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Abstract

Gaussian processes are the model of choice in Bayesian optimization and active
learning. Yet, they are highly dependent on cleverly chosen hyperparameters to
reach their full potential, and little effort is devoted to finding good hyperparameters
in the literature. We demonstrate the impact of selecting good hyperparameters for
GPs and present two acquisition functions that explicitly prioritize hyperparameter
learning. Statistical distance-based Active Learning (SAL) considers the average
disagreement between samples from the posterior, as measured by a statistical
distance. SAL outperforms the state-of-the-art in Bayesian active learning on sev-
eral test functions. We then introduce Self-Correcting Bayesian Optimization
(SCoreBO), which extends SAL to perform Bayesian optimization and active learn-
ing simultaneously. SCoreBO learns the model hyperparameters at improved rates
compared to vanilla BO, while outperforming the latest Bayesian optimization
methods on traditional benchmarks. Moreover, we demonstrate the importance of
self-correction on atypical Bayesian optimization tasks.

1 Introduction

Bayesian Optimization (BO) is a powerful paradigm for black-box optimization problems, i.e.,
problems that can only be accessed by pointwise queries. Such problems arise in many applications,
ranging from including drug discovery [21] to configuration of combinatorial problem solvers [27, 28],
hardware design [14, 43], hyperparameter tuning [11, 30, 33, 52], and robotics [4, 9, 40, 41].

Gaussian processes (GPs) are a popular choice as surrogate models in BO applications. Given
the data, the model hyperparameters are typically estimated using either Maximum Likelihood or
Maximum a Posteriori estimation (MAP) [49]. Alternatively, a fully Bayesian treatment of the
hyperparameters [46, 55] removes the need to choose any single set through Monte Carlo integration.
This procedure effectively considers all possible hyperparameter values under the current posterior,
thereby accounting for hyperparameter uncertainty. However, the relationship between accurate GP
hyperparameter estimation and BO performance has received little attention [3, 7, 58, 69, 71], and
active reduction of hyperparameter uncertainty is not an integral part of any prevalent BO acquisition
function. In contrast, the field of Bayesian Active Learning (BAL) contains multiple acquisition
functions based solely on reducing hyperparameter-induced measures of uncertainty [26, 34, 50], and
the broader field of Bayesian Experimental Design [1, 10, 48] revolves around acquisition of data to
best learns the model parameters.
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The importance of the GP hyperparameters in BO is illustrated in Fig. 1, which shows average
simple regret over 20 optimization runs of 8-dimensional functions drawn from a Gaussian pro-
cess prior. The curves correspond to the performance of Expected Improvement with noisy ex-
periments (NEI) [36] acquisition function under a fully Bayesian hyperparameter treatment using
NUTS [25]. Two prevalent hyperparameter priors, described in detail in App. B.1, as well as
the true model hyperparameters, are used. Clearly, good model hyperparameters have substantial
impact on BO performance, and BO methods could greatly benefit from estimating the model
hyperparameters as accurately as possible. Furthermore, the hyperparameter estimation task can
become daunting under complex problem setups, such as non-stationary objectives (spatially vary-
ing lengthscales, heteroskedasticity) [6, 13, 16, 56, 64], high-dimensional search spaces [15, 47],
and additively decomposable objectives [19, 32]. The complexity of such problems warrants
the use of more complex, task-specific surrogate models. In such settings, the success of the
optimization may increasingly hinge on the presumed accuracy of the task-specific surrogate.
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Figure 1: Simple regret of using true hyperpa-
rameters, BoTorch (v.0.8.4 default) and lognor-
mal hyperparameter priors with fully Bayesian
hyperparameter treatment. The prior substan-
tially impacts final performance, and correct
hyperparameters yield vastly better results.

We proceed in two steps. We first introduce Statisti-
cal distance-based Active Learning (SAL), which im-
proves Bayesian active learning by generalizing previ-
ous work [26, 50] and introduces a holistic measure
of disagreement between the marginal posterior pre-
dictive distribution and each conditional posterior pre-
dictive. We consider the hyperparameter-induced dis-
agreement between models in the acquisition function,
thereby accelerating the learning of model hyperparam-
eters. We then propose Self-Correcting Bayesian Opti-
mization (SCoreBO), which builds upon SAL by explicitly
learning the location of the optimizer in conjunction with
model hyperparameters. This achieves accelerated hy-
perparameter learning and yields improved optimization
performance on both conventional and exotic BO tasks.
Formally, we make the following contributions:

1. We introduce SAL, a novel and efficient acquisition function for hyperparameter-oriented
Bayesian active learning based on statistical distances (Sec. 3.1),

2. We introduce SCoreBO, the first acquisition function for joint BO and hyperparameter
learning (Sec. 3.2),

3. We display highly competitive performance on an array of conventional AL (Sec. 4.1) and
BO tasks (Sec. 4.2), and demonstrate SCoreBOs , ability to enhance atypical models such as
SAASBO [15] and HEBO [13], and identify decompositions in AddGPs [32](Sec. 4.3).

2 Background

2.1 Gaussian processes

Gaussian processes (GPs) have become the model class of choice in most BO and active learning
applications. They provide a distribution over functions f „ GPpmp¨q, kp¨, ¨qq fully defined by
the mean function mp¨q and the covariance function kp¨, ¨q. Under this distribution, the value
of the function fpxq, at a given point x, is normally distributed with a closed-form solution for
the mean and variance. We assume that observations are perturbed by Gaussian noise, such that
yx “ fpxq ` ε, ε „ Np0, σ2

εq. We also assume the mean function to be constant, such that the
dynamics are fully determined by the covariance function kp¨, ¨q.

To account for differences in variable importance, each dimension is individually scaled using length-
scale hyperparameters ℓi. For D-dimensional inputs x and x1, the distance rpx,x1q is subsequently
computed as r2 “

řD
i“1pxi ´ x1

iq
2{ℓ2i . Along with the outputscale σf , the set θ “ tℓ, σε, σfu

comprises the set of hyperparameters that are conventionally learned. The likelihood surface for
the GP hyperparameters is typically highly multi-modal [49, 70], where different modes represent
different bias-variance trade-offs [49, 50]. To avoid having to choose a single mode, one can define a
prior ppθq and marginalize with respect to the hyperparameters when performing predictions [35].
We outline fully Bayesian hyperparameter treatment in GPs App. G.1.
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2.2 Bayesian Optimization

Bayesian Optimization (BO) seeks to maximize to a black-box function f over a compact domain X ,

x˚ P argmax
xPX

fpxq, (1)

such that f can only be sampled point-wise through expensive, noisy evaluations yx “ fpxq ` ε,
where ε „ N p0, σ2

εq. New configurations are chosen by optimizing an acquisition function, which
uses the surrogate model to quantify the utility of evaluating new points in the search space. Examples
of such heuristics are Expected Improvement (NEI) [8, 31] and Upper Confidence Bound (UCB) [3,
57, 60]. More sophisticated look-ahead approaches include Knowledge Gradient (KG) [17, 68] as well
as a class of particular importance for our approach - the information-theoretic acquisition function
class. These acquisition functions consider a mutual information objective to select the next query,

αMIpxq “ Ipyx;˚ |Dnq, (2)

where ˚ can entail either the optimum x˚ as in (Predictive) Entropy Search (ES/PES) [23, 24], the
optimal value f˚ as in Max-value Entropy Search (MES) [42, 59, 65] or the tuple px˚, f˚q, used in
Joint Entropy Search (JES) [29, 61]. FITBO [51] shares similarities with our work, in that the optimal
value is governed by a hyperparameter, in their case of a transformed GP.

Within BO, the fully Bayesian hyperparameter treatment is conventionally extended from the
predictive posterior to the acquisition function such that for M models with hyperparameters
θm,m P t1, . . . ,Mu sampled from the posterior over hyperparameters ppθ|Dq, the acquisition
function α is computed as an expectation over the hyperparameters [46, 55]

αpx|Dq “ Eθrαpx|θ,Dqs «
1

M

M
ÿ

m“1

αpx|θm,Dq θm „ ppθ|Dq. (3)

This is also the definition of fully Bayesian treatment considered in this work.

2.3 Bayesian Active Learning

In contrast to BO, which aims to find a maximizer to an unknown function, Active Learning (AL)
[54] seeks to accurately learn the black-box function globally. Thus, the objective is to minimize the
expected prediction loss. AL acquisition functions are classified as either decision-theoretic, which
minimize the prediction loss over a validation set, or information-theoretic, which minimize the space
of plausible models given the observed data [26, 37].

In the information-theoretic category, Active Learning McKay (ALM) [37] selects the point with the
highest Shannon Entropy, which for GPs amounts to selecting the point with the highest variance.
Under fully Bayesian hyperparameter treatment, it is referred to as Bayesian ALM (BALM). Bayesian
Active Learning by Disagreement (BALD) [26] was among the first Bayesian active learning approaches
to explicitly focus on learning the model hyperparameters. It approximates the reduction in entropy
over the GP hyperparameters from observing a new data point

αBALDpxq “ Ipyx;θ|Dq “ Hpppyx|Dqq ´ EθrHpppyx|θ,Dqqs (4)

and was later extended to deep Bayesian active learning [34] and active model (kernel) selection [18].
Lastly, Riis et al. [50] propose a Bayesian Query-by-Committee (BQBC) strategy. BQBC queries where
the variance V of the GP mean is the largest, with respect to changing model hyperparameters:

αBQBCpxq “ Vθrµθpx|Dqs “ Eθrpµθpx|Dq ´ µpx|Dqq2s, (5)

where µpxq is the marginal posterior mean at x, and µθpxq is the posterior mean conditioned on θ. As
such, BQBC queries the location which maximizes the average distance between the marginal posterior
and the conditionals according to some distance metric (here, the posterior mean), henceforth referred
to as hyperparameter-induced posterior disagreement. However, disagreement in mean alone does
not fully capture hyperparameter-induced disagreement. Thus, [50] also presents Query-by-Mixture
of Gaussian Processes (QBMGP), that adds the BALM criterion to the BQBC acquisition function.
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2.4 Statistical Distances

A statistical distance quantifies the distance between two statistical objects. We focus on three (semi-
)metrics, which have closed forms for Gaussian random variables. The closed forms expressions,
as well as additional intuition on their interaction with Gaussian random variables, can be found in
App. G.2.

The Hellinger distance is a dissimilarity measure between two probability distributions which has
previously been employed in the context of BO-driven automated model selection by Malkomes et al.
[39]. For two probability distributions p and q, it is defined as

H2pp, qq “
1

2

ż

X

´

a

ppxq ´
a

qpxq

¯2

λdx, (6)

for some auxiliary measure λ under which both p and q are absolutely continuous.

The Wasserstein distance is dissimilarity metric between two distributions describing the average
distance one distribution has to be moved to morph into another. The Wasserstein-k distance is
defined as

Wkpp, qq “

ˆ
ż 1

0

|Fqpxq ´ Fppxq|kdx

˙1{k

(7)

where, in this work, we focus on the case where k “ 2.

The KL divergence The KL divergence is a standard asymmetrical measure for dissimilar-
ity between probability distributions. For two probability distributions P and Q, it is given by
DKLpP || Qq “

ş

X P pxqlogpP pxq{Qpxqqdx. The distances in Eq. (6), Eq. (16) and the KL diver-
gence are used for the acquisition functions presented in Sec. 3.

3 Methodology

In Sec. 3.1, we introduce SAL, a novel family of metrics for BAL. In Sec. 3.2, we extend this to
SCoreBO, the first acquisition function for joint BO and hyperparameter-oriented active learning,
inspired by information-theoretic BO acquisition functions. In Sec. 3.3, we demonstrate how to
efficiently approximate different types of statistical distances within the SAL context.

3.1 Statistical distance-based Active Learning

In active learning for GPs, it is important to efficiently learn the correct model hyperparameters. By
measuring where the posterior hyperparameter uncertainty causes high disagreement in model output,
the search can be focused on where this uncertainty has a high impact. However, considering only
the posterior disagreement in mean, as in BQBC, is overly restrictive as it does not fully utilize the
available distributions for the hyperparameters. For example, it ignores uncertainty in the outputscale
hyperparameter of the Gaussian process, which disincentives exploration. As such, we propose
to generalize the acquisition function in Eq. (5) to instead consider the posterior disagreement as
measured by any statistical distance. Locations where the posterior distribution changes significantly
as a result of model uncertainty are good points to query, in order to quickly learn the model
hyperparameters. When an observation at such a location is obtained, hyperparameters which
predicted that observation poorly will have a substantially smaller likelihood, which in turn aids
hyperparameter convergence. The resulting SAL acquisition function is as follows:

αSALpxq “ Eθrdpppyx|θ,Dq, ppyx|Dqqs «
1

M

M
ÿ

m“1

dpppyx|θm,Dq, ppyx|Dqq, (8)

where M is the number of hyperparameter samples drawn from its associated posterior, θm „ ppθ|Dq,
θ “ tℓ, σf , σεu, and d is a statistical distance. Notably, SAL generalizes both BQBC and BALD,
which are exactly recovered by choosing the semimetric to the difference in mean or the forward KL
divergence, with a short proof for the latter in App. F:
Proposition 1. SAL equipped with the KL-divergence is equivalent to BALD.
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Figure 2: Marginal posterior (top left, grey in other plots in top row), αSAL using the Hellinger distance (bottom
left, black), and the three conditional GPs (blue, orange, green) and their marginal contribution to the total
acquisition function (bottom row). The large disagreement in noise level and lengthscale, primarily caused by
the orange GP (large noise, long lengthscale), makes αSAL query the lowest-valued point for a second time
(selected location as vertical dashed line in the leftmost plot) to determine the mean and variance at that location.

Fig. 2 visualizes the SAL acquisition function. The marginal posterior (left) is made up of three
vastly different conditional posteriors with hyperparameters sampled from ppθ|Dq - one with high
outputscale (blue), one with very high noise (orange), and one with short lengthscale (green). For
each of the blue, orange and green conditionals, the distance to the marginal posterior is computed.
Intuitively, disagreement in noise level σε can cause large posterior disagreement at already queried
locations. Similarly, uncertainty in outputscale σf between posteriors will yield disagreement in
large-variance regions, which will result in global variance reduction. Compared to other active
learning acquisition functions, SAL carries distinct advantages: it has incentive to query the same
location multiple times to estimate noise levels, and accomplishes the typical active learning objectives
of predictive accuracy and global exploration by alleviating uncertainty over the lengthscales and
outputscale of the GP. As we show in our experiments (Sec. 4.1, App. D), SAL yields superior
predictions and reduces hyperparameter uncertainty at drastically improved rates.

3.2 Self-Correcting Bayesian Optimization

Equipped with the SAL objective from Eq. (8), we have an intuitive measure for the hyperparameter-
induced posterior disagreement, which incentivizes hyperparameter learning by querying locations
where disagreement is the largest. However, it does not inherently carry an incentive to optimize
the function. To inject an optimization objective into Eq. (8), we draw inspiration from information-
theoretic BO and further condition on samples of the optimum. Conditioning on potential optima
yields an additional source of disagreement reserved for promising regions of the search space.

We consider px˚, f˚q, representing the global optimum and optimal value considered in JES [29, 61],
as hyperparameters. When conditioning on px˚, f˚q, we condition on an additional observation,
which displaces the mean and reduces the variance at x˚. Moreover, the posterior over f becomes
an upper truncated Gaussian, reducing the variance and pushing the mean marginally downwards in
uncertain regions far away from the optimum as visualized in Fig. 3. Consequently, sampling and con-
ditioning on px˚, f˚q introduces an additional source of disagreement between the marginal posterior
and the conditionals globally. The optimizer px˚, f˚q is obtained through posterior sampling [67].
For brevity, we hereafter denote px˚, f˚q by ˚. The resulting SCoreBO acquisition function is

αSCpxq “ Eθ,˚rdpppyx|Dq, ppyx|θ,˚,Dqqs. (9)

The joint posterior ppθ,˚ |Dq “ pp˚ |θ,Dqppθ|Dq used for the expectation in Eq. (9) can be
approximated by hierarchical sampling. We first draw M hyperparameters θ and thereafter N
optimizers ˚ |θ. As such, the expression for the SCoreBO acquisition function is:

αpxq «
1

NM

M
ÿ

m“1

N
ÿ

n“1

d
`

ppyx|Dq, ppyx|θm,˚θm,n
,Dq

˘

, (10)

where N is the number of optimizers sampled per hyperparameter set. Notably, while the acquisition
function in (9) considers the optimizer px˚, f˚q, SCoreBO is not restricted to employing that quantity
alone. Drawing parallels to PES and MES, we can also choose to condition on either x˚ or f˚ alone
in place of px˚, f˚q. Doing so introduces a smaller disagreement in the posterior at the conditioned
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Figure 3: Approximate marginal posterior after having conditioned on px˚, f˚
q (top left), αSC using the

Hellinger distance (bottom left), the three conditional truncated posteriors and their marginal contribution to
the total acquisition function for the same iteration as Fig. 2. Conditioning on px˚, f˚

q (marked as ‹, drawn
from function samples in dashed) inroduces additional disagreement between the marginal posterior and the
sampled GPs in promising regions as a result of conditioning. In the figure, we marginalize over M “ 3 sets of
hyperparameters and N “ 2 optimizers per GP, where each optimizer’s contribution to the acquisition function
is visible under its corresponding GP. Note that, since function draws are noiseless, the conditioned optimum
does not need to surpass the best noisy observation in value. This phenomenon is most notable in (orange).

Algorithm 1 SCoreBO iteration

1: Input: Number of hyperparameter sets M , number of sampled optima N , current data D
2: Output: Next query location x1.
3: for m P t1, . . . ,Mu do
4: θm „ ppθ|Dq

5: for n P t1, . . . , Nu do
6: ˚θm,n Ð max fθm,n,where fθm,n „ ppf |θm,Dq {Draw n optima for each θm}
7: ppyx|θm,˚θm,n,Dq Ð CondGPp˚θm,n,θm,Dq {Condition GPs on each optimum}
8: end for
9: end for

10: x1 “ argmaxαpxq {Defined in Eq. (10)}

location x˚, thus decreasing the acquisition value there. This will in turn decrease the emphasis
that SCoreBO puts on optimization, relative to hyperparameter learning. In Fig. 3, the SCoreBO
acquisition function is displayed for the same scenario as in Fig. 2. By conditioning on N “ 2
optimizers per GP, we obtain NˆM posteriors (displaying the posterior for one out of two optimizers,
i.e. the left star in (blue), in Fig. 3). The mean is pushed upwards around the extra observation and
the posterior predictive distribution over f is truncated as it is now upper bounded by f˚. While the
preferred location under SAL is still attractive, the best location to query is now one that is more likely
to be optimal, but still good under SAL.

Algorithm 1 displays how the involved densities are formed for one iteration of SCoreBO. For each
hyperparameter set, a number of optima are sampled and individually conditioned on (CondGP) given
the current data and hyperparameter set. After this procedure is completed for all hyperparameter
sets, the statistical distance between each conditional posterior and the marginal is computed. The
conditioning on the fantasized data point involves a rank-1 update of Opn2q of the GP for each draw.
As such, the complexity of constructing the acquisition functions is OpMNn2q for M models, N
optima per model and n data points. We utilize NUTS [25] for the MCMC involved with the fully
Bayesian treatment, at a cost of OpDn3q per sample.

3.3 Approximation of Statistical Distances

We consider two proper statistical distances, Wasserstein distance and Hellinger distance. In contrast
to BQBC, the statistical distance between the normally distributed conditionals and the marginal
posterior predictive distribution (which is a Gaussian mixture), is not available in closed-form. We
propose two approaches: estimating the distances using MC, which we outline for both distances in
App E.1, and estimation using moment matching (MM), which we outline below.
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Approximation through Moment Matching We propose to fully utilize the closed-form expres-
sions of the involved distances for Gaussians, and approximate the full posterior mixture ppyx|Dq

with a Gaussian distribution using moment matching (MM) for the first and second moment. While a
Gaussian mixture is not generally well approximated by a Normal distribution, we show empirically
in App. E that the distance between the conditionals and the approximate posterior is small. In the
moment matching approach, the conditional posterior ppyx|θ,˚,Dq utilizes a lower bound on the
change in the posterior induced by conditioning on ˚, as derived in GIBBON [42], which conve-
niently involves a second moment matching step of the extended skew Gaussian [45] ppyx|θ,˚,Dq.
This naive approach circumvents a quadratic cost OpN2M2q in the number of samples of each pass
through the acquisition function, and yields comparable performance to the MC estimation procedures
proposed in App. E.1. In App. E, we qualitatively assess the accuracy of the MM approach for both
distances, and display its ability to preserve the shape of the acquisition function.

4 Experiments

In this section we showcase the performance of the SAL and SCoreBO acquisition functions on
a variety of tasks. For active learning, SAL shows state-of-the-art performance on a majority of
benchmarks, and is more robust than the baselines. For the optimization tasks, SCoreBO more
efficiently learns the model hyperparameters, and outperforms prominent Bayesian optimization
acquisition functions on a variety of tasks. All experiments are implemented in BoTorch [2]1.
We use the same LN p0, 3q2 hyperparameter priors as Riis et al. [50] unless specified otherwise.
SCoreBO and all baselines utilize fully Bayesian treatment of the hyperparameters. The complete
experimental setup is presented in detail in Appendix B, and our code is publicly available at https:
//github.com/hvarfner/scorebo.git. We utilize the moment matching approximation of the
statistical distance. Experiments for the MC variant of SCoreBO are found in App. E.2.

4.1 Active Learning Tasks

To evaluate the performance of SAL, we compare it with BALD, BQBC and QBMGP on the same six
functions used by Riis et al. [50]: Gramacy (1D) has a periodicity that is hard to distinguish from
noise, Higdon and Gramacy (2D) varies in characteristics in different regions, whereas Branin,
Hartmann-6 and Ishigami have a generally nonlinear structure. We display both the Wasserstein and
Hellinger distance versions of SAL, denoted as SAL-WS and SAL-HR, respectively. We evaluate each
method on their predictive power, measured by the negative Marginal Log Likelihood (MLL) of
the model predictions over a large set of validation points. MLL emphasizes calibration (accurate
uncertainty estimates) in prediction over an accurate predictive mean. In Fig. 11, we show how the
average validation set MLL changes with increasing training data. SAL-HR is the top-performing
acquisition function on three out of six tasks, and rivals BALD for stability in predictive performance.
This is particularly evident on the Ishigami function, where most methods fluctuate in the quality
of their predictions. This can be attributed to emphasis on rapid hyperparameter learning, which is
visualized in detail in App. D, Fig. 15. In the rightmost plot, the real-time average per-seed ranking
of acquisition function performance is displayed as a function of the fraction of budget expended.
SAL-HR performs best, followed by BQBC andBALD. SAL-WS, however, does not display similarly
consistent predictive quality as SAL-HR. The ability of SAL-HR to correctly estimate hyperparameters
ensures calibrated uncertainty estimates, which makes it the better candidate for BO. In App. C.1,
Fig. 11, we show the evolution of the average Root Mean Squared Error (RMSE) of the same tasks,
where SAL-WS performs best and SAL-HR lags behind, which demonstrates the viability of various
distance metrics on different tasks.

4.2 Bayesian Optimization Tasks

For the BO tasks, we use the Hellinger distance for its proficiency in prediction calibration and
hyperparameter learning. We compare against several state-of-the-art baselines from the BO literature:
NEI for noisy experiments [36], as well as JES [29], the MES approach GIBBON [42] and PES [24].
As an additional reference, we include NEI for noisy experiments [36] using MAP estimation.

1https://botorch.org/ (v0.8.4)
2All Normal and LogNormal distributions are parametrized by the mean and variance.

7

https://github.com/hvarfner/scorebo.git
https://github.com/hvarfner/scorebo.git
https://botorch.org/


0 50 100
Iteration

0.8

0.6

0.4

0.2

0.0

0.2

N
eg

at
iv

e 
M

LL

Higdon (1D)

0 50 100
Iteration

1.5

1.0

0.5

0.0

0.5

Gramacy (1D)

0 100 200
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Gramacy (2D)

0 100 200
Iteration

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Branin (2D)

0 100 200 300
Iteration

1

0

1

2

3

Ishigami (3D)

0 100 200 300
Iteration

0

1

2

3

4

5

Hartmann (6D)

50% 100%
Percentage of run

2.5

3.0

3.5

4.0

Relative ranking

SAL - HR SAL - WS BQBC QBMGP BALD

Figure 4: Negative Marginal Log Likelihood (MLL) on six active learning functions and the (smoothed) relative
rankings throughout each run for QBMGP, BQBC, BALD and SAL using Wasserstein and Hellinger distance. We
plot mean and one standard error for 25 repetitions.. SAL-HR is the top performing method, placing first in
relative rankings. On Ishigami, only SAL-HR and BALD produces stable results.

0 50 100
Iteration

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Lo
g 

In
fe

re
nc

e 
R

eg
re

t

Branin (2D)

0 50 100
Iteration

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

Hartmann (3D)

0 50 100 150
Iteration

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

Hartmann (4D)

0 100 200
Iteration

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Hartmann (6D)

0 50 100
Iteration

1.0

0.5

0.0

0.5

1.0

1.5

Rosenbrock (2D)

0 50 100 150
Iteration

0.5

0.0

0.5

1.0

1.5

2.0

Rosenbrock (4D)

25% 50% 75% 100%
Percentage of run

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4
Relative ranking

NEI NEI - MAPPESGIBBONJESSCoreBO

Figure 6: Average log inference regret and (smoothed) relative ranking across 50 repetitions between the
acquisition functions for SCoreBO, JES, MES and NEI on six synthetic test functions. SCoreBO produces the best
final regret on 4 out of 6 tasks, and has a substantially lower average ranking by the end of each run.

Efficiently learning the hyperparameters To showcase SCoreBO’s ability to find the correct
model hyperparameters, we run all relevant acquisition functions on samples from the 8-dimensional
GP in Fig. 1. We exploit that for GP samples, the objectively true hyperparameters are known
(in contrast to typical synthetic test functions). We utilize the same priors as in Fig. 1 on all the
hyperparameters and compare SCoreBO to NEI to assess the ability of each acquisition function to
work independently of the choice of prior. In Fig. 5, for each acquisition function, we plot the average
log regret over 20 dfifferent 8-dimensional instances of this task. The tasks at hand have lengthscales
that vary substantially between dimensions, as detailed in App B. The explanation for the good
performance of SCoreBO can be see in Fig. 17 in App. D, where SCoreBO converges substantially
faster towards the correct hyperparameter values than NEI for both types of priors.
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Figure 5: Regret for NEI and SCoreBO on
the 8-dimensional GP sample for two differ-
ent types of hyperparameter priors. Mean and
standard deviation are plotted for all hyperpa-
rameter samples across 20 repetitions.

Synthetic test functions We run SCoreBO on a num-
ber of commonly used synthetic test functions for 25|θ|

iterations, and present how the log inference regret
evolves over the iterations in Fig. 6. All benchmarks
are perturbed by Gaussian noise. We evaluate infer-
ence regret, i.e., the current best guess of the optimal
location argmaxx µpxq, which is conventional for non-
myopic acquisition functions [22, 24, 29]. SCoreBO
yields the the best final regret on four of the six tasks.
In the relative rankings (rightmost plot), SCoreBO ranks
poorly initially, but once hyperparameters are learned
approximately halfway through the run, it substantially
outperforms the competition. On Rosenbrock (4D), the
relatively poor performance can explained by the appar-
ent non-stationarity of the task, detailed in Fig. D.3, which makes hyperparameters diverge over
time. This exposes a weakness of SCoreBO: When the modeling assumptions (such as stationarity)
do not align with the task, optimization performance may suffer due to perpetual disagreement in the
posterior. In App. C.2, we display the performance of SCoreBO-KL and SCoreBO-WS on the same
set of benchmarks, where both display highly competitive performance.
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4.3 A Practical Need for Self-correction

Lastly, we evaluate the performance of SCoreBO on three atypical tasks with increased emphasis
on the surrogate model: (1) high-dimensional BO through sparse adaptive axis-aligned priors
(SAASBO) [15], (2) BO with additively decomposable structure (AddGPs) [19, 32] and (3) non-
stationary, heteroskedastic modelling with HEBO [13]. Eriksson & Jankowiak [15] consider their
proposed method for noiseless tasks, where active variables easily distinguish from their non-active
counterparts. However, SAASBO is not restricted to noiseless tasks. For AddGPs, data cross-
covariance, and lack thereof, is similarly difficult to infer in the presence of noise.

In Fig. 7, we visualize the performance of SCoreBO and competing acquisition functions with
SAASBO priors on two noisy benchmarks, Ackley-4 and Hartmann-6, with dummy dimensions
added, as well as two real-world benchmarks: fitting a weighted Lasso model in 180 dimensions
[53], and the tuning of all 385 lengthscales and three regularization parameters of an SVM [12],
a task also considered by Eriksson & Jankowiak [15]. On these benchmarks, where finding the
correct hyperparameters is crucial for performance, SCoreBO clearly outperforms traditional methods.
To further exemplify how SCoreBO identifies the relevant dimensions, in Fig. 8, we show how
the hyperparameters evolve on the 25D-embedded Ackley (4D) task. SCoreBO quickly finds the
correct lengthscales and outputscale with high certainty, whereas NEI remains uncertain of which
dimensions are active throughout the optimization procedure. Impressively, SCoreBO finds accurate
hyperparameters even faster than BALD, despite the latter being a pure active learning approach.

Secondly, we demonstrate the ability of SCoreBO to self-correct on uncertainty in kernel design,
by considering AddGP tasks. We utilize the approach of Gardner et al. [19], where additive de-
compositions are marginalized over. Ideally, a sufficiently accurate decomposition is found quickly,
which rapidly speeds up optimization through accurate cross-correlation of data. Fig. 9 demonstrates
SCoreBO’s performance on two GP sample tasks and a real-world task estimating cosmological
constants (leftmost 3 plots) and its ability to find the correct additive decompositions (right). We
observe that SCoreBO identifies correct decompositions substantially better than NEI. Final perfor-
mance, however, is only marginally better, as substantial resources are expended finding the right
decompositions. Notably, the Cosmological Constants task does not display additive decomposability.
As such, SCoreBO unsuccessfully expends resources attempting to reduce disagreement over additive
structures, which hampers performance. This demonstrates that while SCoreBO learns the problem
structure at increased rates, improved BO performance does not automatically follow.

Lastly, we apply SCoreBO to the HEBO [13] GP model, the winner of the NeurIPS 2020 Black-box
optimization challenge [62]. The model employs input [56] and output warpings, the former of
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Figure 9: Final value of using AddGPs on 6D and 10D GP sample functions, fully decomposable in groups of
two, and the Cosmological Constants tasks. SCoreBO achieves better final performance (left, middle) with low
uncertainty, and successfully finds the additive components of the 6D task (right).

which are learnable to account for the heteroskedasticity that is prevalent in real-world optimization,
and particularly HPO [13, 56], tasks. The complex model provides additional degrees of freedom
in learning the objective. We evaluate SCoreBO and all baselines on three 4D deep learning HPO
tasks: two involving large language models, and one from computer vision, from the PD1 [66]
benchmarking suite. Fig. 10 displays that SCoreBO obtains the best final accuracy on 2 out of 3 tasks,
suggesting that self-correction is warranted for optimization of deep learning pipelines.
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Figure 10: Performance on the PD1 deep learning tasks over 20 repetitions using the warpings from HEBO [13].
SCoreBO obtains the best final accuracy on 2 out of 3 tasks, placing second on the third.

5 Conclusion and Future Work

The hyperparameters of Gaussian processes play an integral role in the efficiency of both Bayesian
optimization and active learning applications. In this paper, we propose Statistical distance-based
Active Learning (SAL) and Self-Correcting Bayesian Optimization (SCoreBO), two acquisition func-
tions that explicitly consider hyperparameter-induced disagreement in the posterior distribution when
selecting which points to query. We achieve high-end performance on both active learning and
Bayesian optimization tasks, and successfully learn hyperparameters and kernel designs at improved
rates compared to conventional methods. SCoreBO breaks ground for new methods in the space
of joint active learning and optimization of black-box functions, which allows it to excel in high-
dimensional BO, where learning important dimensions are vital. Moreover, the potential downside
of self-correction is displayed when the model structure does not support the task at hand, or when
self-correction is not required to solve the task. For future work, we will explore additional domains
in which SAL and SCoreBO can allow for increased model complexity in BO applications.

6 Limitations

SCoreBO displays the ability to increase optimization efficiency on complex tasks that necessitate
accurate modeling. However, SCoreBO’s efficiency is ultimately contingent on the intrinsic ability
of the GP to model the task at hand. Appendix 19 demonstrates this issue for the Rosenbrock
(4D) function, where SCoreBO performs worse relative to other acquisition functions. There, the
hyperparameter values increase over time instead of converge, which suggests that the objective is
not part of the class of functions defined by the kernel. Thus, the self-correction effort is less helpful
towards optimization. Moreover, increasing the model capacity, such as in Sec. 4.3, comes with
increasing resources allocated towards self-correction. In highly constrained-budget applications,
such resource allocation may not yield the best result, especially if increased model complexity is
unwarranted. This is evident from the synthetic AddGP tasks, where despite accurately identifying
the additive components, SCoreBO does not provide substantial performance gains over NEI. Lastly,
SCoreBO’s reliance on fully Bayesian hyperparameter treatment makes it more computationally
demanding than MAP-based alternatives, limiting its use in high-throughput applications.
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A Additional Related Work

We review approaches that address model accuracy in Bayesian optimization.

Expanded Space of Models [38, 39] expands model uncertainty to kernel design in order to find
the most accurate model possible within an expanded class of functions, whereas [56] expands model
uncertainty to involve warpings of the input space. Since the expanded class of functions offers
additional modelling flexibility, BO can ideally be conducted on a more accurate model than under a
vanilla setting. As demonstrated with AddGPs in Sec. 4.3, SCoreBO can work in conjunction with
kernel search to find such models at an accelerated rate.

Simplified Modelling A contrasting line of work involve methods which restrict modeling by
reducing the level of detail [6] or scope of the optimization [16, 44, 63]. This line of work acknowl-
edges that modeling may not, or should not, be globally accurate or granular in order to conduct
optimization efficiently within the allocated budget. As such, these lines of work address the issue
of model accuracy by diametrically opposed philosophies. SCoreBO offers an orthogonal approach
to model accuracy by accelerating the convergence of the model at hand, regardless of its level of
complexity.

B Supplementary Material on Experiments

B.1 Experimental Setup

All the relevant methods are implemented as acquisition functions in BoTorch. For both the active
learning and BO experiments, we run NUTS [25] in Pyro [5] to draw samples from the GP posterior
over hyperparameters. Tab. 3 displays the parameters of the MCMC in detail, as well as other relevant
parameters of various MC estimations throughout the article. For the active learning experiments,
we mimic the experimental setup used in Riis et al. [50], and put a log-normal distribution LN p0, 3q

on the lengthscales, outputscale variance and noise variance. Furthermore, we consider the mean
constant c as a learnable parameter in the BO experiments, with a conventional N p0, 1q prior on the
standardized inputs. When referring to the BoTorch priors, the priors are Γp3, 6q, Γp2, 0.15q, and
Γp1.1, 0.05q for the lengthscales, outputscale, and noise variance, respectively, with the same prior
on the learnable constant mean c.

8D Gaussian Process sample task For the 8D GP sample task, we utilize the lognormal prior
from Sec. B on the hyperparameters. The hyperparameters of the sampled objective functions are
outlined in Tab. 1. As such, Tab. 1 displays the true hyperparameters of the task we are trying to
optimize. These hyperparameters are referenced in Fig. 17 and Fig. 18

Task σ2 σ2
ε ℓ Kernel

GP sample - 8D 1 0.1 exp 10tr´1,´0.5,´0.5, 0, 0, 0, 1.5, 1.5, 1.5su Matérn
Table 1: Hyperparameters of the 8D GP sample task.

SAASBO experiments For the SAASBO experiments, we utilize Ax 3 , which runs the BoTorch 4

implementation of SAASBO with the deafult prior on the hyperparameters as per BoTorch version
0.8.4, which differs slightly from the paper by Eriksson & Jankowiak [15]. The lengthscale parameters
are given a hierarchical prior as τ2 „ HCpαq, κ2

i „ HCp1q and ℓi “ 1
κiτ

. We retain the default value
of α “ 0.1. The noise variance, outputscale and mean constant are given the priors σ2

ε „ Γp0.9, 10q,
σ2
f „ Γp2, 0.15q and c „ N p0, 1q.

Additive Gaussian Process experiments The Additive GP setup closely resembles that of [19]. An
additive partitioning is sampled, and the marginal likelihood of the model is maximized with regard
to θ “ tℓ, σf , σεu. We utilize a slightly adapted proposal distribution, and fix a maximal number of
additive partitions gmax. Moreover, each dimension d belongs to one distinct additive decomposition

3https://github.com/facebook/Ax
4https://github.com/pytorch/botorch
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gd, where gd P r1, . . . , gmaxs. At each iteration of the MCMC scheme, two dimensions i, j “

tpi, jq P r1, . . . Ds, i ‰ ju, are sampled uniformly at random and assigned the same new group
index g, where g „ Up1, gmaxq. Setting gi “ g, gj “ g thus proposes that dimensions i and j
belong to the same additive decomposition. Under this proposal distribution, the proposed number
of additive decompositions can never surpass gmax, but a lesser number of additive groups can be
proposed. We utilize the same warm-starting mechanism as described in Gardner et al. [19], where
at each iteration, the final accepted sample from the previous iteration acts as the initial proposal. The
substitution of proposal distribution from the (unavailable) original implementation [19] was made to
simplify a batch GP implementation in GPyTorch [20]. We choose to employ a BoTorch prior on the
hyperparameters for all Additive GP tasks and use a squared exponential kernel, as described in [19].

Task gmax

GP sample - p2 ` 2 ` 2qD 3
GP sample - p2 ` 2 ` 2 ` 2 ` 2qD 5

Cosmological constants 4
Table 2: Additive tasks and their respective maximal number of maximal additive decompositions.

HEBO Experiments For the warped GP experiments, we adapt slightly more conservative priors
due to the large number of hyperparameters of the model. Specifically, we set LN p0, 1q priors on
the on lengthscales, outputscale variance and noise variance. For the input warpings, we employ a
Kuwaraswamy distribution, a differentiable-CDF alternative to the input warpings proposed by Snoek
et al. [56]. For each input dimension j, the untransformed input xj has a transformation applied as

zj “ p1 ´ xα
j qβ (11)

where zj is the resulting, transformed input. The warping parameters α and β are both given a
LN p0, 0.1q prior. We note that the HEBO experiments are susceptible to the number of hyper-
parameter sets. As such, we do not recommend running the experiments than fewer number of
hyperparameter sets than that outlined by Tab. 3, as substantially fewer did not yield substantial
empirical gains relative to vanilla BO.

Task Warmup Thinning No. hyperparameter sets No. optima No. RFFs
Active Learning 256 16 16 N/A N/A
BO - Synthetic 256 16 16 8 8192

BO - GP samples 256 16 16 8 2048
BO - SAASBO 128 8 16 8 8192

BO - Additive GPs 32 4 12 8 2048
BO - Warped GPs 64 6 32 8 2048

Table 3: MCMC hyperparameters for all experiments. For the AddGP experiments, each hyperparameter set
involves the sampled additive decomposition and its associated MAP-trained hyperparameters. The total number
of hyperparameter sets drawn are Warmup + Thinning * No. Hyperparameter sets.

B.2 Benchmarks

For the active learning benchmarks, we follow Riis et al. [50] in the types of benchmarks and noise
levels used. Each benchmark, as well as its search space, dimensionality and noise level is described
in Tab. 4 and Tab. 5 for AL and BO, respectively. The noise level for all of the BO synthetic
test functions were set to σε “ 0.5, except the Rosenbrock benchmarks, where the noise standard
deviation was set to σε “ 2.5 due to the extremely large output range of the function. A smaller noise
level would consequently bring the signal-to-noisy ratio under the permitted threshold supported by
BoTorch.

Compute resources. All experiments are carried out on Intel Xeon Gold 6130 CPUs. Each
repetition of the tasks in Sec. 4.1 and Sec. 4.2 are run on 4 cores, and the tasks in Sec. 4.3 are run on
8 cores. Approximately 1, 000 core hours are used for each of the AL synthetic tasks, 2000 for the
BO synthetic tasks, and 5000 for each task in Sec. 4.3.
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Task Dimensionality σϵ Search space
Gramacy 1 0.1 r0.5, 2.5s

Higdon 1 0.1 r0, 20s

Gramacy 2 0.05 r´2, 6sD

Branin 2 11.32 r´5, 10s ˆ r0, 15s

Ishigami 3 0.187 r´π, πsD

Hartmann-6 6 0.0192 r0, 1sD

Table 4: Benchmarks used for the active learning experiments.

Task Dimensionality σϵ Search space
Branin 2 0.5 r´5, 10s ˆ r0, 15s

Rosenbrock-2 2 2.5 r´1.5, 1.5sD

Hartmann-3 6 0.5 r0, 1sD

Rosenbrock-4 4 2.5 r´1.5, 1.5sD

Hartmann-4 4 0.5 r0, 1sD

Hartmann-6 6 0.5 r0, 1sD

Table 5: Benchmarks used for the Bayesian optimization experiments.

C Additional Experiments

We display the RMSE performance of each of the SAL variants, a comparison of the MC and MM
variants of SAL and SCoreBO.

C.1 AL RMSE Performance

Fig. 11 displays the performance of both SAL variants and benchmark AL acquisition functions for
the same set of tasks as in Sec. 4.1. We observe that SAL-WS consistently displays top performance,
whereas SAL-HR lags behind substantially. This showcases SAL-HR’s emphasis on hyperparameter
learning as opposed to global exploration. By accurately assessing hyperparameters while sacrificing
global exploration, SAL-HR ensures predictions with calibrated uncertainty, while sacrificing
the accuracy in predictive mean that follows from exploring the search space. SAL-WS offers
a compromise which performs well under both metrics, sacrificing hyperparameter learning and
calibration for accuracy in predictive mean.
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Figure 11: Root Mean Squared Error (RMSE) on six active learning functions and the (smoothed) relative
rankings throughout each run for QBMGP, BQBC, BALD and SAL using Wasserstein and Hellinger distance. We
plot mean and one standard error for 25 repetitions.. SAL-WS is the top performing method, placing first in
relative rankings. On Ishigami, only SAL-HR and BALD produces stable results.

C.2 SCoreBO Distance Measure Ablation Analysis

In Fig. 13, We compare the Hellinger and Wasserstein variants of SCoreBO, both utilizing the MC
approximation of the statistical distance. Since the MC approximation is asymptotically exact, we can
better assess the performance of each distance metric, without having to consider the confounding
factor that the MM approximation introduces. We note that SCoreBO-WS outperforms SCoreBO-HR
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on two tasks, but SCoreBO-HR is the overall more consistent approach. We hypothesize that the
relative failure of SCoreBO-WS on Rosenbrock (4D) is caused by the objective’s non-stationarity,
which likely causes exceedingly large exploration of the hyperparameter space. This is supported by
Fig. D.3, where the hyperparameters diverge over time on the Rosenbrock function.

Furthermore, in Fig. 12, we compare the KL and Hellinger variants of SCoreBO, both utilizing the
moment matching estimation of the posterior. Notably, SCoreBO-KL is the natural extension of BALD
to the self-correcting framework, in line with Prop. 1. SCoreBO-HR performs marginally better than
SCoreBO-KL, winning 4 out of 6 tasks. However, the two variants are relatively close.
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Figure 12: Log Regret of the Hellinger and Wasserstein MC-variants of SCoreBO. Both variants are competitive
on all benchmarks, except for Wasserstein on Rosenbrock (4D) which lags behind slightly. Overall, Hellinger is
more constistent, and wins 4 out of 6 benchmarks.
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Figure 13: Log Regret of the Hellinger and KL moment matching variants of SCoreBO. Both variants are
competitive on all benchmarks. Overall, Hellinger is marginally better, and wins 3 out of 6 benchmarks with an
approximate tie on Branin.

C.3 SAASBO Noise Ablations

In Fig. 13, We measure the performance of SCoreBO and NEI on the embedded 25-dimensional
Ackley (4D) and Hartmann (6D) tasks with varying noise levels using the SAAS [15] prior. We run
three noise levels for each task: Noiseless (solid line), low (dashed line), where the noise standard
deviation corresponds to 3% of total output range for Hartmann (6D), and 1.3% for Ackley, and
high (dotted line, 13.3% / 4%). With increasing levels of noise, the difficulty of inferring active
dimensions is expected to increase substantially, which should in turn hamper BO performance. In
Fig. 14, we see that NEI and SCoreBO perform comparably on noiseless tasks (solid line) finding
close-to-optimal solutions within 100 iterations. Moreover, for small levels of noise), the performance
is still comparable. However, we observe a drastic fall-off in performance for NEI at the highest noise
level, whereas SCoreBO’s degrades gracefully. Notably, SCoreBO almost retains the performance of
the noiseless at the highest noise level for Ackley.

D Hyperparameter convergence

In Figures 15, 16, 17, 18, and 19 We demonstrate examples of hyperparameter convergence in AL
and BO, as well as an example of hyperparameter divergence on the Rosenbrock p4Dq function,
where SCoreBO performs marginally worse.
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Figure 14: Best observed value for varying levels of observation noise for NEI and SCoreBO using SAAS priors
on the 25D-embedded lower-dimensional test functions. For Low levels of noise, the performance of NEI and
SCoreBO are comparable, but SCoreBO retains performance substantially better for higher levels for noise.

D.1 Active Learning Tasks

We display the hyperparameter convergence of SAL-WS, SAL-HR and the baseline active learning
acquisition functions in Fig. 15. Both variants display accelerated hyperparameter learning compared
to BQBC. SAL-HR in particular achieves low-variance hyperparameter uncertainty on Ishigami and the
higher-dimensional Hartmann-6, where other methods struggle. We obtain approximately correct
hyperparameters for these tasks by randomly sampling 300 points on the noiseless benchmark,
thereafter performing MCMC and averaging the sampled hyperparameter estimates in logspace. The
noise level is known a priori. and estimates the other hyperparameters with substantially greater
certainty than other methods. We note that there is a drift in the hyperparameters as the number of
observations increase, where output- and lengthscales trade off to reduce model complexity. As such,
we provide an approximately stationary alternative in Fig. 16, where the outputscale is removed to
avoid drift. In both cases, SAL-HR displays superior hyperparameter convergence, obtaining accurate
hyperparameters in far fewer iterations, and with substantially less uncertainty than the alternatives.
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Figure 15: Hyperparameter convergence on the Ishigami test function with outputscale. While no acquisition
converges, SAL-HR and BALD display substantially more stable hyperparameters than other approaches.
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Figure 16: Hyperparameter convergence on the Ishigami test function without outputscale. SAL-HR and BALD
display stable hyperparameter convergence, and are the only acquisition function to accurately estimate all
parameters.

D.2 GP sample tasks

We display the convergence of SCoreBO and NEI with a wide lognormal and BoTorch prior on the GP
sample task. We observe that the lognormal prior is well-aligned for most hyperparameters, whereas
BoTorch prior is misaligned. This is evidenced by the unimportant dimensions ℓ6, ℓ7, and ℓ8, which
have suggested lengthscales that are incorrect by more than an order of magnitude. Nevertheless,
SCoreBO suggests lengthscales that are approximately twice as long p100.25 « 1.8q as NEIp10´0.05 «

21



0.9q, and thus avoids unneessary exploration along these dimensions. Moreover, SCoreBO correctly
identifies the most important dimensions ℓ1, ℓ2, and ℓ3 with good accuracy quickly, whereas NEI
struggles to identify ℓ1. SCoreBO slightly overestimates the importance of dimensions 2 and 3, likely
to compensate for the inability to accurately estimate the importance of other hyperparameters.
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Figure 17: Hyperparameter convergence on the 8-dimensional GP sample for the broad log-normal prior. The
black dashed line indicates true hyperparameter values. Mean and standard deviation are plotted across 20 repe-
titions, and a 3 iteration moving average of the plotted moments is applied to increase readability. Lengthscales
ℓd ordered smallest (most important) to largest (least important). SCoreBO finds accurate hyperparameters faster,
has the most accurate values for all hyperparameters, and has substantially lower variance for all important (i.e.
not ℓ6, ℓ7, and ℓ8) hyperparameters except for the noise variance.
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Figure 18: Hyperparameter convergence on the 8-dimensional GP sample for the BoTorch priors. The black
dashed line indicates true hyperparameter values. Mean and standard deviation are plotted across 20 repetitions,
and a 3 iteration moving average of the plotted moments is applied to increase readability. Lengthscales ℓd
ordered smallest (most important) to largest (least important). SCoreBO finds accurate hyperparameters faster,
has the most accurate values for all hyperparameters, and has substantially lower variance for all important (i.e.
not ℓ6, ℓ7, and ℓ8) hyperparameters except for the noise variance.

D.3 Hyperparameter Divergence on Synthetic BO tasks

We highlight additional examples on synthetic BO test functions where hyperparameters diverge.
Due to the non-stationary structure of Rosenbrock in particular (and to a lesser extent, Branin),
hyperparameters values diverge as the number of observations increase. In particular, the extreme
steepness along the edges suggests an exceedingly large outputscale. With increasing observations, a
lengthscale-outputscale trade-off occurs, where both hyperparameters grow seemingly indefinitely.
Notably, this behavior is consistent regardless of the acquisition function (BO, AL, SOBOL). Due to
the restricted hyperparameter set employed in the AL tasks, this problem is distinct to the BO tasks.
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Figure 19: Hyperparameter divergence for SCoreBO and NEI on Rosenbrock (4D). The outputscale grows larger
with increasing iterations, and the lengthscales grow similarly large as a countermeasure.
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E Approximation Strategies

We display the quality of the moment matching approximation for both the Hellinger and Wasserstein
distance. Moreover, we compare the performances of the MM and MC approaches.

E.1 MC approximation of SAL and SCoreBO

Using Monte Carlo, different distances are most efficiently estimated in different manners. To
approximate the Wasserstein distance, we utilize quasi-Monte Carlo. From the definition of the
distance in one dimension, we obtain

W 2pp, qq “

ż 1

0

|Qpuq ´ P puq|2du «

L
ÿ

ℓ“1

|Qpuℓq ´ P puℓq|2, (12)

where uℓ „ Up0, 1q, and P pxq and Qpxq are the respective cumulative distributions for ppxq and
qpxq. To approximate the Hellinger distance, we obtain

H2pp, qq “ 1 ´

ż

X

d

qpxq

ppxq
ppxqdx « 1 ´

L
ÿ

ℓ“1

d

qpxℓq

ppxℓq
, (13)

where xℓ „ ppxq is sampled using MC. In SCoreBO, ppxq is the marginal ppyx|Dq, and qpxq each of
the various conditionals ppyx| ˚,θ,Dq.

E.2 Performance of Monte Carlo

We display the performance of the MC variants of SAL-WS and SCoreBO-HR compared to their
MM counterparts. Overall, performances are comparable, as each variant slightly exceeds the other
on a couple of benchmarks. On the most complex benchmarks (Ishigami, Hartmann-4, Hartmann-
6), the MC variant outperforms MM slightly, which suggests that MC is increasingly justified as
disagreement in the posterior gets larger.
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Figure 20: Negative marginal log likelihood (MLL) of the SAL MC (blue) and MM (red) variants on the
active learning benchmarks. Overall performance is comparable, with three effectively tied benchmarks. MC
outperforms slightly Hartmann-4 and Hartmann-6, and MM on Hartmann-3.
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Figure 21: Log regret of SCoreBO-MM and SCoreBO-MC on the synthetic BO benchmarks. Overall perfor-
mance is comparable, with MM outperforming marginally on 4 out of 6 tasks. MC notably outperforms slightly
on the difficult Ishigami test function.
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E.3 Hellinger Distance Approximation

We display the accuracy of the moment matching approximation, and the sensitivity of the MC
approximation to the number of samples L. In Fig. 24 and Fig. 25, we highlight two examples of
the moment matching approximation in comparison to a large-scale, asymptotically exact variant of
the MC approximation with 2048 samples. In Fig. 24, the MM approximation struggles to capture
the sharp, multimodal surfaces in (blue), and consistently overestimates the distance in (orange). In
Fig. 25, the included conditional posteriors are substantially more similar, and as such, the moment
matching approximation is more accurate. The shape of the acquisition function is captured almost
perfectly, and the magnitude is only marginally overestimated, most prominently in (green). We
display the

0.0 0.2 0.4 0.6 0.8 1.0
2

1

0

1

2

Fu
nc

tio
n 

va
lu

e

Posterior mean
Posterior uncertainty
Observed data

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.3

0.4

0.5

0.6

0.7

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

2

1

0

1

2

2

1

0

1

2

2

1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

Ac
q.

 v
al

ue

Figure 22: Example of the per-sample Hellinger distance computation using moment matching (solid lines) and
large-scale, asymptotically exact quasi-MC with 2048 samples. The moment matching approximation mostly
retains the shape of the asymptotically exact variant. However, it does not perfectly capture the multi.modality
in (blue), and overestimates the distance in the low-variance region at the right edge of (orange). The acquisition
function y-axis is scaled individually per model to better highlight the difference in acquisition function value.
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Figure 23: Example of the per-sample Hellinger distance computation using moment matching (solid lines)
and large-scale, asymptotically exact quasi-MC with 2048 samples. The moment matching approximation
captures the shape of the asymptotically exact variant well, but overestimates the distance slightly in (green).
The acquisition function y-axis is scaled individually per model to better highlight the difference in acquisition
function value.

E.4 Wasserstein Distance Approximation
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Figure 24: Example of the per-sample Wasserstein distance computation using moment matching (solid lines)
and large-scale, asymptotically exact quasi-MC with 2048 samples. The moment matching approximation
mostly retains the shape of the asymptotically exact variant. The shape of the acquisition function is generally
well captured, but high-variance regions have their distance underestimated by the moment matching approach,
and low-variance regions have their distance over-estimated, leading to a biased approximation. The acquisition
function y-axis is scaled individually per model to better highlight the difference in acquisition function value.
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Figure 25: Example of the per-sample Wasserstein distance computation using moment matching (solid lines)
and large-scale, asymptotically exact quasi-MC with 2048 samples. The moment matching approximation
captures the shape of the asymptotically exact variant well, and only marginally over- and underestimates the
distance. The acquisition function y-axis is scaled individually per model to better highlight the difference in
acquisition function value.

F Equivalence to BALD

We show that SAL, using the KL divergence as the metric d, is equivalent to BALD.

BALD “ Ipy;θq “ Hpppyqq ´ EθrHpppy|θqqs “

“ ´

ż 8

´8

ż

θ

ppθqppy|θq logrppyqsdθdy `

ż

θ

ppθq

ż 8

´8

ppy|θqlogrppy|θqsdydθ “

“

ż

θ

ppθq

ż 8

´8

ppy|θqlog

„

ppy|θq

ppyq

ȷ

dydθ “

ż

θ

ppθqKLpppy|θq||ppyqqdθ “

“ EθrKLpppy|θq||ppyqqs “ SAL.KL

G Additional Background

We provide additional background on fully Bayesian hyperparameter treatment in Gaussian processes
and details regarding statistical distance metrics.

G.1 Fully Bayesian Treatment

The posterior probability of observing a value yx for a point x is given as:
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ppyx|Dq “

ż

θ

ż

f

ppyx|f,θqppf |θ,Dqppθ|Dqdfdθ

“

ż

θ

ż

f

ppyx|f,θqppf |θ,x,Dqppθ|Dqdfqdθ,

where f are the noiseless, latent function values as x and D is the observed data. The inner integral
is equal to the GP predictive posterior,

ż

f

ppyx|f,θqppf |θ,Dqdf “ ppyx|D,θq.

However, the outer integral is intractable and is estimated using Markov Chain Monte Carlo (MCMC)
methods. The resulting posterior prediction

ppyx|Dq “

ż

θ

ppyx|D,θqppθ|Dqdθ «
1

M

M
ÿ

j“1

ppyx|D,θjq, θj „ ppθ|Dq,

is a Gaussian Mixture Model (GMM).

Within BAL and BO, the fully Bayesian treatment is often extended to involve the acquisition function,
such that the acquisition function α is computed as an expectation over the hyperparameters [46, 55]

αpx|Dq “ Eθrαpx|θ,Dqs «
1

M

M
ÿ

j“1

αpx|θj ,Dq θj „ ppθ|Dq.

This is also the definition of fully Bayesian treatment considered in this work.

G.2 Statistical Distance Details

The Hellinger distance is a similarity measure between two probability distributions which has
previously been employed in the context of BO-driven automated model selection by Malkomes et al.
[39]. For two probability distributions p and q, it is defined as

H2pp, qq “
1

2

ż

X

´

a

ppxq ´
a

qpxq

¯2

λdx, (14)

with some auxiliary measure λ with which both p and q are absolutely continuous. Specifically, for
two normally distributed variables z1 „ N pµ1, σ

2
1q, z2 „ N pµ2, σ

2
2q,

H2pz1, z2q “ 1 ´

d

2σ1σ2

σ2
1 ` σ2

2

exp

„

´
1

4

pµ1 ´ µ2q2

σ2
1 ` σ2

2

ȷ

. (15)

The Hellinger distance seeks to minimize the ratio between difference in mean and the sum of
variances, which punishes outlier predictive distributions of high confidence. Similar to KL, initial
queries have a tendency to be axis-aligned to attain selective length scale information.

The Wasserstein distance is the average distance needed to move the probability mass of one
distribution to morph into the other. The Wasserstein-k distance is defined as

Wkpp, qq “

ˆ
ż 1

0

|Fqpxq ´ Fppxq|kdx

˙1{k

(16)

For the normal distributions z1 and z2, the Wasserstein-2 distance is defined as

W2pz1, z2q “
a

pµ1 ´ µ2q2 ` pσ1 ´ σ2q2. (17)

In practice, W2 places a premium on matching large-variance regions, leading to higher global
exploration which can be detrimental for global optimization.
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The KL divergence The KL divergence is a standard asymmetrical measure for dissimilar-
ity between probability distributions. For two probability distributions P and Q, it is given by
DKLpP || Qq “

ş

X P pxqlogpP pxq{Qpxqqdx. For Gaussian variables, it is computed as

KLpz1||z2q “ log
σ1

σ1
`

σ2
1 ` pµ1 ´ µ1q2

σ2
1

´
1

2
(18)

The KL divergence mainly prioritizes same order-of-magnitude variances, and will initially query the
same location multiple times to assess noise levels. Thereafter, it tends to query in an axis-aligned
fashion, close to previous queries, to attain information regarding the length scales, but places a low
priority on global exploration.
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