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Abstract

The use of non-Cartesian grids is a niche but important topic in sub-fields of the
numerical sciences, such as simulation and scientific visualization. However, non-
Cartesian approaches are virtually unexplored in machine learning. This is likely
due to the difficulties in the representation of data on non-Cartesian domains and
the lack of support for standard machine learning operations on non-Cartesian data.
This paper proposes a new data structure called the lattice tensor which generalizes
traditional tensor spatio-temporal operations to lattice tensors, enabling the use
of standard machine learning algorithms on non-Cartesian data. We introduce
a software library that implements this new data structure and demonstrate its
effectiveness on various problems. Our method provides a general framework for
machine learning on non-Cartesian domains, addressing the challenges mentioned
above and filling a gap in the current literature.

1 Introduction

Machine learning heavily relies on tensors to represent multi-dimensional data. However, tensors are
inherently Cartesian, and representing data solely on Cartesian grids can be restrictive. Certain data
may be more naturally suited to alternative grid structures. For example, raw image data from most
imaging sensors is not Cartesian; a Bayer filter represents blue and red data with Cartesian structure,
but green data has quincunx (checkerboard) structure. There is also abundant literature showing that
hexagonal grids are superior to Cartesian grids when representing isotropically band-limited natural
images [4, 34, 32, 38, 3]. Representing data in these domains using traditional Cartesian tensors
can be inefficient and lead to inaccuracies depending on the distribution the data belongs to. For the
distribution of natural images, which have relatively isotropic behaviour in the Fourier domain, it is
well known that using alternative grids yields better image representations [38].

Another reason to use exotic grids is that alternative structures can have significantly different
approximation capabilities. Again, turning to the hexagonal lattice as an example, which is well
known as the optimal sampling lattice in 2D [4], if one samples a 2D signal with a number of samples,
a hexagonal sampling reduces the memory consumption by approximately 14% [32]. This follows
from a simple argument in the Fourier domain; sampling a band-limited signal periodizes that function
in the Fourier domain. If one’s sampling pattern is hexagonal (the optimal circle packing pattern)
then less information is lost when the signal is hexagonally periodized. This effect compounds as
dimensionality increases; for example the body-centered-cubic (BCC) lattice is 30% more efficient
than the Cartesian lattice (for isotropically band-limited functions)1.

However, though these grid structures show promise in other areas of numerical sciences, they are
relatively unexplored in the context of machine learning. There is no user-friendly, general, and

1The face-centered-cubic (FCC) lattice is also attractive, as it minimizes aliasing.
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Figure 1: Three lattices used as examples throughout this paper; a) is the Cartesian lattice, b) is the
quincunx lattice and c) is the hexagonal lattice. The cells of each lattice have been shaded according
to their distance to the origin. We ignore the cell structure of the lattice, and treat a lattice structure
as a simple point structure. The quincunx and hexagonal lattices are formed by interleaving two
Cartesian grids; this is shown with the white and black filled dots.

efficient way to represent data on non-Cartesian grids within the context of machine learning (or
in general). To address this gap, we introduce a new data-structure called a lattice tensor that we
use to represent data on any non-Cartesian lattice structure. This structure changes the inherent
representation of the data, as such it requires many common operations to be rewritten in terms of
lattice tensors. For the most part, this is straightforward. For example, element-wise operations are
trivial to extend. Convolution is more involved, but we still may leverage existing fast implementations.
We generalize many of the traditional tensor spatio-temporal operations to lattice tensors, enabling
the use of these operations on non-Cartesian domains.

Ultimately, we present a software library called Non-Cartesian Deep Learning (NCDL) which is
an open source, concrete implementation of the lattice tensor container and the associated spatio-
temporal operations defined over lattice tensors. NCDL library is implemented on top of PyTorch [31],
and is designed to be relatively easily integrated into existing PyTorch code bases.

This work is the first general data processing library for non-Cartesian data (with the added benefit of
being differentiable). In short, our contributions are as follows:

1. We introduce the concept of a lattice tensor, a data-structure for the representation of data
on non-Cartesian lattice structures.

2. We generalize the traditional spatio-temporal operations such as convolution and pooling to
lattice tensors.

3. We provide an open source software library that implements our methodology.
4. We show a small set of cases in which the non-Cartesian ideology produces a performance

benefit in the broader context of machine learning.

The remainder of the paper is organized as follows. In Section 2, we review related work on non-
Cartesian grids both in and out of the context of machine learning. In Section 3, we formalize the
key operations and concepts that we use in NCDL. In Section 4, we validate the performance of
our implementation for convolution against a specialized implementation for hexagonal lattices, and
explore non-Cartesian auto-encoding networks. Finally, in Section 5, we conclude and discuss future
work. Our implementation is available at https://www.ncdl.ai.

2 Related Work

Convolution is a fundamental operation in most machine vision pipelines, and can be traced back to
the early 1980s [12]. Convolutional networks gained popularity owing to the fact that convolutions
exploit the locality of data while avoiding the curse of dimensionality (in parameter count). The
recent surge of success in convolutional neural networks (CNNs) is in large part to hardware advances
in the early 2010s. General purpose GPU compute power facilitated new benchmark performance in
image classification [25, 1]. Since then, various forms of CNNs have been proposed with various
design differences: early efforts, like VGG and ResNet, focused on building deeper convolutional
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networks [14, 29] while trying to avoid the vanishing gradient problem; while others attempted to
create more computationally/parameter efficient networks [18, 33, 36, 37]. Other works have focused
on changing the mechanics of the convolution layer [44, 35, 18]. However, none of these have pushed
into the realm of non-Cartesian data.

There has been limited work on the use of non-Cartesian grids in machine learning. The space
efficiency of the hexagonal lattice has been attractive, so it has garnered a small amount of attention.
NeuroHex was the first to explore hexagonal convolutions in a modern CNN setting; their domain
is the game of Hex [43]. The game of Hex is restricted to a parallelpiped shaped region; to support
hexagonal convolution, the authors simply transform the problem domain and restrict convolutions to
the hexagonal network by zeroing out filter elements. HexaConv explores hexagonal convolution in
the context of image classification, and shows a surprising improvement over traditional Cartesian
convolution [15]. They resample square Cartesian images on to the hexagonal lattice in an axial
coordinate system (i.e. the same parallelpiped as [43], but zero padded). A similar work proposed a
nearly identical structure on the isocsahedron-based spherical hexagonal grid. These works all suffer
from the same problem: wasted space in their representation. There are currently only two works that
do not waste space in this manner. The first is HexCNN [47], which stores data in a column format
effectively linearizing the hexagonal domain column by column; convolutions then operate on this
domain. The second and most similar to our work is HexagDLy, which splits the convolution into
multiple convolutions over different shifts of the input domain [34]. Our work is more general than
all of these works; our primary contribution is the lattice tensor, a simple, waste-free container for
data on arbitrary lattices. Figure 2 shows alternative representations from other frameworks, where
they waste memory, and how NCDL addresses this.

This generalization forces us to think more broadly about operations on lattice tensors. Take
down sampling for example; traditionally, down sampling is uniform in each dimension (usually
dyadic, i.e. a factor of 2 in each dimension). However, this is a limitation only imposed by the
restriction to Cartesian grids. There are other possible decimation strategies when discarding samples
on the Cartesian lattice, one may discard samples from a checkerboard (i.e. quincunx) pattern,
thereby producing another quincunx lattice. This type of downsampling is present in non-dyadic
downsampling multi-channel wavelet filterbanks [24], but has not been explored in the context of
machine learning. In fact, higher dimensions exhibit more interesting cascading structures between
grids [19]. This cascading structure is something we explicitly support in NCDL.

The benefit of non-Cartesian grids extends to higher dimensions. The optimal packing lattice in 3D is
the body-centered cubic (BCC) lattice, and this is relatively well studied in the context of scientific
visualization [32, 4]. However, most research has focused on finding high performing interpolants in
these spaces [9, 22, 11, 21, 7, 10, 6], or on extending numerical techniques to exploit the inherent
benefit of these approximation spaces. In this sense, we also contribute in this area, by providing an
interface to implement these ideas (one is not required to use the differentiablity provided by NCDL).

Another related subfield of machine learning is graph learning [42]. Examples of graph learning
problems include document classification, where documents are the set of nodes V , and are related
to other nodes/documents through the edge set E; this set may represent academic citiations, for
example [28]. Since non-Cartesian lattices change the inherent structure of the underlying repre-
sentation of the grid, it is natural to draw connections between non-Cartesian methods and graph
based approaches to operations such as convolution and pooling [13, 26, 27]. However, upon closer
inspection, these connections break down in practice. Since the relationship between nodes in a graph
is not necessarily constant, defining a simple discrete relationship between them (i.e. a discrete finite
filter) is not easily achievable. Compounding this problem, the explicit spatial relationship between
points is ambiguous, and depends on how a graph is embedded in space (which is not often provided
as a parameter). As such, one typically turns to spectral methods or their approximations to compute
the convolution of a “filter” with a graph [8, 23]. To this end, graph convolution is not necessarily
compatible with the ideology presented by traditional convolutional methods; while compelling,
it is difficult to compare deep non-Cartesian methods with graph learning approaches. While the
geometry of non-Cartesian structures is different than that of the traditional tensor, it is still a regular
structure; and as such, we seek to leverage pre-existing optimized implementations for operations on
these domains.
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Figure 2: Three possible underlying representations for the memory of an image stored on a rect-
angular bounded region of the hexagonal lattice. The “Logical Domain” is the domain over which
an operation operates, the shaded cells are the cells in which data is stored, and the white cells are
empty (i.e. wasted space). The axial representation (a) treats the hexagonal domain as a transformed
Cartesian domain, and requires a large amount of wasted space [34]. The offset representation (b) is
more compact, but requires additional logic for the different rows of the image and may also waste
space. Our coset representation decomposes the input lattice into a number of Cartesian lattices, is
more compact than the offset representation in general, and works with arbitrary lattices.

3 Computing on Non-Cartesian Grids

In general, processing data on any non-Cartesian grid is simple, but technically cumbersome. While
most algorithms are easy to state on a non-Cartesian discretization, the non-separable nature of these
lattices makes it difficult to design efficient structures for storage and computation. We avoid this by
simply ignoring the non-Cartesian structure; treating all processing as operations over separate Carte-
sian components. A similar approach is taken in some recent works in the non-Cartesian world [17,
16]. Figure 1 shows an example of this decomposition. The ideas in this paper are general, and we
state them as s-dimensional theory. However, in practice, we implement this in 2D and 3D in NCDL.

(a)

P R

vP0 = (0,0) vP1 = (1,1) vR0 = (0,0) vR1 = (−1, − 1)
vR1

ι( ) = 0
ι( ) = 1

vP1

κ+(1,0) = ι(vR1 + vR0) = 1
κ+(1,1) = ι(vR1 + vR1) = 0κ+(0,1) = ι(vR0 + vR1) = 1

κ+(0,0) = ι(vR0 + vR0) = 0

(b)

Figure 3: Two lattice tensors on the quincunx lat-
tice. Each contains two tensors and two shifts (the
first shift is always the trivial 0 shift). In general,
on other lattices there may be more cosets and
shifts. These two lattice tensors are compatible,
that is, they share the same overall geometry, but
are shifted.

Lattices We define a lattice as a subset of the
s-dimensional integers Zs. Explicitly, we de-
note this with a full rank s× s integer matrix L,
and define a lattice as a set L = LZs ⊆ Zs.
Practically speaking, we are interested in a
bounded subset of these integers. In the rest
of this paper we assume this set is bounded
within a rectangular region R of s-dimensional
Euclidean space; we denote this bounded set
as LR. When L = I then all the discussion
reduces to the Cartesian lattice, and classical
machine learning approaches trivially apply.

The definition of a lattice usually invokes no-
tions of combinatorial problems and theory.
While we do require some lattice algorithms to
facilitate our implementation, we instead mainly
use lattices as data-structures. To each lattice
site within R, we assign a real (floating point)
value; we also explicitly include a batch and
channel index to facilitate common operations in deep learning. We combine these ideas in the
notation

ab,c,LR [i, k,n] ∈ R, ∀n ∈ LR, 0 ≤ i < b, 0 ≤ c < k. (1)
When the channel and batch indices are clear from context, we will write this as aLR [i, k,n], or
a[i, k,n] when all parameters are apparent from context.

The Coset Decomposition The key observation that facilitates the mechanics of this paper is that
any (integer) lattice structure can be written as a collection of Cartesian lattices. That is, there exists
an integer C, an integer diagonal matrix D ∈ Zs×s and integer shifts vi, 0 ≤ i < C such that

LR =

(
C−1⋃
i=0

vi +D(Z+)s

)
∩R. (2)
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This is the Cartesian coset decomposition. There are many possible coset decompositions; in general
D need not be a diagonal matrix, however, this condition forces the cosets to be Cartesian. This
particular representation allows us to store data on a lattice as multiple shifted traditional tensors (a.k.a.
multi-dimensional arrays). To ensure that our algorithms maintain a consistent coset representation,
we place a restriction on vi and R; we restrict all vi ∈ D[−1, 1]s. This puts a lower bound on the
boundaries of the region R, and helps avoid "coset creep" (in earlier iterations of this work, we
noticed that coset vectors tend to uncontrollably walk around space if not somehow restricted).

Lattice Tensor The lattice tensor is the simple, yet fundamental backbone of this work. A lattice
tensor is a collection of tensors and integer vector shifts. We define this formally, as well as a small
number of additional properties in the following:

Definition 3.1 (Lattice Tensor). A lattice tensor consits of the bounded region R, the collection of
vectors vR

i ∈ D[−1, 1]s, and the associated values on the lattice ab,c,LR [l, k,n]. When obvious from
context, we will simply write vi. We order the vi lexically, according to their values v mod D (i.e.
the vector in their equivalence class in D[0, 1]s). We denote the individual cosets of this lattice tensor
as ãj [l, k,m], where 0 ≤ j < C is the coset index, and m ∈ (Z+)s.

The ordering of a lattice tensor’s coset vectors is a small, but important part of the definition of a
lattice tensor; it ensures that between two arbitrary rectangular regions P and S the set vP

i +DZs is
always equivalent to vS

i +DZs. When working with the coset representation it is important to know
which coset lattice points belong to; this is formalized as follows:

Definition 3.2 (Coset Index). Given some n ∈ LR, the coset index ι(n) is the integer such that
n ∈ vι(n) +D(Z+)s.

Proposition 3.1 (κ-index). Given i, j with 0 ≤ i, j < C, for any n ∈ LR,m ∈ LS with ι(n) = i and
ι(m) = j, it must be that both ι(n−m) and ι(n+m) are constant. We define κ±(i, j) := ι(n±m).

The intuition for the κ-index is simple, if we subtract or add lattice points on two cosets, the κ-index
tells us the resulting coset index of the operation. Figure 3 shows an example of these concepts.

Tensor Operations on Lattice Tensors For the most part, tensor arithmetic on lattice tensors is
relatively straightforward. If two lattice tensors share the same vi and R, then arithmeteic can be
performed directly on the underlying coset tensors. However, there may be cases in which we should
be able to add two lattice tensors, but the differing coset vectors break the correspondence between
two lattice tensors’ coset. Figure 3 shows a simple case where this happens.

Definition 3.3 (Compatibility). We say two lattice tensors xb,c,LR and yb′,c′,L′
S

are compatible if
and only if b = b′, c = c′,L = L′ and ∃ kR,S ∈ Zs such that LR = {n+ kR,S : n ∈ L′

S}.

In practice, finding this correspondence is straightforward, we shift the set of coset vectors so that
their centroid is the origin, then we check if all shifted coset vectors have a corresponding match.
This allows us to define element-wise binary operations as operations over the underlying Cartesian
tensors.

Definition 3.4 (Binary Elementwise Operations). Given a binary operation ⊙ defined over the
elements of R, two compatible lattice tensors xb,c,LR and yb,c,LS , we define

(xb,c,LR ⊙ yb,c,LS )[i, j,n] := xb,c,LR [i, j,n]⊙ yb,c,LS [i, j,n+ kR,S ]. (3)

Note that this always outputs a new lattice tensor on LR.

A Note About Reflection It is common to flip a tensor about an axis, either for data augmentation
or for another common operation, like padding. However, an astute reader may notice that not all
lattices have reflective symmetry.

Definition 3.5. A lattice L has reflective symmetry about the plane defined by ed if and only if
∀n ∈ L it is true that −ed · n ∈ L where ed is the dth unit cardinal vector.

If a lattice tensor has reflective symmetry about an axis, materializing a reflected tensor is straightfor-
ward: flip the underlying tensor and correct the coset shift vectors.
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Lattice Tensor Padding Padding is a simple but fundamental operation in many data processing
schemes. On the Cartesian lattice we simply extend the region of interest, then introduce the
appropriate new elements. Padding a lattice tensor on LR is slightly more involved. Fix an axis d,
and assume we wish to pad on the right by a unit of 1. In this case, we extend the support of R by the
smallest amount on the right so as to introduce new lattice sites to the lattice tensor, we then pad the
appropriate underlying tensors on the right to fill this new space. To pad on the left by a unit of 1, we
again extend the support of R by the smallest amount on the left so as to introduce new lattice sites to
the lattice tensor, any underlying tensors are padded to the left, and their corresponding coset vectors
become vi − ed. If this moves a coset vector outside of the valid range D[−1, 1]s, then all vectors
are uniformly shifted back within this range. We leave the details to our implementation, provided as
supplementary material.

Convolution The convolution operation naturally generalizes as an operation over lattices, we note
this in the following definition.
Definition 3.6. For a lattice tensor aLR and filter fLP where the region P is strictly positive, we
define convolution as

(ab,c,LR ⋆ fc,k,LP )[n, i,p] :=

c−1∑
j=0

∑
s∈supp(f)

a[n, j,p+ s]f [i, j, s] (4)

whose output lattice tensor is in LS where LR = LS ⊕ LP (here, ⊕ is the Minkowski-sum of two
point-sets).

When L is the Cartesian lattice, then this reduces to the classical case. This definition excludes fused
operations such as downsampling (strided convolutions) and any form of padding. We do this inten-
tionally, as including these operations is quite complex, and supporting such fused operation would
require a large additional implementation effort. Even as such, creating a dedicated implementation
of this generalized convolution operation is a large challenge on its own [2]. Instead, we leverage
pre-existing implementations on Cartesian lattices. We use the following proposition to achieve this.
Proposition 3.2. For a lattice tensor aLR and filter fLP where the region P is strictly positive, the
result of the convolution ob,k,LS := (ab,c,LR ⋆ fc,k,LP ) can be written in terms of its output cosets as

õi =

C−1∑
j=0

ãκ+(i,j) [·+ δ(i, j)] ∗ f̃j (5)

where ∗ is the traditional Cartesian convolution operator, and δ(i, j) := D−1(vR
κ+(i,j) − vR

i − vS
j )

is a constant by which we shift the appropriate coset of aLR .

A practical note about this operation is in order. We are typically limited to rectangular support for
supp(f̃j) in all popular implementations of Cartesian convolution. To address this, we simply take
the “ZeroOut” approch [47], and zero out any inappropriate elements in the square filters’ support.

Pooling The pooling operator also naturally extends to lattice tensors, we note this in the following
definition.
Definition 3.7. For a lattice tensor aLR and filter geometry LP where the region P is strictly positive,
lattice pooling is defined as

ob,c,LR
[l,m,n] = max

s∈LP

{a[l,m,n+ s]} (6)

whose output lattice tensor is in LS where LR = LS ⊕ LP .

We again, re-write this in terms of processing over Cartesian lattices in order to leverage existing
frameworks for evaluation
Proposition 3.3. For a lattice tensor aLR and stencil geometry LP where the region P is strictly
positive, the result of the lattice pooling operation ob,c,LR [l,m,n] = maxs∈LP{a[l,m,n+ s]} can
be written in terms of its output cosets as

õi[l,m,n] = max
0≤j<C

{
max

s∈D−1(LP−vj)∩Zs

{
ãκ+(i,j) [n+ s+ δ(i, j)]

}}
(7)

where the maximum operation running over the set D−1(LP − vj) ∩ Zs is the traditional max pool
operator, restricted to the jth coset of the stencil.
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Downsampling Downsampling (i.e. discarding data then reducing resolution) is another basic
operation that we generalize. The most general case for downsampling is to systematically remove
samples in such a way that the lattice property is preserved. We take the standard path to define
down/up sampling about an integer matrix S with 0 < detS ∈ Z. We obtain the sub-sampled
lattice by restricting to the new set Q := SL. Loosely, for the new lattice Q we obtain the coset
decomposition, then subsample the input lattice tensor according to the new decomposition. This
yields a new lattice tensor.

Upsampling Upsampling introduces new datapoints (initialized to zero) at a higher resolution lattice.
We denote this with a matrix S−1L ∈ Zs×s. This employs the same mechanics as downsampling,
but rather than removing points, we introduce new points according to the lattice in question. The
mechanics of this are similar to downsampling, and we leave the details to the supplementary
implementation.

3.1 Derivative Computation

Since gradient computation is an important feature that must be supported by any deep learning
framework, it is crucial to discuss gradient computation from the perspective of lattice tensors. For a
given loss function h, and the lattice tensor a the gradient ∂h/∂a is simply the lattice tensor consisting
of the gradients of the individual cosets, that is, ∂h/∂ã. Computing the gradient of any element-wise
operation is straightforward; we simply operate independently on the coset tensors. However, for the
remainder of the operations discussed so far, we require more care. We start with convolution.
Proposition 3.4. For a lattice tensor aLR and filter fLP where the region P is strictly positive, with
convolution defined as

o[n, i,p] := (ab,c,LR ⋆ fc,k,LP )[n, i,p] (8)
whose output lattice tensor is in LS where LR = LS ⊕ LP , the derivatives of the loss h with respect
to the filter and input lattice tensor are given by

∂h

∂a[n, i,k]
= (o ⋆ fc,k,LP )[n, i,k], (9)

∂h

∂f [i, j,k]
=

b−1∑
n=0

∑
p∈LS

∂h

∂o[n, i,p]
· a[n, j,p+ k]

 , (10)

where f mirrors the filter and swaps the channels, i.e. f [i, j,k] := f [j, i,−k].

Note that it is common to state the filter gradient as a convolution. We avoid introducing new notation
to describe this fact and simply note this here.
Proposition 3.5. For a lattice tensor aLR and filter geometry LP where the region P is strictly
positive, lattice pooling

ob,c,LR
[n, i,k] = max

s∈LP

{a[n, i,k+ s]} (11)

whose output lattice tensor is in LS , has the gradients given by
∂h

∂a[n, i,k]
=
∑

p∈LP

∂h

∂o[n, i,k− p]
· µ[n, i,k− p,p] (12)

where

µ[n, i,p,q] :=

{
1 if maxs∈LP

{a[n, i,p+ s]} = a[n, i,p+ q]

0 otherwise.
(13)

The proofs of these facts are direct consequences of the chain rule, and can be found in the Appendix.

Derivatives of Padding, Downsampling and Upsampling The loss gradient of the downsampling
operation is upsampling (taking care to respect the original dimensions of the original lattice tensor)
and vice versa. The gradient of the padding operation simply truncates the padded gradient tensor,
discarding any gradient signal outside of the original geometry of the tensor from the forward pass.
For the most part, we leverage the automatic differentiablity of PyTorch to compute derivatives of
these operations [31]. However, more streamlined implementations using the forms above may save
memory in future iterations of this work, since less temporary tensors must be saved during the
forward pass.
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4 Exploring non-Cartesian Networks

In this section, we delineate the experiments we conducted to evaluate NCDL. First, we compare
NCDL with the closest existing hexagonal convolution library [34]. Subsequently, we explore the use
of non-dyadic down/up sampling within bottlenecked architectures. To the best of our knowledge,
this operation has not been explored in machine learning. All experiments are conducted on an AMD
Ryzen 9 3900X (3.8GHz) with 128GB of DDR4 RAM operating at 3200 MHz, accompanied by an
NVIDIA RTX 3090 with 24GB of RAM.

4.1 Hexagonal Convolution

While NCDL focuses primarily on integer lattices, the hexagonal lattice exhibits the same coset
structure as the quincunx lattice. This permits the storage of a hexagonal image on a quincunx lattice
— convolution can be implemented via the selection of a suitable filter on the quincux lattice. We
assess the efficacy of this method in comparison to HexagDLy [34], which, among all other related
works, is conceptually most similar to our approach.
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Convolution Size v.s. Execution Time

Conv2D

HexagDLy

NCDL

Figure 4: Average run time in milliseconds
(ms) as grid size increases, averaged over 100
runs, bench-marked on GPU. Variance is neg-
ligible.

Evaluation Figure 4 illustrates the performance
trend as the grid size increases. Here, all grids
are “equivalent” to the Cartesian grid. That is, we
choose our hexagonal domain/lattice tensors to con-
sume roughly the same amount of memory as the
Cartesian grid. For example, if our Cartesian grid is
256×256, then each coset of our lattice tensor has a
dimension of 182× 182. We fixed input and output
channels at 32 and 64 respectively (simulating an
early stage in a convolutional pipeline). We limit our
experiment to the case where the convolution ker-
nel is a hexagonal 1-ring/1-neighborhood filter. We
set the stride to 1, as NCDL does not support fused
strides with convolution. It is important to note that
we employ the same filter sizes as HexagDLy, but
our convolutions occur over the separate cosets of

the lattice, which are smaller than the grids over which HexagDLy operates.

There are a few things to note about this experiment. For smaller grid sizes, NCDL exhibited slower
performance compared to HexagDLy. This is likely due to the inherent overhead of managing the
coset structure and the overhead of GPU kernel queueing. However, beyond a threshold, NCDL
vastly outperforms HexagDLy. This is likely due to the fact that HexagDLy operates over larger
grids (even though it employs strided convolutions). This effectively increases the computational
load, particularly in processing larger inputs. While the strides in HexagDLy’s implementation
help in reducing the spatial dimensions of the output, the fundamental operation over larger grids
does demand additional computational resources. Interestingly, only in one scenario (2048) did a
non-Cartesian implementation outperform the Cartesian 1-ring filter. This finding is particularly
significant, considering that the Cartesian convolution employs a larger filter size and is thus expected
to involve more computation.

4.2 Non-dyadic Downsampling and the Quincunx Lattice

It is somewhat expected that convolution on hexagonal images yields superior results in aspects
such as speed or accuracy. Nonetheless, non-Cartesian lattices may enhance performance without
necessitating a change in approximation space through other means. In this second set of experiments,
we investigate the application of non-dyadic downsampling. That is, as data flows through the network,
it starts as a tensor on a Cartesian lattice; subsequent layers perform a convolution, then a downsample
operation according to the following sub-sampling matrix S = [−1 1; 1 1]. This generates a lattice
tensor on the Quincunx lattice. A subsequent convolution (followed by a downsample operation)
results in a lattice tensor on the Cartesian lattice. Different levels of convolution alternate between
these two grids (analogous to [19]), offering a more gradual reduction in resolution.
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Figure 5: The network structures we propose. The auto-encoder experiments we conduct omit the
skip connections between the layers. To maintain parity with the quincunx design, additional skip
connections were added to the Cartesian case. Both networks share the same amounts of parameters.

CAE QCAE

L1 ↓ 0.08804 0.08318
L2 ↓ 0.01795 0.01639
PSNR ↑ 17.53 17.92
SSIM ↑ 0.6113 0.6206
LPIPs ↓ 0.4808 0.4765

Figure 6: Error plots for training and validation. The QCAE marginally outperforms in training,
and outperforms with a wider margin in the validation. The table on the right shows the final model
performance with respect to various error metrics; superior performance is noted in bold-font.

Quincunx Auto-encoder In this experiment, we establish a rudimentary autoencoder structure that
progressively downsamples to a latent space before upsampling back to the image space. We first
establish a baseline experiment, incorporating two Cartesian convolutions with 3× 3 filters, followed
by a downsample (we maintain two convolutions to preserve parameter parity with the quincunx
case). The Quincunx Convolutional Auto-Encoder (QCAE) lattice encompasses one convolution, a
downsample onto the Quincunx lattice, one convolution, and a downsample onto the Cartesian lattice.
Figure 5 shows the exact structures we design.

We train our models using the CelebA dataset [30]. Employing a straightforward L1 loss, we measure
validation L1, L2, PSNR, SSIM [41] and LPIPs metrics [46]. The network is trained with the Adam
optimizer, default parameters, and a batch size of 8. We train for 300,000 iterations, as convergence
was observed at this point, and take an average of 5 runs. This represents a total of approximately
160 hours of training time for all experiments.

Salient Object Detection with a Quincunx U-Net In this experiment, we extend the rudimentary
auto-encoder from the previous experiment by simply adding skip connections. Figure 5 shows
the exact structures we design, and the dotted lines show the additional skip connections that we
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U-Net QCU-Net

L1 ↓ 0.07583 0.08268
L2 ↓ 0.04969 0.05107
BCE ↓ 0.19266 0.18706
SSIM ↑ 0.2900 0.3074

Figure 7: Error plots for training and validation. The QCU-Net marginally fits to the data in
the training set worse than the strictly Cartesian U-Net. However, the QCU-Net outperforms in
generalization for this task. The table on the right shows the validation error at the end of training.
Better performance is noted in bold-font.

introduce for this example. We train our models on the DUTS salient object detection dataset [40],
and employ a straightforward binary cross-entropy (BCE) loss; we measure validation BCE, L1, L2
and SSIM. The network is trained with the Adam optimizer, with default parameters, and a batch size
of 8. We train for 120,000 iterations, as convergence was observed in the validation data at this point.

Discussion In our experiments, introducing a quincunx downsampling shows a noteable difference
across our tasks. For the autoencoder experiment, we note a small improvement in performance
for no additional cost in parameters (Figure 6); replacing a traditional Cartesian convolution with a
downsample operation followed by a Quincunx convolution should also be more computationally
efficient, since certain convolutions occur on smaller grids. However, due to implementation overhead,
we note that this is currently not true. The U-Net experiment is interesting in that it does not show
distinctly better performance in training, but validation performance improves for the BCE metric
(Figure 7). It is somewhat surprising that other metrics do not reflect the improved validation entropy;
however minimizng BCE does not strictly imply that other pixel-wise metrics will improve, due to
the way in which BCE weights pixelwise classification errors.

There are a few potential reasons for the improved quantitative performance of these networks. The
downsampling scheme is more gradual in a QCAE. This likely leads to a more gradual reduction of
information as it passes through the bottleneck of the network. Important information is less likely to
be "missed" by this more gradual reduction. The second, more simple explanation may be that the
aliasing introduced by the quincunx downsampling operation is much less strong, thereby providing a
stronger signal as data pass through lower resolution layers of the network; aliasing is a well-known
enemy of neural networks [45].

5 Future Work and Conclusions

This work has presented a general approach to enable the use of non-Cartesian lattices in machine
learning. Doing so has opened a new avenue of research by introducing a new twist on a fundamental
concept in machine learning. There are many possible avenues for future work: we plan on exploring
this in the context of models at scale, for example in generative approaches like GANs or diffusion
models [5, 20]. Additionally, modern components, such as the attention mechanism [39], must be
generalized to this new structure. There is also still a good amount of performance left on the table.
Decomposing convolution across the different cosets separates the convolution operation into disjoint
operations that could, for example, take place on completely separate hardware. These separate
operations could be scheduled across different memory chips, for example, to avoid bank conflicts or
other complications that arise in GPU memory controllers.
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