
Energy-Efficient Scheduling with Predictions

Eric Balkanski
Columbia University

eb3224@columbia.edu

Noemie Perivier
Columbia University

np2708@columbia.edu

Clifford Stein
Columbia University

cliff@ieor.columbia.edu

Hao-Ting Wei
Columbia University

hw2738@columbia.edu

Abstract

An important goal of modern scheduling systems is to efficiently manage power
usage. In energy-efficient scheduling, the operating system controls the speed at
which a machine is processing jobs with the dual objective of minimizing energy
consumption and optimizing the quality of service cost of the resulting schedule.
Since machine-learned predictions about future requests can often be learned from
historical data, a recent line of work on learning-augmented algorithms aims to
achieve improved performance guarantees by leveraging predictions. In particular,
for energy-efficient scheduling, Bamas et. al. [NeurIPS ’20] and Antoniadis et. al.
[SWAT ’22] designed algorithms with predictions for the energy minimization with
deadlines problem and achieved an improved competitive ratio when the prediction
error is small while also maintaining worst-case bounds even when the prediction
error is arbitrarily large.
In this paper, we consider a general setting for energy-efficient scheduling and
provide a flexible learning-augmented algorithmic framework that takes as input an
offline and an online algorithm for the desired energy-efficient scheduling problem.
We show that, when the prediction error is small, this framework gives improved
competitive ratios for many different energy-efficient scheduling problems, in-
cluding energy minimization with deadlines, while also maintaining a bounded
competitive ratio regardless of the prediction error. Finally, we empirically demon-
strate that this framework achieves an improved performance on real and synthetic
datasets.

1 Introduction

Large data centers and machine learning models are important contributors to the growing impact
that computing systems have on climate change. An important goal is thus to efficiently manage
power usage in order to not only complete computing tasks in a timely manner but to also minimize
energy consumption. In many operating systems, this tradeoff can be controlled by carefully scaling
the speed at which jobs run. An extensive area of scheduling has studied such online (and offline)
speed scaling problems (see, e.g., [1]). Since the speed of many processors is approximately the cube
root of their power [25, 15], these works assume that the power of a processor is equal to speed to
some power α ≥ 1, where α is thought of as being approximately 3 [28, 10] and the total energy
consumption is power integrated over time.

Online energy-efficient scheduling algorithms have mostly been evaluated using competitive analysis,
which provides robust guarantees that hold for any instance. However, since competitive analysis
evaluates algorithms over worst-case instances, it can often be pessimistic. In particular, it ignores the

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Problem Previous results Our results with predictions
without

predictions
with

predictions Consistency Robustness

Flow time 2 [3]
None (1 + (2λ)

1
α)α 1+22α+1λ

1
α

λFractional weighted
flow time 2 [14]

Integral weighted
flow time O((α

logα)
2) [12] (1 + ((α

logα)
2λ)

1
α)α

1+(α
log α)222αλ

1
α

λ

Deadlines eα [10] [7, 4] 1 + λ O(4α
2

λα−1)

Table 1: The best-known competitive ratios for 4 energy-efficient scheduling problems, previous work studying
these problems in the algorithms with predictions framework, and our consistency and robustness results, for any
λ ∈ (0, 1]. Note that when λ is sufficiently small, the consistency improves over the best-known competitive
ratios, while also maintaining bounded robustness. A detailed comparison with the results of [7, 4] for deadlines
is provided in Section 1.2.

fact that, in the context of scheduling, future computation requests to computing systems can often be
estimated from historical data. A recent line of work on algorithms with predictions aims to address
this limitation by assuming that the algorithm designer is given access to machine-learned predictions
about the input. In the context of online algorithms, where this line of work has been particularly
active, the predictions are about future requests and the goal is to achieve improved competitive ratios
when the predictions are accurate (consistency), while also maintaining the benefits of worst-case
analysis with guarantees that hold even when the predictions are arbitrarily wrong (robustness).

In this framework with predictions, Bamas et al. [7] and Antoniadis et al. [4] recently studied
the energy minimization with deadlines problem, which is a classical setting for energy-efficient
scheduling (see, e.g., [28, 10]). However, there are many scenarios where the jobs do not have
strict deadlines and the goal is instead to minimize the job response time. In energy plus flow time
minimization problems, which are another family of energy-efficient scheduling problems that have
been extensively studied in the setting without predictions, the objective is to minimize a combination
of the energy consumption and the flow time of the jobs, which is the difference between their release
date and completion time (see, e.g., [2, 12, 14, 3]).

In this paper, we study a general energy-efficient scheduling problem that we augment with predictions.
This general problem includes both energy minimization with deadlines, which has been previously
studied with predictions, and energy plus flow time minimization, which has not been previously
studied with predictions, as well as many other variants and generalizations. In particular, the
flow time problem with predictions introduces challenges that require novel learning-augmented
scheduling algorithms (see Section 3 for additional discussion).

1.1 Our results

An instance of the General Energy-efficient Scheduling (GES) problem is described by a collection
J of n jobs and an arbitrary quality of service cost function F . Each job (j, rj , pj) ∈ J consists of a
release time rj , a processing time pj , and an identifier j (and potentially other parameters such as
weights vj or deadlines dj). A schedule S is specified by the speeds sj(t) at which job j is processed
by the machine at time t. The goal is to find a schedule of minimum cost E(S) + F (S,J), where
the energy consumption of a schedule is E(S) =

∫
t≥0

(
∑

j sj(t))
αdt, for some constant α > 0. In

the general energy-efficient scheduling with predictions (GESP) problem, the algorithm is given at
time t = 0 a collection Ĵ of n̂ predicted jobs (j, r̂j , p̂j), which is a similar prediction model as in [7].
For all our results, we assume that the quality cost function F is monotone and subadditive, which
are two mild conditions that are satisfied for the problems with flow times and with deadlines.

Near-optimal consistency and bounded robustness. Our first goal is to design an algorithm for
the GESP problem that achieves a good tradeoff between its consistency (competitive ratio when the
predictions are exactly correct) and robustness (competitive ratio when the predictions are arbitrarily
wrong). Our first main result is that for any instance of the GES problem for which there exists a
constant competitive algorithm and an optimal offline algorithm, there is an algorithm with predictions
that is 1 + ϵ consistent and O(1) robust for any constant ϵ ∈ (0, 1] (Corollary 3.5). Since problems

2

with the flow time and the problem with deadlines admit constant-competitive algorithms, we achieve
a consistency that is arbitrarily close to optimal while also maintaining constant robustness for these
problems (see Table 1 for a summary of problem-specific upper bounds). We complement this
result by showing that there is a necessary trade-off between consistency and robustness for the flow
time problem: for any λ > 0, there is no 1 + λ-consistent algorithm that is o(

√
1 + 1/λ)-robust

(Appendix A.2).

The competitive ratio as a function of the prediction error. The second main result is that our
algorithm achieves a competitive ratio that smoothly interpolates from the 1 + ϵ consistency to the
constant robustness as a function of the prediction error (Theorem 3.4). To define the prediction error,
we denote by J + = J ∩ Ĵ the jobs that are correctly predicted. We define the prediction error
η = 1

OPT(Ĵ)
max{OPT(J \ J +), OPT(Ĵ \ J +)}, which is the maximum between the optimal cost

of scheduling the jobs J \ J + that arrived but were not predicted to arrive and the cost of the jobs
Ĵ \ J + that were predicted to arrive but did not arrive. This prediction error is upper bounded by the
prediction error in [7] for the problem with uniform deadlines.

Extension to jobs that are approximately predicted correctly. We generalize our algorithm and
the previous result to allow the correctly predicted jobs J + to include jobs that are approximately
predicted correctly, where the tolerable approximation is parameterized by a parameter chosen by the
algorithm designer. The result for this extension requires an additional smoothness condition on the
quality cost F (S,J) of a schedule. This condition is satisfied for the flow time problem, but not by
the one with deadlines.1

Experiments. In Section 5, we show that when the prediction error is small, our algorithm empirically
outperforms on both real and synthetic datasets the online algorithm that achieves the optimal
competitive ratio for energy plus flow time minimization without predictions.

1.2 Related work

Energy-efficient scheduling. Energy-efficient scheduling was initiated by Yao et al. [28], who
studied the energy minimization with deadlines problem in both offline and online settings. These
offline and online algorithms were later improved in [13, 10]. Over the last two decades, energy-
efficient scheduling has been extended to several other objective functions. In particular, Albers and
Fujiwara [2] proposed the problem of energy plus flow time minimization, which has been studied
extensively (see, e.g., [3, 8, 14, 12, 18, 11, 9]).

Learning-augmented algorithms. Algorithms with predictions is a recent and extremely active
area, especially in online algorithms, where it was initiated in [22, 27]. Many different scheduling
problems have been studied with predictions (see, e.g., [19, 24, 17, 20, 6, 5, 16, 21]).

Learning-augmented energy-efficient scheduling. Energy-efficient scheduling with predictions has
been studied by Antoniadis et al. [4] and Bamas et al. [7], who focus on the problem with deadlines,
which is a special case of our setting. The prediction model in Bamas et al. [7] is the closest to
ours. For the problem with deadlines, the algorithm in [7] achieves a better consistency-robustness
tradeoff than our algorithm, but their algorithm and prediction model do not extend to more general
energy-efficient scheduling problems such as the flow time problem. In addition, the competitive ratio
as a function of the prediction error is only obtained in [7] in the case of uniform deadlines where the
difference between the deadline and release date of a job is equal for all jobs (the authors mention
that defining algorithms for general deadlines becomes complex and notationally heavy when aiming
for bounds as a function of the prediction error). Thanks to our algorithmic framework and definition
of prediction error, our bound generalizes to the non-uniform deadlines without complicating our
algorithm. Antoniadis et al. [4] propose a significantly different prediction model that requires an
equal number of jobs in both the prediction Ĵ and true set of jobs J . Consequently, their results are
incomparable to ours and those by Bamas et al. [7].

1We note that Bamas et al. [7] give an alternate approach to transform an arbitrary algorithm with predictions
for the problem with uniform deadlines to an algorithm that allows small deviations in the release time of the
jobs. This approach can be applied to our algorithm for the problem with uniform deadlines.

3

2 Preliminaries

In the General Energy-Efficient Scheduling (GES) problem, an instance is described by a collection
J of n jobs and a real-valued cost function F (S,J) that takes as input the instance J and a schedule
S for J , and returns some quality evaluation of the schedule. Each job (j, rj , pj) ∈ J consists of a
release time rj , a processing time pj , and an identifier j (and potentially other parameters such as
weights vj and deadlines dj). We often abuse notation and write j ∈ J instead of (j, rj , pj) ∈ J .
For any time interval I , we let JI = {j ∈ J : rj ∈ I} be the subset of jobs of J with release time
in I . For intervals I = [0, t] or I = [t,∞], we write J≤t and J≥t.

A feasible schedule for a set of jobs J is specified by S = {sj(t)}t≥0,j∈J≤t
, where s(t) :=∑

j∈J≤t
sj(t) is the speed at which the machine runs at time t. Thus, sj(t)/s(t) is the fraction

of the processing power of the machine allocated to job j at time t.2 During a time interval I ,
there are

∫
I
sj(t)dt units of work for job j that are completed and we let SI be the sub-schedule

{sj(t)}t∈I,j∈JI
. The cost function we consider is a combination of energy consumption and quality

cost for the output schedule. The energy consumption incurred by a schedule is E(S) =
∫
t≥0

s(t)αdt,
where α > 1 is a problem-dependent constant, chosen so that the power at time t is s(t)α. To define
the quality of a schedule, we introduce the work profile WS

j := {wS
j (t)}t≥rj of schedule S for job j,

where wS
j (t) := pj −

∫ t

rj
sj(u)du is the amount of work for j remaining at time t.

We consider general objective functions of the form cost(S,J) = E(S)+F (S,J) and the goal is to
compute a feasible schedule of minimum cost. F (S,J) = f((WS

1 , j1), . . . , (W
S
n , jn)) is an arbitrary

quality cost function that is a function of the work profiles and the jobs’ parameters. In the energy
minimization with deadlines problem, F (S,J) =∞ if there is a job j with completion time cSj such
that cSj > dj , and F (S,J) = 0 otherwise. In the energy plus flow time minimization problem, we
have F (S,J) =

∑
j∈J cSj − rj (see Section 3.3 for additional functions F). A function F (S,J)

is subadditive if for all sets of jobs J1 and J2, we have F (S,J1 ∪ J2) ≤ F (S,J1) + F (S,J2).
F is monotone if for all sets of jobs J and schedules S and S′ such that wS

j (t) ≤ wS′

j (t) for all
j ∈ J and t ≥ rj , we have that F (S,J) ≤ F (S′,J). We assume throughout the paper that F is
monotone subadditive, which holds for the deadlines and flow time problems. We let S∗(J) and
OPT(J) := cost(S∗(J),J) be an optimal offline schedule and the optimal objective value.

The general energy-efficient scheduling with predictions problem. We augment the GES problem
with predictions regarding future job arrivals and call this problem the General Energy-Efficient
Scheduling with Predictions problem (GESP). In this problem, the algorithm is given at time t = 0 a
prediction Ĵ = {(j, r̂j , p̂j)} regarding the jobs J = {(j, rj , pj)} that arrive online. An important
feature of our prediction model is that the number of predicted jobs |Ĵ | can differ from the number
of true jobs |J |.
Next, we define a measure for the prediction error which generalizes the prediction error in [7] for
the problem with uniform deadlines to any GES problem. With J + = J ∩ Ĵ being the correctly
predicted jobs, we define the prediction error as

η(J , Ĵ) = 1

OPT(Ĵ)
max{OPT(J \ J +), OPT(Ĵ \ J +)},

where OPT(J \ J +) is the optimal cost of scheduling the true jobs (j, rj , pj) such that either the
prediction for j was wrong or there was no prediction for j and that OPT(Ĵ \ J +) is the optimal
cost of scheduling the predicted jobs (j, r̂j , p̂j) such that either the prediction for j was wrong or j
never arrived. The prediction error η(J , Ĵ) is then the maximum of these costs, normalized by the
optimal cost OPT(Ĵ) of scheduling the predicted jobs. We assume that Ĵ ̸= ∅ to ensure that η(J , Ĵ)
is well-defined. This prediction error is upper bounded by the prediction error ||wtrue − wpred||αα
considered in [7] for the problem with uniform deadlines, which we prove in Appendix F.1. Here
wtrue and wpred are the true and predicted workload at each time step t, i.e., the sum of the processing
times of the jobs that arrive at t.

2For ease of notation, we allow the machine to split its processing power at every time step t over multiple
jobs. In practice, this is equivalent to partitioning time into arbitrarily small time periods and splitting each time
period into smaller subperiods such that the machine is processing one job during each subperiod.

4

We note that in the above error model, a job j is in the set of correctly predicted jobs J + only if all
the parameters of j have been predicted exactly correctly. To overcome this limitation, we introduce
in Section 4 a more general error model where some small deviations between the true and predicted
parameters of a job j are allowed for the correctly predicted jobs J +. In Appendix F.1, we provide
further discussion of this prediction model in comparison with [7, 4].

Performance metrics. The standard evaluation metrics for an online algorithm with predictions
are its consistency, robustness, and competitive ratio as a function of the prediction error [23,
22]. The competitive ratio of an algorithm ALG as a function of a prediction error η is c(η) =

maxJ ,Ĵ : η(J ,Ĵ)≤η
costALG(J ,Ĵ)

OPT(J) . ALG is ρ-robust if for all η ≥ 0, c(η) ≤ ρ (competitive ratio when
the error is arbitrarily large) and µ-consistent if c(0) ≤ µ (competitive ratio when the prediction is
exactly correct). We say that the competitive ratio of ALG is smooth if it smoothly degrades from µ
to ρ as the prediction error η grows.

3 The Algorithm

In this section, we develop a simple and general algorithmic framework for GESP and analyze the
resulting consistency, robustness, and competitive ratio as a function of the prediction error. We
first note that the algorithm with predictions from [7] for the problem with deadlines does not easily
generalize to some of the other problems that we consider, including the flow time problem (see
Appendix F.3 for additional discussion). A major difference is that our algorithm consists of two
distinct phases.

Predictions cannot be completely trusted. We also note that a first natural approach is to assume
that the predictions are exactly correct and aim for a 1-consistent algorithm. For the problem with
deadlines, Bamas et al. [7] showed that there is no 1-consistent algorithm with bounded robustness.
In Appendix A.1, we show that this approach would also fail for the flow time problem because the
algorithm might start by processing jobs too fast and consume too much energy when trusting the
predictions. More generally, in Appendix A.2, we show that there is a necessary trade-off between
consistency and robustness for the flow time problem by proving that any 1 + λ-consistent algorithm
must be O(

√
1 + 1/λ)-robust.

3.1 Description of the algorithm

The algorithm, called TPE, takes as input an arbitrary quality of service cost function F , predictions
Ĵ , a confidence level λ ∈ (0, 1] in the predictions, an offline algorithm OFFLINEALG for F ,
and an online algorithm ONLINEALG for F (without predictions). We denote by OFF(J) :=
cost(OFFLINEALG(J),J) the objective value achieved by OFFLINEALG over J .

Algorithm 1 Two-Phase Energy Efficient Scheduling (TPE)

Input: predicted and true sets of jobs Ĵ and J , quality of cost function F , offline and online
algorithms (without predictions) OFFLINEALG and ONLINEALG for problem F , confidence level
λ ∈ (0, 1].

1: for t ≥ 0 do
2: if OFF(J≤t) > λ · OFF(Ĵ) then
3: tλ ← t
4: break
5: {sj(t)}j∈J≤t

← ONLINEALG(J≤t)(t)

6: {ŝj(t)}t≥tλ,j∈Ĵ≥tλ
← OFFLINEALG(Ĵ≥tλ)

7: for t ≥ tλ do
8: {sj(t)}j∈J≤t\Ĵ≥tλ

← ONLINEALG(J≤t \ Ĵ≥tλ)(t)

9: {sj(t)}j∈J[tλ,t]∩Ĵ≥tλ
←{ŝj(t)}j∈J[tλ,t]∩Ĵ≥tλ

10: return {sj(t)}t≥0,j∈J

5

The algorithm proceeds in two phases. In the first phase (Lines 1-5), TPE ignores the predictions
and runs the auxiliary online algorithm ONLINEALG over the true jobs J≤t that have been released
by time t. More precisely, during the first phase of the algorithm, sj(t) is the speed according to
the online algorithm ONLINEALG for all jobs. The first phase ends at the time tλ when the cost of
the offline schedule computed by running OFFLINEALG on jobs J≤t reaches the threshold value
λ · OFF(Ĵ). As we will detail in the analysis section, this first phase guarantees a bounded robustness
since we ensure that the offline cost for the true jobs reaches some value before starting to trust the
predictions (hence, TPE does not initially ‘burn’ too much energy compared to the optimal offline
cost, unlike the example described in Appendix A.1).

In the second phase (Lines 6-9), TPE starts leveraging the predictions. More precisely, TPE needs to
set the speeds for three different types of jobs: (1) the remaining jobs that were correctly predicted
(i.e., J≥tλ ∩ Ĵ≥tλ) (2) the remaining jobs that were not predicted (i.e., J≥tλ \ Ĵ≥tλ) (3) the jobs
that were not correctly scheduled in the first phase and still have work remaining at the switch point
tλ (which are a subset of J<tλ). To schedule these jobs, TPE combines two different schedules.
The first one is the offline schedule Ŝ := OFFLINEALG(Ĵ≥tλ) for the jobs Ĵ≥tλ that are predicted
to arrive in the second phase. Each future job in the true set that was correctly predicted (i.e.,
j ∈ J[tλ,t] ∩ Ĵ≥tλ on Line 9) will then be scheduled by following Ŝ. The second schedule is an
online schedule for the set of jobs J \ Ĵ≥tλ = J<tλ ∪ J≥tλ \ Ĵ≥tλ , which includes all jobs that
have not been completed during the first phase (⊆ J<tλ) and the incorrectly predicted jobs that are
released during the second phase (J[tλ,t] \ Ĵ≥tλ). This online schedule is constructed by running
ONLINEALG on the set J \ Ĵ≥tλ (Line 8). Note that the total speed of the machine at each time step
is the sum of the speeds of these two online and offline schedules.

3.2 Analysis of the algorithm

We analyze the competitive ratio of TPE as a function of the prediction error η, from which the
consistency and robustness bounds follow. Missing proofs are provided in Appendix B. We separately
bound the cost of the algorithm due to jobs in J<tλ , J≥tλ \ Ĵ≥tλ and J≥tλ ∩ Ĵ≥tλ . We do this by
analyzing the costs of schedules Son := ONLINEALG(J \ Ĵ≥tλ) and Ŝ := OFFLINEALG(Ĵ≥tλ).
In the next lemma, we first analyze the cost of combining, i.e., summing, two arbitrary schedules.

Lemma 3.1. Let J1 be a set of jobs and S1 be a feasible schedule for J1, let J2 be a set of
jobs and S2 be a feasible schedule for J2. Consider the schedule S := S1 + S2 for J1 ∪ J2
which, at each time t, runs the machine at total speed s(t) = s1(t) + s2(t) and processes each
job j ∈ J1 at speed s1,j(t) and each job j ∈ J2 at speed s2,j(t). Then, cost(S,J1 ∪ J2) ≤(

cost(S1,J1)
1
α + cost(S2,J2)

1
α

)α
.

We next upper bound the cost of the schedule output by TPE as a function of the prediction error η,
which we decompose into η1 = OPT(J\Ĵ)

OPT(Ĵ)
and η2 = OPT(Ĵ \J)

OPT(Ĵ)
. The proof uses the previous lemma

repeatedly, first to analyze the cost of the schedule Son := ONLINEALG(J \ Ĵ≥tλ) for the set of
jobs J \ Ĵ≥tλ = (J<tλ) ∪ (J≥tλ \ Ĵ≥tλ), then to analyze the cost of the final schedule, which
combines Son and Ŝ := OFFLINEALG(Ĵ≥tλ).

Lemma 3.2. Assume that OFFLINEALG is γoff-competitive and that ONLINEALG is γon-competitive.
Then, for all λ ∈ (0, 1], the schedule S output by TPE run with confidence parameter λ satisfies

cost(S,J) ≤ OPT(Ĵ)
(
γ

1
α

off + γ
1
α

on((λγoff)
1
α + η

1
α
1)
)α

.

Proof. We start by upper bounding cost(Son,J \ Ĵ≥tλ). First, by the algorithm, we have that
OFF(J<tλ) ≤ λ · OFF(Ĵ). Since OFFLINEALG is γoff-competitive, we get

OPT(J<tλ) ≤ OFF(J<tλ) ≤ λ · OFF(Ĵ) ≤ λγoff · OPT(Ĵ).

We also have that OPT(J≥tλ \ Ĵ≥tλ) ≤ OPT(J \ Ĵ) ≤ η1OPT(Ĵ) where the first inequality is since
J≥tλ \ Ĵ≥tλ ⊆ J \ Ĵ and the second is by definition of η1. Recall that S∗(.) denotes the optimal

6

offline schedule for the problem and consider the schedule S′ = S⋆(J<tλ) + S⋆(J≥tλ \ Ĵ≥tλ) for
J \ Ĵ≥tλ = J<tλ ∪ (J≥tλ \ Ĵ≥tλ). We obtain that

OPT(J \ Ĵ≥tλ) ≤ cost(S′,J \ Ĵ≥tλ) ≤
(
OPT(J<tλ)

1
α + OPT(J≥tλ \ Ĵ≥tλ)

1
α

)α
≤
(
(λγoffOPT(Ĵ))

1
α + (η1OPT(Ĵ))

1
α)
)α

= OPT(Ĵ)
(
(λγoff)

1
α + η

1
α
1

)α
,

where the second inequality is by Lemma 3.1. Since we assumed that ONLINEALG is γon-competitive,

cost(Son,J \ Ĵ≥tλ) ≤ γon · OPT(J \ Ĵ≥tλ) ≤ γon · OPT(Ĵ)
(
(λγoff)

1
α + η

1
α
1

)α
.

We now bound the cost of schedule S. First, note that cost(Ŝ, Ĵ≥tλ) = OFFLINEALG(Ĵ≥tλ) ≤
γoff · OPT(Ĵ≥tλ) ≤ γoff · OPT(Ĵ), where the first inequality is since OFFLINEALG is γoff-competitive
and the last one since Ĵ≥tλ ⊆ Ĵ . Therefore, by applying again Lemma 3.1, we get:

cost(S,J) ≤
(

cost(Ŝ, Ĵ≥tλ)
1
α + cost(Son,J \ Ĵ≥tλ)

1
α

)α
≤
(
(γoff · OPT(Ĵ))

1
α +

(
γon · OPT(Ĵ)

(
(λγoff)

1
α + η

1
α
1

)α) 1
α
)α

= OPT(Ĵ)
(
γ

1
α

off + γ
1
α

on((λγoff)
1
α + η

1
α
1)
)α

.

We next state a simple corollary of Lemma 3.1.

Corollary 3.3. OPT(J ∩ Ĵ) ≥
(
1− η

1
α
2

)α
OPT(Ĵ), and, assuming that OFFLINEALG is γoff-

competitive, we have: if OFF(J) ≤ λOFF(Ĵ), then η2 ≥
(
1− (λγoff)

1
α

)α
.

We are ready to state the main result of this section, which is our upper bound on the competitive
ratio of TPE.
Theorem 3.4. For any λ ∈ (0, 1], TPE with a γon-competitive algorithm ONLINEALG and a
γoff-competitive offline algorithm OFFLINEALG achieves a competitive ratio of

γon if OFF(J) ≤ λOFF(Ĵ)(
γ

1
α

off +γ
1
α

on ((λγoff)
1
α +η

1
α
1)

)α

max

{
λ

γoff
,η1+

(
1−η

1
α
2

)α} otherwise.

The consistency and robustness immediately follow (for simplicity, we present the results in the
case where OFFLINEALG is optimal). Additional discussion on this competitive ratio is provided in
Appendix 3.4.
Corollary 3.5. For any λ ∈ (0, 1), TPE with a γon-competitive algorithm ONLINEALG and an
optimal offline algorithm OFFLINEALG is 1 + γon2

αλ
1
α competitive if η1 = η2 = 0 (consistency)

and max{γon,
1+γon2

2αλ
1
α

λ }-competitive for all η1, η2 (robustness). In particular, for any constant
ϵ > 0, with λ = (ϵ

γon2α
)α, TPE is 1 + ϵ-consistent and O(1)-robust.

3.3 Results for well-studied GES problems

We apply the general framework detailed in Section 3 to derive smooth, consistent and robust
algorithms for a few classically studied objective functions.

Energy plus flow time minimization. Recall that cjS denote the completion time of job j. The
quality cost function is defined as: F (S,J) =

∑
j∈J (cjS − rj), with total objective cost(S,J) =

F (S,J) +E(S). By a direct application of Corollary 3.5, we get that for all λ ∈ (0, 1], Algorithm 1

7

run with the 2-competitive online algorithm from [3] and confidence parameter λ is (1 + 2
1
αλ

1
α)α-

consistent and 1+2·22αλ
1
α

λ -robust.

Energy plus fractional weighted flow time minimization. In this setting, each job has a weight
vj . The quality cost is F (S,J) =

∑
j∈J vj

∫
t≥rj

wS
j (t)dt. We can use as ONLINEALG the 2-

competitive algorithm from [14].

Energy plus integral weighted flow time minimization. In this setting, each job has a weight vj .
The quality cost function is defined as: F (S,J) =

∑
j∈J vj(c

j
S − rj). We can use as ONLINEALG

the O((α/ logα)2)-competitive algorithm from [12].

Energy minimization with deadlines. In this setting, there is also a deadline dj for the completion of
each job. By writing the quality cost as F (S,J) =

∑
j∈J δcjS>dj

, where δcjS>dj
= +∞ if cjS > dj

and 0 otherwise, the total objective can be written as cost(S,J) = E(S) + F (S,J). We can use
as ONLINEALG the AVERAGE RATE heuristic [28] (which is 2α-competitive for uniform deadlines
[7]). In particular, for uniform deadlines, and for all ϵ ∈ (0, 1], by setting λ = (ϵ

C2α)
α, we obtain a

consistency of (1 + ϵ) for a robustness factor of O(4α
2

/ϵα−1).

3.4 Discussion on the competitive ratio

We assume in this section that OFFLINEALG is optimal. Note that for small η1 and η2, the competitive

ratio is upper bounded as

(
1+γ

1
α

on (λ
1
α +η

1
α
1)

)α

η1+

(
1−η

1
α
2

)α , which smoothly goes to (1 + γ
1
α

onλ
1
α)α (consistency

case) when η1, η2 go to 0. Moreover, our upper bound distinguishes the effect of two possible sources
of errors on the algorithm: (1) when removing jobs from the prediction (η1 = 0 and η2 goes to 1), the
upper bound degrades monotonically to O(1λ). (2) when adding jobs to the prediction (η2 = 0 and η1
goes to +∞), the upper bound first degrades, then improves again, with an optimal asymptotic rate of
γon. This is since our algorithm mostly follows the online algorithm when the cost of the additional
jobs dominates.

4 The Extension to Small Deviations

Note that in the definition of the prediction error η, a job j is considered to be correctly predicted
only if rj = r̂j and pj = p̂j . In this extension, we consider that a job is correctly predicted even
if its release time and processing time are shifted by a small amount. We also allow each job to
have some weight vj > 0, that can be shifted as well. Assuming an additional smoothness condition
on the quality cost function F (., .), which is satisfied for the energy plus flow time minimization
problem and its variants, we propose and analyze an algorithm that generalizes the algorithm from
the previous section.

The algorithm, called TPE-S and formally described in Appendix C, takes the same input parameters
as Algorithm TPE, with some additional shift tolerance parameter ηshift ∈ [0, 1) that is chosen by the
algorithm designer. Two main ideas are to artificially increase the predicted processing time p̂j of
each job j (because the true processing time pj of job j could be shifted and be slightly larger than
p̂j) and to introduce small delays for the job speeds (because the true release time rj of some jobs j
could be shifted and be slightly later than r̂j). Details can be found in Appendix C.

5 Experiments

We empirically evaluate the performance of Algorithm TPE-S on both synthetic and real datasets.
Specifically, we consider the energy plus flow time minimization problem where F (S,J) =∑

j∈J cj − rj and consider unit-work jobs (i.e., pj = 1 for all j) and fix α = 3.

5.1 Experiment settings

Benchmarks. TPE-S is Algorithm 2 with the default setting λ = 0.02, ηshift = 1 and σ = 0.4,
where σ is a parameter that controls the level of prediction error, that we call the error parameter.

8

Figure 1: The competitive ratio achieved by our algorithm, TPE-S, and the benchmark algorithm, as a function
of the error parameter σ (from left-most to the second from the right), and the competitive ratio of TPE-S for a
larger range of σ, as a function of σ (right-most).

Figure 2: The competitive ratio achieved by our algorithm, TPE-S, as a function of the shift tolerance parameter
ηshift (left) and as a function of the confidence parameter λ (right).

2-COMPETITIVE is the 2-competitive online algorithm from [3] that sets the speed at each time t

to n(t)
1
α , where n(t) is the number of jobs with rj ≤ t unfinished at time t, and uses the Shortest

Remaining Processing Time rule.

Data sets. We consider two synthetic datasets and a real dataset. For the synthetic data, we first
generate a predicted set of jobs Ĵ and we fix the value of the error parameter σ > 0. To create
the true set of jobs J , we generate, for each job j ∈ Ĵ , some error err(j) sampled i.i.d. from
N (0, σ). The true set of jobs is then defined as J = {(j, r̂j + err(j)) : j ∈ Ĵ }, which is the
set of all predicted jobs, shifted according to {err(j)}. Note that for all j ∈ J , j ∈ J shift only if
|r̂j − rj | = |err(j)| < ηshift

β(Ĵ)
· OPT(Ĵ)

|Ĵ | . Hence, a larger σ > 0 corresponds to a larger prediction error
ηg . For the first synthetic dataset, called the periodic dataset, the prediction is a set of n = 300 jobs,
with ith job’s arrival ri = i/α. For the second synthetic dataset, we generate the prediction by using
a power-law distribution. More precisely, for each time t ∈ {1, . . . , T}, where we fix T = 75, the
number of jobs’ arrivals at time t is set to M(1 − p(a)), where p(a) is sampled from a power law
distribution of parameter a, and M is some scaling parameter. In all experiments, we use the values
a = 100, M = 500.

We also evaluate the two algorithms on the College Message dataset from the SNAP database [26],
where the scheduler must process messages that arrive over 9 days, each with between 300 and 500
messages. We first fix the error parameter σ > 0, then, for each day, we define the true set J as the
arrivals for this day, and we create the predictions Ĵ by adding some error err(i) to the release time
of each job i, where err(i) is sampled i.i.d. from N (0, σ).

5.2 Experiment results

For each of the synthetic datasets, the competitive ratio achieved by the different algorithms is
averaged over 10 instances generated i.i.d., and for the real dataset, it is averaged over the arrivals for
each of the 9 days.

Experiment set 1. We first evaluate the performance of the algorithms as a function of the error
parameter σ. In Figure 1, we observe that TPE-S outperforms 2-COMPETITIVE when the error
parameter is small. In the right-most figure of Figure 1, the competitive ratio of TPE-S plateaus
when the value of σ increases, which is consistent with our bounded robustness guarantee.

Experiment set 2. In the second set of experiments, we study the impact of the parameters ηshift and
λ of the algorithm for the periodic dataset (results for the other datasets can be found in Appendix E)
and fix σ = 0.4. In the left plot of Figure 2, we observe the importance of allowing some shift in
the predictions as the performance of our algorithms first rapidly improves as a function of ηshift

9

and then slowly deteriorates. The rapid improvement is because an increasing number of jobs are
treated by the algorithm as being correctly predicted when ηshift increases. Next, in the right plot, we
observe that the competitive ratio deteriorates as a function of λ, which implies that the algorithm can
completely skip the first phase that ignores the predictions and run the second phase that combines
the offline and online schedules when the prediction error is not too large. Note, however, that a
larger value of λ leads to a better competitive ratio when the predictions are incorrect. Hence, there is
a general trade-off here.

6 Limitations

The results in Section 3 and Section 4 require the quality cost function F to be monotone subadditive,
which holds for the flow time problem and the problem with deadlines but might not hold for some
other energy-efficient scheduling problems. The results in Section 4 require an additional smoothness
assumption on F , which holds for the flow time problem but not for the problem with deadlines.
Finally, we have only tested our algorithm on the three datasets described in Section 5.

Acknowledgements

Eric Balkanski was supported by NSF grants CCF-2210502 and IIS-2147361. Clifford Stein was
supported in part by NSF grant CCF-2218677 and ONR grant ONR-13533312, and by the Wai T.
Chang Chair in Industrial Engineering and Operations Research.

10

References
[1] Susanne Albers. Energy-efficient algorithms. Communications of the ACM, 53(5):86–96, 2010.

[2] Susanne Albers and Hiroshi Fujiwara. Energy-efficient algorithms for flow time minimization.
ACM Transactions on Algorithms (TALG), 3(4):49–es, 2007.

[3] Lachlan LH Andrew, Adam Wierman, and Ao Tang. Optimal speed scaling under arbitrary
power functions. ACM SIGMETRICS Performance Evaluation Review, 37(2):39–41, 2009.

[4] Antonios Antoniadis, Peyman Jabbarzade Ganje, and Golnoosh Shahkarami. A novel prediction
setup for online speed-scaling. In Artur Czumaj and Qin Xin, editors, 18th Scandinavian
Symposium and Workshops on Algorithm Theory, SWAT 2022, June 27-29, 2022, Tórshavn,
Faroe Islands, volume 227 of LIPIcs, pages 9:1–9:20, 2022. doi: 10.4230/LIPIcs.SWAT.2022.9.
URL https://doi.org/10.4230/LIPIcs.SWAT.2022.9.

[5] Eric Balkanski, Vasilis Gkatzelis, and Xizhi Tan. Strategyproof scheduling with predictions.
arXiv preprint arXiv:2209.04058, 2022.

[6] Eric Balkanski, Tingting Ou, Clifford Stein, and Hao-Ting Wei. Scheduling with speed
predictions. arXiv preprint arXiv:2205.01247, 2022.

[7] Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented
energy minimization via speed scaling. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.
cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html.

[8] Nikhil Bansal and Ho-Leung Chan. Weighted flow time does not admit o (1)-competitive algo-
rithms. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms,
pages 1238–1244. SIAM, 2009.

[9] Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. SIAM J. Comput., 43(5):1684–1698,
2014. doi: 10.1137/130911317. URL https://doi.org/10.1137/130911317.

[10] Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and temperature.
Journal of the ACM (JACM), 54(1):1–39, 2007.

[11] Nikhil Bansal, Ho-Leung Chan, Tak-Wah Lam, and Lap-Kei Lee. Scheduling for speed bounded
processors. In International Colloquium on Automata, Languages, and Programming, pages
409–420. Springer, 2008.

[12] Nikhil Bansal, Kirk Pruhs, and Cliff Stein. Speed scaling for weighted flow time. SIAM Journal
on Computing, 39(4):1294–1308, 2010.

[13] Nikhil Bansal, David P Bunde, Ho-Leung Chan, and Kirk Pruhs. Average rate speed scaling.
Algorithmica, 60(4):877–889, 2011.

[14] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power function.
ACM Transactions on Algorithms (TALG), 9(2):1–14, 2013.

[15] David M Brooks, Pradip Bose, Stanley E Schuster, Hans Jacobson, Prabhakar N Kudva, Alper
Buyuktosunoglu, John Wellman, Victor Zyuban, Manish Gupta, and Peter W Cook. Power-
aware microarchitecture: Design and modeling challenges for next-generation microprocessors.
IEEE Micro, 20(6):26–44, 2000.

[16] Woo-Hyung Cho, Shane Henderson, and David Shmoys. Scheduling with predictions. arXiv
preprint arXiv:2212.10433, 2022.

[17] Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Non-clairvoyant
scheduling with predictions. In Proceedings of the 33rd ACM Symposium on Parallelism in
Algorithms and Architectures, pages 285–294, 2021.

11

https://doi.org/10.4230/LIPIcs.SWAT.2022.9
https://proceedings.neurips.cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html
https://doi.org/10.1137/130911317

[18] Tak-Wah Lam, Lap-Kei Lee, Isaac KK To, and Prudence WH Wong. Speed scaling functions
for flow time scheduling based on active job count. In European Symposium on Algorithms,
pages 647–659. Springer, 2008.

[19] Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online schedul-
ing via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1859–1877, 2020.

[20] Alexander Lindermayr and Nicole Megow. Permutation predictions for non-clairvoyant schedul-
ing. In Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and Architectures,
pages 357–368, 2022.

[21] Alexander Lindermayr, Nicole Megow, and Martin Rapp. Speed-oblivious online scheduling:
Knowing (precise) speeds is not necessary. arXiv preprint arXiv:2302.00985, 2023.

[22] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
J. ACM, 68(4):24:1–24:25, 2021. doi: 10.1145/3447579. URL https://doi.org/10.1145/
3447579.

[23] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Allocating online advertisement
space with unreliable estimates. In Proceedings of the 8th ACM conference on Electronic
commerce, pages 288–294, 2007.

[24] Michael Mitzenmacher. Scheduling with Predictions and the Price of Misprediction. In
11th Innovations in Theoretical Computer Science Conference (ITCS 2020), volume 151 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:18, 2020. ISBN
978-3-95977-134-4.

[25] Trevor Mudge. Power: A first-class architectural design constraint. Computer, 34(4):52–58,
2001.

[26] Pietro Panzarasa, Tore Opsahl, and Kathleen M Carley. Patterns and dynamics of users’ behavior
and interaction: Network analysis of an online community. Journal of the American Society for
Information Science and Technology, 60(5):911–932, 2009.

[27] Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems. Curran Associates, Inc., 2018.

[28] Frances Yao, Alan Demers, and Scott Shenker. A scheduling model for reduced cpu energy.
In Proceedings of IEEE 36th annual foundations of computer science, pages 374–382. IEEE,
1995.

12

https://doi.org/10.1145/3447579
https://doi.org/10.1145/3447579

	Introduction
	Our results
	Related work

	Preliminaries
	The Algorithm
	Description of the algorithm
	Analysis of the algorithm
	Results for well-studied GES problems
	Discussion on the competitive ratio

	The Extension to Small Deviations
	Experiments
	Experiment settings
	Experiment results

	Limitations

