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1 Overview
• Architecture (Section 2): we provide a detailed description of our architecture
• Datasets (Section 3): we provide a detailed description of datasets used in our experiments
• Metrics (Section 4): we formally define our evaluation metrics
• Baseline diversity penalty (Section 5): we discuss an alternative diversity penalty which we

treat as a baseline in our ablations
• More results (Section 6): we share more qualitative results of our method
• Limitations (Section 7): we discuss some of the limitations of our method

2 Architecture

2.1 Partial encoder

Our partial encoder takes in a partial point cloud XP ∈ R1024×3 and first produces a set of point-wise
features F0 ∈ R1024×16 via a 3-layer MLP with dims [16, 16, 16]. To extract local features, L = 4
PointConv [1] downsampling blocks are used, where the number of points are halved and the feature
dimension is doubled in each block, producing a set of downsampled points XL ∈ R128×3 with
local features FL ∈ R128×256. We use a neighborhood size of 16 for PointConv layers in our
downsampling blocks. Additionally, a global partial shape vector fP ∈ R512 is produced from
concatenated [XL, FL] via a 2-layer MLP with dims [512, 512] followed by a max-pooling.

2.2 Style encoder

We represent our style encoder ES as a learned Gaussian distribution ES(z|X) =
N (z|µ(E(X)), σ(E(X))) where E is an encoder, µ and σ are linear layers, and X is a complete
point cloud.

Encoder E follows a PointNet [2] architecture. In particular, encoder E takes in a complete point
cloud X ∈ R2048×3 and passes it through a 4-layer MLP with dims [64, 128, 256, 512] followed
by a max-pooling to aggregate the point-wise features into a single feature vector fS ∈ R512. The
global shape vector fS is then passed through two separate linear layers to produce our style code
distribution with parameters µ = µ(fS) ∈ R8 and σ = σ(fS) ∈ R8. During training, we sample
style code z using the reparameterization trick:

z = µ+ σ · ϵ, where ϵ ∼ N (0, I) (1)

We train our style encoder with the losses from our completion network. To enable sampling during
inference, we also minimize the KL-divergence between ES(z|X) and a standard normal distribution
during training:

LKL = λKL DKL(ES(z|X) || N (0, I)) (2)
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where λKL is a weighting term (we set λKL = 1e− 2 in our experiments).

2.3 Style modulator

Our style modulator network M takes in a partial latent vector fP ∈ R512 and a style code z ∈ R8

as input and produces a newly styled partial shape latent vector fC ∈ R512. The style modulator
network is a 4-layer network consisting of style-modulated convolutions at every layer. The partial
latent vector remains the same dimension (i.e., 512-dim) throughout the entire network and the
style code z is injected at every layer through the style-modulated convolution. Note our style code
only modulates the partial latent vector fP and leaves local features FL from our partial encoder
untouched. We make this choice as FL carries critical information about local geometric structure in
the partially observed regions that we want to preserve.

2.4 Style-based seed generator

Our style-based seed generator takes in as input the downsampled partials points XL ∈ R128×3 with
local features FL ∈ R128×256, global partial shape vector fP ∈ R512, and sampled style code z ∈ R8

and produces Patch Seeds (S,F) as output.

To produce diverse Patch Seeds, we inject sampled style code z into fP using our style modulator
network to produce a styled partial shape vector fC = M(fP , z) ∈ R512. A set of upsampled
features Fup ∈ RNS×CS are computed via an Upsample Transformer [3] using partial points XL and
features FL. Upsampled features Fup are concatenated with styled partial shape vector fC and passed
through an MLP to produce Patch Seed features F ∈ RNS×CS . Finally, another MLP regresses Patch
Seed coordinates S ∈ RNS×3 from seed features F concatenated with styled partial shape vector
fC . Note we set NS = 256 and CS = 128 and a neighborhood size of 20 is used in the Upsample
Transformer for computing local self-attention. We refer readers to the original SeedFormer [3] work
for a full description of the Upsample Transformer.

2.5 Coarse-to-fine decoder

Note that our decoder starts from generated Patch Seeds (S,F), where we set our coarsest completion
G0 = S ∈ R256×3. During this stage, the completion is upsampled by a factor r and refined through
a series of upsampling layers to produce denser completions. We use 3 upsampling layers and set
the upsampling rate r = 2. The output of our decoder is point clouds Gi for i = 0, ..., 3 with 256,
512, 1024, and 2048 points, respectively. Interpolated seed features and point features used in the
Upsample Transformer at each upsampling layer share the same feature dimension size, which we set
to 128. Seed features are interpolated using a PointConv layer with a neighborhood of size 8. The
Upsample Transformer uses a neighborhood size of 20 for computing local self-attention.

2.6 Discriminator

We have a discriminator Di for each output level i = 0, ..., 3 of our completion network. Each
discriminator Di shares the same architecture; however, they do not share parameters. In particular,
each discriminator uses a PointNet-Mix architecture [4]. The discriminator Di takes either a ground
truth point cloud or completion X ∈ RNi×3, where Ni is the point cloud resolution at output level
i of our decoder, and produces a prediction of whether the point cloud is real or fake. The point
cloud X is first passed through a 4-layer MLP with dims [128, 256, 512, 1024] producing a set of
point-wise features F ∈ RNi×1024. The features F are then both max-pooled and average-pooled to
produce two global latent features fmax ∈ R1024 and favg ∈ R1024, respectively. These features are
concatenated to produce our mix-pooled feature fmix = [fmax, favg] ∈ R2048 and passed through
another 4-layer MLP with dims [512, 256, 64, 1] to produce our final prediction.

3 Datasets

We conduct experiments on data from the ShapeNet [5], PartNet [6], 3D-EPN [7], Google Scanned
Objects [8], and ScanNet [9] datasets, which are all publicly available. All datasets were obtained
directly from their websites and permission to use the data was received for those that required it.
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3.1 3D-EPN

For the 3D-EPN dataset [7], we evaluate on the Chair, Table, and Airplane categories and follow the
train/test splits used in [10]. In particular the train/test splits are 4068/1171, 4137/1208, 2832/808 for
the Chair, Table, and Airplane categories, respectively. The 3D-EPN dataset is derived from a subset
of the ShapeNet dataset [5]. Ground truth complete point clouds are produced by sampling 2048
points from the complete shape’s mesh uniformly. Partial point clouds are generated by virtually
scanning ground truth meshes from different viewpoints to simulate partial scans from a LiDAR or
depth camera.

3.2 PartNet

For the PartNet dataset [6], we evaluate on the Chair, Table, and Lamp categories and once again
follow the train/test splits used in [10]. In particular the train/test splits are 4489/1217, 5707/1668,
1545/416 for the Chair, Table, and Lamp categories, respectively. Ground truth point clouds are
generated by sampling 2048 points from the complete point cloud. To model part-level incomplete-
ness, the semantic segmentation information provided by PartNet is used to produce partial point
clouds. In particular, we randomly sample semantic part labels for each shape and remove all points
corresponding to those part labels from the ground truth point cloud.

3.3 Google Scanned Objects

For the Google Scanned Objects dataset [8], we evaluate on the Shoe, Toys, and Consumer Goods
categories. We choose these categories as they are the three largest categories in the dataset containing
254, 147, and 248 meshes, respectively. Meshes of the objects in each category were acquired via a
high-quality 3D scanning pipeline and we generate ground truth point clouds by uniformly sampling
2048 points from the mesh surface. To generate partial point clouds, we virtually scan each mesh
from 8 random viewpoints to simulate partial scans from a sensor. We use 7 of the partial views for
training and holdout 1 unseen view per object for testing.

3.4 ScanNet

For the ScanNet dataset [9], we use the preprocessed data provided by [11]. In particular, chair object
instances are extracted from ScanNet scenes and manually aligned to ShapeNet data. Since there are
no ground truth completions for these objects, we use our model pre-trained on the Chair category
from the 3D-EPN dataset and provide some qualitative results on real scanned chairs from ScanNet.

4 Metrics

We define the quantitative metrics used to evaluate our method against other baselines on the task
of multimodal shape completion. We first define the Chamfer Distance between two point clouds,
which is used by several of our evaluation metrics. In particular, the Chamfer Distance between point
clouds P ∈ RN×3 and Q ∈ RM×3 can be defined as:

dCD(P,Q) =
1

|P |
∑
x∈P

min
y∈Q

∥x− y∥22 +
1

|Q|
∑
y∈Q

min
x∈P

∥x− y∥22 (3)

For our evaluation metrics, we let T represent the test set of ground truth complete point clouds
and P be the test set of partial point clouds. For each pi ∈ P , we produce K completions cij for
j = 1, ...,K to construct a completion set C = {cij}.

4.1 Minimal Matching Distance (MMD)

Minimal matching distance measures how well the test set of complete point clouds T is covered
by the completion set C. In particular, for each ground truth complete shape t ∈ T , it finds its most
similar point cloud in the completion set C and computes the Chamfer Distance between them:

MMD =
1

|T |
∑
t∈T

(
min
c∈C

dCD(t, c)

)
(4)
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4.2 Total Mutual Difference (TMD)

Total mutual difference is a measure of how diverse generated completions are. For each partial shape
pi ∈ P , each of the K completions cij for j = 1, ...,K computes the average Chamfer Distance
between itself and the other K − 1 completions. The K average Chamfer Distances are then summed
to produce a single value per pi ∈ P . TMD is then defined as the average of these values over partial
input shapes P:

TMD =
1

|P|

|P|∑
i=1

 K∑
j=1

1

K − 1

∑
1≤l≤K,l ̸=j

dCD(cij , cil)

 (5)

4.3 Unidirectional Hausdorff Distance (UHD)

To measure how well the completions respect their partial inputs, we use unidirectional Hausdorff
distance. We define the unidirectional Hausdorff distance dUHD between point clouds P ∈ RN×3

and Q ∈ RM×3 as:
dUHD(P,Q) = max

x∈P
min
y∈Q

∥x− y∥2 (6)

Then the metric we report in our evaluations is simply the average unidirectional Hausdorff distance
from a partial point cloud pi ∈ P to its K completions cij for j = 1, ...,K:

UHD =
1

|P|
∑
pi∈P

 1

K

K∑
j=1

dUHD(pi, cij)

 (7)

5 Baseline diversity penalty

We discuss an alternative diversity penalty which we treat as a baseline in our ablation in Table 1.
Instead of computing our diversity penalty in the discriminator’s feature space, our baseline computes
such a penalty directly on the output space of our completion network using Earth Mover’s Distance
(EMD).

Inspired by [12, 13], we construct a diversity penalty in the output space of our completion network.
In the image space, one way in which this can be done is by maximizing the L1 norm of the per pixel
difference between two images. However, the image space is a 2D-structured grid that enables direct
one-to-one matching of pixels between images, while point clouds are unstructured and a one-to-one
correspondence does not directly exist. To overcome this, we make use of the Earth Mover’s Distance,
which produces a one-to-one matching and computes the distance between these matched points. In
particular, the EMD between two point clouds P ∈ RN×3 and Q ∈ RN×3 can be defined as:

dEMD(P,Q) = min
ϕ:P→Q

1

|P |
∑
x∈P

∥x− ϕ(x)∥2 (8)

where ϕ : P → Q is a bijection.

Now let XP be a partial point cloud. We sample two style codes z1 ∼ ES(z|X1) and z2 ∼ ES(z|X2)
from random complete shapes X1 and X2 to condition the completion of XP on. Our completion
network takes in partial input XP and style code z and produces a completion Gi(XP , z) at each
output level i. Then an EMD-based diversity penalty can be defined as:

Ldiv =

3∑
i=0

1

dEMD(Gi(XP , z1), Gi(XP , z2))
(9)

Note, by minimizing Equation 9 we try to encourage our network to produce completions whose
points do not have a high amount of overlap in 3D space for different style codes.

6 More results

In this section, we share more qualitative results from our multi-modal point cloud completion
algorithm and conduct further ablations on our method.
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Figure 1: Visualization of partial shapes (gray) overlaid on completions from our method (blue).

6.1 Partial reconstructions

To see how well our method respects the partial input, we visualize the partially observed point cloud
overlaid onto our completions. We show some of these results in Figure 1. It can be seen that the
completions produced by our method well respect the partial input, which aligns with the low UHD
values we observe in our quantitative results.

6.2 More completions

We share more multi-modal completions produced by our method in Figure 2. Our method is able
to produce high-quality completions where we observe higher levels of diversity with increasing
ambiguity in partial scans.

Additionally, in Figure 3, we share some example completions of real scanned chairs from ScanNet
using our model pre-trained on the 3D-EPN dataset. Our model produces diverse completions with
fairly clean geometry, suggesting we can even generalize well to real scans when trained on synthetic
data.

6.3 Visualizing style codes

In Figure 4, we plot our learned style codes extracted from shapes in the training set by projecting
them into 2D using principal component analysis (PCA). To better understand whether our style
encoder is learning to extract style from the shapes, we visualize the corresponding shapes in random
neighborhoods/clusters of our projected data. We find that the shapes contained in a neighborhood
have a shared style or characteristic. For example, the chairs in the brown cluster all have backs
whose top is curved while the black cluster has chairs that all have thin slanted legs.

6.4 Nearest neighbors of completions

In Figure 5, we share several completions (in blue) of a partial input and each completions nearest
neighbor (in yellow) to a ground truth complete shape in the training set. Our method produces
a different nearest neighbor for each completion of a partial input, demonstrating our methods
ability to overcome conditional mode collapse. Additionally, each nearest neighbor is similar to
the partially observed region and varies more in the missing regions, suggesting that our method is
capturing plausible diversity in our completions that matches with variance in the ground truth shape
distribution.

6.5 Ablations

In this section, we present another ablation on our method as well as share a qualitative comparison
on some of our ablations.

In particular, we also explored training with an alternative diversity penalty, where the penalty is
computed directly in the generator’s output space by maximizing the Earth Mover’s Distance (EMD)
between two completions. In Table 1, we see that our proposed feature space penalty obtains better
MMD and UHD compared to regularizing in the output space using EMD, suggesting our penalty
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Figure 2: Example multi-modal completions (blue) of partial point clouds (gray) across several
different categories from the PartNet, 3D-EPN, and Google Scanned Objects datasets.

Figure 3: Qualitative results on real scanned chairs from ScanNet.

leads to higher quality and more plausible completions. Interestingly, the EMD diversity penalty
obtains a high TMD, suggesting that TMD may be easy to maximize when completion quality is poor
due to higher levels of noise in the completions.

In Figure 6, we present a qualitative comparison of some of the ablated versions of our method. When
partial inputs have high ambiguity, we find that sampling style codes using the mapping network from
StyleGAN [14] produces completions with large regions of the shape missing. Unlike our learned
style codes, the style codes produced by the mapping network do not explicitly carry any information
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about complete shapes, and thus can’t help in producing plausible completions. When using the
EMD diversity penalty, completions have non-uniform density and poorly respect the partial input.
EMD is sensitive to density and is computed on all points in the shape, including the points in the
partially observed regions; thus, we find that the EMD diversity penalty tends to undesirably shift
local point densities along the shape surface rather than result in changes in geometry. Using a single
discriminator as opposed to our multi-scale discriminator results in completions that are not realistic.
Due to our discriminator’s weak architecture, having a discriminator at only a single resolution is not
enough to properly discriminate between real and fake point clouds.

6.6 Failure cases

In Figure 7, we share some completion failures. We observe that the failed completions by our
method are usually either due to missing thin structures or some noisy artifacts.

Figure 4: Learned style codes plotted using PCA. We visualize some of the neighborhoods and show
that the shapes in the neighborhood share some characteristic/style. It might be concluded that from
left to right the chairs are becoming less wide and taller.

Figure 5: For a partial input (gray), we generate three completions (blue) and each completions
nearest neighbor (yellow) from the training set.
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Table 1: Ablation on diversity penalty.

Method MMD ↓ TMD ↑ UHD ↓
EMD 1.82 7.14 6.16
Feat. Diff. (Ours) 1.50 4.36 3.79

Partial Mapping Network EMD Diversity Penalty Single Discriminator Ours

Figure 6: Qualitative comparison of ablated versions of our method.

Figure 7: Failure completion cases with missing/incorrect thin structures (left) and noisy artifacts
(right).

7 Limitations

Similar to all other previous works, our method does not consider any external constraints when
producing plausible completions. While our method obtains state-of-the-art performance in fidelity
to the partial input point clouds and completion diversity, the completions produced by our method
are only plausible in the sense that they respect the partial input. This can be problematic when
producing completions of objects within a scene as they may violate other scene constraints such as
not intersecting with the ground plane or other objects. Taking those constraints into consideration
will be interesting future work.
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