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Abstract

In this work, we investigate the task of text-to-image (T2I) synthesis under the
abstract-to-intricate setting, i.e., generating intricate visual content from simple
abstract text prompts. Inspired by human imagination intuition, we propose a novel
scene-graph hallucination (SGH) mechanism for effective abstract-to-intricate T2I
synthesis. SGH carries out scene hallucination by expanding the initial scene
graph (SG) of the input prompt with more feasible specific scene structures, in
which the structured semantic representation of SG ensures high controllability of
the intrinsic scene imagination. To approach the T2I synthesis, we deliberately
build an SG-based hallucination diffusion system. First, we implement the SGH
module based on the discrete diffusion technique, which evolves the SG structure
by iteratively adding new scene elements. Then, we utilize another continuous-state
diffusion model as the T2I synthesizer, where the overt image-generating process
is navigated by the underlying semantic scene structure induced from the SGH
module. On the benchmark COCO dataset, our system outperforms the existing
best-performing T2I model by a significant margin, especially improving on the
abstract-to-intricate T2I generation. Further in-depth analyses reveal how our
methods advance.2

1 Introduction
The task of generating images from natural language descriptions, known as text-to-image (T2I)
synthesis, has attracted significant attention [4, 17, 52]. To approach T2I, various generative models
have been explored, including generative adversarial networks (GANs) [48, 52, 61], variational
autoencoders (VAEs) [50], flow-based models [3], and auto-regressive models (ARMs) [10, 41],
all of which aim to generate realistic images in high quality and high faithfulness. Most recently,
diffusion-based models have been proposed, which simulate the physical process of gas diffusion for
image generation [23]. Diffusion models have shown unprecedented performance in image synthesis
over existing methods, becoming the current state-of-the-art (SoTA) T2I solution [2, 9, 19, 47, 42].

As a long-reached viewpoint [28, 53, 37], sound T2I systems should not only achieve high-quality
image generation in simple straightforward visual scenery but be more capable of synthesizing
realistic images with complex scenes. Typically, detailed textual descriptions are necessarily needed
to prompt the synthesis process with adequate details for high-quality vision generation. However, in
a realistic world, it could also be ubiquitous to produce intricate visions without relying on lengthy
elaborate prompts. For example, users may prefer T2I systems to synthesize well-detailed images
while not taking too much time to write descriptions in detail. More crucially, due to the natural
modality asymmetry between language and vision, even some simple words can intrinsically describe
or represent abstract visual scenes with rich and complex details. Whenever mentioning the words
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Issue: Vision Distraction

Two young men give a presentation in the 
office.

Two middle-aged, nice, enthusiastic, 
confident, man with polished shoes 
and sleek hair give a professional 
presentation in the spacious and modern 
conference room of the corporate blue 
office, room with chairs and tables.

Two young man give a presentation in the 
office, old, nice, confident, enthusiastic, 
laughing man with polished hair, seek hair, 
room with chairs and tables, speaking to 
each other. Issue: Wrong Binding

Issue: Abstract-to-intricate Failure

Imagination over SG
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Figure 1: (a) An example of abstract-to-intricate T2I synthesis. All images are generated by the Latent
diffusion Model (LDM) [42]. LDM fails to accurately render the abstract contexts, e.g., ‘give a
presentation‘ and ‘office‘ of the original prompt. Raw prompts can be enriched via descriptive
insertion [8], or addition [48]. Enriched contexts are in blue. (b) We illustrate the human intuition
on the abstract-to-intricate T2I process: we always first grasp the semantic structure of the original
prompt text, i.e., scene graph (SG), and then carry out imagination with more complete scenes based
on the SG. Here the glowing nodes and edges are enriched ones.

with specific scenes, such as classroom, kitchen, office, or actional verbs e.g., traveling, shopping,
there is always a picture with multifaceted scenes and rich-detailed backgrounds. In a word, it is
worth investigating generating intricate images from succinct abstract prompts.

Yet existing prevailing approaches, even the SoTA diffusion models, may largely fail the abstract-to-
intricate T2I, due to the lack of necessary details of input prompts (cf. Figure 1(a)). One intuitive
workaround is to directly enrich the texts, i.e., adding more details for the prompts. Specifically,
existing works either consider inserting additional adjectives and attributives to modify the original
mentions and scenes [8], or concatenating raw sentences with more tangible explanations and contexts
that are elicited from external large language models [48], e.g., ChatGPT [38]. Unfortunately, due
to the intrinsic grammar and linguistics rules, such text-based prompt enrichment can be subject to
the issue of lower controllability. One problem is the visual distraction, where the main focus of
the resulting image is dominated by other newly-added trivial contents, when aggressively inserting
intermediate descriptive components into the raw texts, as exemplified in Figure 1(a). Besides, directly
appending new textual descriptions would increase the prompt length and then lead to incorrect
binding of attributes or relations, i.e., making the image deviate from the original user intention.

As a reference, intuitively, we human beings would tackle the abstract-to-intricate T2I as a two-
step painting process, i.e., from semantic interpretation to scene imagination. In the semantic
interpretation, a painter always first translates the succinct textual prompt into a structured skeleton
that represents the semantic scene of key mention objects and their relations. Then, based on the initial
scene, the painter mentally completes the abstract scene with more concrete and valid details. With
the enriched scene structure, the final vision can be more accurately and easily rendered. Motivated
by such human intuition, in this work, we propose a scene-graph hallucination (SGH) method
for achieving effective abstract-to-intricate T2I. As illustrated in Figure 1(b), we first investigate
representing the input prompt with its scene graph (SG) [46]. SG advances in depicting the intrinsic
semantics of texts (or vision) with structured representations, e.g., objects, attributes, and relationships,
enabling fine-grained control of the semantic scene [53]. Based on the SG of input text we then carry
out scene hallucination, expanding the initial SG with more possible specific scene structures. Also
with the SG representation, the imagination process can be much more accurate and controllable.

To implement the overall idea, we develop an SG-based hallucination diffusion system (namely,
Salad) for high-quality image synthesis. Salad is a fully diffusion-based T2I system, which mainly
consists of a scene-driven T2I module and an SGH module. As shown in Figure 2, we first take
advantage of the SoTA latent diffusion model [9] as our backbone T2I synthesizer, in which the overt
image-generating process is controlled and navigated by the underlying semantic scene structure.
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Figure 2: Overall framework of our proposed SG-based hallucination diffusion system (Salad).

On the other hand, we design the SGH module based on the modality-agnostic discrete diffusion
model [25], which evolves and completes the initial SG structure of the input prompt by iteratively
generating new scene elements (i.e., SG nodes). During the SG imagination process, the resulting
structural representation at each step is fused into the T2I synthesizer via a hierarchical integration
strategy. Further, we devise a scene sampling mechanism, via which the SGH module can generate
various SG imaginations, and thus help achieve diversified image synthesis during inference.

We conduct experiments on COCO [33], the widely-used T2I dataset. Results show that Salad
outperforms all the existing strong-performing T2I systems with significant margins. Further analysis
reveals that modeling the SG structures helps synthesize high-quality images with stronger semantic
controllability. Our proposed SGH mechanism is effective in inducing sound SG structures, helping
produce more realistic images from short abstract text prompts. And the scene sampling strategy aids
diversified T2I generation. In summary, this paper contributes in five aspects:

• We are the first to study the novel setup of intricate image synthesis from abstract texts.
• We solve the abstract-to-intricate T2I with a novel SG hallucination mechanism, which is

implemented via discrete diffusion technique, performing scene enrichment with reasonable
imagination.

• We propose a diffusion-based model with a hierarchical scene integration strategy for highly
controllable and scalable image generation.

• We devise a scene sampling mechanism to generate various scene graphs for diversified image
syntheses during inference.

• Our framework achieves new SoTA results in the abstract-to-intricate T2I generation.

2 Preliminary

2.1 Scene Graph Representation
The SG (denoted as G) [45] represents the semantic relationships among scene objects in a structure,
where there are three types of nodes, i.e., object, attribute, and relation, cf. Figure 1(b). We
formulate the object node set as {o1, · · · , oN}, where on denotes n-th object node; the attribute node
set as {a1,1, · · · , aN,M}, where an,m means m-th attribute node of the n-th object node; the relation
node set as {r1,1, · · · , rN,N}, where ri,j means object node oi connects to the object oj . All nodes
come with a category label lo/a/r, and each type of node has its own unique category vocabulary. For
example as in Figure 2 right bottom, the object node o1 with category label lo1 associated with two
attribute nodes a1,1 and a1,M , with category label la1 and la23, respectively. And the object node o1
connects to the object node o2 through an edge r1,2 with the category label lr7.

2.2 Diffusion Models
Diffusion models (DMs) [23] learn to convert a simple Gaussian distribution into a data distribution.
Technically, DMs consist of a forward (diffusion) process and a reverse (denoising) process. In
the forward process, the given data x0 ∼ q(x0) is gradually corrupted into an approximately
standard normal distribution xT ∼ p(xT ) over T steps by increasingly adding noisy, formulated as
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q(x1:T |x0) =
∏T

t=1 q(xt|xt−1). The learned reverse process pθ(x0:T ) = p(xT )
∏T

t=1 pθ(xt−1|xt)
gradually reduces the noise towards the data distribution. To improve the fit of a generative model to
the data distribution, a variational upper bound on the negative log-likelihood is optimized:

Lvlb = Eq(x1:T |x0)

[
log

q(xT |x0)

pθ(xT )
+

T∑
t=2

log
q(xt−1|xt,x0)

pθ(xt−1|xt)
− log pθ(x0|x1)

]
, (1)

where pθ(·) is estimated by a denoising network, which can be a time-conditional U-Net [43].
Recently, latent diffusion models (LDMs) [42, 14, 19] are introduced to adopt DMs to operate in
an efficient, low-dimensional latent space, where a pre-trained encoder E maps the given data x0

into a latent code z0 = E(x0), and a decoder reconstructs the final output image from the denoised
latent D(z0) ∼ x0. Due to the higher computation sufficiency, this work thus takes the LDM as
T2I backbone. Besides, DMs also have been extended to operate in discrete state spaces [1], i.e.,
performing diffusion and denoising processes over discrete variables, which have demonstrated
competitive performances for discrete data, such as text [24] and layout [5]. Hence, we also adopt the
discrete DMs to realize the SG induction process. Appendix §A.1 gives more technical details to the
discrete diffusion models.

3 Methodology
Formally, T2I aims to generate an image x that faithfully reflects the desired content in the input
prompt text y. To approach abstract-to-intricate T2I, we propose an SG-based hallucination diffusion
system (Salad), which is shown in Figure 2. The salad consists of two major modules. First, the
SGH (cf. §3.1) is responsible for enriching the initial SG of the text prompt via a discrete diffusion
model. Then, built upon an LDM (cf. §2.2), the Scene-driven Image Synthesis module (SIS, cf.
§3.2) performs denoising for image synthesis, during which the derived SG features is fused via a
hierarchical scene integration mechanism. The underlying SGH closely collaborates with the upper
SIS at each step, and thus the semantic scene skeleton takes fine-grained control of the overt vision
rendering. We also describe the optimization (cf. §3.3), and the scene sampling strategy (cf. §3.4).

3.1 Scene Graph Hallucination (SGH)

As aforementioned, we formulate the SGH as a discrete denoising diffusion process [25] (cf. Fig.
2). Specifically, in the forward process, the SG of the gold image, marked as G0, will be corrupted
into a sequence of increasingly noisy latent variables G1:T = {G1, G2, · · · , GT }, where each SG
node s∗t,j ∈ Gt, ∗ ∈ {o, a, r} (t is diffusion step, j is the node index) takes a discrete value with
K∗ category labels, and o, a, r denotes the nodes’ type, i.e., object (o), attribute (a), and relation (r).
For simplicity, we omit subscripts j and superscripts ∗ in the following description. The discrete
diffusion process can be parameterized with a multinomial categorical transition matrix:

q(st|st−1) = B⊤(st) ·Qt · B(st−1), (2)
where B(st) denotes the column one-hot vector of st. And Qt is the transition matrix, with [Qt]ij =
q(st = j|st−1 = i) representing the probabilities that st−1 transitions to st. Due to the property
of the Markov chain, the cumulative probability of st at arbitrary timestep from s0 can be derived
as q(st|s0) = B⊤(st) · Q̄t · B(s0), where Q̄t = QtQt−1 · · ·Q1. Inspired by [1, 19], we employ a
mask-and-replace strategy to design the Qt. For each node st, we define three probabilities: 1) a
probability of γt to transition to [MASK] node, 2) a probability of Kβt be resampled uniformly over
all the K categories, and 3) a probability of αt = 1−Kβt − γt to stay the same node. Notedly, the
[MASK] node never transits to other states. Hence, the transition matrix Qt can be formulated as3:

Qt =


αt + βt βt βt · · · 0

βt αt + βt βt · · · 0
...

...
...

. . .
...

γt γt γt · · · 1

 . (3)

The aforementioned discrete state-space models assume that all the standard nodes are switchable by
corruption. However, as stated in §2.1, there are three different SG nodes under separate categories.
Hence, we apply three disjoint corruption matrices Qo

t ∈ RKo×Ko

,Qa
t ∈ RKa×Ka

,Qr
t ∈ RKr×Kr

for object, attribute, and relation nodes, respectively, where Ko,Ka,Kr denotes the size of category
labels of three node types respectively.

3Appendix §A.1 provides detailed formulation of the discrete diffusion process.
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In the denoising process, we introduce an SG decoder as the neural approximator to estimate the
distribution pθ(st−1|st, y). As shown in Figure 2, SG decoder first employs an adaptive normalization
(AdaLN) to inject the timestep information. A text cross-attention (Text-CA) integrates the input
prompt y. Then, a graph cross-attention (Graph-CA) is devised to take in the induced SG (Gt+1) in
the previous t+1 timestep:

H̃∗ = Graph-CA(Gt+1,H
∗) , (4)

where H∗ are the features yielded from Text-CA. Graph-CA consistently consults the overall picture
of the last SG for a more coherent generation when making the current decision.

Intuitively, among the object, attribute, and relation nodes, the object nodes always come first to
determine the scene subjects, followed by their modifier attributes, and then the relations between
objects. Thus, instead of parallel induction of three node types, we follow this SG node-type
dependence (NTD) intuition, and design an NTD cross-attention (NTD-CA) for the ∗-type node
induction (∗ can be object or attribute):

Ĥ∗ =

{
NTD-CA(sot , H̃

∗) , ∗ = a

NTD-CA(sot ⊕ sat , H̃
∗) . ∗ = r

(5)

Note that we stack multiple layers of the above calculations as one SG decoder. For each state of node
types ŝ∗t , a softmax function is put on to obtain the category label distributions: ŝ∗t = Softmax(Ĥ∗).

Following [1], we optimize the SG decoder by minimizing the variational lower bound Lvlb (Eq. 1).
Also the parameterization trick [19] is leveraged to encourage the system to predict the noiseless
node distribution pθ(s̃0|st, y) at each reverse step, which is taken as an auxiliary learning objective
to be incorporated with Lvlb:

LSGH = Lvlb + λ1 logpθ(s0|st, y) ,
Lvlb = L0 + L1 + · · ·+ LT−1 + LT ,

L0 = −logpθ(s0|s1, y) ,
Lt−1 = DKL((q(st−1|st, s0))||(pθ(st−1|st, y)) ,
Lo

T = DKL(q(sT |s0)||pθ(sT )) ,

(6)

where λ1 is a hyper-parameter for controlling the learning components.

3.2 Scene-driven Image Synthesis (SIS)
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Figure 3: Hierarchical scene integration (HSI) fuses
the SG features under multiple levels: 1) objects (with
attributes), 2) relational triplets (i.e., subject-predicate-
object), 3) regional neighbors, and 4) the whole SG.

With the enriched SG from SGH in each de-
noising step at hand, the backbone T2I diffusion
carries out the image synthesis with the guid-
ance of that SG. We design a hierarchical scene
integration (HSI) strategy to ensure the highly
effective integration of SG features. Specifically,
we consider the fusion at four different hierarchi-
cal levels, i.e., object (Lo), relation (Lr), region
(Lc), and global levels (Lg) with each focusing
on different context scopes, as illustrated in Fig-
ure 3. We maintain the representations of these
three levels as the keys KLi & values VLi via
CLIP encoder [40], which are then integrated
together via the Transformer attention of U-Net
in LDM:

H̄ =
∑

i∈{o,r,c,g}

Attn(H,KLi ,VLi) =
∑

i∈{o,r,c,g}

Softmax(
HK⊤

Li√
d

)VLi , (7)

where H is the visual query vectors from the ResNet block in LDM. The above hierarchical scene
integration is carried out for both the downsampling and upsampling processes in U-Net. By denoising
T steps, the system finally produces the desired image. Appendix §A.2 gives more details of this part.

3.3 Warm-start Training
To ensure stable learning of the overall system, we take a warm-start training strategy. Firstly, the
SGH is separately updated via LSGH (Eq. 6) based on the abstract-to-intricate SG pair annotations,
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until it has converged. Then, both the SIS and SGH modules are optimized jointly by minimizing:

L = λ2LSGH + LSIS , where LSIS = Ez∼E(x0),ϵ∼N (0,I),t[||ϵ− ϵθ(zt, Gt, y, t)||22] . (8)

Here we follow [23] to optimize SIS with a simple surrogate objective that calculates the mean-
squared error loss, and Gt is the intermediate SG by SGH at timestep t, which can be derived from
the s∗t , ∗ ∈ {o, a, r} (cf. Figure 2). ϵ is the noise in SIS, and ϵθ(·) denotes the U-Net (cf. Figure 3).

3.4 Inference with Scene Sampling

... ...

Top-A

Category 
Distribution

A candidates

Sampling

...

... ...

Figure 4: Illustration of the scene sampling mechanism.

During inference, we further aim to en-
dow the SGH with diversified SG en-
richment, and thus lead to T2I diversi-
fication. Intuitively, given an abstract
prompt, there is often more than one pos-
sibility of the potential scenes to imagine.
Also, it can be observed that in the de-
noising process, the diffusion model has a larger potential of divergence only at its earlier stage, while
the generation tends to be more stable and certain when the iteration grows. Correspondingly, we
expect the scene sampling to start in the early denoising steps, and gradually be more determining.
Thus, we design a scene-sampling mechanism. First, instead of picking the best prediction of the
category of any node ŝ∗t,j , we take the top-A category candidates with corresponding probability
distribution Ψ based on the category distribution ŝ∗t,j ∈ RK∗

of node s∗t,j . Then, we perform sampling
over these candidates with a dynamic probability:

ρ∗t,j = e−η·t ·Ψ+ (1− e−η·t)
1

A
, (9)

where ∗ ∈ {o, a, r}, and η is a temperature. It is an annealing process, i.e., when t=T (starting
denoising) more random sampling is preferable, while t approaches 0 (denoising ends), SGH tends to
be more decisive. Figure 4 exemplifies the mechanism with the object type of nodes (ŝot,n).

4 Experiments
4.1 Settings

Data and Resource We conduct T2I generation experiments mainly on the COCO [33] dataset.
We also prepare the abstract-to-intricate SG pair annotations for training the SGH module, where we
employ an external textual SG parser [46] and a visual SG parser [59] on the paired images and texts
in COCO, to obtain the initial SG and imagined SG, respectively. To enlarge the abstract-to-intricate
SG pairs, we further extend Visual Genome (VG) [30]. Besides, to simulate the abstract-to-intricate
T2I scenario, we further manually extract a subset of text-image pairs from raw COCO data (named
COCO-A2I), in which the texts are short and abstract,4 while the images are comparatively complex
and intricate. Appendix §B.1 shows all the dataset details.

Baseline and Evaluation We make comparisons with three types of existing strong-performing
T2I models. 1) GAN-based models: AttnGAN [52], ObjGAN [32], DFGAM [48], OPGAN [22].
2) Auto-aggressive model: DALL-E[41], and CogView [10]. 3) Diffusion-based models: LDM
[42], VQ-diffusion [19], LDM-G and Frido [14] with classifier-free guidance. Note that LDM-G
and Frido are the current SoTA T2I synthesizers. In addition, two types of text-based enrichment
approaches are included as baselines: stable-diffusion prompt generator (SD-PG) and SPY inspired
by [6]. The enriched text prompts are then utilized as inputs for Frido to generate the final images.
We adopt three standard metrics to measure image synthesis performance: 1) Inception score (IS)
[44], 2) Fréchet Inception Distance (FID) [21] and 3) CLIP score. Moreover, we use GLIP [31]
to measure the fine-grained ‘object-attribute’ grounding in images, and Triplet Recall (TriRec.)
measure the ‘subject-predicate-object’ triplet recall between two SGs. We also adopt the Learned
Perceptual Image Patch Similarity (LPIPS) [60] for diversifying generation evaluation. Detailed
definitions of evaluation metrics are shown in Appendix §B.2.

4We select the texts that mainly include two types of words, i.e., Place Nouns (e.g., office, airport, bathroom)
and Progressive Verbs (e.g., traveling, knitting, gardening).
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Table 1: The T2I results on the overall COCO dataset.
♭: taken from Fan et al. [14]; ♮: copied from Ding et al.
[10], ♯: taken from Hinz et al. [22]. The best score is in
bold, and the second best is underlined.

Model FID ↓ IS ↑ CLIP ↑

▶ GAN Model
AttnGAN♭ 33.10 26.61 -
ObjGAN♭ 36.52 24.09 -
DFGAN♭ 21.42 - -
OPGAN♯ 24.70 27.88 -

▶ Auto-aggressive Model
DALLE♮ 27.34 17.90 -
CogView♮ 27.10 18.20 -

▶ Diffusion Model
LDM♭ 17.61 19.34 65.00
VQ-diffusion♭ 14.06 21.85 67.70
LDM-G♭ 12.27 27.82 69.27
Frido♭ 11.24 26.84 70.46
Salad 10.19 29.96 73.83

Table 2: Results on the COCO-A2I subset for
the abstract-to-intricate T2I generation. ‘SPY†‘
denotes enriched texts are parsed into SG, and
then perform SG-to-image generation via Frido.

Model FID ↓ IS ↑ CLIP ↑

▶ T2I Baseline
AttnGAN 78.19 11.09 52.78
ObjGAN 75.33 13.16 55.20
DFGAN 71.24 15.56 56.91
DALLE 66.36 16.03 63.05
CogView 62.85 16.98 63.97
LDM 55.27 16.20 67.79
VQdiffusion 69.14 15.78 64.58
Frido 40.36 18.36 68.53

▶ Text-based Enrichment (+Frido)
SD-PG 36.50 17.64 65.23
SPY 35.59 21.59 67.86
SPY† 39.41 22.16 66.93
Salad 31.25 28.63 71.29

a man is 
travelling

Frido SPY

a man sits in 
the kitchen

a man sits in 
the bank

Salad

man sit in in

man

in front of

wear carrying on

Tshirt
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ktichen

chair
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young

black wear

building old

next to

next to

in front of

Figure 5: Qualitative results by different methods, where the given prompts randomly selected from
the test set are short and abstract expressions (marked in red), while describing intricate visual scenes.

Implementation We define the maximum number of SG object nodes as 30, and each object
node has a maximum of 3 attributes. We set the timesteps (T ) for SGH and SIS as 100. For the
SIS module, we load the parameters of Stable Diffusion5 (v1.4) as the initialization. We use the
CLIP6 (vit-large-patch14) as our text encoder. We optimize the framework using AdamW [34] with
β1 = 0.9 and β2 = 0.98. The learning rate is set to 5e-5 after 10,000 iterations of warmup. For the
attention layer in SG decoder and UNet in SIS, we define a shared configuration as follows: 4 layers,
8 attention heads, 512 embedding dimensions, 2,048 hidden dimensions, and 0.1 dropout rate. We
mainly follow the prior works [54, 18, 46] to acquire the visual scene graph (VSG) from the gold
image and textual scene graph (TSG) from the text prompt.

4.2 Main Comparisons

Table 1 shows the main T2I generation results on the overall COCO data. We see that diffusion-based
methods are consistently better than the other two types of T2I methods, especially on the FID
metric. Most importantly, our proposed Salad model yields the overall best results on all metrics. For
example, we outperform Frido by 1.05% FID, 3.37% on CLIP score, and surpass LDM-G by 2.1%
IS score. This directly demonstrates the efficacy of our method.

To directly assess the capability of solving the abstract-to-intricate T2I synthesis, we further make
comparisons on the collected COCO-A2I dataset. Also the two text-based enrichment methods
are included. As shown in Table 2, with text enrichment, both SD-PG and SPY achieve better

5https://github.com/CompVis/stable-diffusion
6https://github.com/openai/CLIP
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performance than the non-enriched T2I methods on both FID and IS metrics. However, we find
that the two enrichment approaches fail to show superior results on the CLIP scores. This is mostly
because text-based enrichment methods suffer the aforementioned issues of wrong binding or visual
distraction, etc., which results in lower matching between the generated images and raw (abstract)
texts. In contrast, our model presents the overall optimal performance, significantly. This directly
verifies the effectiveness of our method with the scene graph hallucination mechanism, i.e., yielding
reasonable imaginations of scenes and leading to high-quality abstract-to-intricate T2I synthesis.

4.3 Ablation Studies

Table 3: Ablation results (FID↓). ‘SGH→Init.SG’:
using the initial SG of text without SG enrichment
throughout the whole T2I generation process. ‘w/o
SGH’: removing the overall SGH module, i.e., also
meaning both without scene enrichment and SG
guidance. ‘HSI→GCN’: encoding the SG with a
GCN [35] instead of our HSI mechanism.

Item COCO COCO-A2I

Salad (Ours) 10.19 31.25
SGH→Init.SG 12.45(+2.26) 37.77(+6.52)

w/o SGH 16.98(+6.79) 34.32(+3.07)

w/o Graph-CA (Eq.4) 10.95(+0.76) 32.74(+1.49)

w/o NTD-CA (Eq.5) 11.19(+1.00) 34.35(+3.10)

HSI→GCN 10.87(+0.68) 35.96(+1.71)

Here we present the model ablations to quantify the
contribution of each part of our system. The results
are shown in Table 3. First, canceling the whole
SGH module (w/o both SG guidance and imagina-
tion), the most significant performance drops are
witnessed, indicating the pivot influence of the SGH
mechanism. Also, the drops from ‘SGH→Init.SG’
directly reveal the importance of our scene enrich-
ment mechanism. Interestingly, by comparing the
ablating drop in COCO and COCO-A2I, we can no-
tice that the SGH mechanism is especially more im-
portant under the abstract-to-intricate setup, while
the SG features more stand out for the general T2I
scenario. Besides, both properly modeling SG fea-
tures during denoising and modeling the SG node-
type dependence (NTD) contribute to the overall
performance. Further, when we abandon the hierarchical manner of the scene feature integration
(HSI) and instead use a GCN to encode the overall SG, there are also clear performance drops.

4.4 Qualitative Results
To gain a more intuitive understanding of our model’s capability on the abstract-to-intricate T2I
synthesis, here we show some qualitative results. We visualize the generated images by different
methods, where the given input prompts are in short and abstract format but describe intricate visual
scenes. As shown in Figure 5, we find that Frido fails to generate images that precisely reflect the
prompt instructions. In contrast, the text-based enriched method, SPY, yields visual results with
much more details, in which the visual semantics, unfortunately, deviates much from the raw inputs
largely. Overall, Salad is able to produce high-quality images with rich visual scenes and sophisticated
contexts, meanwhile ensuring semantic accuracy, i.e., coinciding with the abstract input texts.

4.5 Analyses and Discussions

66 70 74 76

10 12 14 16

79 81 83 85

(%)

CLIP ↑

(%)

GLIP ↑

(%)

TriRec. ↑

LDM Frido SPY Salad∗

Figure 6: Evaluating the matches between
input texts and generated images on COCO.
For comparison, our ‘Salad∗’ is downgraded
by removing the SG imagination ability (i.e.,
SGH→Init.SG).

Via the above experiments, we have demonstrated the tech-
nical efficacy of our model. Following we further explore
how our methods advance.

▶ Q1: How does SG guidance aid the generation of high-
quality images? We first consider assessing the overall
semantic matchness between the input texts and the gener-
ated images. We make comparisons with baselines without
integrating SGs. By observing the CLIP scores in Figure
6, it is clear that our model can achieve higher semantics
faithfulness of image synthesis. Further, we try to probe
the semantic structural alignment between the inputs and
outputs. We mainly measure the ‘object-attribute’ corre-
spondence between input texts and generated images via
GLIP metric; and also assess if the structural triplets in
initial textual SG can also be retrieved in the SG of the
generated image (i.e., TriRec. metric). As shown in the
figure, our Salad system consistently performs much better than the baselines in terms of these two
metrics. This significantly suggests that with the SG guidance, the structural controllability of the
T2I process is greatly enhanced, and thus leads to high-quality generation.
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Figure 7: The average number of three
types of SG nodes.

▶ Q2: Does SGH indeed induce intricate and reasonable
SGs? Firstly, in Figure 7 we explore whether the SGH can
produce new SG structures during the T2I process, on the
COCO and COCO-A2I datasets separately. As seen, after
scene enrichment, the average numbers of all three element
types (object, attribute, and relation) substantially increase.
Notably, the addition is more evident on the COCO-A2I set,
where scene enrichment is more needed.

Table 4: Comparing the glod
SGs (GI ) with our induced SG
(G), and the SG (GI ) of gener-
ated image with TriRec. metric.

G vs. GI GI vs. GI

SPY - 78.61
Salad 82.01 86.04

Next, we examine if the newly imagined SG structures provide
reasonable scenes to the input prompt. We reach this by measuring
the recall rate (TriRec.) of the ‘subject-predicate-object’ pairs
between two SGs, i.e., the predicted and the gold SGs. Assuming
the SGs (denoted as GI) of gold images entail reasonable scenes,
we consider two types of SGs from our ‘prediction’: 1) SGs
induced by SGH (G), and 2) SGs parsed from our synthesized
images (GI). We also compare with the text-enriched SPY method.
As shown in Table 4, we first observe that the induced SGs highly
align with the gold SGs, with 82.01 TriRec. score, indicating the
induced SGs are sensible for generating high-quality images. Moreover, by comparing the TriRec.
scores (GI vs. GI) between SPY and Salad (i.e., 78.61 vs. 86.04), we learn that the synthesized
images coordinated by imagined SGs more correspond to the gold images in terms of semantic scene
structure. This also suggests that the SGH can induce valid SGs which favorably guide the image
generation process.
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Figure 8: Comparison of diversity using diver-
sity score (LPIPS) and human evaluation.

▶ Q3: Does sampling strategy helps diversified T2I?
To measure the effectiveness of the sampling strategy in
diversifying image generation given the same prompt,
we consider both the qualitative analyses and human
evaluation, where the former calculates the LPIPS score
[60] to assess the perceptual similarity between two
images in deep feature space. As shown in Figure 8,
our Salad model significantly outperforms LDM and
Frido in terms of diversity score and human evaluation,
and things go worse upon removing the scene sampling
strategy. This demonstrates that our proposed scene sampling mechanism is effective in helping
diversified T2I. In Appendix §C.2 we show more examples of diversified generations via the scene
sampling mechanism.

5 Related Work

T2I is a long-standing topic in computer vision and multimodal communities. Arrays of explorations
have been devoted to achieving stronger image synthesis performances with various deep generative
models, such as GANs [4, 17, 48, 52, 61], VAEs [29], flow-based approaches [11, 12] and ARMs
[7, 13, 39, 49]. More recently, the diffusion denoising probabilistic methods (DDPMs) have revealed
the greatest potentials on image synthesis, in which the optimal density estimation is more naturally
achieved with a fixed diffusion process to transform an image into a Gaussian noise [9, 19, 23, 42, 47].
This work follows the line of diffusion methods and takes the SoTA latent diffusion model (LDM)
[42, 14, 19] as the T2I backbone.

Generating high-quality images with complex scenes is the key criterion of a sound T2I system
[14, 15, 26]. Many efforts have been paid for synthesizing more realistic and nature-looking images
in sophisticated scenes, yet most of which are conditioned on taking the detailed descriptions as inputs
[6, 51]. Thus, how to generate high-quality images in intricate scenes from succinct and abstract
prompts becomes a meaningful yet challenging task. In this work, we introduce a scene hallucination
mechanism, which, built upon the SG structure, performs more accurate and controllable scene
completion and eventually helps generate intricate images of higher quality. We consider the SG
representations [27] for the input prompt texts as well as the guidance of image synthesis. SG
advances in intrinsically describing the semantic structures of scenes for texts or images [28, 53],
enabling more fine-grained control of complex scenes [53], and thus aiding the final image generation.
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Scene graph (SG) is a type of structured data that represents multiple objects and their complex
relationships in the vision or language scenes, wherein the nodes denote objects & attributes and the
edges depict relationships between objects [27]. As intrinsically describing the semantic structures
of scene semantics for the given texts or images, SG has been widely utilized as a type of external
feature being integrated into downstream applications for enhancements, e.g., image retrieval [27, 56],
image generation [28, 53] and image captioning [54, 36, 55]. In this work, we consider the SG
representations for the input sentences. Compared to the linear sequential nature of the text, SG
offers a more intuitive manner to represent the scene semantics in a structured format, enabling more
fine-grained control of complex scenes [53], and thus aiding the final image synthesis.

Our SGH mechanism also relates to the research of SG enrichment or imagination. While existing
methods mostly approach the task by incrementally parsing SG elements [16, 57, 58], such greedy-
increment paradigm may largely suffer from trapping in locally optimal SG generation, thus leading to
inferior SG imagination. Instead, in this paper, we implement SGH as a discrete denoising&diffusion
process. Discrete diffusion technique [25] is the latest introduced method that replaces the continuous
state in standard diffusion models with a discrete one. During each denoising step, the entire
SG structure is updated and optimized from a global viewpoint, so as to yield a more reasonable
enrichment of scene structure. Besides, both the T2I and the SGH are modeled as the same diffusion
process in our framework, where the two processes are well synchronized, such that the underlying
SG features can perfectly guide the T2I synthesis at each step. To our knowledge, we are the first to
investigate SG induction using discrete diffusion models.

6 Conclusion
In this work, we explore the text-to-image synthesis task under the abstract-to-intricate setup. Drawing
inspiration from human intuition, we propose a scene-graph hallucination mechanism, which carries
out scene imagination based on the initial scene graph of the input prompt, expanding the starting SG
with more possible specific scene structures. We then develop an SG-based hallucination diffusion
system for the abstract-to-intricate T2I, which mainly includes an SG-guided T2I module and an
SGH module. Specifically, we design the SGH module based on the discrete diffusion technique,
which evolves the initial SG structure by iteratively adding new scene elements. Then, we utilize
another continuous diffusion model as the T2I synthesizer, where the overt image-generating process
is navigated by the underlying semantic scene structure induced by the SGH module. On the standard
COCO dataset, our system shows great superiority in the abstract-to-intricate T2I generation. Further
analyses demonstrate that our SG-based hallucination mechanism is able to generate logically sound
SG structures, which in return helps produce high-quality scene-riched images.

7 Broader Impact
Benefits The current text-conditioned image generation approaches largely fail to the abstract-
to-intricate T2I due to a lack of necessary details of input prompts. In this work, we propose a
novel scene-graph hallucination mechanism inspired by human imagination intuition, which expands
upon the initial scene graph from the text prompts to generate more feasible and specific scene
structures. Furthermore, the enriched timestep-wised SG is leveraged to navigate the T2I generation
process, leading to synthesizing more intricate images. Our study demonstrates that hallucinating
images based on scene graph structures offer scalability, and modeling these structures enhances the
generation of high-quality images with improved semantic controllability.

Potential weakness There can be two potential weaknesses that warrant consideration in our system.
Firstly, the effectiveness of our system relies heavily on the quality of scene graph hallucination
(SGH), yet the absence of a dedicated dataset for the SGH task poses a challenge in training the SGH
module. However, we can leverage the richly annotated Visual Genome (VG) dataset, commonly used
for training visual SG parsers, to provide initial training for the SGH module under an unconditional
setting. Secondly, the training process of a diffusion model for text-to-image (T2I) generation entails
substantial computational resources, resulting in increased energy consumption, CO2 emissions, and
potential environmental pollution.
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A Extension of Technical Details

We in this part extend the specific details of our method techniques.

A.1 Discrete Diffusion Model for Scene Graph Hallucination

Here, we detail the forward and reverse processes in the discrete diffusion model [1] for SGH.

Forward Process In the forward process, we consider a node s∗t,j ∈ Gt, ∗ ∈ {o, a, r} (t is diffusion
step, j is the node index) takes a scalar discrete value with K∗ categories, s∗t,j ∈ 1, · · · ,K∗. Without
introducing confusion, we omit subscripts j and superscripts ∗ in the following description. We
define the probabilities that st−1 transits to st using the matrices [Qt]ij = q(st = j|st−1 = i), then
we can write the forward Markov diffusion process:

q(st|st−1) = B⊤(st)QtB(st−1), (10)

where B(st) denotes the one-hot column vector which length is K. The categorical distribution over
st is given by the vector QtB(st−1). Due to the property of the Markov chain, starting from s0, we
can derive the cumulative probability of st at arbitrary t-timestep:

q(st|s0) = B⊤(st) · Q̄t · B(s0) ,where Q̄t = QtQt−1 · · ·Q1 . (11)

Besides, by conditioning on s0, the posterior of this diffusion process is tractable:

q(st−1|st, s0) =
q(st|st−1, s0)q(st−1|s0)

q(st|s0)
=

(B⊤(st)QtB(st−1))(B⊤(st−1)Q̄tv(s0))

B⊤(st)Q̄tB(s0)
. (12)

Note that the transition matrix Qt is capable of controlling the data corruption and denoising process,
thus it should be carefully designed such that it is not too difficult for the reverse network to recover
the signal from noises. We follow [1, 19] that exploits a mask-and-replace strategy to design a Qt,
which can be defined as:

Qt =


αt + βt βt βt · · · 0

βt αt + βt βt · · · 0
...

...
...

. . .
...

γt γt γt · · · 1

 , (13)

where for each node st, there are three probabilities, i.e., a probability of γt to transition to [MASK]
node, a probability of Kβt be resampled uniformly over all the K categories, and a probability of
αt = 1 − Kβt − γt to stay the same node. Notedly, the [MASK] node never transitions to other
states. The aforementioned discrete state-space models assume that all the nodes are switchable by
corruption. However, it is unreasonable that an object node, ‘bed‘, transitions to a relation node, ‘in‘.
To avoid such invalid transition, we propose to apply disjoint corruption matrices Qo

t ,Q
a
t ,Q

r
t for

object, attribute, and relation nodes, respectively.

Reverse Process In the reverse process, an SG decoder is introduced as a denoising network to
estimate the posterior distribution pθ(·), which takes the node token st, time step t and text prompt y.
Specifically, each layer of the SG decoder contains two parts: 1) an adaptive normalization (AdaLN),
and 2) a transformer block. AdaLN is applied to inject the timestep information:

H∗ = AdaLN(st, t) = atLayerNorm(CLIP(st)) + bt , (14)

where CLIP(·) denotes an encoding layer for projecting the node token, and at and bt are obtained
from a linear projection of the timestep embedding. Each transformer block contains 1) a full
self-attention, i.e., H∗ = Softmax(H

∗·H∗⊤
√
d1

) ·H∗. 2) a text-cross-attention (Text-CA) integrates the
input prompt y:

H∗ = Text-CA(y,H∗) = Softmax(
H∗ ·Hy⊤

√
d1

) ·Hy , (15)

where Hy is a conditional feature sequence yielded by a text encoder first takes the text prompts y as
input. Then, 3) a graph cross-attention (Graph-CA) is devised to take the induced SG (Gt+1) in the
previous t+ 1 timestep:

H̃∗ = Graph-CA(Gt+1,H
∗) = Softmax(

H∗ ·HG⊤

√
d1

·EG) ·HG , (16)
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Figure 9: Different semantic levels in the SG: objects, relation, region, and global levels.

where HG and EG is the embedding representation of the nodes and edges in Gt+1, respectively,
Next, 4) a node-type dependency cross-attention (NTD-CA) is designed for the ∗-type node induction
(* can be object or attribute):

Ĥ∗ =

NTD-CA(sot , H̃
∗) = Softmax( H̃

∗·(CLIP(sot )
⊤

√
d1

) · CLIP(sot ) , ∗ = a

NTD-CA(sot ⊕ sat , H̃
∗) = Softmax( H̃

∗·(CLIP(sot )⊕CLIP(sat ))
⊤

√
d1

) · (CLIP(sot )⊕ CLIP(sat )) . ∗ = r

(17)
Finally, a softmax function is put on to obtain the category label distributions:

ŝ∗t = Softmax(Ĥ∗) . (18)
Following [1, 19], the SG decoder is optimized by minimizing the variational lower bound (VLB):

Lvlb = L0 + L1 + · · ·+ LT−1 + LT , (19)
L0 = −logpθ(s0|s1, y), (20)

Lt−1 = DKL((q(st−1|st, s0))||(pθ(st−1|st, y)), (21)
Lo
T = DKL(q(sT |s0)||pθ(sT )), (22)

where pθ(sT ) is the stationary distribution at timestep T . To estimate the pθ(sT ), we extend the
forward process by appending a rank-one matrix Qt+1 that ignores sT and produces a deterministic
sT+1 ∈ GT+1 where GT+1 is the initial SG parsed from the text prompt y, then learning the reverse
step pθ(sT |sT+1) = pθ(sT ). Furthermore, we follow the reparameterization trick proposed in [19],
which lets the network predict the noiseless token distribution pθ(s̃0|st, y) at each reverse step so as
to gain better quality. Based on the reparameterization trick, an auxiliary objective is introduced:

Ls0 = −logpθ(s0|st, y) , (23)
To combine this loss with Lvlb, the final training objects are defined as follows:

LSGH = Lvlb + λ1Ls0 , (24)
where λ1 is a hyper-parameter to control the effect of the auxiliary loss Ls0 .

A.2 Scene-driven Image Synthesis

As described in §3.2, we propose a hierarchical scene integration strategy to effectively integrate the
SG features. Here, we give more details on this part. Firstly, as shown in Figure 9, the SG is able to
represent four different hierarchical levels of semantics corresponding to the image:

• Object level. In the process of image synthesis, a crucial aspect lies in accurately generating
each specified individual object, corresponding to the object node and associated attribute notes
in SG, for example, black Tshirt, old building, young man, luggage bag, sunglass.

• Relation level. A high-quality image is not only the generation of objects but also their intricate
relationships which connect two objects, akin to the subject-predicate-object triplets found in
the SG, such as man wear Tshirt, man in front of building, man carrying on luggage bad, man
wear sunglass.

• Region level. Regional image generation focuses on multiple objects and entangled relation-
ships among them, which aligns with the presence of overlapping relation triplets7 in SG. Here
we adopt two overlapped relation triplets as the region representation of the image, such as
man wear Tshirt in front of building, man wear Tshirt carrying on luggage bag, man wear

7Two overlapped relation triplets means there are the same subject or object in the two relation triplets.

15



Thirt wear sungalss, man in front of building carrying on luggage bag, man in front of building
wear sunglass, man carrying on luggage bag wear sunglass.

• Global level . The whole SG provides global semantics to guide the generation of images.

Then, we technically extract a collection of concepts from the four semantics levels in the SG, denoted
as Lo (object level), Lr (relation level), Lc (region level), and Lg (global level). We encode each
concept separately:

ULi = {u1,u2, · · · }, uj = CLIP(cj) ,

where cj ∈ Li ; j = 1, 2, · · · , |Li| ; i ∈ {o, r, c, g}
(25)

We further maintain the representation of these four levels as the keys KLi and values VLi by linear
transformations:

KLi = Linear(ULi); VLi = Linear(ULi) , (26)

where i ∈ {o, r, c, g}. Next, we integrate these features via the Transformer attention of U-Net in
LDM, which is formulated in Eq. (7).

B Detailed Experiment Settings

B.1 Datasets

COCO The training and validation data numbers in COCO are 83K and 41k, respectively. We note
that, in the evaluation phase, models are evaluated on the full COCO 2014 validation set.

Visual Genome (VG) Visual Genome [30] version 1.4 (VG) comprises 108,077 images annotated
with scene graphs. Following previous work [28], we use object and relationship categories occurring
at least 2,000 and 500 times respectively in the dataset, leaving 178 objects and 45 relationship
types, and we ignore small objects, and use images with between 5 and 30 objects and at least three
relationships, this leaves us with 62,565 images with an average of 10 objects and 5 relationships per
image.

Construction of COCO-A2I We elaborate on the process of constructing the COCO-A2I dataset
in the following three steps:

• First, we consider Place Nouns and Progressive Verbs are two types of abstract words
that can depict intricate images. Therefore, we pre-define the candidate list of Place Nouns:
street, sidewalk, kitchen, restroom, bathroom, living room, bedroom, hostel, house, office, bank.
and the candidate list of Progressive verbs: traveling, knitting, gardening, shopping, presenting,
drawing, baking, studying, etc.

• Second, we select the COCO valid dataset in that captions of instances contain the words in
the candidate list, obtaining the primary-filtering dataset.

• Third, we filter out the primary-filtering dataset in which the number of words in the captions
of instances is more than 10 and the number of bounding boxes is less than 6, obtaining the
final target COCO-A2I dataset.

After the three-step pipeline, we obtain 2,005 text-image pairs.

In Figure 10, we show some examples, where the images tend to contain intricate content, including
multiple objects, attributes, and relationships while the corresponding text prompts are relatively
short and abstract.

B.2 Evaluation Metric Implication

We employ Fréchet Inception Distance (FID) [21], Inception score (IS) [44], CLIP score [20], and
GLIP [31] used in [14] to quantitatively evaluate the quality of the generated images, and Learned
Perceptual Image Patch Similarity (LPIPS) [60] utilized in [42] to quantify the diversity of the
generated images. Additionally, we introduce Triplet Recall (TriRec.) to measure the percentage of
the correct relation triplet among all the relations. Technically, given a set of ground truth triplets
(subject-predicate-object), denoted GT , and the TriRec. is computed as TriRec.=|PT ∩GT |/|GT |,
where PT are the relation triplets extracted from the generated images by a visual SG parser.
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A few bags laying 

around in a living room.

A bus turning a corner 

on a city street.

A kitchen scene with 
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photographing his meal.

A bathroom sink sitting 
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bathroom.

Figure 10: The examples from COCO-A2I dataset for evaluating abstract-to-intricate T2I generation.

B.3 Human Evaluation Criterion.
In §4.5, we conduct a human evaluation, i.e., user study, for more intuitive assessments of the
diversification quality of T2I models. Specifically, we generate 10 images conditioned on a single
text prompt and ask evaluators to cluster these images based on their contextual information, such as
objects, attributes, and relationships present in the generated images. After evaluating 100 distinct
text prompts, we compute the average clustering ratio:

Average Clustering Ratio = Average(
|Cluster|

10
, · · · ) , (27)

where |Cluster| denotes the number of clusters for 10 images generated by a text prompt. Average(·)
is an average function. Here, a higher ratio score signifies greater diversification in image generation.

C More Experiment Results

C.1 Visualizations of SGH Process

In Figure 11, we visualize the SGH process with two examples, where we sample several time steps
and plot the generated SGs and the corresponding images. As can be seen, our SGH is capable of
imaging certain reasonable structures of SGs to enrich the initial SG.

C.2 More Cases

Here we showcase more examples of the generated images via the scene sampling mechanism in
Figure 12 and 13. We synthesize 10 images for each given text prompt.
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Text Prompt (a): A fancy chandelier hanging in a small kitchen.
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Text Prompt (b): A small room with painting stuffs.
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Figure 11: Visualization of T2I generation process at t=100, 90, · · · , 0, along with the enriched SG at
t=100, 70, 50, 20.
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Text Prompt: Sparse narrow kitchen.

Text Prompt: A person is fishing.

Text Prompt: A father and son play Wii in the living room.

Text Prompt: A bed in a room.

Figure 12: More samples of abstract-to-intricate T2I generation via scene sampling mechanism.
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Text Prompt: A person is baking.

Text Prompt: A car and traffic light on a city street.

Text Prompt: A living room for painting.

Text Prompt: A giraffe in the zoo.

Figure 13: More generated samples by our model.
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