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Abstract

Recognizing human actions in videos requires spatial and temporal understand-
ing. Most existing action recognition models lack a balanced spatio-temporal
understanding of videos. In this work, we propose a novel two-stream architec-
ture, called Cross-Attention in Space and Time (CAST), that achieves a balanced
spatio-temporal understanding of videos using only RGB input. Our proposed
bottleneck cross-attention mechanism enables the spatial and temporal expert
models to exchange information and make synergistic predictions, leading to
improved performance. We validate the proposed method with extensive experi-
ments on public benchmarks with different characteristics: EPIC-KITCHENS-100,
Something-Something-V2, and Kinetics-400. Our method consistently shows
favorable performance across these datasets, while the performance of existing
methods fluctuates depending on the dataset characteristics. The code is available
at https://github.com/KHU-VLL/CAST.

1 Introduction

To accurately recognize human actions in videos, a model must understand both the spatial and
temporal contexts. A model that lacks fine-grained spatial understanding is likely to fail in predicting
the correct action. For example, as shown in Figure 1 (a), a model that understands temporal context
such as hand motion across frames but not the fine-grained spatial context may confuse whether an
object in the hand a ketchup, or a cheese, or a milk carton. Consequently, the model fails to predict
the correct action, Put down a cheese. Similarly, a model that lacks temporal context understanding
may also fail to predict the correct action. In Figure 1 (b), let us suppose a model understands spatial
context but does not understand temporal context, e.g., the model is confused about whether the
hand is moving from outside the fridge to the inside or vice versa. Then the model fails to predict
the correct action of Take out a sauce. Therefore, for accurate action recognition, models need to
comprehend both the spatial and temporal contexts of videos.

Despite the recent progress in action recognition through the use of Transformers [60, 11, 3],
achieving a balanced spatio-temporal understanding remains a challenging problem. Compared to
images, the additional temporal dimension in videos makes spatio-temporal representation learning
computationally intensive and requires a significant amount of training data [3]. Consequently, most
action recognition models lack a balanced spatio-temporal understanding of videos. Notably, models
that perform well on static-biased [32, 8, 50] datasets, such as Kinetics-400, may not perform as well
on temporal-biased [3, 28] datasets, such as Something-Something-V2, and vice versa. For instance,
as shown in Figure 4 (a), on the EPIC-KITCHENS-100 dataset, VideoMAE [56] outperforms ST-
Adapter [42] on the verb prediction task, while ST-Adapter outperforms VideoMAE on the noun
prediction task. Similarly, BEVT [62] outperforms AIM [72] on the Something-Something-V2
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Figure 1: The importance of spatio-temporal understanding. If a model lacks fine-grained spatial
understanding, the model may predict an incorrect action. E.g., the model fails to predict Put down a
cheese in (a) due to subtle appearance differences between the objects. On the other hand, if a model
lacks temporal context understanding, the model may predict an incorrect action. E.g., the model
fails to predict Take out a sauce in (b) due to the ambiguity of the action. Therefore, both spatial and
temporal understanding are crucial in action recognition. Best viewed with zoom and color.

dataset, while BEVT underperforms AIM on the Kinetics-400 dataset. We observe a similar trend for
other methods as reported in Table 2.

One possible solution to the challenge of balanced spatio-temporal understanding is to use multi-
modal learning. For example, two-stream networks [51, 14] employ both RGB and optical flow
streams to learn both spatial and temporal contexts. However, this approach can be computationally
expensive due to optical flow estimation.

In this work, we introduce a two-stream architecture, Cross-Attention in Space and Time (CAST), to
address the challenge of balanced spatio-temporal understanding using only RGB input. In Figure 2,
we show a high-level illustration of the proposed method. Our architecture employs two expert
models - a spatial expert model and a temporal expert model - which exchange information to make a
synergistic collective prediction. We realize the information exchange by cross-attention between
the two experts. We empirically validate that placing cross-attention in a bottleneck architecture
facilitates more effective learning. To validate the effectiveness of the proposed method, we conduct
extensive experiments on multiple datasets with distinct characteristics, including the temporal-biased
Something-Something-V2, static-biased Kinetics-400, and fine-grained EPIC-KITCHENS-100. Our
results demonstrate that CAST achieves balanced spatio-temporal understanding and shows favorable
performance across these different datasets.

In this work, we make the following significant contributions.
• We introduce a two-stream architecture, CAST, which addresses the challenge of balanced

spatio-temporal understanding that has been largely overlooked by previous works.
• We conduct extensive experiments on multiple datasets with distinct characteristics to demon-

strate the effectiveness of CAST. In terms of balanced spatio-temporal understanding, CAST
shows favorable performance, while existing methods show more imbalanced performance.

• We conduct an extensive ablation study and analysis to validate the design choices of the
proposed method. We show that employing spatial expert and temporal expert and placing
cross-attention in a bottleneck architecture is crucial for achieving effective spatio-temporal
representation learning.

2 Related Work

Video Action Recognition. CNN-based approaches have been widely used for action recognition,
including 2D CNNs [61, 74, 33, 52, 27], 3D CNNs [58, 5, 59, 64, 13], 2D and 1D separable
CNNs [59, 70], or two-stream CNNs [14, 15]. These methods have achieved great progress thanks
to the strong inductive biases. Recently, Transformer-based approaches [1, 3, 21, 43, 68, 12, 71]
become popular in the community due to the long-term context modeling capabilities. Similar to
the two-stream CNNs, we propose a two-stream transformer architecture consisting of two expert
models: a spatial expert and a temporal expert. However, unlike traditional two-stream CNNs, we
use RGB input only, instead of RGB and flow.
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Figure 2: High-level illustration of the proposed method. In this work, we employ spatial and
temporal expert models. The two experts exchange information with each other using cross-attention.
Initially, the experts may predict incorrect actions due to the lack of information. For example, the
temporal expert may predict reach out to something while the ground truth is Pick up a fork. Similarly,
the spatial expert may predict utensil holder instead of fork in the shallower layers. However, after
using cross-attention to exchange information multiple times, the proposed method can collectively
predict the correct action Pick up a fork. Best viewed with zoom and color.

Cross-attention. Cross-attention has been widely utilized in multi-modal learning to facilitate
information exchange between different modalities such as audio, visual, and text [34, 67, 40, 30, 18].
Recently, cross-attention between different views of the same video has shown impressive results [71,
75, 6, 26]. Similar to these, we propose a cross-attention method using a single RGB input, but with
two distinct expert models: a spatial expert and a temporal expert. The two experts attend to each
other through cross-attention to achieve a balanced spatio-temporal understanding.

Foundation model. Trained on web-scale datasets using self-supervised learning, foundation
models [25, 4, 48, 45, 44] are highly adaptable and versatile. Foundation models show impressive
performance on various tasks in computer vision [65, 62], natural language processing [49, 57],
and audio recognition [17]. In this work, we employ CLIP [44] as our spatial expert as it shows
impressive performance on more than 30 computer vision tasks.

Parameter-efficient transfer learning. Although the “pre-training and fine-tuning” paradigm with
strong foundation models has demonstrated impressive performance on several computer vision
tasks, it is computationally expensive and often unnecessary to fine-tune the full model [72]. Several
works have demonstrated that learning only a small subset of parameters and keeping the remaining
parameters frozen is effective for NLP tasks [23, 29] and computer vision tasks [36, 66, 54, 46, 47].
Extending image foundation models by adding adapter architectures has shown favorable performance
on action recognition [35, 72, 42]. The proposed method also employs adapter architecture with cross-
attention between two experts. We empirically demonstrate that the proposed method outperforms
existing adapter-based video models in terms of achieving balanced spatio-temporal understanding.

3 Method: Cross-Attention in Space and Time
We introduce CAST, a method for balanced spatio-temporal representation learning for action
recognition, as shown in Figure 3. We employ frozen spatial and temporal expert models that can be
any vision transformer, consisting of 12 transformer blocks each. To facilitate information exchange
between the experts, we introduce the bottleneck cross-attention in space and time (B-CAST) module
on top of the frozen layers. This module enables the experts to exchange information and learn more
balanced spatio-temporal contexts than separate experts. To improve adaptation to downstream tasks,
we use adapter layers with a small number of learnable parameters, following AIM [72]. In the
following subsections, we provide a detailed description of each component of our proposed CAST.

3.1 Input embeddings
CAST takes only RGB videos as inputs. The input is a mini-batch of videos, I ∈ RB×2T×H×W×C,
consisting of B videos of 2T frames, H ×W spatial dimensions, and C channels. We apply patch
tokenization to the input videos for the spatial expert and the temporal expert. For the spatial expert,
we decompose every even frame of each video in I into N non-overlapping patches of p× p pixels [11].
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Figure 3: Overview of CAST. (a) CAST employs frozen spatial and temporal expert models. On
top of the experts, we add a cross-attention module B-CAST to enable the exchange of information
between the two experts. Additionally, we employ adapters with a small number of learnable
parameters to the experts for better adaptation. (b) The proposed B-CAST consists of temporal-to-
spatial (T2S) and spatial-to-temporal (S2T) cross-attentions to allow for a better understanding of
the spatio-temporal features in the video data. For efficient and effective learning, we incorporate
cross-attention into the bottleneck adpater. We employ separate position embedding for each expert.
(c) We visualize T2S and S2T cross-attentions. Given a query, the model attends along the temporal
axis only in T2S while the model attends along the spatial axes only in S2T.

Then we pass the patches through a frozen linear layer and add position embeddings to obtain spatial
embeddings, Xs ∈RBT×N×D. For the temporal expert, we decompose every two frames of each video
in I into 2× p× p pixels non-overlapping tubes [1]. Then we pass the tubes through a frozen linear
layer and add position embeddings to obtain temporal embeddings, Xt ∈ RB×T N×D.

3.2 CAST architecture

The model architecture of each expert is the same as the ViT except for adapters and the B-CAST
module. All the other parameters are frozen, while the adapter and B-CAST parameters are learnable.

For completeness, we first define the operations used and then describe the entire model architecture.
Given an input X, we define Multi-Head Self Attention (MHSA) operation as follows:

MHSA(X) = Softmax((XWQ)(XWK)
⊤)(XWV ), (1)

WQ, WK , and WV are the query, key, and value projection matrices, respectively. We also define the
adapter operation with linear down and up projection matrices WD and WU as follows:

ADAP(X) = σ(XWD)WU , (2)

where σ(·) is the GELU activation function [20].

For each attention block l, we apply independent Multi-Head Self Attention (MHSA) for each expert
along with a skip connection as follows:

Y(l) = X(l)+ADAP(MHSA(LN(X(l))))+MHSA(LN(X(l))), (3)

where LN(·) denotes the Layer Normalization operation. The spatial path undergoes spatial attention,
while the temporal path undergoes space-time attention following TimeSformer [3].

4



As shown in Figure 3 (b), to exchange information between the two experts, we apply the B-CAST
operation Φ(·) to Ye1 and Ye2 from the expert e1 and e2 as follows along with a skip connection:

B(l) = Y(l)+Φ(Y(l)
e1 ,Y

(l)
e2 ). (4)

We describe the B-CAST operation Φ(·) in detail in Section 3.3.

Finally, we pass the output, denoted as B(l), through a two-layer feed forward network (FFN) [11]
with the GELU activation function in between the layers and another adapter to obtain the next layer
input X(l+1) as follows along with a skip connection:

X(l+1) = B(l)+FFN(LN(B(l)))+ADAP(LN(B(l))). (5)

Classification head. To produce the final prediction, we need to aggregate the outputs of both
spatial and temporal experts. For the spatial expert, we average the frame-level class tokens from
the last attention block, X(12)

s , to obtain a single class token. We denote this operation as CLS(·).
To obtain temporal expert features, we aggregate all the tokens from the last attention block of the
temporal expert, X(12)

t , using the global average pooling GAP(·) operation. Then we add the adapter
output of the CLS token and the adapter output of the GAP token to produce a fused token Z:

Z = ADAP(CLS(X(12)
s ))+ADAP(GAP(X(12)

t )). (6)

Finally, we feed the fused token Z a classification layer followed by a softmax function to obtain the
predicted class probabilities. We train the model using the standard cross-entropy loss.

3.3 B-CAST module architecture
Multi-Head Cross-Attention. Multi-Head Cross-Attention (MHCA) is a variant of the MHSA
operation (1), where query tokens come from one expert (e1) and key and value tokens come from
another expert (e2). This allows the experts to exchange information and benefit from the strengths of
each other. We define the MHCA operation as follows:

MHCA(Ye1 ,Ye2) = Softmax((Ye1WQ)(Ye2WK)
⊤)(Ye2WV ), (7)

where WQ, WK , and WV are learnable query, key, and value parameter matrices respectively.

Temporal-to-Spatial Cross-Attention. In Temporal-to-Spatial (T2S) cross-attention, query to-
kens come from the spatial expert s, and key and value tokens come from the temporal expert t:
MHCA(Y(l)

s ,Y(l)
t ). We depict the attention window in Figure 3 (c). Given a query, the model attends

along the temporal dimension only. By using T2S cross-attention, the spatial expert can learn to
attend to temporal features from the temporal expert. T2S MHCA leads to capturing spatio-temporal
dependencies and improves the model performance in action recognition.

Spatial-to-Temporal Cross-Attention. In Spatial-to-Temporal (S2T) cross-attention, query to-
kens come from the temporal expert t, and key and value tokens come from the spatial expert s:
MHCA(Y(l)

t ,Y(l)
s ). We illustrate the attention window in Figure 3 (c). Given a query, the model

attends along the spatial dimension only. By using S2T cross-attention, the temporal expert can
attend to fine-grained spatial features from the spatial expert. S2T MHCA leads to a more balanced
spatio-temporal understanding and improves the performance in fine-grained action recognition.

Bottleneck Cross-Attention in Space and Time. To achieve efficient and effective learning,
we incorporate the T2S and S2T MHCA into bottleneck-shaped adapters. We illustrate B-CAST
architecture in Figure 3 (b). We plug the MHCA modules into adapters and add new learnable
positional embeddings for each MHCA. We define the B-CAST operation for T2S ΦS(·) as follows:

ΦS(Y
(l)
s ,Y(l)

t ) = σ(MHCA(Es +LN(Y(l)
s WD,s),Et +LN(Y(l)

t WD,t)))WU,s, (8)

where WD,s and WU,s are linear down- and up-projection matrices for the spatial expert, and Es and
Et are new positional embeddings for the spatial and temporal experts, σ(·) is the GELU activation
function, respectively. We can define the B-CAST operation for S2T, ΦT (·) in a similar manner. The
output of B-CAST goes into a feed forward network using (5). Our empirical validation shows that
the B-CAST architecture is efficient and effective. (See Table 1.)
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Figure 4: Balanced spatio-temporal understanding performance. We visualize the action recogn-
tion accuracies of existing methods and the proposed method. (a) We show the Top-1 accuracies of
ST-Adapter and VideoMAE on the EK100 verb and noun prediction tasks. (b) We show the Top-1
accuracies of AIM and BEVT on the SSV2, and K400. (c) For each method, we show the harmonic
mean of Top-1 accuracies on the EK100 noun, EK100 verb, SSV2, and K400. CAST shows a more
balanced spatio-temporal understanding capability compared to the existing methods. Best viewed
with zoom and color.

4 Experimental Results

In this section, we present the experimental results that answer the following research questions:
(1) Do existing methods show a balanced spatio-temporal understanding of videos? (Section 4.3)
(2) What are the ingredients for a balanced spatio-temporal understanding? (Section 4.3) (3) Is the
proposed method effective? (Section 4.3, Section 4.4) (4) How can we effectively combine spatial and
temporal models to achieve such balance? (Section 4.5) (5) Does the proposed method outperform
state-of-the-art methods in terms of balanced spatio-temporal understanding? (Section 4.6) To this
end, we first provide details about the datasets and implementation in Section 4.1 and Section 4.2,
respectively.

4.1 Datasets
Action recognition. We evaluate the CAST on two public datasets for conventional action recogni-
tion: Something-Something-V2 (SSV2) [19] and Kinetics-400 (K400) [24]. The SSV2 requires more
temporal reasoning [3, 28] while the K400 is relatively static biased [32, 8, 50].

Fine-grained action recognition. We evaluate the CAST on the fine-grained action recognition
task: EPIC-KITCHENS-100 (EK100) [10]. In contrast to conventional action recognition, EK100
defines an action as a combination of a verb and a noun. Therefore, we refer to the action recognition
in EK100 as fine-grained action recognition. Since fine-grained action recognition requires correctly
predicting both the verb and the noun to recognize an action it is more challenging than conventional
action recognition, which requires predicting a single action label: e.g., K400 or SSV2.

4.2 Implementation details
In this section, we briefly provide our experimental setup and implementation details. Please refer
to the Appendix § B for complete implementation details. We conduct all the experiments with 16
NVIDIA GeForce RTX 3090 GPUs. We implement CAST using PyTorch and build upon the existing
codebase of VideoMAE [56].

Training. We sample 16 frames from each video to construct an input clip. For the K400 dataset,
we apply dense sampling [15], while for SSV2 and EK100, we use uniform sampling [61]. We then
perform random cropping and resizing every frame into 224×224 pixels. We use the AdamW [39]
optimizer with momentum betas of (0.9, 0.999) [7] and a weight decay of 0.05. By default, we train
the model for 50 epochs, with the cosine annealing learning rate scheduling [38] and a warm-up
period of 5 epochs. The default base learning rate, layer decay [2], and drop path are set to 0.001,
0.8, and 0.2, respectively. We freeze all the parameters of each expert, except for the B-CAST layer,
adapters, and the last layer normalization. We set the batch size per GPU as 6 with update frequency
of 2.

Inference. Given an input video, we randomly sample frames multiple times to construct input
clips with multiple temporal views with multiple spatial crops. After the temporal frame sampling,
we resize every frame so that the shorter side has 224 pixels. Then we perform spatial cropping to get
multiple 224×224 crops for each clip. We get the final prediction by averaging the predictions on
(temporal views) × (spatial crops). For the K400 dataset, we use (5 clips) × (3 crops) views, while
for the other datasets, we use (2 clips) × (3 crops) views for the inference.

6



materials
cutlery

utensils
vegetables

baked goods and grains

fruits and nuts
rubbish

dairy and eggs
drinks

appliances
crockery

prepared food
cookware

spices and herbs and sauces
furniture hand other

containers

cleaning equipment and material
storage

meat and substitute
0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

F1
 S

co
re

 im
pr

ov
em

en
t

EK100 Noun, overall improvement over CLIP : 8.3%

vegetables other

fruits and nuts
materials

cutlery

dairy and eggs

baked goods and grains
utensilsdrinks

containers

spices and herbs and sauces
crockery

cookware
rubbish hand

cleaning equipment and material
appliances

storage

meat and substitute
furniture

prepared food

0.00

0.05

0.10

0.15

0.20

0.25

F1
 S

co
re

 im
pr

ov
em

en
t

EK100 Noun, overall improvement over VideoMAE : 9.2%

Figure 5: Improvements of CAST over each expert on EK100 noun classes. We show the
super-category-wise weighted average F1 score improvement of CAST over each expert. (Left)
Improvement over CLIP. CAST outperforms CLIP for every super-category except meat and substitute.
(Right) Improvement over VideoMAE. CAST outperforms VideoMAE for every super-category
except furniture and prepared food. Best viewed with zoom and color.

4.3 Balanced spatio-temporal understanding
In Figure 4 (a), we present the top-1 accuracies of several existing models. In the EK100 verb
prediction task, VideoMAE outperforms ST-Adapter with a margin of 2.9 points (70.5% vs. 67.6%),
while in the EK100 noun prediction task, ST-Adapter [42] outperforms VideoMAE [56] with a margin
of 3.6 points (55.0% vs. 51.4%). As shown in Figure 4 (b), BEVT [62] outperforms AIM [72] with
a margin of 2.5 points (70.6% vs. 68.1%) on the SSV2 dataset, while on the K400 dataset, AIM
outperforms BEVT with a margin of 3.9 points (84.5% vs. 80.6%). We observe similar trends for
other methods as well. Please refer to Section 4.6 for a detailed comparison. Our findings indicate
that the performance of many existing models is significantly imbalanced toward either spatial or
temporal understanding.

Ingredients for balanced spatio-temporal understanding. To achieve a more balanced spatio-
temporal understanding, we can employ two expert models: a spatial expert and a temporal expert.
For the spatial expert, we use CLIP [44], which has demonstrated impressive performance on various
computer vision tasks. For the temporal expert, we use VideoMAE [56], which has shown favorable
performance on temporal-biased tasks such as SSV2 and EK100 verb prediction tasks. (Please
refer to Section 4.6 for the accuracy details.) While each expert is highly specialized in its own
domain, we aim to create synergy between them by exchanging information to improve the balanced
spatio-temporal understanding performance.

Effect of CAST. In Figure 4 (c), we gauge the balanced spatio-temporal understanding performance
of our spatial expert, temporal expert, and CAST. For each method, we calculate the harmonic mean
of top-1 accuracies for EK100 noun, EK100 verb, SSV2, and K400. The harmonic mean is an
effective metric for gauging balanced performance because it gives more weight to lower-performing
tasks. A higher harmonic mean value indicates that the performance over the different tasks is more
balanced. Our spatial expert achieves an accuracy of 56.5%, while the temporal expert achieves
an accuracy of 66.6%, and our CAST achieves an accuracy of 71.6%. These results validate the
effectiveness of our proposed method, CAST, which allows our spatial and temporal experts to make
synergistic predictions by exchanging information with each other through cross-attention.

4.4 Analysis on fine-grained action recognition
In this section, we provide a detailed analysis of how the proposed CAST improves the balanced
spatio-temporal understanding in the fine-grained action recognition task: EK100.

Category-level performance analysis. In Figure 5, We present the EK100 noun super-category-
wise weighted average F1 score improvement of CAST over our spatial expert (CLIP) and temporal
expert (VideoMAE). In Figure 5 left, we observe that CAST significantly improves upon the spatial
expert, CLIP, in several super-categories such as cutlery, utensils, and vegetables. These results
indicate that the spatial expert achieves a more accurate understanding of fine-grained small objects
interacting with the actors by leveraging the temporal context from the temporal expert. Similarly, in
Figure 5 right, we observe that CAST significantly improves upon the temporal expert, VideoMAE,
in several categories such as vegetables and cutlery. The trend is similar to the comparison with
the spatial expert: CAST achieves more accurate understanding of fine-grained small objects by
leveraging the fine-grained spatial context from CLIP.

Qualitative analysis. To better understand the effectiveness of CAST, we provide qualitative
analysis on a few sample frames from the EK100 dataset in Figure 6. We show the predictions of
CLIP, VideoMAE, and CAST. As expected, each expert model provides more accurate prediction
in their respective tasks of expertise but shows weaker performance in the other task. In contrast,
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Table 1: Ablation study. To validate the effect of each component, we show experimental results on
the EPIC-Kitchens-100 dataset. In every experiment, we use the ViT-B/16 backbone for every expert.
The best numbers are highlighted in gray.

(a) Effect of information exchange.
Top-1 Acc.

Method Verb Noun Act.

Indep. experts w/o adapter 70.7 50.1 40.0
Indep. experts w/ adapter 68.1 54.2 41.7
Ensemble of experts w/ adapter 68.2 55.3 42.9
CAST 72.5 60.3 48.7

(b) Different information exchange methods.
Top-1 Acc.

Method Late Layer-wise Verb Noun Act.

Add ✓ 68.9 56.6 44.2
Concat ✓ 69.2 56.4 44.5
Lateral ✓ 68.9 49.1 39.0
CAST ✓ 72.5 60.3 48.7

(c) B-CAST architecture.
Tune Top-1 Acc.

Method Param(M) Verb Noun Act.

Identity 18.1 68.1 54.2 41.7
w/o adapter 85.9 69.3 49.4 39.4
X-attn.→adapter 93.0 71.3 60.1 47.9
B-CAST 44.8 72.5 60.3 48.7

(d) Effect of projection ratio.
Top-1 Acc.

Ratio Verb Noun Act.

1/8 70.7 59.9 47.4
1/4 71.3 59.8 47.4
1/2 72.5 60.3 48.7
1 72.1 59.8 48.6

(e) Effect of cross-attention window shape.
Window shape Top-1 Acc.

T2S S2T Verb Noun Act.

space-time space-time 71.0 59.3 47.2
space-time space 71.9 60.3 48.4

space space 72.3 60.2 48.5
time space 72.5 60.3 48.7

(f) Effect of the number of cross-attention layers.
X-attention layer Top-1 Acc.

1-3 4-6 7-9 10-12 Verb Noun Act.

✓ 71.2 59.4 47.4
✓ ✓ 71.3 59.9 47.9

✓ ✓ ✓ 71.8 60.0 48.2
✓ ✓ ✓ ✓ 72.5 60.3 48.7

(g) Effect of bi-directional cross-attention.

Top-1 Acc.

Method Verb Noun Act.

Indep. experts w/ adapter 68.1 54.2 41.7
S2T only 71.2 55.0 43.7
T2S only 68.7 60.5 46.7
CAST 72.5 60.3 48.7

(h) Role of each expert.

Expert Top-1 Acc.

Spatial Temporal Verb Noun Act.

CLIP CLIP 69.3 58.8 46.0
VideoMAE CLIP 72.2 58.8 47.8
VideoMAE VideoMAE 69.8 49.9 40.3

CLIP VideoMAE 72.5 60.3 48.7

CAST consistently shows correct predictions for both noun and verb prediction tasks, such as spoon
and open. The qualitative examples demonstrate the effectiveness of CAST in achieving balanced
spatio-temporal understanding, which is essential for fine-grained action recognition.

4.5 Ablation study on CAST architecture
We conduct comprehensive ablation studies to examine the design choices for the proposed CAST
architecture. Here we conduct all experiments on the EK100 [10] dataset with 16-frame input
videos and report the top-1 accuracy on the validation set. We employ CLIP [44] as a spatial expert
model and VideoMAE [56] as a temporal expert model. For a fair ablation study, we use the same
hyperparameters for each experiment unless explicitly mentioned.

Effect of information exchange. We investigate whether CAST effectively achieves a synergistic
effect by exchanging information between the two expert models. In Table 1 (a), we compare CAST
with three baselines. i) A baseline using two independent expert models without any information
exchange (fully fine-tuned). ii) The same baseline as i), but we add adapters and fine-tune the
adapters and head only, iii) A test-time ensemble of two independent experts (with adapters and
heads fine-tuning only). The baselines predict nouns using the spatial model and verbs using the
temporal model. We observe that the two expert models using ensembling achieve an improvement in
Action accuracy by at least 1.2 points compared to the baselines without any information exchange.
Furthermore, CAST achieves a best Action accuracy of 48.7%. These results suggest that information
exchange is crucial for achieving balanced spatio-temporal understanding.

Comparison with simple information exchange baselines. We compare CAST with simple
information exchange baselines: i) late fusion with addition, ii) late fusion with concatenation,
iii) layer-wise fusion using the bidirectional lateral connection (element-wise addition) with linear
projection. We add adapters and fine-tune the adapters and head only in all three baselines, using our
training recipe in Section 4.2 For the details of baseline fusion methods, please see Figure 7. We show
the results in Table 1 (b). It is worth noting that both the late fusion and layer-wise lateral connection
baselines result in a significant performance drop. Furthermore, we observe that layer-wise fusion
without cross-attention yields inferior performance compared to the simple late fusion baselines. The
results indicate that cross-attention in the bottleneck architecture is crucial for effective information
exchange between spatial and temporal experts.

Design of B-CAST module. To explore the most effective and efficient way to integrate adapters
for information exchange between the two expert models, we conduct an ablation study and present
the results in Table 1 (c). For the details of the baselines, please see Figure 8. The first row of the
table represents a baseline without the B-CAST module, which is equivalent to the identity function.
Compared to this baseline, B-CAST achieves a significant improvement of 7.0 points in Action
accuracy. The second row shows the performance of a baseline with cross-attention but without the
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Figure 6: Qualitative examples from EK100 comparing CLIP, VideoMAE, and the proposed
CAST. Each expert model shows more accurate predictions in their expertise but shows weaker
performance on the other task. However, CAST consistently shows correct predictions for both tasks,
demonstrating the effectiveness of the proposed spatio-temporal cross-attention mechanism.

bottleneck adapters. The 9.3-point gap between this baseline and B-CAST highlights the importance
of bottleneck adapters for effective information exchange between the two expert models. The third
row (X-attn.→adapter) is a baseline with the adapters after cross-attention. Compared to B-CAST,
this baseline shows a 0.8 points drop in Action accuracy while having more than double the number
of learnable parameters (44.9M vs. 93.0M). The results indicate that cross-attention in bottleneck is
more effective and more efficient than the baseline. In summary, by placing cross-attention in the
middle of the bottleneck adapter, B-CAST facilitates effective information exchange between the two
experts and achieves a synergistic effect.

Effect of projection ratio in bottleneck. In this study, we investigate the impact of the down
projection ratio in the bottleneck architecture presented in Table 1 (d). The results demonstrate that a
ratio of 1/2 yields the best performance. Notably, a ratio of 1 results in inferior performance, which
we attribute to overfitting caused by the addition of more parameters.

Effect of cross-attention window shape. We investigate the impact of the window shape in the
cross-attention mechanism in the T2S and S2T modules in Table 1 (e). Please refer to Figure 3 (c)
for the details of the window size. We maintain the same model capacity across different methods.
Using space-time attention for both T2S and S2T modules results in the worst performance. We
conjecture that learning joint space-time attention is challenging with the given model capacity [3].
On the other hand, using time attention in T2S and space attention in S2T yields the best performance.
Consequently, we adopt this configuration throughout the paper.

Effect of the number of cross-attention layers. We investigate the impact of the number of
cross-attention layers used. To this end, we gradually increase the number of cross-attention layers
starting from the top three layers, and report the results in Table 1 (f). As we increase the number of
cross-attention layers, we observe a corresponding improvement in performance, as expected.

Effect of bi-directional cross-attention. To validate the effectiveness of bi-directional information
exchange, we ablate each cross attention at a time. We compare CAST with unidirectional information
exchange baselines equipped with S2T or T2S cross-attention only. Each unidirectional information
exchange baseline still has both experts. In Table 1 (g), compared to our CAST (48.7%), the S2T only
baseline shows 5.0 points drop (43.7%) and the T2S only baseline shows 2.0 points drop (46.7%) in
accuracy. The results validate the effectiveness of the proposed bi-directional cross-attention.

Role of each expert. In Table 1 (h), we investigate the role of experts within CAST by controlling
the assignment of models to each expert. We observe that we can achieve the best performance of
48.7% when we employ CLIP as our temporal expert and VideoMAE as our spatial expert. When
we employ one VideoMAE as our spatial expert and another VideoMAE as our temporal expert, we
obtain 40.3% accuracy. When we employ one CLIP as our spatial expert and another CLIP as our
temporal expert, we obtain 46.0% accuracy.

Interestingly, when we revert the role of CLIP and VideoMAE, i.e., we employ VideoMAE as the
spatial and CLIP as the temporal expert, we achieve a good performance of 47.8%. The results
demonstrate that the B-CAST architecture facilitates effective information exchange between the
two experts. Through the stacked B-CAST, the experts can learn high-quality spatio-temporal
representations by exchanging information, even when the roles are reverted.

In summary, these findings suggest that CAST achieves optimal performance when models are
assigned to expert roles that align with their strengths. CLIP serves as an effective spatial expert,
whereas VideoMAE is more effective as a temporal expert. The B-CAST architecture encourages
these experts to leverage their respective strengths through information exchange, resulting in
enhanced spatio-temporal balanced understanding.

9



Table 2: Comparison with the state-of-the-arts on the EK100, SSV2 and K400 datasets. We
show the Top-1 accuracy on each dataset and the harmonic mean (H.M.) of the Top-1 accuracies. The
best performance is in bold and the second best is underscored.

GFLOPs/ EK100 Top-1 SSV2 & K400 Top-1 All

Method View Verb Noun Act. SSV2 K400 H.M. H.M.

CLIP* [44] 140 54.9 52.7 33.8 47.8 78.9 59.5 56.5
EVL [35] 592 - - - 62.4 82.9 71.2 -
ST-Adapter [42] 607 67.6 55.0 - 69.5 82.7 75.5 67.3
AIM [72] 404 64.8 55.5 41.3* 68.1 84.5 75.4 66.7

MBT [40] 936 64.8 58.0 43.4 - 80.8 - -
ViViT FE [1] 990 66.4 56.8 44.0 65.9 81.7 73.0 66.6
TimeSformer [3] 2380 - - - 62.4 80.7 70.4 -
MViT [12] 170 - - - 67.7 80.2 73.4 -
MFormer [43] 1185 67.1 57.6 44.1 68.1 80.2 73.7 67.3
ORViT MF [21] - 68.4 58.7 45.7 67.9 - - -
Video Swin [37] 282 - - - 69.6 82.7 75.8 -
BEVT [62] 282 - - - 70.6 80.6 75.3 -
VideoMAE [56] 180 70.5 51.4 41.7* 70.8 81.5 75.8 66.6
MeMViT [68] 59 70.6 58.5 46.2 - - - -
OMNIVORE [16] - 69.5 61.7 49.9 71.4 84.0 77.2 70.8
MTV-HR [71] 930 68.0 63.1 48.6 68.5 82.4 74.8 69.8

CAST 391 72.5 60.9 49.3 71.6 85.3 77.9 71.6
∗We conduct experiments with our own implementation.

4.6 Comparison with state-of-the-art
In this section, we evaluate the performance of CAST and state-of-the-art methods in terms of balanced
spatio-temporal understanding on multiple datasets, as shown in Table 2. For each method, in addition
to reporting the top-1 accuracy of each task, we report the harmonic mean of top-1 accuracies for
i) SSV2, and K400, and ii ) EK100 verb, EK100 noun, SSV2, and K400. For comparison with
state-of-the-art models, we have set different hyperparameters than those used in our ablation study.
Please refer to Table 4 for the details. For fair comparisons of the computation complexity, we show
the GFLOPs/View. In cases where a compared method shows various GFLOPs/View depending on
the dataset, we specifically note the lowest GFLOPs/View value for reference. For more detailed
comparison of computation complexity, please refer to the Appendix § E.

We observe that among the CLIP-based methods (the second group in Table 2), AIM [72] achieves
favorable performance on the static-biased K400 dataset, with 84.5% accuracy. However, AIM
shows a relatively lower performance of 68.1% on the temporal-biased SSV2. On the other hand,
VideoMAE [56], one of the state-of-the-art methods, shows 70.8% accuracy on the SSV2 dataset,
which is more competitive than AIM. However, VideoMAE shows a lower accuracy of 81.5% on
the K400 dataset, less competitive than AIM. Our proposed method, CAST, demonstrates favorable
performance on both the SSV2 (71.6%) and K400 (85.3%) datasets, resulting in a harmonic mean
of 77.9%, which is higher than that of AIM (75.4%) and VideoMAE (75.8%). CAST shows a
more balanced spatio-temporal understanding than the existing methods. Additionally, CAST shows
favorable performance in fine-grained action recognition on the EK100 dataset. CAST achieves a
competitive Action accuracy of 49.3%, which is the second best among the compared methods.

In terms of the overall harmonic mean of EK100 verb, EK100 noun, SSV2, and K400 accuracies,
CAST shows the best performance of 71.6%. The results highlight the effectiveness of CAST. By
exchanging information between spatial and temporal experts, our CAST shows a favorable balanced
spatio-temporal understanding performance.

5 Conclusions
In this paper, we present a solution to the problem of action recognition models lacking a balanced
spatio-temporal understanding of videos. The proposed method, CAST, incorporates a spatial expert
and a temporal expert that exchange information through cross-attention to achieve synergistic
predictions. Our extensive experiments on datasets with varying characteristics demonstrate that
CAST outperforms both individual expert models and existing methods in terms of a balanced
spatio-temporal understanding measure: the harmonic mean of accuracies on the datasets. The results
highlight the effectiveness of CAST in achieving a balanced spatio-temporal understanding of videos,
and suggest that CAST could have broad applicability in the field of video understanding.
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Appendix

In this appendix, we provide additional architecture/implementation/dataset details, experimental
settings, quantitative/qualitative results, limitations of our method, and broader impact of our method
to complement the main paper. We organize the appendix as follows:

A. Architecture details of our framework
B. Implementation details and experimental settings
C. Details of datasets in our experiments
D. Additional quantitative and qualitative results
E. Comparison with State-of-the-Art with additional information
F. Class-wise F1 score on EK100 verb and noun classes
G. Additional qualitative analysis on EK100
H. Limitations
I. Broader impacts

A Architecture Details

In this section, we provide details of our B-CAST architecture. Let us assume we employ CLIP [44]
as a spatial expert and VideoMAE [56] as a temporal expert.

Table 3: Stage-wise details of the two experts in B-CAST. We provide a detailed description
of each operation performed in each expert. The input for this example is a video consisting of
16 frames. MHCA represents multi-head cross-attention applied with a specific window shape:
either time-attention or space-attention. In the description, B, D, T, and N represent the batch size,
embedding dimension, temporal sequence length, and spatial sequence length, respectively. We omit
the Layer Normalization and activation functions for simplicity.

Spatial Expert Temporal Expert
B-CAST Stage Remark Output Tensor Shape Remark Output Tensor Shape

Up Projection
Linear projection

Ys:(196+1)×B·8×768
Linear projection

Yt:B×8·196×768
with ratio = 2.0 with ratio = 2.0

Post Processing
Attach CLS token of Ys Ys:(196+1)×B·8×384 Reshape: B×T·N×D Yt:B×8·196×384

Reshape: N×B·T×D

Cross-Attention
T2S MHCA(Ys,Yt) Ys:B·196×8×384

S2T MHCA(Yt ,Ys) Yt :B·8×196×384
Window shape: time Window shape: space

Positional
# parameters: 8×384

Ys:B·196×8×384
# parameters: 196×384

Yt :B·8×196×384

Embeddings Yt :B·196×8×384 Ys:B·8×196×384

Pre processing
Detach CLS token of Ys Ys:B·196×8×384 Detach CLS token of Ys Yt :B·8×196×384

Reshape:B·N×T×D Yt :B·196×8×384 Reshape: B·T×N×D Ys:B·8×196×384

Gather Gather Yt Ys:(196+1)×B·8×384 Gather Ys Yt:B×8·196×384

Features from Temporal Expert Yt :B×8·196×384 from Spatial Expert Ys:(196+1)×B·8×384

Down Projection
Linear projection

Ys:(196+1)×B·8×384
Linear projection

Yt:B×8·196×384
with ratio = 0.5 with ratio = 0.5

Input of B-CAST - Ys:(196+1)×B·8×768 - Yt:B×8·196×768

B-CAST architecture. In Table 3, we provide stage-wise details of the two experts in B-CAST.
Given an input from multi-head self-attention (MHSA) layer, we first pass it through the linear
projection layer of each expert. Subsequently, the two experts exchanges their features each other.
The multi-head cross-attention (MHCA) layer of each expert enables the effectively exchange of
information between the two experts. Afterward, we pass the output tensors from the B-CAST
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through the Feed-Forward Network (FFN). We repeat this process in a stacked manner, consisting of
12 blocks, each comprising the MHSA module along with adapters, B-CAST, and FFN module along
with adapters. Finally, we feed the resulting tensors to a classification head to predict action.

Architecture details of different information exchange methods. In Figure 7, we visualize the
architectures of the simple information exchange baselines presented in Table 1 (b) of the main
paper. These baselines involve fully fine-tuning the two expert models without the use of adapters,
following the training recipe outlined in Appendix § B. In Figure 7 (a), we present the add baseline,
which facilitates information exchange between the spatial and temporal experts through late fusion
using element-wise addition. In Figure 7 (b), we present the concat baseline, which exchanges the
information between the spatial and the temporal experts through late fusion using concatenation.
In Figure 7 (c), we show the lateral connection baseline, which enables information exchange
between the spatial and temporal experts through layer-wise lateral connections, incorporating linear
projections.
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Figure 7: Architecture visualization of the different information exchange baselines.

Architecture details of the baselines in the B-CAST architecture ablation study. In Figure 8,
we visualize the architectures of the baselines used in the B-CAST architecture ablation study, as
presented in Table 1 (c) of the main paper. In Figure 8 (a), we illustrate the identity baseline, which
serves as a baseline without the B-CAST module. In Figure 8 (b), we present the w/o adapter baseline,
which includes cross-attention but does not incorporate the bottleneck adapters. In Figure 8 (c), we
show the X-attn.→adapter baseline, which uses adapters positioned after the cross-attention stage.
For reference, we include our B-CAST architecture in Figure 8 (d), which represents the final model
used in our study.
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Figure 8: Architecture visualization of the baselines used in the B-CAST ablation study.

Classification head. We use different classification strategies for conventional action recognition
and fine-grained action recognition as shown in Figure 9. i) For conventional action recognition
datasets, i.e., Kinetics-400 (K400) and Something-Something-V2 (SSV2), CAST combines the
CLS and GAP tokens from the two experts to predict actions, as depicted in Figure 9 (a). The
spatial expert, CLIP [44], generates one CLS token for each frame. To obtain a single CLS token,
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Figure 9: Classification head architecture. We use different classification strategies for conventional
action recognition shown in (a) and fine-grained action recognition shown in (b). T , N, and D denote
the temporal sequence length, spatial sequence length, and embedding dimension respectively. The
output from the spatial expert consists of frame-level feature vectors. Each frame-level feature vector
consists of N patches and one CLS token. The output of the temporal expert is a video-level feature
vector, consisting of N ·T patches.

we take the average of the CLS tokens from all frames of the input video. The temporal expert,
VideoMAE [56], performs global average pooling on all output features to obtain a single GAP token.
After passing through adapters, we add the CLS and GAP tokens together and feed the token into a
linear classification head. ii) In a fine-grained action recognition dataset, i.e., EPIC-KITCHENS-100
(EK100), where a model needs to predict both verb and noun, we use two separate classification
heads instead of a single head shown in Figure 9 (b). Specifically, we feed the CLS token from
the spatial expert into a linear classification head for noun prediction and the GAP token from the
temporal expert into another linear classification head for verb prediction.

B Implementation Details

In this section, we provide more details of our experimental setup and implementation of each dataset.
We conduct the experiments with 16 NVIDA GeForce RTX 3090 GPUs. We implement CAST using
PyTorch and build upon the existing codebase of VideoMAE [56].

Data preprocessing. After sampling the videos to 16 frames, We randomly crop each frame of the
video and resize it to 224×224. We also apply data augmentation techniques, including mixup [73],
label smoothing [55], horizontal flip, color jitter, and randaugment [9], repeated augmentation [22] to
diversify the training data. We do not use horizontal flip on SSV2. Note that if the patch embedding
layer of the temporal expert has a time stride value of 2, e.g., VideoMAE [56], we only take even
frames for the spatial pathway. After the patch embedding layers, both experts take an input of 3
channels × 8 frames × 224 width × 224 height. We use the same data preprocessing protocol in all
the experiments.

Model training. We conduct experiments using 2 nodes, each equipped with 8 GPUs. To ensure
efficient multi-node training, we utilize the DeepSpeed 3 library. Additionally, we increase the
effective batch size by implementing gradient accumulation to update the model weights. For the
EK100 dataset, we set the update frequency to 4 iterations 4, resulting in a total batch size of 24

3https://github.com/microsoft/DeepSpeed
4We use the update frequency of 2 iterations for the additional quantitative analysis experiments in Appendix

§ D.
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Table 4: Hyperparameters used and the fine-tuning configuration for each dataset.

Config EK100 K400 SSV2

Optimizer AdamW [39] AdamW AdamW
Base learning rate 1e-3 1e-3 1e-3
Weight decay 0.05 0.05 0.05
Optimizer momentum [7] β1,β2=0.9,0.999 β1,β2=0.9,0.999 β1,β2=0.9,0.999
Gpu per batch size 6 6 6
Update frequency 4 6 4
Learning rate schedule cosine decay [38] cosine decay Cosine decay
Warmup epochs 5 5 5
Training epochs 50 70 50
Flip augmentation yes yes no
Color jitter 0.4 0.4 0.4
RandAug [9] (9, 0.5) (9, 0.5) (9, 0.5)
Label smoothing [55] 0.1 0.1 0.1
Mixup [73] 0.8 0.8 0.8
Drop path 0.2 0.2 0.3
Layer-wise lr decay [2] 0.75 0.75 0.75

per GPU. We linearly scale the base learning rate, then actual lr = base lr× total batch size/256.
In Table 4, we summarize the fine-tuning configuration and the hyperparameters used in Table 2,
Table 9, Table 10, and Table 11.

Pre-trained weights. We take the off-the-shelf pre-trained weights of the two expert models.
For our main temporal expert, we take the VideoMAE [56] weights pre-trained on the K400, and
SSV2 datasets from the official repository5. Since VideoMAE does not provide pre-trained weights
specifically for the EK100, we pre-train VideoMAE on the EK100 without incorporating extra video
datasets. The pre-training process follows the recipe described in the VideoMAE paper [56]. For
all other experiments, we make use of the pre-trained weights provided by the respective model
repositories to ensure consistency and reliability in our results.

C Datasets.

Action recognition We evaluate our B-CAST module on two video datasets:Kinetics400
(K400) [24], Something-Something-V2 (SSV2) [19]. i) K400 is a large-scale third-person video
dataset for action recognition that contains around 300K video clips and 400 human action classes.
The dataset is split into train/val/test, with 240K/20K/40K video clips. The videos are all trimmed
to around 10 seconds from different YouTube video. ii) SSV2 contains over 220K short video
clips labeled video clips of humans performing pre-defined, basic actions with everyday objects.
The dataset is split into train/val/test, with 168K/24K/27K and have 174 human-objects interaction
categories.

Fine-grained action recognition We evaluate our B-CAST module on a Compositional Action
dataset: EPIC-KITCHENS-100 (EK100) [10]. EK100 is a large-scale(100hours) egocentric video
dataset that records several days of kitchen unscripted activities. It consists of 90K action segments,
which are split into train/val/test sets of 67K/10K/13K. Differ from preceding two datasets, EK100
define an action as a combination of a verb and a noun. Because it requires matching both verbs
and nouns to recognize an action, it is more challenging than recognizing actions in a dataset where
actions are represented by a single label e.g., Kinetics-400, Something-Something-V2.

D Additional Quantitative Analysis

In this section, we provide additional results to complement the main paper. We demonstrate (1) the
generality of CAST with different ViT architectures and pre-trained weights in Appendix § D.1, and
(2) the effect of B-CAST-specific positional embeddings in Appendix § D.2.

5https://github.com/MCG-NJU/VideoMAE
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D.1 Generality

In this section, we showcase the generality of the proposed method. We demonstrate that CAST
works well with any ViT backbone and pre-trained weights. We conduct all the experiments on the
EK100 dataset.

CAST is pre-training dataset agnostic. CAST is pre-training dataset agnostic. In Table 5, we
compare CAST to a CAST variant where we replace CLIP with a ViT-B model pre-trained on the
ImageNet-21K (IN21K) dataset. As a reference, we also show the performance of the independent
experts using two separate expert models without any information exchange. When equipped with
IN21K pre-trained ViT-B, CAST still achieves reasonable performance with an Action accuracy of
45.5%, while the baseline of independent experts achieves 40.4% accuracy.

Table 5: Effect of CLIP pre-trained weights.
Pre-training dataset Information Top-1 Acc.

Method Spatial expert Temporal expert Exchange Verb Noun Action

Independent experts IN21K EK100 ✗ 69.7 50.9 40.4
CAST IN21K EK100 ✓ 70.9 56.8 45.5
CAST CLIP EK100 ✓ 72.5 60.3 48.7

In Table 6, we analyze the effect of pre-training datasets on the temporal expert, VideoMAE, in
CAST. We show the results of using EK100, SSV2, and K400 pre-trained VideoMAE weights. We
also investigate the impact of pre-training datasets on the spatial expert, CLIP. We present the results
of using IN21K and CLIP pre-trained weights. When using CLIP pre-trained weights for the spatial
expert, we observe stable Action accuracy ranging from a minimum of 48.7% to a maximum of
49.4%. We observe a similar trend when we use IN21K pre-trained CLIP weights. These results
demonstrate that the proposed method is agnostic to the pre-training datasets.

Table 6: Effect of pre-trained weights.
Pre-training dataset Top-1 Acc.

Spatial expert Temporal expert Verb Noun Act.

IN-21K EK100 70.9 56.8 45.5
IN-21K SSV2 71.6 56.1 45.3
IN-21K K400 72.2 56.4 45.9

CLIP EK100 72.5 60.3 48.7
CLIP SSV2 73.3 60.0 49.0
CLIP K400 72.9 60.4 49.4

CAST is model-agnostic. In Table 7, we demonstrate that CAST is model-agnostic. In this
experiment, we replace our spatial and temporal expert models with other existing models. We
employ EVA [53], an extension of CLIP that has shown excellent performance in various vision tasks,
as our spatial expert. We employ MVD [63] as our temporal expert. The results show that CAST
achieves similar performance when we employ different models as the experts. For example, EVA
+ MVD achieves an Action accuracy of 49.2%, while CLIP + VideoMAE achieves 48.7% Action
accuracy.

Table 7: Effect of employing different models as experts.
Model architecture Top-1 Acc.

Spatial expert Temporal expert Verb Noun Act.

CLIP VideoMAE 72.5 60.3 48.7
CLIP MVD 73.1 60.1 49.3
EVA VideoMAE 73.1 59.8 49.1
EVA MVD 73.7 60.1 49.2
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Figure 10: Visualization of attention window shape.

D.2 B-CAST-specific positional embeddings

We investigate the impact of B-CAST-specific positional embeddings, as depicted in Figure 8 (d). In
the temporal-to-spatial (T2S) cross-attention, the spatial expert attends along the temporal axis, as
shown in Figure 10 (a), while in the self-attention stage during pre-training, the spatial expert attends
along the spatial axes, as depicted in Figure 10 (b). Consequently, the spatial expert lacks information
about temporal patch sequences. Similarly, in the spatial-to-temporal (S2T) cross-attention, the
temporal expert attends along the spatial axis, as illustrated in Figure 10 (b), while during self-
attention stage during pre-training, the temporal expert attends along the spatio-temporal axes, as
shown in Figure 10 (c). Consequently, the temporal expert lacks information about spatial-only patch
sequences. To address this limitation, we introduce new learnable positional embeddings that are
specific to T2S and S2T cross-attention.

As shown in Table 8, adding the B-CAST-specific positional embeddings boost the performance
by 1.2 points compared to without using the B-CAST-specific positional embeddings. The results
indicate the effectiveness of the B-CAST-specific positional embeddings.

Table 8: Effect of B-CAST-specific positional embeddings.
Top-1 Acc.

Method Verb Noun Action

CAST w/o B-CAST-specific positional embeddings 71.3 59.7 47.5
CAST w/ B-CAST-specific positional embeddings 72.5 60.3 48.7

E Comparison with State-of-the-Art

To provide more comprehensive information, we augment the tables for comparison with state-of-
the-art in the main paper. Table 9, Table 10, and Table 11, corresponding to the respective datasets,
include additional details such as the number of frames per clip, the number of temporal and spatial
views used for inference, the computation complexity, and the number of learnable parameters for
each model. For the details of the hyperparameters used, please refer to Table 4.

F Class-Wise Performance Comparison

We provide class-wise F1 score improvement of CAST over our spatial expert (CLIP) and our
temporal expert (VideoMAE). We show the verb-class-wise F1 score improvement over CLIP in
Figure 11 and the improvement over VideoMAE in Figure 12. We show the noun-class-wise F1 score
improvement over CLIP in Figure 13 and the improvement over VideoMAE in Figure 14.
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Table 9: Comparison with the state-of-the-arts on the EPIC-Kitchens-100 dataset. We show the
Top-1 accuracy for Action, Noun, and Verb prediction tasks as well as the number of frames per clip,
the number of temporal and spatial views used for inference, the computation complexity, and the
number of learnable parameters for each model. The best performance is in bold and the second best
is underscored.

Learnable Top-1 Acc.

Method Backbone Frames Views TFLOPs Param (M) Verb Noun Action

SlowFast [15] ResNet50 - - - - 54.9 50.0 38.5
GSF [52] ResNet50 16 3×2 0.4 - 68.8 52.7 44.0
MoViNet [27] MoViNet-A6 - - - 31 72.2 57.3 47.7

CLIP* [44] ViT-B 8 2×3 0.84 86 55.5 52.3 33.9
AIM* [72] ViT-B 16 2×3 2.42 14 64.8 55.5 41.3
ST-Adapter [42] ViT-B 8 3×1 - - 67.6 55.0 -

MBT [40] ViT-B 32 - - - 64.8 58.0 43.4
ViViT FE [1] ViT-L 32 4×1 15.92 311 66.4 56.8 44.0
MFormer [43] ViT-L 32 3×1 3.56 - 67.1 57.6 44.1
ORViT-MF-HR [21] ViT-B 16 10×3 - - 68.4 58.7 45.7
VideoSwin [37] Swin-B - - - 89 67.8 57.0 46.1
VideoMAE* [56] ViT-B 16 2×3 1.08 87 70.5 51.4 41.7
MeMViT [68] ViT-B 16 1×1 0.06 - 70.6 58.5 46.2
OMNIVORE [16] Swin-B 32 - - - 69.5 61.7 49.9
MTV-HR [71] MTV-B 32 4×1 3.72 310 68.0 63.1 48.6

CAST w/ CLIP & VideoMAE pretrained on EPIC-KITCHENS-100 CAST-B 16 2×3 2.35 45 72.5 60.9 49.3

∗We conduct experiments with our own implementation.

Table 10: Comparison with the state-of-the-arts on the Something-Something-V2 dataset. We
show the Top-1 accuracy as well as the number of frames per clip, the number of temporal and spatial
views used for inference, the computation complexity, and the number of learnable parameters for
each model. The best performance is in bold and the second best is underscored.

Method Backbone Frames Views TFLOPs Learnable Param (M) Top-1 Acc.

SlowFast [15] ResNet101 8+32 1×3 0.32 - 63.1

CLIP* [44] ViT-B 8 2×3 0.84 - 43.2
EVL [35] ViT-B 32 1×3 2.05 29 62.4
ST-Adapter [42] ViT-B 32 3×1 1.96 - 69.5
AIM [72] ViT-B 32 1×3 2.50 14 69.1

ViViT FE [1] ViT-L 32 4×3 11.89 311 65.9
TimeSformer [3] ViT-L 64 1×3 7.14 - 62.4
MViT [12] ViT-B 64 1×3 1.37 37 67.7
MFormer [43] ViT-L 32 1×3 3.56 - 68.1
Video Swin [37] Swin-B 32 1×3 0.96 89 69.6
BEVT [62] Swin-B 32 1×3 0.96 - 70.6
VideoMAE [56] ViT-B 16 2×3 1.08 87 70.8
ORViT-MF-L [21] ViT-L 32 1×3 - - 69.5
OMNIVORE [16] Swin-B 32 - - - 71.4
MTV-HR [71] MTV-B 32 4×3 11.16 310 68.5

CAST w/ VideoMAE pretrained on Something-Something-V2 CAST-B 16 2×3 2.35 45 71.6

∗We conduct experiments with our own implementation.

G Qualitative Analysis

To better understand the effectiveness of CAST, we provide qualitative analysis on more sample
frames from the EK100 dataset in Figure 15. Each expert model provides more accurate prediction in
their respective tasks of expertise but shows weaker performance in the other task. In contrast, CAST
consistently shows correct predictions for both noun and verb prediction tasks. The qualitative exam-
ples demonstrate the effectiveness of CAST in achieving balanced spatio-temporal understanding,
which is essential for fine-grained action recognition.

H Limitations

Despite achieving a good balanced spatio-temporal understanding performance, CAST has a few
limitations as well. CAST has a small number of learnable parameters since we freeze the expert
models except for the adapters. However, the computational complexity of CAST is not negligible
due to the utilization of two expert models. Due to resource limitations, we are unable to conduct
experiments on various input video lengths and model sizes. Lastly, cross-attention layers require
features of the same dimension for attention operation. Therefore, if the two model have significantly
different architectures, it might be challenging for CAST to employ the two models.
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Table 11: Comparison with the state-of-the-arts on the Kinetics400 dataset. We show the Top-1
accuracy as well as the number of frames per clip, the number of temporal and spatial views used for
inference, the computation complexity, and the number of learnable parameters for each model. The
best performance is in bold and the second best is underscored.

Method Backbone Frames Views TFLOPs Learnable Param (M) Top-1 Acc.

SlowFast [15] ResNet101 80 10×3 7.02 - 79.8
X3D [13] X3D-XL 16 10×3 1.45 - 79.1
MoViNet [27] MoViNet-A6 120 1×1 0.39 - 81.5
UniFormer [31] Hybrid-B 32 4×3 3.12 50 83.0

CLIP* [44] ViT-B 8 5×3 2.2 86 77.3
EVL [35] ViT-B 32 3×1 1.78 29 84.2
ST-Adapter [42] ViT-B 32 3×1 1.82 - 82.7
Text4Vis [69] ViT-B 16 4×3 - - 83.6
AIM [72] ViT-B 32 3×1 2.43 11 84.7
X-CLIP [41] ViT-B 16 4×3 3.44 - 84.7

ViViT FE [1] ViT-L 128 1×3 11.94 311 81.7
TimeSformer [3] ViT-L 96 1×3 25.06 430 80.7
MViT [12] ViT-B 32 5×1 0.85 37 80.2
BEVT [62] Swin-B 32 4×3 3.38 88 80.6
MFormer [43] ViT-L 32 10×3 35.55 - 80.2
Video Swin [37] Swin-L 32 4×3 7.25 197 83.1
VideoMAE [56] ViT-B 16 5×3 2.7 87 81.5
OMNIVORE [16] Swin-B 32 - - - 84.0
MTV-HR [71] MTV-B 32 4×3 11.16 310 82.4

CAST w/ VideoMAE pretrained on Kinetics-400 CAST-B 16 5×3 5.87 45 85.3
∗We conduct experiments with our own implementation.

I Broader Impacts

Our work is on the task of human action recognition from videos. Surveillance could be one
application, which might have privacy related concerns when the technology is deployed. Other
consumer applications like personal or internet video search and tagging is expected to benefit
individuals and organizations alike by helping them more efficiently maintain human centered data.
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Figure 11: Improvements of CAST over CLIP on EK100 verb classes. We show the class-wise F1
score improvement of CAST over CLIP. CAST achieves an improvement of 17.8 points on average.
Best viewed with zoom and color.
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Figure 12: Improvements of CAST over VideoMAE on EK100 verb classes. We show the class-
wise F1 score improvement of CAST over VideoMAE. CAST achieves an improvement of 2.2 points
in on average. Best viewed with zoom and color.
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Figure 13: Improvements of CAST over CLIP on EK100 noun classes. We show the class-wise
F1 score improvement of CAST over CLIP. CAST achieves an improvement of 7.9 points on average.
Best viewed with zoom and color.

25



1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
F1 score improvement

knob
mat
cellar:salt
juicer
fan:extractor
chair
avocado
cereal
salami
leek
fish
plug
foil
salmon
parsley
juice
microwave
lemon
grape
liquid
pizza
chopstick
towel:kitchen
cooker:slow
pie
kale
wrap
banana
towel
spreads
meat
filter
yoghurt
squash
button
food
top
dough
sink

apron
asparagus

basil
bean:green

broccoli
cake

caper
choi:pak
clothes

coconut
coriander

corn
drink

fishcakes
floor

ginger
handle

ice
ladle
lentil

mixture
pancake
paprika

pea
pin:rolling

pith
presser

processor:food
sandwich

stalk
tablet

teapot
tofu
tuna

utensil
vinegar

wine
wire

yeast
drawer

scissors
salad

peeler:potato
heat

fridge
tap
can

kettle
cupboard

plate
cloth

peach
container

rubbish
hand
hob
pan

vegetable
oven

kitchen
coffee

skin
tray

dishwasher
sauce

sponge
lid

package
bin
cup

alarm
water

oil
box
bag

cream
maker:coffee

liquid:washing
jar

board:chopping
leaf

onion
machine:washing

glass
chilli

burger
pot
salt

bottle
cutlery

pasta
mushroom

curry
bowl

cheese
spatula

milk
garlic
paste
spoon
spice
knife

tomato
paper

shell:egg
colander

rice
jug

lettuce
clip

bread
pepper

glove
butter
phone

wrap:plastic
raisin
carrot

light
egg
fork

basket
blueberry

cap
oatmeal

olive
biscuit

chicken
tea

apple
nut
rest

hummus
aubergine

spinach
onion:spring

courgette
freezer
lighter
potato
brush

rack:drying
sausage

cucumber
orange
powder

pork
recipe
noodle

oregano
seed
soup

tongs
grater
sugar

napkin
stock

bacon
scale

omelette
opener:bottle

chocolate
flour
lime

mango
book

cover
holder

spinner:salad
thermometer

blender
toaster

Figure 14: Improvements of CAST over VideoMAE on EK100 noun classes. We show the
class-wise F1 score improvement of CAST over VideoMAE. CAST achieves an improvement of 9.2
points on average. Best viewed with zoom and color.
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Figure 15: Qualitative examples from EK100 comparing CLIP, VideoMAE, and the proposed
CAST. Each expert model shows more accurate predictions in their expertise but shows weaker
performance on the other task. However, the proposed CAST consistently shows correct predictions
for both noun and verb classes, demonstrating the effectiveness of the proposed spatio-temporal
cross-attention mechanism. Best viewed with zoom and color.

27


	Introduction
	Related Work
	Method: Cross-Attention in Space and Time
	Input embeddings
	CAST architecture
	B-CAST module architecture

	Experimental Results
	Datasets
	Implementation details
	Balanced spatio-temporal understanding
	Analysis on fine-grained action recognition
	Ablation study on CAST architecture
	Comparison with state-of-the-art

	Conclusions
	Architecture Details
	Implementation Details
	Datasets.
	Additional Quantitative Analysis
	Generality
	B-CAST-specific positional embeddings

	Comparison with State-of-the-Art
	Class-Wise Performance Comparison
	Qualitative Analysis
	Limitations
	Broader Impacts

