driven hypothesis test. Section 4 then examines the theoretical properties of the test.
In Section 5 we present our empirical findings from applying this test to real-world patient triage
data. Finally, Section 6 provides discussion of our results and directions for future work. We also
include a discussion of additional related work in Appendix A, and provide numerical simulations to
corroborate our theoretical and empirical results in Appendix F2.

2 Setup and question of interest

We consider a generic prediction task in which the goal is to forecast some outcome Y ∈ R on
the basis of observable features X ∈ X . The human expert may additionally have access to some
auxiliary private information U ∈ U . For concreteness, let X = Rd for some d ≥ 1.

We posit that the outcome Y is generated as follows: for some unknown function f : X × U → R,
Y = f(X,U) + ϵ1, (4)

where, without loss of generality, ϵ1 represents mean zero idiosyncratic noise with unknown variance.

We are also given predictions by a human expert, denoted as Ŷ . We posit that the expert predictions
Ŷ are generated as follows: for some unknown function f̂ : X × U → R,

Ŷ = f̂(X,U) + ϵ2, (5)
where ϵ2 also captures mean zero idiosyncratic noise with unknown variance.

We observe (X,Y, Ŷ ) which obey (4)-(5); the private auxiliary feature U is not observed. Concretely,
we observe n data points (xi, yi, ŷi), i ∈ [n] ≡ {1, . . . , n}.

2Code, data and instructions to replicate our experiments are available at https://github.com/ralur/auditing-
human-expertise. Publication of the results and data associated with the empirical study in section 5 have been
approved by the relevant institutional review board (IRB).
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Our goal is to answer the question “do human experts add information which could not be captured
by any algorithm for a given prediction task?” We assume that any competing learning algorithm can
utilize X to predict Y , but it can not utilize U . Thus, our problem reduces to testing whether U has
some effect on both Y and Ŷ , which corresponds to the ability of an expert to extract signal about Y
from U . If instead U has no effect on Y , Ŷ or both (either because U is uninformative about Y or
the expert is unable to perceive this effect), then conditioned on X , Y and Ŷ are independent. That
is, if the human expert fails to add any information which could not be extracted from the observable
features X , the following must hold:

H0 : Y ⊥⊥ Ŷ | X. (6)

Intuitively, H0 captures the fact that once we observe X , Ŷ provides no additional information about
Y unless the expert is also making use of some unobserved signal U (whether explicitly or implicitly).
In contrast, the rejection of H0 should be taken as an evidence that the expert (or experts) can add
value to any learning algorithm trained on the observable features X ∈ X ; indeed, a strength of this
framework is that it does not require specifying a particular algorithmic baseline. However, it’s worth
remarking that an important special case is to take X to be the prediction made by some specific
learning algorithm trained to forecast Y . In this setting, our test then reduces to assessing whether Ŷ
adds information to the predictions made by this learning algorithm, and can be viewed as a form of
feature selection.

Goal. Test the null hypothesis H0 using observed data (xi, yi, ŷi), i ∈ [n] ≡ {1, . . . , n}.
To make this model concrete, in Section 5 we use our framework to test whether emergency room
physicians incorporate information that is not available to a common algorithmic risk score when
deciding whether to hospitalize patients. Accordingly, we let X ∈ [0, 1]9 be the inputs to the risk
score, Ŷ ∈ {0, 1} be a binary variable indicating whether a given patient was hospitalized, and
Y ∈ {0, 1} be an indicator for whether, in retrospect, a patient should have been hospitalized.
The risk score alone turns out to be a highly accurate predictor of Y , but physicians take many
other factors into account when making hospitalization decisions. We thus seek to test whether
physicians indeed extract signal which is not available to the risk score (Y ̸⊥⊥ Ŷ | X), or whether
attempts to incorporate other information and/or exercise expert judgement simply manifest as noise
(Y ⊥⊥ Ŷ | X).

3 ExpertTest: a statistical test for human expertise

To derive a statistical test of H0, we will make use of the following elementary but powerful fact
about exchangeable random variables.

A test for exchangeability. Consider K+1 random variables (Z0, . . . , ZK) which are exchangeable,
i.e. the joint distribution of (Z0, . . . , ZK) is identical to that of (Zσ(0), . . . , Zσ(K)) for any permu-
tation σ : {0, . . . ,K} → {0, . . . ,K}. For example, if Z0, . . . , ZK are independent and identically
distributed (i.i.d.), then they are exchangeable. Let F be a function that maps these variables to a real
value. For any such F (·), it can be verified that the order statistics (with any ties broken uniformly at
random) of F (Z0), . . . , F (ZK) are uniformly distributed over (K +1)! permutations of {0, . . . ,K}.
That is, τK defined next, is distributed uniformly over {0, 1/K, 2/K, . . . , 1}:

τK =
1

K

K∑
k=1

1[F (Z0) ≲ F (Zk)] (7)

where we use definition 1[α ≲ β] = 1 if α < β and 0 if α > β. If instead α = β, we independently
assign it to be 1 or 0 with equal probability. Thus, if (Z0, . . . , ZK) are exchangeable, then P(τK ≤
α) ≤ α+ 1/(K + 1)

K→∞→ α and we can reject the hypothesis that (Z0, . . . , ZK) are exchangeable
with p-value (effectively) equal to τK .

Observe that while this validity guarantee holds for any choice of F (·), the power of the test will
depend crucially on this choice; for example, a constant function which maps every argument to the
same value would have no power to reject the null hypothesis. We return to the choice of F (·) below.
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Constructing exchangeable distributions. We will leverage the prior fact about the order statistics
of exchangeable random variables to design a test of H0 : Y ⊥⊥ Ŷ | X . In particular, we would
like to use the observed data to construct K + 1 random variables that are exchangeable under
H0, but not exchangeable otherwise. To that end, consider a simplified setting where n = 2, with
x1 = x2 = x. Thus, our observations are Z0 = {(x, y1, ŷ1), (x, y2, ŷ2)}. Suppose we now sample
(ỹ1, ỹ2) uniformly at random from {(ŷ1, ŷ2), (ŷ2, ŷ1)}. That is, we swap the observed values (ŷ1, ŷ2)
with probability 1

2 to construct a new dataset Z1 = {(x, y1, ỹ1), (x, y2, ỹ2)}.
Under H0, it is straightforward to show that Z0 and Z1 are independent and identically distributed con-
ditioned on observing (x, x), (y1, y2) and either (ŷ1, ŷ2) or (ŷ2, ŷ1). That is, Z0, Z1 are exchangeable,
which will allow us to utilize the test described above for H0.

Why condition on this somewhat complicated event? Intuitively, we would like to resample Ỹ =
(ỹ1, ỹ2) from the distribution of DŶ |X ; under the null, (x, y, ŷ) and (x, y, ỹ) will be exchangeable
by definition. However, this requires that we know (or can accurately estimate) the distribution of
Ŷ | X , which in turn requires modeling the expert’s decision making directly. Instead, we simplify
the resampling process by only considering a swap of the observed ŷ values between identical values
of x – this guarantees exchangeable data without modeling DŶ |X at all!

This approach can be extended for n larger than 2. Specifically, if there are L pairs of identical x
values, i.e. x2ℓ−1 = x2ℓ for 1 ≤ ℓ ≤ L, then it is possible to construct i.i.d. Z0, . . . , ZK for larger K
by randomly exchanging values of ŷ for each pair of data points.

As discussed above, we’ll also need to choose a particular function F (·) to apply to Z0 and Z1. A
natural, discriminatory choice of F is a loss function: for example, given D = {(xi, yi, ŷi) : i ≤ 2L},
let F (D) =

∑
i(yi − ŷi)

2. This endows τK with a natural interpretation – it is the probability that an
expert could have performed as well as they did (with respect to the chosen loss function F ) by pure
chance, without systematically leveraging some unobserved U .

Of course, in practice we are unlikely to observe many pairs where x2ℓ−1 = x2ℓ, particularly when x

takes value in a non-finite domain, e.g. [0, 1] or R. However, if the conditional distribution of Ŷ |X is
nearly the same for close enough values of X = x and X = x′, then we can use a similar approach
with some additional approximation error. This is precisely the test that we describe next.

ExpertTest. Let L ≥ 1 be an algorithmic parameter and m : X ×X → R≥0 be some distance metric
over X , e.g. the ℓ2 distance. Let F (·) be some loss function of interest, e.g. the mean squared error.

First, compute m(xi, xj) : i ̸= j ∈ [n] and greedily select L disjoint pairs which are as close as
possible under m(·, ·). Denote these pairs by {(xi2ℓ−1

, xi2ℓ) : ℓ ∈ [L]}.
Let D0 = {(xi, yi, ŷi) : i ∈ {i2ℓ−1, i2ℓ : ℓ ∈ [L]}} denote the observed dataset restricted to the
L chosen pairs. Let D1 be an additional dataset generated by independently swapping each pair
(ŷi2ℓ−1

, ŷi2ℓ) with probability 1/2, and repeat this resampling procedure to generate D1 . . . DK . Next,
compute τK as follows:

τK =
1

K

K∑
k=1

1[F (D0) ≲ F (Dk)] (8)

Finally, we reject the hypothesis H0 with p-value α+1/(K+1) if τK ≤ α for any desired confidence
level α ∈ (0, 1). Our test is thus quite simple: find L pairs of points that are close under some
distance metric m(·, ·), and create K synthetic datasets by swapping the expert forecasts for each pair
independently with probability 1/2. If the expert’s loss on the original dataset is “small” relative to
the loss on these resampled datasets, this is evidence that the synthetic datasets are not exchangeable
with the original, and thus, the expert is using some private information U .

Of course, unlike in the example above, we swapped pairs of predictions for different values of x.
Thus, D0 . . . DK are not exchangeable under H0. However, we’ll argue that because we paired
“nearby” values of x, these datasets are “nearly” exchangeable. These are the results we present next.
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4 Results

We provide theoretical guarantees associated with the ExpertTest. First, we demonstrate the validity
of our test in a generic setting. That is, if H0 is true, then ExpertTest will not reject it with high
probability. We then quantify this guarantee precisely under a meaningful generative model.

To state the validity result, we need some notation. For any (x, ŷ) and (x′, ŷ′), define the odds ratio

r((x, ŷ), (x′, ŷ′)) =
Q(Ŷ = ŷ | X = x)×Q(Ŷ = ŷ′ | X = x′)

Q(Ŷ = ŷ′ | X = x)×Q(Ŷ = ŷ | X = x′)
, (9)

where Q(·|·) represents the density of the conditional distribution of human predictions Ŷ |X under
H0. For simplicity, we assume that such a conditional density exists.

Theorem 1 (Validity of ExpertTest) Given α ∈ (0, 1) and parameters K ≥ 1, L ≥ 1, the Type I
error of ExpertTest satisfies

P
(
τK ≤ α

)
≤ α+

(
1− (1− ε∗n,L)

L
)
+

1

K + 1
. (10)

Where ε∗n,L is defined as follows

ε∗n,L = max
ℓ∈[L]

∣∣∣ 1

1 + r((xi2ℓ−1
, ŷi2ℓ−1

), (xi2ℓ , ŷi2ℓ))
− 1

2

∣∣∣. (11)

We remark briefly on the role of the parameters L and K in this result. To begin with, 1
K+1 is

embedded in the type I error, and thus taking the number of resampled datasets K to be as large as
possible (subject only to computational constraints) sharpens the validity guarantee. We also observe
that the bound becomes weaker as L increases. However, observe also that ExpertTest is implicitly
using an L-dimensional distribution (or L fresh samples) to reject H0, which means that increasing
L also provides additional power to the test.

Notice also that the odds ratio (9) is guaranteed to be 1 if x = x′, regardless of the underlying
distribution D. This is not a coincidence, and our test is based implicitly on the heuristic that the odds
ratio will tend away from 1 as the distance m(x, x′) increases (we quantify this intuition precisely
below). Thus, increasing L will typically also increase ε∗n,L, because larger values of L will force us
to pair additional observations (x, x′) which are farther apart under the distance metric.

The type one error bound (10) suggests that we can balance the trade off between validity and power
when ε∗n,LL ≪ 1 or o(1), as the right hand side of (10) reduces to α + o(1). Next we describe a
representative generative setup where there is a natural choice of L that leads to ε∗n,LL = o(1).

Generative model. Let X = [0, 1]d ⊂ Rd. Let the conditional density of the human expert’s
forecasts Q(·|x) be smooth. Specifically, for any x, x′ ∈ [0, 1]d,

sup
ŷ∈R

Q(ŷ | X = x)

Q(ŷ | X = x′)
≤ 1 + C × ∥x− x′∥2, (12)

for some constant C > 0. Under this setup, Theorem 1 reduces to the following.

Theorem 2 (Asymptotic Validity) Given α ∈ (0, 1) and under (12), with the appropriate choice of
L ≥ 1, the type I error of ExpertTest satisfies

P
(
τK ≤ α

)
≤ α+ o(1). (13)

as n,K →∞.

Intuitively, (12) is intended to model a forecasting rule which is ‘simple,’ in the sense that human
experts don’t finely distinguish between instances whose feature vectors are close under the ℓ2 norm.
Importantly, this does not rule out the possibility that predictions for two specific (x, x′) instances
could differ substantially – only that the distributions Ŷ | X = x and Ŷ | X = x′ are similar when
x ≈ x′. We make no such assumption about DY |X , the conditional distribution of the true outcomes.

Proofs of theorems 1 and 2 can be found in Appendices B and C respectively. We now illustrate the
utility of our test with an empirical study of physician hospitalization decisions.
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5 A case study: physician expertise in emergency room triage

Emergency room triage decisions present a natural real-world setting for our work, as we can
assess whether physicians make hospitalization decisions by incorporating information which is
not available to an algorithmic risk score. We consider the particular case of patients who present
in the emergency room with acute gastrointestinal bleeding (hereafter referred to as AGIB), and
assess whether physicians’ decisions to either hospitalize or discharge each patient appear to be
capturing information which is not available to the Glasgow-Blatchford Score (GBS). The GBS
is a standardized measure of risk which is known to be a highly sensitive indicator for whether a
patient presenting with AGIB will indeed require hospitalization (findings which we corroborate
below). However, despite the excellent performance of this algorithmic risk score, we might be
understandably hesitant to automate triage decisions without any physician oversight. As just one
example, anticoagulant medications (‘blood thinners’) are known to exacerbate the risk of severe
bleeding. However, whether or not a patient is taking anticoagulant medication is not included as a
feature in the construction of the Glasgow-Blatchford score, and indeed may not even be recorded in
the patient’s electronic health record (if, for example, they are a member of an underserved population
and have had limited prior contact with the healthcare system). This is one of many additional factors
an emergency room physician might elicit directly from the patient to inform an admit/discharge
decision. We thus seek to answer the following question:

Do emergency room physicians usefully incorporate information which is not available to the
Glasgow-Blatchford score?

We answer in the affirmative, demonstrating that although the GBS provides risk scores which are
highly competitive with (and indeed, arguably better than) physicians’ discretionary decisions, there
is strong evidence that physicians are incorporating additional information which is not captured in
the construction of the GBS. Before presenting our results, we first provide additional background
about this setting.

Background: risk stratification and triage for gastrointestinal bleeding. Acute gastrointestinal
bleeding is a potentially serious condition for which 530,855 patients/year receive treatment in
the United States alone (Peery et al. (2022)). It is estimated that 32% of patients with presumed
bleeding from the lower gastrointestinal tract (Oakland et al. (2017)) and 45% of patients with
presumed bleeding from the upper gastrointestinal tract (Stanley et al. (2017)) require urgent medical
intervention; overall mortality rates for AGIB in the U.S. are estimated at around 3 per 100, 000
(Peery et al. (2022)). For patients who present with AGIB in the emergency room, the attending
physician is tasked with deciding whether the bleeding is severe enough to warrant admission to
the hospital. However, the specific etiology of AGIB is often difficult to determine from patient
presentation alone, and gold standard diagnostic techniques – an endoscopy for upper GI bleeding
or a colonoscopy for lower GI bleeding – are both invasive and costly, particularly when performed
urgently in a hospital setting. To aid emergency room physicians in making this determination more
efficiently, the Glasgow-Blatchford Bleeding Score or GBS (Blatchford et al. (2000)) is a standard
screening metric used to assess the risk that a patient with acute upper GI bleeding will require red
blood cell transfusion, intervention to stop bleeding, or die within 30 days. It has been also validated
in patients with acute lower gastrointestinal bleeding3 to assess need for intervention to stop bleeding
or risk of death (Asad Ur-Rahman and Abusaada (2018)); accordingly, we interpret the GBS as a
measure of risk for patients who present with either upper or lower GI bleeding in the emergency
department.

Construction of the Glasgow-Blatchford Score. The Glasgow-Blatchford Score is a function of
the following nine patient characteristics: blood urea nitrogen (BUN), hemoglobin (HGB), systolic
blood pressure (SBP), pulse, cardiac failure, hepatic disease, melena, syncope and biological sex.
The first four are real-valued and the latter five are binary. The GBS is calculated by first converting
the continuous features to ordinal values (BUN and HGB to 6 point scales, SBP to a 3 point scale
and pulse to a binary value) and then summing the values of the first 8 features. Biological sex is
used to inform the conversion of HGB to an ordinal value. Scores are integers ranging from 0 to 23,

3US and international guidelines use the Glasgow-Blatchford score as the preferred risk score for assessing
patients with upper gastrointestinal bleeding (Laine et al. (2021); Barkun et al. (2019)). Other risk scores tailored
to bleeding in the lower gastrointestinal tract have been proposed in the literature, but these are less commonly
used in practice. We refer interested readers to Almaghrabi et al. (2022) for additional details.
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with higher scores indicating a higher risk that a patient will require subsequent intervention. US and
international guidelines suggest that patients with a score of 0 or 1 can be safely discharged from the
emergency department (Laine et al. (2021); Barkun et al. (2019)), with further investigation to be
performed outside the hospital. For additional details on the construction of the GBS, we refer to
Blatchford et al. (2000).

Defining features, predictions and outcomes. We consider a sample of 3617 patients who presented
with AGIB at one of three hospitals in a large academic health system between 2014 and 2018.
Consistent with the goals of triage for patients with AGIB, we record an ‘adverse outcome’ if a
patient (1) requires some form of urgent intervention to stop bleeding (endoscopic, interventional
radiologic, or surgical; excluding patients who only undergo a diagnostic endoscopy or colonoscopy)
while in the hospital (2) dies within 30 days of their emergency room visit or (3) is initially discharged
but later readmitted within 30 days.4 As is typical of large urban hospitals in the United States,
staffing protocols at this health system dictate a separation of responsibilities between emergency
room physicians and other specialists. In particular, while emergency room physicians make an initial
decision whether to hospitalize a patient, it is typically a gastrointestinal specialist who subsequently
decides whether a patient admitted with AGIB requires some form of urgent hemostatic intervention.
This feature, along with our ability to observe whether discharged patients are subsequently readmitted,
substantially mitigates the selective labels issue that might otherwise occur in this setting. Thus,
consistent with clinical and regulatory guidelines – to avoid hospitalizing patients who do not require
urgent intervention (Stanley et al. (2009)), and to avoid discharging patients who are likely to be
readmitted within 30 days (NEJM (2018)) – we interpret the emergency room physician’s decision
to admit or discharge a patient as a prediction that one of these adverse outcomes will occur. We
thus instantiate our model by letting Xi ∈ [0, 1]9 be the nine discrete patient characteristics from
which the Glasgow-Blatchford Score is computed5; the only transformation we apply is to normalize
each feature to lie in [0, 1]. We further let Ŷi ∈ {0, 1} indicate whether that patient was initially
hospitalized, and Yi ∈ {0, 1} indicate whether that patient suffered one of the adverse outcomes
defined above.

Assessing the accuracy of physician decisions. We first summarize the performance of the emer-
gency room physicians’ hospitalization decisions, and compare them with the performance of a simple
rule which would instead admit every patient with a GBS above a certain threshold and discharge the
remainder (Table 1). We consider thresholds of 0 and 1 – the generally accepted range for low risk
patients (Laine et al. (2021); Barkun et al. (2019)) – as well as less conservative thresholds of 2 and 7
(the latter of which we find maximizes overall accuracy). For additional context, we also provide the
total fraction of patients admitted under each decision rule.

Decision Rule Fraction Hospitalized Accuracy Sensitivity Specificity

Physician Discretion 0.86 ± 0.02 0.55 ± 0.02 0.99 ± 0.00 0.24 ± 0.02
Admit GBS > 0 0.88 ± 0.02 0.53 ± 0.02 0.99 ± 0.00 0.19 ± 0.02
Admit GBS > 1 0.80 ± 0.02 0.60 ± 0.02 0.98 ± 0.00 0.33 ± 0.02
Admit GBS > 2 0.73 ± 0.02 0.66 ± 0.02 0.97 ± 0.00 0.43 ± 0.02
Admit GBS > 7 0.40 ± 0.02 0.79 ± 0.02 0.73 ± 0.02 0.84 ± 0.02

Table 1: Comparing the accuracy of physician hospitalization decisions (‘Physician Discretion’) to
those made by thresholding the GBS. For example, ‘Admit GBS > 1’ hospitalizes patients with a
GBS strictly larger than 1. ‘Fraction Hospitalized’ indicates the fraction of patients hospitalized
by each rule. ‘Accuracy’ indicates the 0/1 accuracy of each rule, where a decision is correct if it
hospitalizes a patient who suffers an adverse outcome (as defined above) or discharges a patient
who does not. ‘Sensitivity’ indicates the fraction of patients who suffer an adverse outcome that are
correctly hospitalized, and ‘Specificity’ indicates the fraction of patients who do not suffer an adverse
outcome that are correctly discharged. Results are reported to ±2 standard errors.

4This threshold is consistent with the definition used in the Centers for Medicare and Medicaid Services
Hospital Readmission Reduction Program, which seeks to incentivize healthcare providers to avoid discharging
patients who will be readmitted within 30 days (NEJM (2018))

5We consider alternative definitions of the feature space in Appendix E, where we find substantively similar
results.
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Unsurprisingly, we find that the physicians calibrate their decisions to maximize sensitivity (minimize
false negatives) at the expense of admitting a significant fraction of patients who, in retrospect,
could have been discharged immediately. Indeed we find that although 86% of patients are initially
hospitalized, only ≈ 42% actually require a specific hospital-based intervention or otherwise suffer
an adverse outcome which would justify hospitalization (i.e., yi = 1). Consistent with Blatchford
et al. (2000) and Chatten et al. (2018), we also find that thresholding the GBS in the range of [0, 2]
achieves a sensitivity of close to 100%. We further can see that using one of these thresholds may
achieve overall accuracy (driven by improved specificity) which is substantially better than physician
discretion. Nonetheless, we seek to test whether physicians demonstrate evidence of expertise in
distinguishing patients with identical (or nearly identical) scores.

Testing for physician expertise. We now present the results of running ExpertTest for K = 1000
resampled datasets and various values of L (where L = 1808 is the largest possible choice given
n = 3617) in Table 2. We define the distance metric m(x1, x2) ..= ||x1 − x2||2, though this choice is
inconsequential when the number of ‘mismatched pairs’ (those pairs x, x′ where x ̸= x′) is 0.

We also observe that, in the special case of binary predictions and outcomes, it is possible to
analytically determine the number of swaps which increase or decrease the value of nearly any natural
loss function F (·). Thus, although we let F (D) ..= 1

n

∑
i 1[yi ̸= ŷi] for concreteness, our results are

largely insensitive to this choice; in particular, they remain the same when false negatives and false
positives might incur arbitrarily different costs. We elaborate on this phenomenon in Appendix E.

L mismatched pairs swaps that increase loss swaps that decrease loss τ

100 0 5 1 0.061
250 0 12 1 0.003
500 0 21 2 <.001

1000 0 42 2 <.001
1808 265 66 4 <.001

Table 2: The results of running ExpertTest, where each pair of patients is chosen to be as similar
as possible with respect to the nine (discrete) inputs to the Glasgow-Blatchford score. L indicates
the number of pairs selected for the test, of which ‘mismatched pairs’ are not identical to each
other. Swaps that decrease (respectively, increase) loss indicates how many of the L pairs result in a
decrease (respectively, increase) in the 0/1 loss when their corresponding hospitalization decisions
are exchanged with each other. τ is the p-value obtained from running ExpertTest.

As the results demonstrate, there is very strong evidence that emergency room physicians incorporate
information which is not available to the Glasgow-Blatchford score. In particular, our test indicates
that physicians can reliably distinguish patients who appear identical with respect to the nine features
considered by the GBS – and can make hospitalization decisions accordingly – even though simple
GBS thresholding is highly competitive with physician performance. This implies that no predictive
algorithm trained on these nine features, even one which is substantially more complicated than the
GBS, can fully capture the information that physicians use to make hospitalization decisions.

To interpret the value of τ , observe that for L ≥ 500 we recover the smallest possible value
τ = 1/(K + 1) = 1/1001. Furthermore, for all but the final experiment, the number of mismatched
pairs is 0, which means there is no additional type one error incurred (i.e., ε∗n,L (11) is guaranteed to
be 0). For additional intuition on the behavior of ExpertTest, we refer the reader to the synthetic
experiments in Appendix F.

6 Discussion and limitations

In this work we provide a simple test to detect whether a human forecaster is incorporating unobserved
information into their predictions, and illustrate its utility in a case study of hospitalization decisions
made by emergency room physicians. A key insight is to recognize that this requires more care than
simply testing whether the forecaster outperforms an algorithm trained on observable data; indeed, a
large body of prior work suggests that this is rarely the case. Nonetheless, there are many settings in
which we might expect that an expert is using information or intuition which is difficult to replicate
with a predictive model.
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An important limitation of our approach is that we do not consider the possibility that expert forecasts
might inform decisions which causally effect the outcome of interest, as is often the case in practice.
We also do not address the possibility that the objective of interest is not merely accuracy, but perhaps
some more sophisticated measure of utility (e.g., one which also values fairness or simplicity); this is
explored in Rambachan (2022). We caution more generally that there are often normative reasons to
prefer human decision makers, and our test captures merely one possible notion of expertise. The
results of our test should thus not be taken as recommending the automation of a given forecasting
task.

Furthermore, while our framework is quite general, it is worth emphasizing that the specific algorithm
we propose is only one possible test of H0. Our algorithm does not scale naturally to settings where
X is high-dimensional, and in such cases it is likely that a more sophisticated test of conditional
independence (e.g. a kernel-based method; see Fukumizu et al. (2004), Gretton et al. (2007) and
Zhang et al. (2011), among others) would have more power to reject H0. Another possible heuristic
is to simply choose some learning algorithm to estimate (e.g.) E[Y | X] and E[Y | X, Ŷ ], and
examine which of the two provides better out of sample performance. This can be viewed as a form
of feature selection; indeed the ‘knockoffs’ approach of Candès et al. (2016) which inspires our work
is often used as a feature selection procedure in machine learning pipelines. However, most learning
algorithms do not provide p-values with the same natural interpretation we describe in section 3, and
we thus view these approaches as complementary to our own.

Finally, our work draws a clean separation between the ‘upstream’ inferential goal of detecting
whether a forecaster is incorporating unobserved information and the ‘downstream’ algorithmic task
of designing tools which complement or otherwise incorporate human expertise. These problems
share a very similar underlying structure however, and we conjecture that – as has been observed
in other supervised learning settings, e.g. Kearns et al. (2018) – there is a tight connection between
these auditing and learning problems. We leave an exploration of these questions for future work.
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A Additional related work

Human decision making, interplay with algorithms. Our work contributes to a vast literature on
understanding how humans, and particularly human experts, make decisions. We do not attempt to
provide a comprehensive summary of this work, but refer the reader to Tversky and Kahneman (1974)
and Camerer and Johnson (1991) for general background. Of particular relevance for our setting is
work which investigates whether humans make systematic mistakes in their decisions, which has been
studied in the context of bail decisions (Kleinberg et al. (2017), Rambachan (2022), Lakkaraju et al.
(2017) and Arnold et al. (2020)), college admissions (Kuncel et al. (2013), Dawes (1971)) and patient
triage and diagnosis (Currie and MacLeod (2017), Mullainathan and Obermeyer (2019)) among others.
One common theme in these works is that the decision made by the human expert will often influence
the outcome of interest; for example, an emergency room doctor’s initial diagnosis will inform the
treatment a patient receives, which subsequently affects their health outcomes. Furthermore, it is
often the case that even observing the outcome of interest is contingent on the human’s decision: for
example, in a college admissions setting, we might only observe historical outcomes for admitted
students, which makes it challenging to draw inferences about applicants. This one-sided labeling
problem is a form of endogeneity which has been well studied in the context of causal inference, and
these works often adopt a causal perspective to address these challenges.

As discussed in Section 6, our instead work assumes that all outcomes are observable and, importantly,
that they are not affected by the human predictions. We also do not explicitly grapple with whether the
human expert has an objective other than maximizing accuracy under a known metric (e.g., squared
error). Though this is often a primary concern in many high-stakes settings – for example, ensuring
that bail decisions are not only accurate but also nondiscriminatory – it is outside the scope of our
work, and we refer the reader instead to Rambachan (2022) for further discussion.

As discussed in section 1, another closely related theme is directly comparing human performance
to that of an algorithm (Cowgill (2018), Dawes et al. (1989), Grove et al. (2000)), and developing
learning algorithms which are complementary to human expertise (Madras et al. (2018), Raghu et al.
(2019), Mozannar and Sontag (2020), Keswani et al. (2021), Agrawal et al. (2018) and Bastani et al.
(2021)). A key design consideration when designing algorithms to complement human expertise
involves reasoning about the ways in which humans may respond to the introduction of an algorithm,
which may be strategic (e.g. Kleinberg and Raghavan (2018), Perdomo et al. (2020), Cen and
Shah (2021), Hardt et al. (2015), Liu et al. (2020)) or subject to behavioral biases (Kleinberg et al.
(2022)). These behaviors can make it challenging to design algorithms which work with humans to
achieve the desired outcomes, as humans may respond to algorithmic recommendations or feedback
in unpredictable ways.

Conditional independence testing. We cast our setting as a special case of conditional independence
testing, which has been well studied in the statistics community. For background we refer the reader to
Dawid (1979). It has long been known that testing conditional independence between three (possibly
high-dimensional) random variables is a challenging problem, and the recent result of Shah and Peters
(2018) demonstrates that this is in fact impossible in full generality. Nonetheless, there are many
methods for testing conditional independence under natural assumptions; perhaps the most popular
are the kernel-based methods introduced by Fukumizu et al. (2004) and subsequently developed in
Gretton et al. (2007) and Zhang et al. (2011), among others.

Our work instead takes inspiration from the ‘knockoffs’ framework developed in Candès et al.
(2016), Barber et al. (2018) and Barber and Candès (2019), as well as the closely related conditional
permutation test of Berrett et al. (2018). These works leverage the elementary observation that,
under the null hypothesis that (specialized to our notation) the outcome Y and prediction Ŷ are
independent conditional on the observed data X , new samples from the distribution of Ŷ | X should
be exchangeable with Ŷ . Thus, if we know – or can accurately estimate – the distribution of Ŷ | X ,
it is straightforward to generate fresh samples (‘knockoffs’) which are statistically indistinguishable
from the original data under the null hypothesis H0 : Y ⊥⊥ Ŷ | X . Thus, if the observed data appears
anomalous with respect to these knockoffs, this may provide us a basis on which to reject H0.

Our work avoids takes inspiration from this framework, but avoids estimating the distribution of
Ŷ | X by instead leveraging a simple nearest-neighbors style algorithm for generating knockoffs. In
that sense, our technique builds upon the nearest-neighbors based estimator of Runge (2017), and is
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nearly identical to the one-nearest-neighbor procedure proposed in the ‘model-powered’ conditional
independence test of Sen et al. (2017). This algorithm is a subroutine in their more complicated
end-to-end procedure, which involves training a model to distinguish between the observed data
and knockoffs generated via swapping the ‘predictions’ (again specializing their general test to our
setting) associated with instances which are as close as possible under the ℓ2 norm. By contrast,
we analyze a similar procedure under different smoothness assumptions which allow us to recover
p-values that are entirely model free.

B Proof of Theorem 1

We establish the proof of Theorem 1 following the intuition presented in Section 3. Specifically, we
first bound the type I error of ExpertTest in the idealized case where the data set contains L identical
pairs of observations x = x′. We then refine this bound to handle the case, which is more likely in
practice, that the pairs chosen are merely close together. Our final bound thus includes additional
approximation error to account for the ‘similarity’ of the pairs – if we succeed in finding L pairs
which are identical, we get nearly exact type I error control, whereas if we are forced to pair instances
which are ‘far apart’, we incur additional approximation error. We formalize this intuition below.

An idealized bound. We first establish that P(τK ≤ α) ≤ α+ 1
K+1 for any α ∈ [0, 1] when x = x′

for every (x, x′) pair chosen by ExpertTest.

To that end, we observe n data points (xi, yi, ŷi), i ∈ [n]. Let L = {i2ℓ−1, i2ℓ : ℓ ∈ [L]} denote
the indices of the pairs chosen by ExpertTest, with (xi2ℓ−1

, xi2ℓ) for ℓ ∈ [L] denoting the pairs
themselves.

By assumption, ExpertTest succeeds in finding identical pairs:
xi2ℓ−1

= xi2ℓ , ∀ ℓ ∈ [L]. (14)
Therefore, from the definition (9) it follows that r((xi2ℓ−1

, ŷi2ℓ−1
), (xi2ℓ , ŷi2ℓ)) = 1 for all ℓ ∈ [L].

As discussed in Section 3, ExpertTest will repeatedly generate n fresh data points, denoted by D̃, as
follows. For each index i ∈ [n]\L, i.e. those not corresponding to those selected in L pairs, we select
exactly the observed data (xi, yi, ŷi).

For i ∈ L, we sample a data triplet as follows: for i ∈ {i2ℓ−1, i2ℓ}, we let
(xi2ℓ−1, yi2ℓ−1), (xi2ℓ, yi2ℓ) be the observed values but sample the corresponding ŷ values from
{(ŷ2ℓ−1, ŷ2ℓ), (ŷ2ℓ, ŷ2ℓ−1)} with equal probability. That is, we swap the ŷ values associated with
(xi2ℓ−1, yi2ℓ−1), (xi2ℓ, yi2ℓ) with probability 1

2 . We argue that this resampling process is implicitly
generating a fresh, identically distributed dataset from the underlying distribution D conditioned on
the following event F :

F = {(xi, yi, ŷi) : i ∈ [n]\L} ∪ {(xi, yi) : i ∈ L} ∪ {(ŷi2ℓ−1
, ŷi2ℓ) ∨ (ŷi2ℓ , ŷi2ℓ−1

) : ℓ ∈ [L]}.
(15)

Why condition on F? As discussed in section 3, a straightforward test would involve simply
resampling K fresh datasets from the underlying distribution DX ×DŶ |X ×DY |X and observing
that, by definition, these datasets are distributed identically to the observed data D0 under H0 : Y ⊥⊥
Ŷ | X . While this would form the basis for a valid test along the lines of the one described in Section
3, it requires knowledge of the underlying distribution which we are unlikely to have in practice.
Thus, we instead condition on nearly everything in the observed data – the values and exact ordering
of X and the values and exact ordering of Y , and the values of Ŷ up to a specific set of allowed
permutations (those induced by swapping 0 or more paired ŷi2ℓ−1

, ŷi2ℓ values). This substantially
simplifies the resampling problem, as we only need to reason about the correct ‘swap’ probability
for each such pair. This can be viewed as an alternative factorization of the underlying distribution
D under H0 – rather than sampling X ∼ DX , Y ∼ DY |X , Ŷ ∼ DŶ |X , instead sample an event

F ∼ DF from the induced distribution over events of the form (15), and then sample Ŷ ∼ DŶ |F .

First, we show that conditional on F , the resampled dataset D̃ and the observed dataset D0 are indeed
identically distributed under H0 : Y ⊥⊥ Ŷ | X (that they are also independent, conditional on F , is
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clear by construction). To see this, observe that for each ℓ ∈ [L]:

P((xi2ℓ−1
, yi2ℓ−1

, ŷi2ℓ−1
), (xi2ℓ , yi2ℓ , ŷi2ℓ)) (16)

= P(xi2ℓ−1
)P(yi2ℓ−1

| xi2ℓ−1
)P(ŷi2ℓ−1

| xi2ℓ−1
)P(xi2ℓ)P(yi2ℓ | xi2ℓ)P(ŷi2ℓ | xi2ℓ) (17)

= P(xi2ℓ−1
)P(yi2ℓ−1

| xi2ℓ−1
)P(ŷi2ℓ | xi2ℓ−1

)P(xi2ℓ)P(yi2ℓ | xi2ℓ)P(ŷi2ℓ−1
| xi2ℓ) (18)

= P((xi2ℓ−1
, yi2ℓ−1

, ŷi2ℓ), (xi2ℓ , yi2ℓ , ŷi2ℓ−1
)) (19)

In above, (17) follows from H0 and the assumption that the data are drawn i.i.d., and (18) follows
from assumption (14) that xi2ℓ−1

= xi2ℓ . By construction, the events in (16) and (19) are the only
two possible outcomes after conditioning on F , and this simple argument shows that in fact they are
equally likely.

Thus, let D̃1, . . . , D̃K be K independent and identically distributed datasets generated by the above
procedure. Let D̃0 be one additional sample from this distribution, which we showed was distributed
identically to D0 under the idealized assumption (14).

As discussed in Section 3, for any real-valued function F that maps each dataset to R, we have

τK =
1

K

K∑
k=1

1[F (D̃0) ≲ F (D̃k)] (20)

where we use definition of 1[· ≲ ·] as in (7).

Because D̃0, . . . , D̃K are i.i.d., and thus exchangeable, it follows that 1
K

∑K
k=1 1[F (D̃0) ≲ F (D̃k]

is uniformly distributed {0, 1
K , . . . , 1}. Therefore, with a little algebra it can be verified that for any

α ∈ [0, 1], τK satisfies

PD̃0,...,D̃K |F (τK ≤ α) ≤ α+
1

K + 1
. (21)

Because D0 and D̃0 are independent and identically distributed under (14), the same holds if we
replace D̃0 with D0. Thus, ExpertTest provides nearly exact type I error control in the case that
the idealized assumption (14) holds. This result will serve as a useful building block, as we’ll now
proceed to relax this assumption and bound the type I error of ExpertTest in terms of the total
variation distance between D̃0 and D0.

Fixing the approximation. D̃1, . . . , D̃K are synthetically generated datasets that are independent
and identically distributed. The argument above replaced the observed dataset D0 with a resam-
pled ‘idealized’ dataset D̃0, which is also independent and identically distributed with respect to
D̃1, . . . , D̃K , and then used this fact to demonstrate that PD̃0,...,D̃K |F (τ ≤ α) ≤ α + 1

K+1 . If the
idealized assumption (14) holds, replacing D0 with D̃0 is immaterial as we showed the two are
identically distributed conditional on F . Of course, this assumption will not hold in general, and this
is what we seek to correct next.

Let D̄0 ∼ D·|F be a random variable distributed according to the true underlying distribution D,
conditional on the event F . The observed data D0 can be interpreted as one realization of this
random variable. One way to quantify the excess type I error incurred by using D̃0 in place of D0

is to bound the total variation distance between the joint distributions of (D̃0, . . . D̃K) and that of
(D̄0, D̃1, . . . D̃K). Specifically, it follows from the definition of total variation distance that:

PD̄0,...,D̃K |F (τK ≤ α) ≤ PD̃0,...,D̃K |F (τK ≤ α) + TV(PD̄0,...,D̃K |F ,PD̃0,...,D̃K |F ), (22)

where TV(PD̄0,...,D̃K |F ,PD̃0,...,D̃K |F ) denotes the total variation distance between its arguments.
Due to the independence of the resampled datasets, this simplifies to:

TV(PD̄0,...,D̃K |F ,PD̃0,...,D̃K |F ) = TV(PD̄0|F ,PD̃0|F ). (23)
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Therefore, we need only bound the total variation distance between PD̄0|F and PD̃0|F to conclude
the proof.6

As defined in (11), the ε∗n,L provides us with a way of bounding the total variation distance between
the distribution of D̄0 and D̃0. To see this, observe that the distributions of D̃0 and D̄0, conditioned
on F , can be described as follows. To construct D̃0, we can imagine flipping L fair coins to decide
the assignment of ŷi in each of the (ŷi2ℓ−2

ŷi2ℓ ) pairs; if it comes up heads, we swap the observed pair
(ŷi2ℓ−2

ŷi2ℓ ) and if it comes up tails we do not. The observed (xi, yi) as well as ŷi for i ̸∈ L are set in
D̃0 as they are observed in D0.

D̄0 is constructed similarly, but we instead flip a coin with bias (1+r((xi2ℓ−1
, ŷi2ℓ−1

), (xi2ℓ , ŷi2ℓ)))
−1

to decide the assignment of (ŷi2ℓ−2
ŷi2ℓ ) – again, heads indicates that we swap the observed ordering,

and tails indicates that we do not.

By construction, the distributions of D̄0 and D0 are identical conditioned on F , as
r((xi2ℓ−1

, ŷi2ℓ−1
), (xi2ℓ , ŷi2ℓ)) denotes the true relative odds of observing each of the two possible

(x, ŷ) pairings. In contrast, the distribution of D̃0 is different, as it was sampled using the simplifying
assumption (14) – in particular, D̃0 is generated assuming r((xi2ℓ−1

, ŷi2ℓ−1
), (xi2ℓ , ŷi2ℓ)) = 1!

The difference between the biases of these coins is bounded above by ε∗n,L. We’ll use this observation,
along with the following lemma, to complete the proof.

Lemma 3 (Bounding the total variation distance between i.i.d. coin flips) Let i ∈ [L] index a
sequence of i.i.d. coin flips u1 . . . uL each with bias pi, and v1 . . . vL be a sequence of i.i.d. coin flips
with bias qi. Then we can show:

TV((u1 . . . uL), (v1 . . . vL)) ≤ 1− (1−max
i
|pi − qi|)L (24)

We defer the proof of lemma 3 to Appendix D. This implies that the total variation distance between
D̄0 and D̃0 is bounded above by 1− (1− ε∗n,L)

L. This, along with (21), (22) and (23) concludes the
proof of Theorem 1.

Corollary 3.1 (Weaker type I error bound)

P(τ ≤ α) ≤ α+ ε∗n,LL+
1

K + 1
(25)

Corollary 3.1 is a weaker bound than the one given in Theorem 1, but is easier to interpret and
manipulate. We will make use of this fact in the following section; the proof is an immediate
consequence of theorem 1 and provided in Appendix D for completeness.

C Proof of Theorem 2

To establish theorem 2, we will argue that ε∗n,L goes to 0 at a rate of O(n− 1
d ). This implies that,

provided L = o(n
1
d ), the excess type I error established in theorem 1 is o(1) as desired. To do this,

we first show that each pair (xi2ℓ−1
, xi2ℓ) chosen by ExpertTest will be close under the ℓ2 norm

(lemmas 4 and 5 below). We then leverage the smoothness assumption (12) to demonstrate that this
further implies that ε∗n,L concentrates around 0. For clarity we state auxiliary lemmas inline, and
defer proofs to Appendix D.

Finding pairs which are close under the ℓ2 norm.

Let ML to be the set of matchings of size L on x1...xn; i.e. each element of ML is a set of L disjoint
(x, x′) pairs. Let m∗

L be the ‘optimal’ matching satisfying:

m∗
L ∈ argmin

z∈ML

max
(x,x′)∈z

∥x− x′∥2. (26)

6This technique is inspired by the proof of type I error control given for the Conditional Permutation Test in
Berrett et al. (2018); see Appendix A.2 of their work for details
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That is, m∗
L minimizes the maximum distance between any pair of observations in a mutually disjoint

pairing of 2L observations. Let
d∗L = max

(x,x′)∈m∗
L

∥x− x′∥2. (27)

That is, the smallest achievable maximum ℓ2 distance over all matchings of size L. We’ll first show
that:

Lemma 4 (Existence of an optimal matching) If X = [0, 1]d for some d ≥ 1,

d∗n
4
= O

(
n− 1

d

)
(28)

with probability 1.

That is, there exists a matching of size at least n
4 such the maximum pairwise distance in this

matching scales like O(n− 1
d ). Lemma 4 demonstrates the existence of a sizable matching in which

the maximum pairwise distance indeed tends to 0.7 We next demonstrate that this approximates the
optimal matching, at the cost of a factor of 2 on L.

Lemma 5 (Greedy approximation to the optimal matching)
max
l∈[L]
||x2l−1 − x2l||2 ≤ d∗2L (29)

That is, the maximum distance between any of the L pairs of observations chosen by our algorithm
will be no more than the maximum such distance in the optimal matching of size 2L.

Corollary 5.1 For L ≤ n
8 , we have:

max
l∈[L]
||x2l−1 − x2l||2 = O

(
n− 1

d

)
(30)

This follows immediately by invoking lemma 4 to bound the right hand side of lemma 5. Corollary
5.1 demonstrates that as n grows large, the maximum pairwise ℓ2 distance between L greedily chosen
pairs will go to zero at a rate of O

(
n− 1

d

)
provided L ≤ n

8 . We now show that the smoothness
condition (12) further implies that, under these same conditions, we recover the asymptotic validity
guarantee (13).

From approximately optimal pairings to asymptotic validity.

With the previous lemmas in place, the proof of theorem 2 is straightforward. Plugging the smoothness
condition (12) into the definition of the odds ratio (9) yields the following:

For all (x2ℓ−1, y2ℓ−1), (x2ℓ, y2ℓ),

r((x2ℓ−1, y2ℓ−1), (x2ℓ, y2ℓ)) ∈
[

1

(1 + C||x2ℓ−1 − x2ℓ||2)2
, (1 + C||x2ℓ−1 − x2ℓ||2)2

]
(31)

Where C > 0 is the same constant in the definition of the smoothness condition (12). Corollary 5.1
shows that ||x2ℓ−1− x2ℓ||2 = O

(
n− 1

d

)
, so (31) immediately implies that ε∗n,L, defined in (11), also

goes to zero at a rate of O
(
n− 1

d

)
. Thus, if we take L to be a constant and K →∞, the type I error

given in (10) can be rewritten as

P
(
τK ≤ α

)
≤ α+ (1− (1− ε∗n,L)

L) +
1

K + 1
(32)

≤ α+ ε∗n,LL+
1

K + 1
(33)

= α+O
(
n− 1

d

)
(34)

7In principle, we could find this optimal matching by binary searching for d∗L using the non-bipartiate
maximal matching algorithm of Edmonds (1965); for simplicity, our implementation uses a greedy matching
strategy instead.
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Where (33) follows from corollary 3.1. If we instead allow L to scale like o(n
1
d ) (still taking

K →∞), (33) implies:

P
(
τK ≤ α

)
≤ α+ o(1) (35)

which concludes the proof of theorem 2.

D Proofs of auxiliary lemmas

Proof of Lemma 3.

Recall that one definition of the total variation distance between two distributions P and Q is to
consider the set of couplings on these distributions. In particular, the total variation distance can be
equivalently defined as:

TV(P,Q) = inf
(X,Y )∼C(P,Q)

P(X ̸= Y ) (36)

Where C(·, ·) is the set of couplings on its arguments. Consider then the following straightforward
coupling on X ..= (u1 . . . uL) and Y ..= (v1 . . . vL): draw L random numbers independently
and uniformly from the interval [0, 1]. Denote these by c1 . . . cL. Let ui = 1[ci ≤ pi], and
vi = 1[ci ≤ qi]. It’s clear that X and Y are marginally distributed according to p1 . . . pL and
q1 . . . qL, respectively. Furthermore, the probability that ui ̸= vi is |pi − qi| by construction. Thus
we have:

P(X ̸= Y ) = 1− P(X = Y ) = 1−Πi∈[L](1− |pi − qi|) ≤ 1− (1−max
i
|pi − qi|)L (37)

This concludes the proof.

Proof of Corollary 3.1.

In the preceding proof of lemma 3, observe that we could have instead written:

P(X ̸= Y ) =
⋃

i∈[L]

{vi ̸= ui} ≤︸︷︷︸
union bound

∑
i∈[L]

|pi − qi| ≤ Lmax
i∈[L]

|pi − qi| (38)

Specializing this result to the definitions D̄0 and D̃0 (and, in particular, the definition of ε∗n,L)
completes the proof.

Proof of Lemma 4.

Our proof will proceed via a covering argument. In particular, we cover the feature space [0, 1]d with
a set of non-overlapping d-dimensional hypercubes, each of which has edge length 0 < b < 1, and
show that sufficiently many pairs (x, x′) must lie in the same ‘small’ hypercube. To that end, let
C = {c1 . . . ck} be a set of hypercubes of edge length b with the following properties:

∀c ∈ C, c ⊆ [−b, 1 + b]d (39)

∀c, c′ ∈ C, c ∩ c′ = ∅ (40)
∀x ∈ D0,∃c ∈ C | x ∈ c (41)

Where D0 is the observed data. It’s clear that such a covering C must exist, for example by arranging
c1 . . . ck in a regularly spaced grid which cover [0, 1]d (though note that per condition (39), some of
these ‘small’ hypercubes may extend outside [0, 1]d if b does not evenly divide 1). Such a covering
may be difficult to index as care must be exercised around the boundaries of each small hypercube;
however, as we only require the existence of such a covering, we ignore these details. We now state
the following elementary facts:

|C| ≤ ⌊ (1 + 2b)d

bd
⌋ (42)

∀c ∈ C, x, x′ ∈ c, ||x− x′||2 ≤ b
√
d (43)
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Where (42) follows because the volume of each c ∈ C is bd, and the total volume of all such
hypercubes cannot exceed the volume of the containing hypercube [−b, 1 + b]d, which gives us an
upper bound on the size of the cover C. Furthermore, (43) tells us that for any (x, x′) which lie in the
same ‘small’ hypercube c, we have ∥x− x′∥2 ≤ b

√
d.

Let nc
..= |{xi | xi ∈ c}| denote the number of observations contained in each small hypercube

c ∈ C.

Corollary 5.2 For any c ∈ C, there exist at least ⌊nc

2 ⌋ disjoint pairs (x, x′) ∈ c such that ||x −
x′||2 ≤ b

√
d.

With these preliminaries in place, we’ll proceed to prove lemma 4. To do this, we’ll first state one
additional auxiliary lemma.

Let Na,b
..= ad

bd
≥ ⌊a

d

bd
⌋, an upper bound on the number of non-overlapping ‘small’ hypercubes with

edge length b which can fit into [0, a]d. We’ll show for any z > 0, with b ..= z√
d
, a ..= 1 + 2b, we

have:

Lemma 6 (Pairwise distance in terms of packing number)

n ≥ 2Na,b ⇒ ∃
n

4
pairs satisfying ||x− x′||2 ≤ z (44)

That is, the pairwise distance between the closest set of n
4 pairs (half the observed data in total) can

be written in terms of the appropriately parameterized covering number. We defer the proof of this
lemma to the following section. For now, we simply plug in the definition of Na,b and rearrange to
recover:

n ≥ 2Na,b = 2

(
1 + 2 z√

d

)d
(

z√
d

)d ⇒ 2
1
d

√
d

n
1
d − 21+

1
d

≤ z (45)

Recall that z is the maximum distance between any pairs (x, x′) contained in the same small
hypercube with edge length z√

d
. The preceding argument holds for all z > 0 which satisfy (45), so in

particular, it holds for

z∗ ..=
2

1
d

√
d

n
1
d − 21+

1
d

. (46)

z∗ is the maximum pairwise distance corresponding to one possible matching on n
4 (x, x′) pairs, so

this further implies that there exists a matching M of size n
4 such that:

max
(x,x′)∈M

||x− x′||2 ≤
2

1
d

√
d

n
1
d − 21+

1
d

= O(n− 1
d )

With probability 1. Thus, it follows that the maximum distance between any pair in the optimal
matching d∗n

4
also satisfies:

d∗n
4
= O

(
2

1
d

√
d

n
1
d − 21+

1
d

)
= O

(
n− 1

d

)
With probability 1, as desired. This establishes the existence of a matching of up to L = n

4 disjoint

pairs (x, x′) ∈ [0, 1]d such that the maximum distance between any such pair scales like O
(
n− 1

d

)
.

We also consider the case where instead of X ..= [0, 1]d, we instead have P
(
X ∈ [0, 1]d

)
≥ 1− δ for

some δ ∈ (0, 1). For example, this will capture the case where X is a (appropriately re-centered and
re-scaled) multivariate Gaussian. In this case, we provide a corresponding high probability version of
lemma 4.
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Corollary 6.1 Suppose instead of X ..= [0, 1]d, we have for some δ ∈ (0, 1):

P(X ∈ [0, 1]d) ≥ 1− δ (47)

Define m ..= (1− δ)2n

We can then show:

P

(
d∗m

4
≤ 2

1
d

√
d

m
1
d − 21+

1
d

)
≥ 1− e−

δ2(1−δ)n
2 (48)

That is, we can still achieve a constant factor approximation to the optimal matching in Lemma 4
with probability that exponentially approaches 1.

Proof of Corollary 6.1

Define the set of points which falls in [0, 1]d as follows:

S0
..= {Xi | Xi ∈ [0, 1]d} (49)

and
n0

..= |S0| (50)

It is clear that in this setting, the proof of lemma 4 holds if we simply replace n with n0, the
realized number of observations which fall in [0, 1]d. However, n0 is now a random quantity which
follows a binomial distribution with mean (1 − δ)n (recall that we assume (xi, yi, ŷi) are drawn
i.i.d. throughout). Thus, all that remains is to bound n0 away from 0, which we can do via a simple
Chernoff bound:

P(n0 ≤ (1− δ)2n) ≤ e−
δ2(1−δ)n

2 (51)

Thus, it follows that

P(n0 ≥ (1− δ)2n) ≥ 1− e−
δ2(1−δ)n

2 (52)

Thus, we have shown n0 ≥ m with the desired probability. It is clear that we only require a lower
bound on n0 to recover the result of Theorem 4, as additional observations which fall in [0, 1]d can
only improve the quality of the optimal matching d∗m

4
.

Proof of Lemma 5

We will show that the procedure in ExpertTest which greedily pairs the closest remaining pair of
points L times will always be able to choose at least one of the pairs in an optimal matching of size
2L. Intuitively, this is because each pair (x, x′) chosen by ExpertTest can only ‘rule out’ at most two
pairs (x, x′′), (x′, x′′′) in any optimal matching of size 2L. Thus, our greedy algorithm for choosing
L pairs can perform no worse than an optimal matching of size 2L, the sense of minimizing the
maximum pairwise distance.

Let m∗
2L be an optimal matching of size 2L in the sense of (26). Then suppose towards contradiction

that:

max
l∈[L]
||x2l−1 − x2l||2 > d∗2L (53)

Where d∗2L is the smallest achievable maximum distance for any matching of size 2L as in (27).

Finally, let lm ..= argminl∈[L] ||x2l−1 − x2l||2 > d∗2L; i.e. the first pair which is chosen by
ExpertTest that violates (53). Because pairs are chosen greedily to minimize ℓ2 distance, and m∗

2L
is a matching of size 2L where all pairs are separated by at most d∗2L under the ℓ2 norm, it must be
that none of the pairs which make up m∗

2L were available to ExpertTest at the lm-th iteration. In
particular, at least one element of every (x, x′) pair in m∗

2L must have been selected on a previous
iteration:

∀(x, x′) ∈ m∗
2L, x ∈ {x1 . . . x2lm−2} ∨ x′ ∈ {x1 . . . x2lm−2} (54)
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As m∗
2L contains 2L disjoint pairs – 4L observations total – this implies that 2lm − 2 ≥ 2L ⇒

lm − 1 ≥ L ⇒ lm > L. This is a contradiction, as ExpertTest only chooses L pairs, so lm only
ranges in [1, L]. This completes the proof.

Corollary 6.2 Validity in finite samples

Theorem 2 implies that we can achieve a bound on the excess type one error in finite samples if we
knew the constant C in (12). In particular, let

m∗ ..= max
ℓ∈[L]

||x2ℓ−1 − x2ℓ||2 (55)

ϵ∗ ..= max
r∈[(1+Cm∗)−2,(1+Cm∗)2]

∣∣∣∣ 1

r + 1
− 1

2

∣∣∣∣ (56)

Then (10) implies that we can always construct a valid (if underpowered) test at exactly the nominal
size α by updating our REJECT threshold to

α−
(
1− (1− ϵ∗)L

)
− 1

K + 1

Proof of lemma 6

let C ..= {c1...ck} denote any set of k ‘small’ nonoverlapping hypercubes of edge length b satisfying
properties (39), (40) and (41). As discussed in the proof of lemma 4, each element of C is not
guaranteed to lie strictly in [0, 1]. Rather, each c ∈ C must merely intersect [0, 1]d, implying that
each element of the cover is instead contained in the slightly larger hypercube [−b, 1 + b]d. As in the
proof of lemma 4, we’ll again let nc denote the number of observations xi which lie in some c ∈ C.

By Corollary 5.2, we have that ⌊nc

2 ⌋ pairs in each c ∈ C will satisfy ||x− x′||2 ≤ b
√
d = z. Thus

what’s left to show is that:
n ≥ 2Na,b ⇒

∑
j∈[k]

⌊
ncj

2
⌋ ≥ n

4

We can see this via the following argument:

∑
j∈[k]

⌊
ncj

2
⌋ ≥

∑
j∈[k]

(
ncj

2
− 1

2

)
(57)

=
n

2
− k

2
(58)

≥ n

2
− Na,b

2
(59)

≥ n

2
− n

4
=

n

4
(60)

Where (59) follows from (42) and the definition of Na,b, and (60) follows because n ≥ 2Na,b by
assumption. This completes the proof.

E Omitted Details from Section 5

E.1 Identifying relevant patient encounters and classifying outcomes

As described in Section 5, we consider a set of 3617 patients who presented with signs or symptoms
of acute gastrointestinal bleeding at the emergency department at a large quaternary academic hospital
system from January 2014 to December 2018. These patient encounters were identified using a
database mapping with a standardized ontology (SNOMED-CT) and verified by manual physician
chart review. Criteria for inclusion were the following: any text that identifies acute gastrointestinal
bleeding for hematemesis, melena, hematochezia from either patient report or physical exam findings

22



(which were considered equally valid for the purposes of inclusion). Exclusion criteria were the
following: patients with other reasons for overt bleeding symptoms (e.g. epistaxis) or missingness
in input variables required to calculate the Glasgow-Blatchford Score. As mentioned in Section 5,
only upper gastrointestinal bleeding guidelines recommend the Glasgow-Blatchford Score for routine
clinical use. However, the Glasgow-Blatchford Score has also been validated for use in patients with
lower gastrointestinal bleeding, and in our setting the GBS was applied to patients who presented
with signs of symptoms of either upper or lower gastrointestinal bleeding. We refer the reader to
Section 5 for additional details and references.

This identified a set of 3627 patients, of which a further 10 were removed from consideration due to
unclear emergency department disposition (neither Admit nor Discharge). As described in Section
5, we record an adverse outcome (Y = 1) for admitted patients who required some form of hemostatic
intervention (excluding a diagnostic endoscopy or colonoscopy), or patients who are readmitted or
die within 30 days. We record an outcome of 0 for all other patients.

The use of readmission as part of the adverse event definition is subject to two important caveats.
First, we are only able to observe patients who are readmitted within the same hospital system. Thus,
although the hospital system we consider is the dominant regional health care network, it is possible
that some patients subseqeuently presented elsewhere with signs or symptoms of AGIB; such patients
would be incorrectly classified as not having suffered an adverse outcome. Second, we only record an
outcome of 1 for patients who are readmitted with signs or symptoms of AGIB, subject to the same
inclusion criteria defined above. Patients who are readmitted for other reasons are not recorded as
having suffered an adverse outcome.

E.2 The special case of binary outcomes and predictions

In our experiments we define the loss measure F (D) ..= 1
n

∑
i 1[yi ̸= ŷi], but it’s worth remarking

that this is merely one choice within a large class of natural loss functions for which ExpertTest pro-
duces identical results when Y, Ŷ are binary. In particular, observe that a swap of (y1, ŷ1), (y2, ŷ2)
can only change the value of F (·) if y1 ̸= y2 and ŷ1 ̸= ŷ2 (we’ll assume throughout that all observa-
tions contribute equally to the loss; i.e. it is invariant to permutations of the indices i ∈ [n]). This
implies that there are only 22 out of 24 possible configurations of (y1, ŷ1, y2, ŷ2) where a swap can
change the loss at all. Of these, two configurations create a false negative and a false positive in the
synthetic data which did not exist in the observed data:

(y1 = 1, ŷ1 = 1, y2 = 0, ŷ2 = 0)︸ ︷︷ ︸
original data

→
swap

(y1 = 1, ŷ1 = 0, y2 = 0, ŷ2 = 1)︸ ︷︷ ︸
synthetic data

(y1 = 0, ŷ1 = 0, y2 = 1, ŷ2 = 1) →
swap

(y1 = 0, ŷ1 = 1, y2 = 1, ŷ2 = 0)

The other two configurations which change the loss are symmetric, in that a swap removes both a
false negative and false positive that exists in the observed data:

(y1 = 0, ŷ1 = 1, y2 = 1, ŷ2 = 0) →
swap

(y1 = 0, ŷ1 = 0, y2 = 1, ŷ2 = 1)

(y1 = 1, ŷ1 = 0, y2 = 0, ŷ2 = 1) →
swap

(y1 = 1, ŷ1 = 1, y2 = 0, ŷ2 = 0)

Thus, for any natural loss function which is strictly increasing in the number of mistakes
∑

i 1[yi ̸=
ŷi], the first two configurations of (y1, ŷ1, y2, ŷ2) will induce swaps which strictly increase the loss,
while the latter two will induce swaps that strictly decrease the loss. This means that for a given set of
L pairs, we can compute the number of swaps which would increase (respectively, decrease) the loss
for any function in this class of natural losses. In particular, this class includes loss functions which
may assign arbitrarily different costs to false negatives and false positives. Thus, in the particular
context of assessing physician triage decisions, our results are robust to variation in the way different
physicians, patients or other stakeholders might weigh the relative cost of false negatives (failing to
hospitalize patients who should have been admitted) and false positives (hospitalizing patients who
could have been discharged to outpatient care).
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E.3 Alternative feature spaces

In Section 5, we run ExpertTest by pairing patients who appear as close as possible (and, in most
cases, identical) with respect to the nine features which are provided as input to the Glasgow-
Blatchford score. While this test has perhaps the most natural interpretation in our setting, we could
in general choose other ways of representing patients. In particular, a natural question to ask is
whether physicians successfully distinguish patients who present with identical Glasgow-Blatchford
scores (or, more generally, with identical predictions under some model of interest). That is, rather
than letting X ∈ [0, 1]9 be the nine patient characteristics which are provided as input to the GBS,
we instead let X ∈ {0, 1 . . . 23} be the GBS itself. While this is in some sense ‘weaker’ than the test
we run in Section 5 – the GBS is a deterministic function of the richer feature space we chose there –
recall that the validity of ExpertTest relies on finding pairs which are identical or nearly identical
in the feature space. Thus, choosing to instead condition on a simple univariate prediction can in
general yield useful insight when ExpertTest fails to offer conclusive results in the ‘natural’ input
space. We present the results of this experiment in Table 3 below.

L mismatched pairs swaps that increase loss swaps that decrease loss τ

100 0 4 0 0.043
250 0 11 2 0.004
500 0 21 3 <.001

1000 0 36 3 <.001
1808 5 71 5 <.001

Table 3: The results of running ExpertTest, where each pair of patients is chosen to be as similar as
possible with respect to their Glasgow-Blatchford scores. L indicates the number of pairs selected for
the test, of which ‘mismatched pairs’ are not identical to each other. Swaps that decrease (respectively,
increase) loss indicates how many of the L pairs result in a decrease (respectively, increase) in the
0/1 loss when their corresponding hospitalization decisions are exchanged with each other. τ is the
p-value obtained from running ExpertTest.

As we can see, we get very similar results to those presented in Section 5. Consistent with Table 2,
we find no mismatched pairs for L ≤ 1000, and we again obtain the smallest possible p-values of

1
K+1 = 1

1001 for larger values of L.

Another experiment we might run is to condition on a richer feature space than the one we chose in
Section 5. In particular, recall that of the nine inputs to the GBS, four of them (blood urea nitrogen
(BUN), hemoglobin (HGB), systolic blood pressure (SBP) and pulse) are real-valued test scores or
vital signs. Part of the standard construction of the Glasgow-Blatchford Score entails converting
these features to simple discrete scales, with larger values indicating that a patient is higher risk. A
useful consequence of this convention is that it allows us to find large numbers of patients who appear
identical with respect to these discretized features. However, we can also run ExpertTest in the
‘original’ feature space, where each of these four characteristics take values in R and thus effectively
guarantee that we fail to find pairs of patients who are exactly identical. We present the results of this
test (where the only transformation we apply is to again rescale each feature to lie in [0, 1]) in Table 4
below.

Here we again see strong evidence of expertise, with p-values equal to 1
K+1 = 1

1001 for larger values
of L. However, unlike in Table 2 and Table 3, we now fail to find identical pairs of patients for
any value of L. This raises the possibility that ExpertTest is not valid in this setting, as type I
error control now relies on the value of ε∗n,L(11). While we cannot compute ε∗n,Lwithout making
assumptions about the underlying data distribution, we can provide a sense check by examining the
Euclidian distance between each pair of patients. If it is very close to 0 for most or all pairs, we
might reasonably expect that ExpertTest recovers approximate type I error control. We present these
results in Figure 1 below.

As expected, we fail to find any pairs of patients who are identical in this partially real-valued feature
space. Nonetheless, we see that for L ≤ 1000, every pair is chosen such that the Euclidian distance
between them is very close to 0, which suggests that ExpertTest is likely to be approximately valid
for these experiments. We also see however that for L = 1808, some pairs are chosen such that the
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L mismatched pairs swaps that increase loss swaps that decrease loss τ

100 100 5 0 0.015
250 250 13 2 0.005
500 500 23 3 <.001

1000 1000 36 6 <.001
1808 1808 66 6 <.001

Table 4: The results of running ExpertTest, where each pair of patients is chosen to be as similar
as possible with respect to nine patient characteristics. The Glasgow-Blatchford score is computed
from these nine characteristics, after a pre-processing step which discretizes each feature. L indicates
the number of pairs selected for the test, of which ‘mismatched pairs’ are not identical to each
other. Swaps that decrease (respectively, increase) loss indicates how many of the L pairs result in a
decrease (respectively, increase) in the 0/1 loss when their corresponding hospitalization decisions
are exchanged with each other. τ is the p-value obtained from running ExpertTest.

Figure 1: Distribution of Euclidian distances between each pair of patients chosen by Ex-
pertTest when patients are represented as a vector of nine patient characteristics, of which four
– blood urea nitrogen (BUN), hemoglobin (HGB), systolic blood pressure (SBP) and pulse – are
real-valued. L indicates the number of pairs of patients chosen for each experiment, with the boxplot
indicating the distribution of pairwise Euclidian distances between them. The red line at

√
9 = 3

indicates the maximum possible Euclidian distance in this feature space.

pairwise distance is more than 30% of its maximum possible value, suggesting that ExpertTest does
indeed incur substantial excess type I error when L = 1808.

F Numerical Experiments

We first elaborate here on the example 1 presented in the introduction. Consider the following stylized
data generating process:

Example: experts can add value despite poor performance.

Let X,U, ϵ1, ϵ2 be independent random variables distributed as follows:

X ∼ U([−2, 2]), U ∼ U([−1, 1]), ϵ1 ∼ N (0, 1), ϵ2 ∼ N (0, 1)
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Where U(·) and N (·, ·) are the uniform and normal distribution, respectively. Suppose the true data
generating process for the outcome of interest Y is

Y = X + U + ϵ1

Suppose a human expert constructs a prediction Ŷ which is intended to forecast Y and can be
modeled as:

Ŷ = sign(X) + sign(U) + ϵ2

Where sign(X) ..= 1[X > 0]− 1[X < 0].

We compare this human prediction to that of an algorithm f̂(·) which can only observe X , and
correctly estimates

f̂(X) = E[Y | X] = X

As described in the introduction, we use this example to demonstrate that ExpertTest can detect
that the forecast Ŷ is incorporating the unobserved U even though the accuracy of Ŷ is substantially
worse than that of f̂(X). In particular, we consider the mean squared error (MSE) of each of these
predictors:

Algorithm MSE ..=
1

n

∑
i

(Yi − f̂(Xi))
2

Human MSE ..=
1

n

∑
i

(Yi − Ŷi)
2

We’ll show below that the Algorithm MSE is substantially smaller than the Human MSE. However,
we may also wonder whether the performance of the human forecast Ŷ is somehow artificially
constrained by the the relative scale of Ŷ and Y , as the sign(·) operation restricts the range of Ŷ .
For example, a forecaster who always outputs Ŷ = Y

100 is perfectly correlated with the outcome but
will incur very large squared error; this is a special case of the more general setting where human
forecasts are directionally correct but poorly calibrated. To test this hypothesis, we can run ordinary
least squares regression (OLS) of Y on Ŷ and compute the squared error of this rescaled prediction.
It is well known OLS estimates the optimal linear rescaling with respect to squared error, and we
further use the in sample MSE of this rescaled prediction to provide a lower bound on the achievable
loss. In particular, let:

(β∗, c∗) ..= min
β,c∈R

||Y − βŶ − c||22 (61)

Rescaled Human MSE ..=
1

n

∑
i

(Yi − β∗Ŷi − c∗)2 (62)

In Table 5 we report the mean squared error (plus/minus two standard deviations) over 100 draws
of n = 1000 samples from the data generating process described above. As we can see, both the
original and rescaled human forecasts substantially underperform f̂(·).

Table 5: Expert vs Algorithm Performance

Algorithm MSE Human MSE Rescaled Human MSE

1.33 ± 0.12 2.67 ± 0.24 1.92 ± 0.16

We now assess the power of ExpertTest in this setting by repeatedly simulating n = 1000 draws
of (X,U, ϵ1, ϵ2) along with the associated outcomes Y ..= X + U + ϵ1 and expert predictions
Ŷ ..= sign(X) + sign(U) + ϵ2. We sample 100 datasets in this manner, and run ExpertTest on each
one with L,K = 100, and the distance metric m(x, x′) ..=

√
(x− x′)2. The distribution of p-values

τ1...τ100 is plotted in Figure 2.
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Figure 2: distribution of τ is sharply nonuniform when the expert incorporates unobserved information
U in the toy example. The vertical red line indicates a critical threshold of α = .05, and the dashed
line traces a uniform distribution.

We see that ExpertTest produces a highly nonuniform distribution of the p-value τ , and rejects the
null hypothesis 94% of the time at a critical value of α = .05. To assess whether this power comes at
the expense of an inflated type I error, we also run ExpertTest with both X and U ‘observed’; in
particular, suppose the distance measure was instead m((x, u), (x′, u′)) =

√
(x− x′)2 + (u− u′)2

with everything else defined as above. The distribution of τ in this setting is again plotted in Figure 3.

Figure 3: distribution of τ is approximately uniform when the expert does not incorporate unobserved
information in the toy example. The vertical red line indicates a critical threshold of α = .05, and the
dashed line traces a uniform distribution.

When both X and U are observed, and thus the null hypothesis should not be rejected, we instead see
that we instead get an approximately uniform distribution of τ with a false discovery rate of only .03
at a critical value of α = .05. Thus, the power of ExpertTest to detect that the synthetic expert is
incorporating some unobserved information U does not come at the expense of inflated type I error,
at least in this synthetic example.

Assessing the power of ExpertTest

We now present additional simulations to highlight how the power of ExpertTest scales with the
number of pairs L and the sample size n in a more general setting. In particular, we consider a simple
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synthetic dataset (xi, yi, ŷi), i ∈ [n] ≡ {1, . . . , n} where x1...xn = [1, 1, 2, 2, ...n2 ,
n
2 ]

′ and y1...yn
is the alternating binary string [0, 1, 0, 1 . . . 0, 1]′ (we consider only even n for simplicity). This
guarantees that each of the L pairs chosen are such that (x2ℓ−1 = x2ℓ) and y2ℓ−1 ̸= y2ℓ. Importantly,
it’s also clear that x is uninformative about the true outcome y – if the expert can perform better than
random guessing, it must be by incorporating some unobserved signal U .

We model this unobserved signal by an ‘expertise parameter’ δ ∈ [0, 1
2 ]. In particular, for each

pair (y2ℓ−1, y2ℓ) for ℓ ∈ [1 . . . n
2 ], we sample (ŷ2ℓ−1, ŷ2ℓ) such that (ŷ2ℓ−1, ŷ2ℓ) = (y2ℓ−1, y2ℓ) with

probability 1
2 + δ and (y2ℓ, y2ℓ−1) otherwise. Intuitively, δ governs the degree to which the expert

predictions Ŷ incorporate unobserved information – at δ = 0, we model an expert who is randomly
guessing, whereas at δ = 1

2 the expert predicts the outcome with perfect accuracy.

First, we consider the case of n ∈ {200, 600, 1200} and fix L at n
8 as suggested by the proof of

Theorem 2. For each of these cases, we examine how the discovery rate scales with the expertise
parameter δ ∈ {0, .05....45, .50}. In particular, we choose a critical threshold of α = .05 and
compute how frequently ExpertTest rejects H0 over 100 independent draws of the data for each
value of δ. These results are plotted below in Figure 4.

Figure 4: The power of ExpertTest as a function of sample size n and expertise parameter δ. The
horizontal dashed line corresponds to a power of 80%

Unsurprisingly, the power of ExpertTest depends critically on the sample size – at n = 1200,
ExpertTest achieves 80% power in rejecting H0 when the expert only performs modestly better than
random guessing (δ ≈ .1). In contrast, at n = 200, ExpertTest fails to achieve 80% power until
δ ≈ .25 – corresponding to an expert who provides the correct predictions over 75% of the time even
when the observed x is completely uninformative about the true outcome.

Next we examine how the power of ExpertTest scales with L. We now fix n = 600 and let δ = .2
to model an expert who performs substantially better than random guessing, but is still far from
providing perfect accuracy. We then vary L ∈ {20, 40 . . . 200} and plot the discovery rate (again at a
critical value of α = .05, over 500 independent draws of the data) for each choice of L. These results
are presented below in Figure 5.

As expected, we see that power is monotonically increasing in L, and asymptotically approaching
1. With δ = .2, we see that ExpertTest achieves power in the neighborhood of only 50% with
L = 20 pairs, but sharply improves to approximately 80% power once L increases to 40. Beyond
this threshold we see that there are quickly diminishing returns to increasing L.

Excess type I error of ExpertTest

Recall that, per Theorem 1, ExpertTest becomes more likely to incorrectly reject H0 as L increases
relative to n. In particular, larger values of L will force ExpertTest to choose (x, x′) pairs which are
farther apart under any distance metric m(·, ·), and thus induce larger values of ε∗n,L as defined in
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Figure 5: The power of ExpertTest as a function of L, with n = 600, δ = .2. The horizontal dashed
line corresponds to a power of 80%

(11). Furthermore, even for fixed ε∗n,L> 0, the type one error bound given in Theorem 1 degrades
with L. We empirically investigate this phenomenon via the following numerical simulation.

First, let X = (X1, X2, X3) ⊂ R3 be uniformly distributed over [0, 10]3. Let Y = X1+X2+X3+ϵ1
and Ŷ = X1 +X2 +X3 + ϵ2, where ϵ1, ϵ2 are independent standard normal random variables. In
this setting, it’s clear that H0 : Y ⊥⊥ Ŷ | X holds.

We repeatedly sample n = 500 independent observations from this distribution over (X,Y, Ŷ )
and run ExpertTest for each L ∈ {25, 50 . . . 250}. We let K = 50 and m(x, x′) ..= ||x − x′||22
be the ℓ2 distance. We let the loss function F (·) be the mean squared error of Ŷ with respect to
Y . For each scenario we again choose a critical threshold of α = .05, and report how frequently
ExpertTest incorrectly rejects the null hypothesis over 50 independent simulations in Figure 6.

Figure 6: The type I error rate of ExpertTest as a function of L, with n = 500 and a critical threshold
of .05. The horizontal dashed line corresponds to the nominal false discovery rate of .05

As we can see, the type I error increases sharply as a function of L, and ExpertTest incurs a false
discovery rate of 100% at the largest possible value of L = n

2 ! This suggests that significant care
should be exercised when choosing the value of L, particularly in small samples, and responsible use
of ExpertTest will involve leveraging domain expertise to assess whether the pairs chosen are indeed
‘similar’ enough to provide type I error control.
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G Pseudocode for ExpertTest

In this section we provide pseudocode for ExpertTest. Inputs D0, L,K, α, F (·),m(·, ·) are as
defined in Section 3.

ExpertTest(D0, L,K, α, F (·),m(·, ·))
X0 ← {x | (x, ·, ·) ∈ D0} ▷ initialize set of remaining observations
P ← ∅ ▷ initialize set of paired predictions

for ℓ = 1 : L do
(x2ℓ−1, x2ℓ)← argmin

(x,x′)

m(x, x′) ▷ find closest remaining pair, breaking ties arbitrarily

Xℓ ← Xℓ−1 \ {x2ℓ−1, x2ℓ}
P ← P ∪ {(ŷ2ℓ−1, ŷ2ℓ)} ▷ save predictions associated with closest remaining pair

end for

f0 ← F (D0) ▷ calculate observed loss

for k = 1 : K do
Dk ← swap(D0, P,

1
2 ) ▷ independently swap each (ŷ2ℓ−1, ŷ2ℓ) ∈ P with equal probability

fk ← F (Dk) ▷ calculate synthetic loss
end for

τ ← 1
K

∑
k 1[fk ≲ f0] ▷ calculate quantile of observed loss, breaking ties at random

if τ ≤ α then ▷ if τ ≤ α, H0 is rejected with p-value α+ 1
K+1

REJECT
end if
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