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Abstract

The widespread deployment of Graph Neural Networks (GNNs) sparks signifi-
cant interest in their explainability, which plays a vital role in model auditing and
ensuring trustworthy graph learning. The objective of GNN explainability is to
discern the underlying graph structures that have the most significant impact on
model predictions. Ensuring that explanations generated are reliable necessitates
consideration of the in-distribution property, particularly due to the vulnerabil-
ity of GNNs to out-of-distribution data. Unfortunately, prevailing explainability
methods tend to constrain the generated explanations to the structure of the orig-
inal graph, thereby downplaying the significance of the in-distribution property
and resulting in explanations that lack reliability. To address these challenges,
we propose D4Explainer, a novel approach that provides in-distribution GNN
explanations for both counterfactual and model-level explanation scenarios. The
proposed D4Explainer incorporates generative graph distribution learning into the
optimization objective, which accomplishes two goals: 1) generate a collection
of diverse counterfactual graphs that conform to the in-distribution property for
a given instance, and 2) identify the most discriminative graph patterns that con-
tribute to a specific class prediction, thus serving as model-level explanations. It is
worth mentioning that D4Explainer is the first unified framework that combines
both counterfactual and model-level explanations. Empirical evaluations conducted
on synthetic and real-world datasets provide compelling evidence of the state-of-
the-art performance achieved by D4Explainer in terms of explanation accuracy,
faithfulness, diversity, and robustness. 1

1 Introduction

Graph neural networks (GNNs) have rapidly gained popularity recently due to their ability to model
relational data [1, 2]. However, when it comes to critical decision-making and high-stake applications,
such as healthcare, finance, and autonomous systems, the explainability of GNNs is fundamental for
humans to understand the model’s decision-making logic and build trust in the deployment of GNNs
in real-world scenarios [3, 4, 5].

Counterfactual and model-level explanations. Existing methods mainly focus on factual and
instance-level explanations [6, 7, 8, 9, 10, 11], while the significance of counterfactual and model-
level explanations are equally noteworthy, yet under-explored. Counterfactual explanation considers

1The code is available at https://github.com/Graph-and-Geometric-Learning/D4Explainer
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"what-if" scenarios of model predictions, addressing the question of how slight adjustments to the
input graph can lead to different model predictions [12, 13, 14]. Model-level explanation, on the other
hand, aims to generate the most discriminative graph pattern for a target class, thus shedding light on
the overall decision-making behavior and internal functioning of the model [15, 16]. Counterfactual
and model-level explanations present a distinct challenge concerning the distribution constraint
imposed on generated explanations. An explanation that is faithful and reliable should adhere to
the distribution of the underlying dataset. This becomes particularly crucial in real-world scenarios
where domain-specific rules exist, such as in drug design and molecule generation. In such cases,
explanations should conform to the true distribution of the dataset [16, 17, 18].
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Figure 1: t-SNE Projection of Tree-Cycle dataset,
where Cycle is a counterfactual motif for Tree.

However, the existing methods typically extract
explanatory subgraphs from the input graph,
ignoring additional possible edges. This pre-
vailing paradigm heavily relies on the out-
of-distribution (OOD) effect to influence the
model’s prediction. To illustrate this point, in
Figure 1, we show the t-SNE projection of the
Tree-Cycle dataset, where graphs are labeled
as Tree or Cycle based on whether they present
the corresponding structures. Specifically, CF-
GNNExplainer [13] generates counterfactual ex-
planations for a node with Tree label by remov-
ing its neighbor edges. While the explanation
doesn’t maintain any discriminative information
on the Cycle class, it could still be predicted
as Cycle with high probability due to the OOD
effect, making the explanation unreliable.

On the other hand, generating in-distribution
graphs is challenging, due to the difficulty of encoding complex graph distributions, e.g., the distribu-
tion of node degrees, cycle counts and edge homogeneity. Recently, graph diffusion models have
shown to be a powerful technique to encode such complex distribution on graphs [19, 20], which
trains a powerful denoising model that progressively removes noise from a random noise graph and
then tractably recovers in-distribution samples.

Proposed work. Inspired by the success of graph diffusion models, we propose a novel GNN
explainability approach, D4Explainer, in-Distribution GNN explanations via Discrete Denoising
Diffusion. Through a forward diffusion process that progressively introduces random noise, we enable
D4Explainer to optimize for alternative and diverse explanations based on multiple noisy versions of
the given graph. A powerful denoising model is trained to remove noise and eliminate redundant edges
that are irrelevant to the target property, thereby ensuring the model’s robustness. By employing a
carefully designed loss function that incorporates both the preservation of the counterfactual property
and generative graph distribution learning, D4Explainer is capable of generating in-distribution
counterfactual explanations. As highlighted in green in the bottom left of Figure 1, D4Explainer adds
essential edges that complete the truly counterfactual motif, i.e., Cycle. With a slight modification to
the loss function, D4Explainer can also perform model-level explanations for a specific target class.

Empirical experiments on eight synthetic and real-world datasets show that D4Explainer achieves
state-of-the-art performance in both counterfactual and model-level explanations, with a strong coun-
terfactual accuracy (>80% ) when only 5% of the edges are modified. Maximum mean discrepancy
(MMD) metrics show that the distribution of explanations generated by D4Explainer is the closest to
the original distribution of the dataset, compared with all baselines. D4Explainer obtains the highest
Top-K accuracy in the robustness evaluation, which further illustrates that D4Explainer is capable of
generating consistent explanations with the presence of noise.

Our contributions are in three-folds: (1) A novel approach to generate in-distribution, diverse
and robust explanations is proposed, which leverages the denoising diffusion model to capture the
underlying distributions of explanation graphs; (2) D4Explainer explores counterfactual explanations
in a larger search space by allowing adding edges, which provides high-level understandings of
how edge addition helps to create truly counterfactual motifs; (3) D4Explainer represents the first
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framework that unifies counterfactual and model-level explanations, providing faithful explanations
for both settings.

2 Related Work

Explainability of GNNs Compared with the explainability methods in image domain [21, 22, 23,
24, 25, 26, 27], explainability in GNNs [3] remains a challenging problem due to the discrete structure
of graphs. Here, we focus on post-hoc and model-agnostic explanations. Non-parameterized
methods rely on gradient-like signals [28, 29], relevant walks [30, 31], perturbation [9, 32, 33, 34]
to identify important node/edge features or graph structures as explanations, without learnable
parameters. Score-based explainability [6, 8, 7, 35] formulate a trainable model to obtain the
importance scores on node features or edge as the explanations by maximizing the mutual information
between the explanatory subgraph and the target prediction. Counterfactual explanation methods
find minimal perturbation to the graph instance such that the prediction changes. However, most
existing methods [13, 36] only consider edge deletion on the original graph without any distribution
constraints, thus easily creating out-of-distribution samples and overfitting the noise over each
individual instance. CLEAR [37] is the only explainer that also considers adding edges in generating
counterfactual explanations. However, the intrinsic effect of edge addition to counterfactual properties
is under-explored by CLEAR. Generation-based explanations is a recently popular trend that trains
graph generators to generate GNN explanations. Existing works train policy networks for the
sequential graph generation process based on the reinforcement learning approach [38, 10, 15] or
explicitly parameterize the distribution of model-level explanations [16]. The differences of our
method are (1) we prevent explicit modeling and sequential decision-making learning but incorporate
the generative graph distribution learning implicitly into the training procedure and (2) the more
stable and robust generative backbone i.e., diffusion model ensures better properties of the generated
explanations, e.g., diversity and robustness.

Graph Diffusion Models Denoising diffusion probabilistic models [39, 40, 41] are shown to be
powerful for a wide range of generative tasks, including images [42], language [43], and discrete
graph domain [19, 20, 44]. Recent work [20] proposes to use discrete noise for the forward Markov
process without relying on continuous Gaussian perturbations. Another related work [19] formulates
the diffusion process on the categorical node and edge attributes and successfully generates real and
in-distribution graphs. Recently, the score-based model [45] and stochastic differential equations
formulation have been applied to the field of graph generation [46, 47]. These related works highlight
the effectiveness of diffusion models for graph denoising and generation tasks. In our paper, we
design the pipeline of the diffusion-based model for explanation task scenarios, as well as devise a
novel classifier-guided sampling algorithm for model-level explanations.

3 Preliminaries

3.1 Problem Formulation

Counterfactual explanation. Given an instance (i.e., a node or a graph) and a well-trained GNN, the
goal of counterfactual explanation is to identify the minimal modification to the original instance that
alters GNN’s prediction [12, 13, 36]. Without loss of generality, we consider the explanation problem
for the graph classification task. Formally, let f denote a well-trained GNN classifier to be explained,
ŶG denote the label of graph G predicted by f . The counterfactual explanation Gc satisfies that
ŶGc ‰ ŶG, while the difference between Gc and G is minimal. This problem is usually formulated
as an optimization problem that minimizes the mutual information between Gc and ŶG [6, 13].

Model-level explanation. Model-level explanation aims to identify recurring and discriminant
graph patterns that can trigger a specific prediction from the model f [15, 16]. Formally, given a
class Ci P tC1, ¨ ¨ ¨ , Clu, model-level explanation for the target class Ci can be defined as Gm “

argmaxG Pf pCi|Gq, where Pf pCi|Gq denotes the probability for the class Ci predicted by the GNN
f , given the graph G. See Appendix B for more descriptions of the explanation task setting.
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3.2 Discrete Diffusion Process for Graph

Forward diffusion process. In this work, we focus on discrete structural diffusion and leave the
diffusion over continuous features in future work. Let t P r0, T s denote the timestep of the diffusion
process, which is also a noise level indicator. Let At denote the one-hot version of the adjacency
matrix at timestep t, where each element aij

t is a 2-dimensional one-hot encoding of the presence
or absence of the ij-th element in the adjacency matrix. The forward diffusion process is a Markov
chain with a transition matrix Qt P R2ˆ2, that progressively transforms the input graph into pure
noise. Mathematically, the forward diffusion process can be written as qpaij

t |aij
t´1q “ Catpaij

t ;P “

aij
t´1Qtq, where Catpx;P q is a categorical distribution over the one-hot vector x with probability

vector P . The multi-step diffusion has a closed form as qpaij
t |aij

0 q “ Catpaij
t ;P “ aij

0
sQtq, where

sQt “
śt

i“1 Qi. See Appendix C for detailed derivation.

Graph-level expression. The forward diffusion process is identically and independently performed
over each edge in the full adjacency matrix. Therefore, the graph-level diffusion qpGt|Gt´1q is the
product of element-wise categorical distributions as

qpGt|Gt´1q “
ź

ij

qpaij
t |aij

t´1q and qpGt|G0q “
ź

ij

qpaij
t |aij

0 q (1)

Denoising diffusion models have shown a powerful ability to recover complex distributions accu-
rately [48, 41, 20, 44], by leveraging the diffusion process to capture intricate dependencies and
generate samples that exhibit high-quality in-distribution property and diversity.

4 Proposed Method: D4Explainer

D4Explainer is designed for two distinct explanation scenarios: counterfactual explanation and model-
level explanation. In counterfactual explanation (Sec. 4.1), D4Explainer employs a Forward diffusion
process to create a sequence of noisy versions and trains a Denoising model to effectively capture the
desired distribution of counterfactual graphs. For model-level explanation (Sec. 4.2), D4Explainer
trains a Denoising model to recover the underlying original distribution and leverages a well-trained
GNN to progressively enhance the explanation confidence during the reverse sampling. An overview
is shown in Figure 2. The notation used throughout this work is summarized in Appendix A.
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Figure 2: Overview of D4Explainer. (a) Diffusion Model for counterfactual explanations. The
diffusion process qpGt|Gt´1) transforms an input graph G0 to the pure noise GT . Then the Denoising
Model pθp¨q outputs the clean graph G̃0 given a noisy graph Gt, under the constraints of the
counterfactual loss Lcf and the distribution loss Ldist. (b) Reverse Sampling for model-level
explanations. We leverage a well-trained GNN to select a temporary graph with the highest confidence
score from the candidate graphs and obtain Gr

t´1 from Gr
t recursively until we achieve the final

model-level explanation Gr
0.
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4.1 Counterfactual Explanation Generation

Forward diffusion process. We build on the discrete diffusion process over graphs as introduced
in Sec. 3.2. The forward Diffusion Process enables D4Explainer to optimize with a sequence
of perturbed graphs tG0, G1, ¨ ¨ ¨ , GT u with increasing levels of noise, which essentially enable
D4Explainer to thoroughly explore possible counterfactual explanations for the given graph.

Denoising model. To generate a counterfactual graph that closely resembles the input graph,
the Denoising Model pθpG0|Gtq takes as input the noisy adjacency matrix At corresponding to
a noisy graph Gt, the node features of the original graph X0, noise level indicator t, and then
predicts the dense adjacency matrix. Through sampling from the dense adjacency matrix with the
reparameterization trick [49], we arrive at the discrete adjacency matrix Ã0 and the corresponding
explanation graph G̃0. The Denoising Model is set as an extension of the provably powerful Graph
Network (PPGN) [50]. To incorporate time information, an MLP module is employed to process
the noise level indicator t and learn time-related latent features, thereby enhancing the denoising
capability. The edge features, node features, and time-related latent features are concatenated and
updated by the powerful layers (PPGN). We refer to Appendix D.1 for a complete and detailed
description of the PPGN used in our D4Explainer.

Loss function. Different from traditional graph generation tasks [20, 19, 47], counterfactual explana-
tions necessitate both counterfactual property and proximity to the original graph. To address these
challenges, we propose a specifically designed loss function that simultaneously optimizes these two
properties. Instead of iteratively recovering the intermediate noisy graph Gt in the traditional manner,
we employ a re-weighted version of the evidence lower bound (ELBO) on the negative log-likelihood
that directly reconstructs the initial distribution at t “ 0 in our distribution-learning term Ldist. The
re-weighting strategy prioritizes more challenging denoising tasks at larger timesteps:

Ldist “ ´EqpG0q

T
ÿ

t“1

ˆ

1 ´ 2 ¨ β̄t `
1

T

˙

EqpGt|G0q log pθ pG0 | Gtq , (2)

where β̄t is the transitioning probability (the off-diagonal element in the transition matrix Q̄t) and
qpG0q is the distribution of the training dataset. The distribution loss Ldist is equivalent to the
cross-entropy loss between G0 and pθpG0|Gtq over the full adjacency matrix, which guarantees
the proximity of generated counterfactual explanations to the original graph. To optimize the
counterfactual property, we design a specific counterfactual loss Lcf as follows,

Lcf “ ´EqpG0qEt„r0,T sEqpGt|G0qEpθpG̃0|Gtq
log

´

1 ´ fpG̃0qrŶG0
s

¯

, (3)

where f is the well-trained GNN classifier, fpG̃0qrŶG0
s denotes the probability for the original

label ŶG0 predicted by f , given the generated graph G̃0. Our total loss function is formulated
as Lpθq “ Ldist ` αLcf , where α is a hyper-parameter that balances the counterfactual and in-
distribution properties. Achieving the desired counterfactual property while maintaining proximity
to the true data distribution involves a trade-off. For instance, making drastic modifications to the
original graph may easily alter the model’s prediction, but it can also lead to an explanation that
deviates significantly from the original graph. The distribution loss Ldist and the counterfactual loss
Lcf together encourage the denoising model to eliminate redundant edges that are irrelevant to the
counterfactual property while reconstructing the original edges to preserve the true distribution.

Working principle of D4Explainer. D4Explainer not only preserves the in-distribution property
but also introduces diversity and robustness to the generated counterfactual explanations. Diversity
enables the explainer to provide multiple alternative explanations for model predictions, while
robustness ensures consistent effectiveness of the explanations even in the presence of noise. Existing
explainers often optimize a singular explanation per instance, leading to overfitting on noise and
bias attribution issues [51]. On the contrary, D4Explainer’s objective is to search for counterfactual
graphs within the distribution of the original graphs, adhering to the constraints imposed by Ldist

and Lcf . Through an iterative process of adding noise and removing counterfactual-irrelevant edges,
D4Explainer captures the underlying distribution of counterfactual explanations. This denoising
strategy also enhances the robustness of D4Explainer. Moreover, the inherent stochasticity in the
forward processes introduces diversity into the generated explanations.
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4.2 Model-level Explanation

Motivation. The goal of model-level explanation is to generate class-wise graph patterns. Let C
denote the target class. Each reverse sampling step qCpGr

t´1|Gr
t q can be formulated as a conditional

generation satisfying the following equation,
qCpGr

t´1|Gr
t q9pθpG̃0|Gr

t qqpGr
t´1|G̃0qfpC|G̃0q, (4)

where fpC|G̃0q can be computed by the target class probability predicted by the well-trained GNN f ,
conditioned on the given graph G̃0. Existing sampling methods [20, 41] cannot perform conditional
sampling in the discrete context, as we cannot sample all possible G̃0 to obtain fpC|G̃0q and then
compute the normalized probabilities. To overcome these challenges, we propose to utilize the
well-trained GNN as guidance toward the target class. At each step, we generate a set of candidates
by pθpG̃0|Gr

t q and refer to the GNN to select a temporarily optimal G̃0 with the highest fpC|G̃0q.

Multi-step sampling. We repeat the sampling steps and progressively increase the explanation
confidence (i.e., fpC|G̃0q) in the process. Figure 3 shows an empirical visualization of the reverse
generation process for the house motif. We observe that the temporary graph G̃0 gets closer to the
target motif with increasing explanation confidence p during the reverse sampling process.
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(𝑝 = 0.87)

z
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(𝑝 = 0.99)

z z z

Reverse Sampling

Figure 3: Visualization of the temporary G̃0 at
t “ T ; 3T {4;T {2;T {4 and the terminal model-
level explanation for BA-3Motif (house motif).
Different node colors indicate different labels.

The proposed model-level explanation genera-
tion utilizes a denoising model trained with a
similar procedure as Sec. 4.1 (Figure 2(a)). The
difference is that the training loss is only Ldist,
since Lcf leads to a counterfactual graph that
changes the label. To start with, given a pre-
defined number of nodes N in the target expla-
nation, we randomly sample an Erdős–Rényi
graph with N nodes and edge probability 1

2 as
Gr

T „ BN,1{2. Then we sample a set of can-
didates from the distribution pθpG0|Gr

T q. The
well-trained GNN computes the explanation con-
fidences for these candidates and selects the tem-
porary explanation G̃0 with the highest score.
Then, we sample Gr

T´1 through the same Diffusion Process Gr
T´1 „ qpGT´1|G̃0q as Equation 1.

Sampling steps iteratively reverse the chain until we obtain the final model-level explanation Gr
0 after

T steps. Apart from explanation confidence fpC|G̃0q, model-level explanations should also satisfy
sparsity and succinctness. It is worth noting that the proposed algorithm is capable of preserving the
sparsity level similar to the training graphs in the generated explanations. For real-world datasets that
are densely self-connected, it is suggested to plug regularization constraints in the selection policy for
the temporary explanation at each step. The complete sampling algorithm is shown in Appendix D.4.

4.3 Complexity Analysis

D4Explainer has a search space of OpN2Kq for modifying K edges in an N -nodes graph, which
is larger than previous counterfactual explainers that only consider deleting edges. By framing the
explanation task as a generation problem, the space complexity of each layer in D4Explainer is
reduced to OpN2q. The time complexity is OpN3q due to the matrix multiplication. Despite the large
search space, the complexity of D4Explainer is still acceptable and faster than some generation-based
explanations [10]. Runtime and more complexity analysis are given in Appendix E.6. Furthermore,
we directly recover the terminal explanation G̃0 in the training procedure, rather than intermediate
Gt, which greatly increases the efficiency of D4Explainer. The Denoising Model can also be trained
in parallel under different noise levels without iterative optimization from t “ 0 to t “ T .

5 Experiments

5.1 Experimental Setup

We test the proposed approach to explain the performance of node classification models and graph
classification models. Dataset statistics and classifier information are summarized in Appendix E.1.
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Table 1: CF-ACC AUC and Fidelity (FID) AUC of D4Explainer and baseline explainers over eight
datasets. We report AUC values computed over 10 modification ratios from 0 to 0.3. The best result
is in bold and the second best result is underlined.

BA-Shapes Tree-Cycle Tree-Grids Cornell BA-3Motif Mutag BBBP NCI1
Models CF-ACC FID CF-ACC FID CF-ACC FID CF-ACC FID CF-ACC FID CF-ACC FID CF-ACC FID CF-ACC FID

Random 0.251 0.261 0.260 0.281 0.337 0.375 0.138 0.172 0.404 0.452 0.192 0.256 0.073 0.113 0.288 0.352
GNNExplainer 0.473 0.444 0.652 0.580 0.672 0.622 0.075 0.120 0.250 0.253 0.450 0.449 0.212 0.241 0.375 0.443
SAExplainer 0.773 0.773 0.405 0.408 0.547 0.542 0.199 0.241 0.474 0.500 0.300 0.338 0.110 0.133 0.421 0.446
GradCam 0.552 0.570 0.637 0.613 0.590 0.578 0.138 0.189 0.459 0.495 0.202 0.250 0.274 0.301 0.467 0.488
IGExplainer 0.208 0.240 0.198 0.226 0.308 0.372 0.233 0.281 0.440 0.474 0.231 0.280 0.159 0.183 0.347 0.389
PGExplainer 0.361 0.357 0.353 0.322 0.293 0.340 0.128 0.204 0.320 0.323 0.208 0.313 0.233 0.282 0.338 0.366
PGMExplainer 0.208 0.210 0.242 0.214 0.128 0.237 0.206 0.274 0.212 0.213 0.128 0.251 0.105 0.154 0.348 0.390
CXPlain 0.125 0.168 0.245 0.220 0.222 0.274 0.132 0.180 0.235 0.239 0.187 0.305 0.067 0.131 0.489 0.484
CF-GNNExplainer 0.773 0.728 0.812 0.718 0.537 0.527 0.328 0.297 0.302 0.304 0.797 0.751 0.623 0.632 0.715 0.674
D4Explainer 0.838 0.828 0.917 0.862 0.905 0.832 0.623 0.559 0.912 0.922 0.765 0.675 0.781 0.739 0.737 0.690

Node classification. For synthetic datasets, we use BA-Shapes, Tree-Cycle, Tree-Grids [6]. There
exists a motif that plays an important role in the model’s prediction. The node labels are determined
by the structural roles. We train a vanilla GCN for synthetic datasets, achieving over 95% accuracy on
each synthetic dataset. Additionally, we use Cornell [52] dataset, a highly heterophilous real-world
webpage graph. Wherein, more complex relationships exist between a node and its neighbors, thus
posing a more significant challenge to the explanation tasks. We train an EGNN [53], which is
specifically designed for heterophilous graphs, achieving 83% accuracy on Cornell.

Graph classification. We use one synthetic dataset, BA-3Motif [54] and three real-world molecule
datasets, Mutag [55, 56], BBBP [57] and NCI1 [58] for graph-classification task explanation. BA-
3Motif contains 3 graph classes: graphs with cycle motif, grid motif, and house motif. Mutag,
BBBP, and NCI1 are molecular datasets where nodes represent atoms and graphs represent molecules.
Specifically, the chemical functionalities of molecules determine the graph labels. We train a vanilla
GCN for BA-3Motif, BBBP, and NCI1. For the Mutag dataset, GIN [59] is used as the target GNN.

Baselines. For the counterfactual explanation task, we take the same baseline setup as CF-
GNNExplainer[13] and involve more recent state-of-the-art explainers as our baselines, including
GNNExplainer [6], SAExplainer [29], GradCam [21], IGExplainer [22], PGExplainer [8], PGMEx-
plainer [9], and CXPlain [60]. For the methods that are originally designed for the factual explanation,
we construct a subgraph with the least important edges as the counterfactual explanation. For the
model-level explanation task, we compare with XGNN [15], which is a state-of-the-art model-level
explanation method for GNNs. More implementation details are given in Appendix E.3.

5.2 Counterfactual Explanations

Metrics. Following evaluation protocols of prior works [13, 36], we adopt Counterfactual Accuracy,
Fidelity, and Modification Ratio (MR) as our metrics. Let Go and Gc denote the original input graph
and generated counterfactual graph, respectively. G is the test dataset. Counterfactual Accuracy is
defined as the proportion of generated explanations that change the model’s prediction, CF-ACC “

1´1{|G|
ř

GoPGp1pŶGc “ ŶGoq. Fidelity measures the change in output probability over the original

class, i.e., Fidelity “ 1{|G|
ř

GoPG

”

fpGoqrŶGos ´ fpGcqrŶGos

ı

. Modification Ratio refers to
the proportion of changed edges as MR “ p# of deleted edges + # of added edgesq{|E|. Higher
counterfactual accuracy and fidelity with lower modification ratios indicate better performance.

Results. CF-ACC and Fidelity are sensitive to the modification ratio, we thus compute the areas
under CF-ACC curve and Fidelity curve over 10 different modification ratios from 0 to 0.3. We run
10 different seeds for each approach and report the average in Table 1. As can be seen from the table,
D4Explainer achieves the best performances on seven out of eight datasets, with especially strong
CF-ACC AUC values (ą 90%) on Tree-Cycle, Tree-Grids, and BA-3Motif. Notably, D4Explainer
consistently works well on explaining both node classification and graph classification tasks, while
the efficacy of baselines is unstable across datasets. For instance, most baselines fail to generate
effective counterfactual explanations for complex graphs with multiple motifs or heterophilous edge
relations, e.g., Cornell and BA-3Motif.

To further investigate the relation between CF-ACC and the modification ratio, we show the change
of CF-ACC w.r.t. modification ratios from 0 to 0.3 in Figure 4, where the X-axis is in the log scale.
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Figure 4: CF-ACC Curves of all explainers over different modification ratios from 0 to 0.3. The x-axis
is shown in the log scale. CF-ACC tends to increase as the modification ratio increases in general.

Table 2: MMD distances between the generated explanations and test graphs. We report MMD
distances of degree distributions (Deg.), cluster coefficients (Clus.), spectrum distributions (Spec.),
and the summation (Sum.). We bold the best value and underlined the second-best value.

Mutag BBBP NCI1
Models Deg. Clus. Spec. Sum. Deg. Clus. Spec. Sum. Deg. Clus. Spec. Sum.

RamdomCaster 0.1593 0.0247 0.0417 0.2257 0.1693 0.0072 0.0397 0.2162 0.1847 1.9769 0.0404 2.2020
GNNExplainer 0.1614 0.0002 0.0409 0.2025 0.1615 0.0002 0.0395 0.2012 0.1577 0.0005 0.0405 0.1987
SAExplainer 0.0940 0.0032 0.0412 0.1384 0.1594 0.0032 0.0402 0.2028 0.189 0.0002 0.0408 0.2300
GradCam 0.1122 0.0083 0.0416 0.1621 0.0699 0.0026 0.0384 0.1109 0.1638 0.0003 0.0404 0.2045
IGExplainer 0.1292 0.0000 0.0411 0.1703 0.0908 0.0000 0.0394 0.1302 0.4288 0.0002 0.0398 0.4688
PGExplainer 0.1475 0.0002 0.0418 0.1895 0.2014 0.0018 0.0403 0.2435 0.1937 0.0000 0.0396 0.2333
PGMExplainer 0.1800 0.0002 0.0419 0.2221 0.1916 0.0003 0.0403 0.2322 0.2199 0.0000 0.0404 0.2603
CXPlain 0.1734 1.2706 0.0417 1.4857 0.1768 0.0001 0.0394 0.2163 0.1629 0.0001 0.0404 0.2034
CF-GNNExplainer 0.1172 0.0000 0.0380 0.1552 0.0870 0.0001 0.0393 0.1264 0.1224 0.0001 0.0404 0.1629
D4Explainer 0.1172 0.0000 0.0244 0.1416 0.0530 0.0000 0.0331 0.0861 0.1006 0.0000 0.0353 0.1359

As illustrated in Figure 4, D4Explainer consistently achieves the highest CF-ACC with the smallest
modification ratio (see the right side of the X-axis). Especially for Tree-Cycle and BBBP dataset,
D4Explainer obtains a significant boost compared to the baselines. It demonstrates that D4Explainer
can generate counterfactual explanations that can strongly influence the prediction of the target GNN
and reflect the effective counterfactual properties.

5.2.1 In-Distribution Evaluation

To evaluate the in-distribution property of the generated explanations, we adopt the maximum mean
discrepancy (MMD) to compare distributions of graph statistics between the generated counterfactual
explanations and original test graphs. Following the evaluation setting in prior works [61, 19, 20,
62, 44], we use Gaussian Earth Mover’s Distance kernel to compute MMDs of degree distributions,
clustering coefficients, and spectrum distributions. Smaller MMDs mean that the two distributions
are more similar and close, which indicates a better in-distribution property.

Results. Table 2 shows the MMD results on three real-world molecular datasets. We observe that
D4Explainer outperforms baselines in general. Especially for BBBP and NCI1 datasets, D4Explainer
achieves the lowest MMD distances across all metrics. The MMD results verify the effectiveness of
D4Explainer in capturing the underlying distribution of datasets and generating in-distribution and
more faithful explanations. We refer to Appendix E.4 for more results.

5.2.2 Additional Faithfulness Aspects

Explanation Diversity Evaluation. We evaluate the diversity of counterfactual explanations in
Figure 5 and Appendix E.5. The first row shows the original graphs. The second row shows the
generated counterfactual explanations by CF-GNNExplainer [6], where only edge deletion is allowed.
With edge addition, D4Explainer is capable of generating alternative counterfactual explanations
from a different perspective. As can be found from Figure 5, there are two main approaches to
generating counterfactual explanations. The first one is deleting determinant edges and destroying
the original motif, thus greatly influencing the model’s prediction. The second one is converting
the original motifs to truly counterfactual motifs through both deleting and adding essential edges.
Previous methods can only produce the first type of counterfactual explanations, while D4Explainer
makes the second approach possible and successful, leading to alternative and diverse counterfactual
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explanations. We ascribe the success to the special training mechanism of D4Explainer. The intrinsic
stochasticity in the forward process allows D4Explainer to take as input a sequence of noisy versions
of the original graph, instead of a singular input graph. This enlarges the search space of possible
counterfactual explanations for D4Explainer.

Input Graph

house cycle tree

house→cycle cycle→house tree→cycle

With Addition

: original edges                    : added edges                    : deleted edges

By Deletion

Figure 5: Counterfactual explanations compari-
son. Red labels represent the motifs in the graph.

Figure 6: Top-K accuracy w.r.t. noise levels
on BBBP dataset

Robustness Evaluation. To evaluate the robustness of all methods, we compare the counterfactual
explanations produced on the original graph and its perturbed counterpart, respectively. A robust
model would predict the same explanation for both inputs. Following previous setup [36], we identify
the K most relevant edges in the original counterfactual explanation and compute the fraction of these
edges present in the explanation of its noisy version, denoted by Top-K Accuracy. We apply noise by
randomly adding or removing edges with probability σ. A consistent 20% modification ratio is used
across all methods. Results on BBBP dataset are shown in Figure 6. We observe that D4Explainer
outperforms all baselines over different noise levels from 0 to 10%. We restrict that σ ă 10%, as
the larger noise may cause the noisy graph to switch the predicted label. Overall, results in Figure 6
verify D4Explainer’s strong ability to generate consistently effective counterfactual explanations
despite the noise. See Appendix E.7 for complete results.

5.3 Model-level Explanations

Motif XGNN D4Explainer

BA-shapes

Tree-Grid

BA-3Motif

𝑵 = 𝟓
𝒑 = 𝟎. 𝟔𝟑

𝑵 = 𝟔
𝒑 = 𝟎. 𝟖𝟔

𝑵 = 𝟓
𝒑 = 𝟎. 𝟗𝟗

𝑵 = 𝟔
𝒑 = 𝟎. 𝟗𝟖

𝑵 = 𝟖
𝒑 = 𝟎. 𝟕𝟒

𝑵 = 𝟖
𝒑 = 𝟎. 𝟖𝟏

𝑵 = 𝟓
𝒑 = 𝟎. 𝟔𝟖

𝑵 = 𝟔
𝒑 = 𝟎. 𝟔𝟕

𝑵 = 𝟓
𝒑 = 𝟎. 𝟗𝟗

𝑵 = 𝟔
𝒑 = 𝟎. 𝟗𝟓

House   .

Grid   .

Cycle  .

Figure 7: Qualitative evaluation of D4Explainer

In each step of the reverse sampling,
we denoise K candidate graphs from
the noisy graph and select a tempo-
rary explanation. Following the set-
ting in XGNN [15], we qualitatively
evaluate the generated explanations
with different pre-defined numbers of
nodes N , shown in Figure 7. p de-
notes the target class probability pre-
dicted by the GNN. A higher p indi-
cates higher explanation confidence.
We observe that D4Explainer can pro-
duce more determinant graph patterns
with nearly 100% confidence for syn-
thetic datasets, e.g., BA-shapes and
BA-3Motif.

Quantitative evaluation. We adopt the target class probability p and Density as the quantitative met-
rics. Density measures the sparsity level of the explanations, which is defined as Density “ |E |{|V|2,
where E and V denote the set of edges and nodes in the explanation. Quantitative comparisons between
XGNN and D4Explainer under different numbers of nodes are shown in Table 3. Hyperparameter
sensitivities of the K (number of candidates in each step) and T (number of reverse sampling steps)
are shown in Table 4. The results are averaged over 100 generated model-level explanations without
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any regularization constraints in the selection policy. We find that (1) D4Explainer is capable of
generating sparse and succinct model-level explanations with high target class probabilities, even
without any regularization constraints on the explanation size. The superiority can be attributed to
our distribution learning objective. However, it is worth noting that training graphs might be noisy
and densely self-connected in some real-world applications. A regularization constraint can be easily
plugged into the selection policy if required by downstream tasks; (2) smaller T and K both degrade
the performance and quality of model-level explanations, which further emphasize the effectiveness
of candidates and multi-step sampling. In the implementation, we ensure K ě 20 and T ě 50 for a
balance between the quality and time complexity.

Table 3: Quantitative comparison in terms of probabil-
ity and density with different numbers of nodes.

Mutag Tree-Cycle
# nodes 6 7 8 5 6 7

Ours Prob. 0.832 0.856 0.920 0.991 0.995 0.989
Density 0.278 0.327 0.315 0.400 0.381 0.343

XGNN Prob. 0.523 0.824 0.875 0.968 0.989 0.992
Density 0.537 0.479 0.437 0.400 0.390 0.367

Table 4: Hyperparameter sensitivity in
model-level explanation generation

Mutag (N=6) Tree-Cycle (N=6)
Prob. Density Prob. Density

(1) K “ 10, T “ 50 0.799 0.314 0.987 0.372
(2) K “ 20, T “ 10 0.524 0.284 0.991 0.388
(3) K “ 20, T “ 50 0.812 0.295 0.994 0.361
(4) K “ 20, T “ 100 0.832 0.278 0.992 0.325
(5) K “ 30, T “ 50 0.823 0.287 0.997 0.361

6 Conclusion and Broader Impacts

In this work, we propose D4Explainer, a novel generative approach for counterfactual and model-level
explanations based on a discrete denoising diffusion model. By framing the explanation problem
as a distribution learning task, D4Explainer can generate more reliable explanations with better
in-distribution property, diversity and robustness. Additionally, D4Explainer can simultaneously
perform model-level explanations with a pre-trained denoising model.

While denoising diffusion models show promise for explaining Graph Neural Networks (GNNs),
they face potential scalability concerns on large graphs. Additionally, the explanations rely on the
specific GNN architecture, limiting their generalizability across different GNN models. This work
has dual social impacts. It enhances the transparency and interpretability of GNNs. However, it is
vital to acknowledge the limitations and potential risks of relying solely on these explanations. They
may not always capture the complete causal relationships in complex graph structures, which could
lead to unintended consequences, reinforce biases, or make incorrect assumptions about the model’s
behavior. Looking ahead, an interesting direction for future research is to consider the node attributes
and edge attributes during the explanation generation, e.g., by performing diffusion processes over
continuous features.
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A Notations

The main notations used throughout this paper are summarized in Table 5.

Table 5: Summary of the notations

Notation Description
G An input graph / computational graph for a given node
G0 Original graph i.e., G
X0 Node features
t The timestep of the forward diffusion
Gt Noisy graph at timestep t
f A well-trained GNN classifier to be explained
ŶG The label of graph G predicted by f
Gc Counterfactual explanation of G

tC1, ¨ ¨ ¨ , Clu Class set of the input graphs
Gm Model-level explanation for a certain class

qpGt | Gt´1q Forward diffusion process
pθp¨ | Gtq Denoising model

G̃0 Reconstructed clean graph
Lcf Counterfactual loss
Ldist Distribution loss
Gr

t Graph at timestep t in the reverse sampling process
p Explanation confidence
K Number of candidates in each step for the model-level explanation
T Number of reverse sampling steps for the model-level explanation
N (Predefined) number of nodes in the target model-level explanation

B Explanation Setting

The counterfactual explanation for a prediction highlights the smallest change to the original instance
that changes the prediction. It is a post-hoc step after the model is designed and well-trained.
Definition 1. (Counterfactual Explanation) Given a well-trained classifier f that predicts the label
ŶG for an instance G, a counterfactual explanation consists of an instance Gc such that the prediction
on Gc is different from the original ŶG on G, such that the difference between G and Gc is minimal.

It can be formulated as an optimization problem that minimizes the mutual information [6, 13]:

argmin
dpG,GcqăK

MIpŶG, G
cq ô argmax

dpG,GcqăK

HpŶG|Gcq ô argmin
dpG,GcqăK

´EŶG|Gc

”

log
´

1 ´ Pf pŶG | Gcq

¯ı

(5)
where MIp¨q is the mutual information function, Hp¨q is the entropy function and H

´

ŶG | Gc
¯

“

´EŶG|Gc

”

logPf

´

ŶG | Gc
¯ı

. Pf

´

ŶG | Gc
¯

denotes the probability for the ŶG label given the
counterfactual explanation Gc, predicted by f . dpG,Gcq measures the proximity between the original
G and counterfactual explanation Gc, which can be specified by the number of changed edges
(including the removed edges and newly added edges). An ideal counterfactual explanation should be
similar to the original graph, therefore, K is applied as a constraint over the proximity.
Definition 2. (Model-level Explanation) Given a well-trained GNN classifier f and a set of graph G
that is predicted as the same label Ci by f , the model-level explanation for the target class Ci is a
recurrent and determinant graph pattern that leads to the certain prediction made by f .

Formally, the model-level explanation for the target class Ci can be formulated as Gm “

argmaxG Pf pCi|Gq, where Pf pCi|Gq can be computed by the probability for the class Ci pre-
dicted by the well-trained GNN f . Meanwhile, the model-level explanations should be recurrent in
the given graph set. Typically, the model-level explanations should adhere to the distribution of the
input graphs to be representative of the graph characterizations [16].
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C Diffusion Process

C.1 Discrete Diffusion Process for Graph

Forward diffusion process. Let t P r0, T s denote the timestep of the diffusion process, which is
also a noise level indicator. Let At denote the one-hot version of the adjacency matrix at timestep
t, where the row vector aij

t P t0, 1u2 is a 2-dimensional one-hot encoding of the ij-th element aijt
in the adjacency matrix At. The forward diffusion process is a Markov chain that progressively
transforms the input graph into pure noise. The forward transition probabilities can be represented by
a transition matrix Qt P R2ˆ2, where the rs-th element Qrs

t “ qpaijt “ s|aijt´1 “ rq. For example,
Q01

t indicates the probability of being absent at timestep t ´ 1 and transitioning to being present at
timestep t for each edge. Therefore, the transition matrix Qt can be represented as

Qt “

ˆ

1 ´ βt βt

βt 1 ´ βt

˙

, (6)

where 1 ´ βt models the probability that an edge state does not change at timestep t (e.g., remaining
present or remaining absent in the graph). With the transition matrix and one-hot encoding aij

t , the
forward diffusion process can be written as qpaij

t |aij
t´1q “ Catpaij

t ;P “ aij
t´1Qtq, where Catpx;P q

is a categorical distribution over the one-hot vector x with probability vector P .

Multi-step diffusion. The formulation of Equation 6 allows for computing multiple-step diffusion
from aij

0 to aij
t directly in a closed form, by qpaij

t |aij
0 q “ Catpaij

t ;P “ aij
0

sQtq, where sQt “
śt

i“1 Qi. Additionally, sQt can also be represented as a symmetric matrix like Equation 6, with βt

being replaced by

sβt “
1

2
´

1

2

t
ź

i“1

p1 ´ 2βiq. (7)

In the implementation, we only perform multi-step diffusion. We uniformly sample sβt in the range of
r0, 0.5s to control the level of noise.

Graph-level expression. The forward diffusion process is independently performed over all of the
edges in the full adjacency matrix. Therefore, the graph-level diffusion qpGt|Gt´1q is the product of
element-wise categorical distributions as

qpGt|Gt´1q “
ź

ij

qpaij
t |aij

t´1q and qpGt|G0q “
ź

ij

qpaij
t |aij

0 q (8)

The forward diffusion process transforms the input graph into pure noise when T goes to infinity. The
pure noise graph G8 is an Erdős–Rényi random graph [63] with the probability 1

2 of being present or
absent for each edge.

C.2 Continuous Diffusion Process

In this section, we discuss the extension of D4Explainer for the diffusion over continuous content
features (i.e., node features, edge features, etc). Given a graph GpX0, A0q with the initial node
features X0 P RNˆd and initial adjacency matrix A0 P t0, 1uNˆN , where N, d is the number of
nodes and feature dimensions respectively. Let Xt, At denote the noisy node feature and noisy
adjacency matrix at timestep t. At is obtained by the discrete diffusion process in Sec. 3.2, while
continuous noisy node features Xt rely on continuous Gaussian perturbations. The forward Markov
process gradually adds Gaussian noise to the previous state:

qpXt|Xt´1q “ N pXt;
a

1 ´ βtXt´1, βtIq, (9)

where N denotes the high-dimensional Gaussian distribution, βt is the variance at timestep t. Similar
to discrete diffusion, there is a closed form that performs multi-step diffusion:

qpXt|X0q “ N pXt;
?
ᾱtX0; p1 ´ ᾱtqIq, (10)

where αt “ 1 ´ βt and ᾱt “
śt

s“1 αs. The denoising model takes as input the adjacency matrix At,
the noisy node features Xt and the noisy level indicator t and predicts the clean adjacency matrix Ã0
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and node features X̃0. Let G̃0pX̃0, Ã0q denote the predicted explanatory graph. With the continuous
diffusion over node features, we need to recover both the original adjacency matrix and original node
features. Thus it becomes the cross-entropy between A0 and Ã0 as well as the cross-entropy between
X0 and X̃0. Therefore, the distribution loss can be expressed as

Ldist “ ´EqpA0q

T
ÿ

t“1

ˆ

1 ´ 2 ¨ β̄t `
1

T

˙

EqpAt|A0q log pθ pA0|Atq

´ EqpX0q

T
ÿ

t“1

ˆ

1 ´ 2 ¨ β̄t `
1

T

˙

EqpXt|X0q log pθpX0|Xtq

(11)

The above continuous setting can also easily generalize to edge features diffusion.

D Model Details

D.1 Denoising Model: PPGN

Our PPGN implementation follows the original paper [50], and [20]. The difference is that we insert
an MLP module that processes the noise level indicator t and learns time-related latent features to
enhance the denoising capability. Given a graph G, let At P RNˆNˆ2 denote the one-hot version of
the adjacency matrix at timestep t, where the row vector ai,j

t P t0, 1u2 is a 2-dimensional one-hot
encoding of the existence of the edge between node i and node j, N is the number of nodes in the
graph. Let X “ rX1, ¨ ¨ ¨ , XN s P RNˆd denote the node features of the original graph, where d
denotes the number of feature dimensions, Xi P Rd denotes the d-dimensional feature of the node
i. We construct X P RNˆNˆ2d, where Xij P R2d is the concatenation of node feature Xi and Xj .
Specifically, we use a diagonal matrix β̄t ¨ I P RNˆNˆ1 as the noise level indicator. An MLP module
will process the time-related information and output a tensor MLPpβ̄t ¨ Iq P RNˆNˆ1

Let M in “ CatpAt,X, MLPpβ̄t ¨ Iqq P RNˆNˆp2d`3q as the input of PPGN model. The output
tensor of PPGN is A1

0 P RNˆNˆ1, where each element rA1
0sij represents the probability of qpaij

t |aij
0 q.

The formulation of PPGN is as follows,
PGNNpM inq “ Lout ˝ CpM inq

CpM inq “ ConcatppBd ˝ ¨ ¨ ¨B1qpM inq,

pBd´1 ˝ ¨ ¨ ¨B1qpM inq, ¨ ¨ ¨ , B1pM inqq P RNˆNˆpdhq

(12)

Each Bi is a powerful layer that maps the input tensor to a tensor in RNˆNˆh. We concatenate d
outputs of these powerful layers and obtain a tensor CpM inq P RNˆNˆpdhq. The final Lout is an
MLP module that maps the input tensor to the space of RNˆNˆ1: Lout : RNˆNˆpdhq Ñ RNˆNˆ1.
We take the output of the PPGN model as the dense adjacency matrix as mentioned in Sec. 4.1.

D.2 Counterfactual Explanation Generation

The output of PPGN model A1
0 “ PGNNpM inq P RNˆNˆ1 is taken as the dense adjacency

matrix for the counterfactual explanation, where each element indicates the probability of the
corresponding edge in the final counterfactual explanation. To obtain the discrete adjacency matrix
and backpropagate the gradients, we utilize the Concrete relaxation of the Bernoulli distribution via

Bernoullippq « σp
1

λ
plog p ´ logp1 ´ pq ` log u ´ logp1 ´ uqqq, u „ Uniformp0, 1q,

where λ is a temperature for the Concrete distribution and σ is the sigmoid function. Then, we
create a discrete adjacency matrix by Ã0rijs „ BernoullipA1

0rijsq, where rijs denotes the ij-th
element in the corresponding matrix. Once the denoising model is well trained, we can generate
a counterfactual explanation given any noisy graph Gt, the node feature X , and noisy indicator t.
In the explanation stage, let G0 denote the given graph to be explained, we randomly add noise
to G0 and create a noisy version. We utilize the well-trained denoising model to output a dense
adjacency matrix A1

0. The reparametrization trick is not applied in the inference stage. We directly
sample Ã0rijs „ BernoullipA1

0rijsq and construct the final counterfactual explanation. One may
also calculate average A1

0 by denoising from multiple noisy versions Gt with different noisy level
indicators t.
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D.3 Simplified Loss Function

Early efforts on denoising diffusion models mainly reconstruct each Gt´1 from Gt. However, it
poses a challenge to the training stability due to the dependence of Gt´1 on the sampled diffusion
trajectories and the intrinsic noise of Gt´1. The simplified loss was first proposed by [48], which is
defined as

Lsimple “ ´EqpG0qEt„r0,T sEqpGt|G0q log pθ pG0 | Gtq .

Instead of reconstructing intermediate noisy graphs, the simplified loss directly pushes toward the
terminal clean graph G0, which improves both the training stability and training efficiency. In this
work, we also target at recovering the final counterfactual graphs G̃0 with each noisy graph Gt.
Moreover, we emphasize more challenging denoising tasks at larger timesteps by adding the weight
1 ´ 2 ¨ β̄t ` 1

T to each step.

D.4 Model-level Explanation Generation

Algorithm 1 Reverse Sampling for Model-level Explanation
Require: number of nodes N , number of candidates K, static GNN f , Diffusion Process qp¨q,

Denoising Model pθp¨q

1: Sample an Erdős–Rényi graph Gr
T „ BN,1{2

2: for t “ T to 1 do
3: Sample candidatestG̃0,k | G̃0,k „ pθpG0|Gr

t q; k “ 1, ¨ ¨ ¨ ,Ku

4: Compute Probrks “ fpG̃0,kq for k “ 1, ¨ ¨ ¨ ,K

5: Select G̃0,j with the highest Probrjs

6: Temporary explanation G̃0 :“ G̃0,j

7: Sample Gr
t´1 „ qpGt´1|G̃0q

8: end for
9: return Gr

0

Alg. 1 shows the multi-step reverse sampling algorithm for model-level explanations. Let N denote
the number of nodes in the desired model-level explanation. We first generate a pure random graph
Gr

T „ BN,1{2. Given the noisy graph Gr
T , the denoising model predicts the distribution of the

clean graphs by pθpG0|Gr
T q. We sample K candidates from the distribution of the clean graphs by

G̃0,k „ pθpG0|Gr
T q, with k “ 1, ¨ ¨ ¨ ,K, and refer to the well-trained GNN to select the optimal

one with the highest explanation confidence (i.e., fpCi|G̃0,kq). Regularization constraints can be
plugged into this step to further guarantee the desired properties of the generated explanation [16],
e.g., sparsity, explanation size, connectivity incentive, etc.We nominate the optimal G̃0,j as the
temporary explanation G̃0. Then, G̃0 is transformed to noisy graphs by forward diffusion process,
i.e., Gr

t´1 „ qpGt´1|G̃0q. We repeat the process for T times until we obtain the terminal Gr
0 as the

model-level explanation.

D.5 Unification of D4Explainer

The unification of D4Explainer lies in the same diffusion process and denoising model for different
explanation scenarios. The differences between D4Explainer on counterfactual and model-level
explanation tasks are (1) loss function and (2) reverse sampling process. Specifically, the loss
function for the model-level explanation task does not contain Lcf , which is designed to ensure the
counterfactual property. Moreover, the reverse sampling process in the model-level explanation tasks
utilizes multiple-step sampling to increase the explanation confidence score of generated model-level
explanations. Moreover, the flexibility in the loss function and reverse sampling process enable
D4Explainer to tackle other related explanation scenarios, such as instance-level factual explanation.
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Table 6: Statistics of the eight datasets and test performance of the GNN model trained for each
dataset. "-" means that there is no ground-truth motif in the dataset

BA-Shapes Tree-Cycle Tree-Grids Cornell BA-3Motif Mutag BBBP NCI1

# of Nodes (avg.) 700 871 1231 183 21.92 30.32 25.95 29.87
# of Edges (avg.) 4110 1942 3130 280 29.51 30.77 24.06 32.30
# of Graphs 1 1 1 1 3000 4337 2039 4110
# of Classes 4 2 2 5 3 2 2 2
Motif house cycle grid - house/cycle/grid - - -
Target GNN GCN GCN GCN EGNN GCN GIN GCN GCN
Test accuracy 0.99 0.98 0.95 0.83 0.93 0.87 0.85 0.83

E Experiments

E.1 Dataset

In this work, we use four synthetic datasets: BA-shapes, Tree-Cycle, Tree-Grids, and BA-3Motif to
evaluate the efficacy of the proposed D4Explainer . In the node-classification task, the graph consists
of a base graph, which is randomly attached by different motifs, e.g., house, grid, cycle. The task is
to determine whether or not the node is a part of the motif. For the graph classification task, each
graph consists of a base graph randomly attached by one type of motif. The task is to classify what
type of motifs the graph contains.

We also test D4Explainer over real-world datasets, Cornell, Mutag, BBBP, and NCI1. Mutag, BBBP
and NCI1 are molecular datasets where each graph is labeled as either having a specific chemical
property or not. For Mutag, the mutagenicity of a molecule is linked to the presence of electron-
attracting elements combined with nitro groups (such as NO2). Additionally, molecules containing
three or more fused rings are more likely to be mutagenic compared to those with one or two rings
[64]. Cornell is a webpage dataset introduced by [52]. Nodes are web pages, and edges are hyperlinks
between them. Node features are bag-of-words representations of web pages. Nodes are classified
into one of five categories: Students, Projects, Courses, Faculty, and Staff. Cornell is a highly
heterophilous dataset, i.e., the adjacent nodes tend to have different features and labels, which further
poses a challenge to the explanation task. Nonetheless, there is no explicit motif that leads to a specific
class in real-world datasets. The statistical information of all datasets is summarized in Table 6. We
use different types of target GNNs to evaluate the performance of D4Explainer , including GCN,
GIN, and EGNN. The last row shows the test accuracy of the target GNN. Each target GNN achieves
more than 80% accuracy over the test dataset.

E.2 Metrics

We use the following metrics to evaluate the generated explanations, where the modification rate (MR)
is our proposed adjustment to the sparsity metric used in previous works [13, 36].

• Counterfactual Accuracy (CF-ACC) [13] measures whether the explainer can generate effective
counterfactual explanations. It is formulated as the proportion of generated explanations that
change the model’s prediction.

CF-ACC “ 1 ´
1

|G|

ÿ

GoPG
p1pŶGc “ ŶGoq, (13)

where Go is the original graph, Gc is the generated counterfactual explanation regarding Go , G
is the test dataset and |G| denotes the size of G. ŶG is the label of G predicted by the target GNN
f . 1p¨q is the indicator function to check whether ŶGc equals to ŶGo . Since we aim to generate
counterfactual explanations, a higher CF-ACC is better.

• Fidelity [3, 36] quantifies the change in predicted probability over the original class. It is
formulated as

Fidelity “
1

|G|

ÿ

GoPG

”

fpGoqrŶGos ´ fpGcqrŶGos

ı

, (14)

where fpGqrŶ s denotes the probability output of the model f for graph G over class Ŷ . A higher
fidelity score indicates better counterfactual explanations.
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• Modification ratio is the proportion of changed edges:

MR “
p# of deleted edges + # of added edgesq

|E|
, (15)

where |E| is the number of edges in the original graph. For baseline models that only consider
deleting edges, MR can be easily adjusted to the proportion of deleted edges with respect to the
original graph, which is the sparsity metric used in prior works [13, 36].

E.3 Model Parameters

Table 7: Optimal parameters for each dataset

num hidden num layers in PPGN batch size alpha

BA-shapes 64 6 4 0.005
Tree-Cycle 64 6 32 0.1
Tree-Grids 128 8 32 0.05
Cornell 128 6 4 0.05
BA-3Motif 128 6 32 0.05
Mutag 64 6 2 0.001
BBBP 128 6 16 0.005
NCI1 128 6 32 0.01

In the implementation, we need to perform multi-step diffusion. We uniformly sample sβt in the range
of r0, 0.5s to control the level of noise and generate the graph Gt with the corresponding level of
noise. Given each Gt, the denoising model is trained to recover the clean graph G̃0. During the
training stage, we employ Adam [65] as our optimizer and ExponentialLR [66] as the scheduler.
Table 7 shows the optimal numbers of hidden units, layers in PPGN, batch size, and the regularization
coefficient α for each dataset. We run 1500 epochs and set the initial learning rate as 1 ˆ 10´3 across
all datasets.

E.4 In-distribution Evaluation

MMD (Maximum Mean Discrepancy) is a metric used to compare the distance between two prob-
ability distributions. In the context of graph statistics, MMD can be used to compare the degree
distribution, cluster coefficient distribution, and spectrum distribution. MMD is also widely used for
accessing the distribution-learning ability of graph generative models [61, 19, 20, 62, 44].

A graph’s degree distribution represents the frequency of nodes with different degree values in the
graph. The clustering coefficient of a node is a measure of the node’s local clustering or the fraction of
triangles that the node participates in. Spectrum distribution refers to the distribution of eigenvalues
of the adjacency matrix or Laplacian matrix of a graph, which can be used to study the graph’s
structure and dynamics. The MMD between two sets of samples from distributions p and q can be
formulated as

MMD2
pp}qq “ Ex,y„prkpx, yqs ` Ex,y„qrkpx, yqs ´ 2Ex„p,y„qrkpx, yqs, (16)

where kpx, yq denotes the kernel function. Following the in-distribution evaluation setting in [61,
19, 20, 62, 44], we use Gaussian Earth Mover’s Distance kernel to compute the MMDs of degree
distributions, clustering coefficients, and spectrum distributions. Complete MMD results are shown
in Table 8.

E.5 Diversity Evaluation

Figure 8 shows the generated counterfactual examples for BA-shapes, Tree-Cycle, Tree-Grid, and
BA-3Motif. The graphs in the first row are the original graphs to explain. The second row shows
the counterfactual examples generated by CF-GNNExplainer. The last two rows show two types of
counterfactual examples generated by D4Explainer . Labels at the bottom right indicate the motif
contained in the graph. We find that the easiest way to generate counterfactual explanations is to
destroy the original motif by deleting essential edges, which we call "corruption".
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Table 8: MMD distances between the generated explanations and test graphs. We report MMD
distances of degree distributions (Deg.), cluster coefficients (Clus.), and spectrum distributions (Spec.).
Sum. means the summation of the previous three metrics. We bold the smallest value and underlined
the second-best value in each column.

BA-3Motif Mutag BBBP NCI1
Models Deg. Clus. Spec. Sum. Deg. Clus. Spec. Sum. Deg. Clus. Spec. Sum. Deg. Clus. Spec. Sum.
RamdomCaster 0.2336 0.0574 0.0532 0.3442 0.1593 0.0247 0.0417 0.2257 0.1693 0.0072 0.0397 0.2162 0.1847 1.9769 0.0404 2.2020
GNNExplainer 0.2366 0.0803 0.0531 0.3700 0.1614 0.0002 0.0409 0.2025 0.1615 0.0002 0.0395 0.2012 0.1577 0.0005 0.0405 0.1987
SAExplainer 0.2431 0.0108 0.0534 0.3073 0.0940 0.0032 0.0412 0.1384 0.1594 0.0032 0.0402 0.2028 0.189 0.0002 0.0408 0.2300
GradCam 0.2224 0.0825 0.0539 0.3588 0.1122 0.0083 0.0416 0.1621 0.0699 0.0026 0.0384 0.1109 0.1638 0.0003 0.0404 0.2045
IGExplainer 0.2474 0.0436 0.0533 0.3443 0.1292 0.0000 0.0411 0.1703 0.0908 0.0000 0.0394 0.1302 0.4288 0.0002 0.0398 0.4688
PGExplainer 0.2459 0.0308 0.0628 0.3395 0.1475 0.0002 0.0418 0.1895 0.2014 0.0018 0.0403 0.2435 0.1937 0.0000 0.0396 0.2333
PGMExplainer 0.2493 0.0246 0.0543 0.3282 0.1800 0.0002 0.0419 0.2221 0.1916 0.0003 0.0403 0.2322 0.2199 0.0000 0.0404 0.2603
CXPlain 0.2356 0.0412 0.0535 0.3303 0.1734 1.2706 0.0417 1.4857 0.1768 0.0001 0.0394 0.2163 0.1629 0.0001 0.0404 0.2034
CF-GNNExplainer 0.1669 0.0366 0.0531 0.2566 0.1172 0.0000 0.0380 0.1552 0.0870 0.0001 0.0393 0.1264 0.1224 0.0001 0.0404 0.1629
D4Explainer(ours) 0.1028 0.0265 0.0517 0.1810 0.1172 0.0000 0.0244 0.1416 0.0530 0.0000 0.0331 0.0861 0.1006 0.0000 0.0353 0.1359
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Figure 8: Counterfactual explanations generated by CF-GNNExplainer and D4Explainer over four
datasets. The labels at the bottom right represent the type of generated counterfactual explanations.
CF-GNNExplaienr can only corrupt the original motif, while D4Explainer can corrupt the original
motif and create the counterfactual motif.

Analysis. We observe from Figure 8 that the previous explainer alters the model’s prediction by
corrupting the original motif as its counterfactual explanation. Moreover, in the explanation task
for node classification, previous explainers tend to remove the connection between the node to be
explained and its neighbors. For example, in the second row of BA-shapes, Tree-Cycle, and Tree-Grid,
CF-GNN-Explainer deletes the edges between the blue node and its neighboring nodes. One possible
reason is that the isolated node cannot receive the messages from its neighbors with the well-trained
GNN, thus naturally becoming an out-of-distribution sample and degrading the model’s prediction
confidence. Instead, D4Explainer generates counterfactual explanations not only by destroying the
original motif but also by creating the truly counterfactual motifs, as shown in the last row of Figure 8.
It is noticeable that D4Explainer can identify the counterfactual motif and complete that based on the
original graph, which is hardly achieved by previous methods that only consider the edge deletion.

E.6 Complexity and Inference Time Evaluation

The computation of the loss function involves four steps. (1) uniformly sample t from r0, T s, (2)
apply forward diffusion process qpGt|G0q, (3) calculate pθpG0|Gtq via the denoising network and
(4) sample counterfactual graphs from pθpG0|Gtq. Let N denote the number of nodes in the original
graph. The time complexity is Op1q for Step(1) and OpN2q for Step(2) and OpN3q for Step(3) due
to the matrix multiplication. Step(4) results in a time complexity of OpN2q for sampling. Overall,
the time complexity of D4Explainer is mainly determined by the denoising network.

To empirically evaluate the efficiency of D4Explaienr, we conduct the runtime comparison between
D4Explainer and baselines. The results are shown in Table 9. Except for PGExplainer, other baselines
reported in Table 9 are non-generative, that is, the model optimizes an explanation for input instances
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one by one during the inference stage. Therefore, these models require more time to generate one
explanation and become less efficient. On the contrary, D4Explainer incorporates the generative
graph distribution learning into the optimization objective and captures the underlying distribution
of the explanation graphs over the entire dataset. Consequently, D4Explainer is relatively efficient
during the inference stage.

Table 9: Runtime analysis of all baselines. We compute mean/std values of inference time to generate
explanations for a single instance

GNNExplainer IGExplainer PGExplainer PGMExplainer CXPlain CF-GNNExplainer D4Explainer
Tree-Cycle 1.367±0.023 2.684±0.368 0.028±0.007 1.145±0.012 1.427±0.277 2.637±0.540 0.022±0.002
Mutag 1.492±0.037 3.157±0.454 0.035±0.005 1.576±0.038 1.842±0.320 2.741±0.536 0.030±0.006

E.7 Robustness Evaluation
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Figure 9: Robustness performance of all methods. The modification ratio is controlled as 20% across
all methods.
Following previous setup [36], we identify the K most relevant edges in the original counterfactual
explanation and compute the fraction of these edges present in the explanation of its noisy version,
denoted by Top-K Accuracy. We apply noise by randomly adding or removing edges with probability
σ. We restrict that σ ă 0.1, as the noise of larger σ may cause the noisy graph to switch the predicted
label. Top-K accuracy w.r.t. noise levels over three molecular datasets are shown in Fig. 9. As
shown in Figure 9, we observe that D4Explainer outperforms all baselines on BBBP and performs
comparably to PGExplainer on Mutag and IGExplainer on NCI1. To keep consistent, we show Top-K
Accuracy with noise levels from 0% to 10% for three datasets. However, with more than 5% noise,
only 65% of perturbed noisy graphs have the same label as the original one for NCI1, much smaller
than BBBP and Mutag. The high sensitivity of NCI1 to noise explains the drop in robustness as noise
increases past σ “ 0.05. Overall, results in Figure 9 demonstrate D4Explainer’s strong ability to
generate consistently effective counterfactual explanations despite the noise.

E.8 Model-level Explanation

Table 10 shows the quantitative comparison of probability and density in the model-level explanations
generated by XGNN and D4Exlainer. We generate 100 model-level explanations for each dataset
and compute the average probability (i.e., explanation confidence) and average density. As can be
observed from Table 10, D4Explainer outperforms XGNN over both metrics on four datasets in
general. Particularly, D4Explainer achieves almost 100% explanation confidence on three synthetic
datasets with an appropriate N , i.e., the number of nodes in the desired explanation. In many real-
world scenarios, the ground truth model-level explanations are not unique. That is, we can hardly
know the exact discriminative graph structure and feature that the GNNs learned for prediction. The
appropriate N might require domain-specific knowledge, while we can test with different N and
select the one that achieves the highest explanation confidence.

Table 11 reports the sensitivity of K and T , which denote the number of candidates and number of
iterations in the reverse sampling algorithm for model-level explanations, respectively. Similarly, we
utilize probability and density to quantitatively measure the properties of the generated explanations.
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Table 10: Quantitative comparison in terms of probability and density with different numbers of
nodes

BA-3Motif Mutag Tree-Grid Tree-Cycle
# nodes 5 6 7 6 7 8 8 9 10 5 6 7

D4Explainer Prob. 0.997 1.000 0.998 0.832 0.856 0.920 0.832 0.994 0.991 0.991 0.995 0.989
Density 0.313 0.327 0.294 0.278 0.327 0.315 0.369 0.372 0.379 0.400 0.381 0.343

XGNN Prob. 0.632 0.883 0.834 0.523 0.824 0.875 0.752 0.836 0.902 0.968 0.989 0.992
Density 0.552 0.444 0.433 0.537 0.479 0.437 0.421 0.406 0.439 0.400 0.390 0.367

Table 11: Hyperparameter sensitivity in model-level explanation generation

BA-3Motif (N=5) Mutag (N=6) Tree-Grid (N=9) Tree-Cycle (N=6)
hyper-parameters Prob. Density Prob. Density Prob. Density Prob. Density

(1) K “ 10, T “ 50 0.899 0.3152 0.799 0.314 0.901 0.400 0.987 0.372
(2) K “ 20, T “ 10 0.798 0.3277 0.524 0.284 0.897 0.383 0.991 0.388
(3) K “ 20, T “ 50 0.967 0.3126 0.812 0.295 0.994 0.372 0.994 0.361
(4) K “ 20, T “ 100 0.997 0.3133 0.832 0.278 0.972 0.427 0.992 0.325
(5) K “ 30, T “ 50 0.972 0.2972 0.823 0.287 0.994 0.355 0.997 0.361

From the table, we can observe that when T is small (e.g., T “ 10), the probability p is relatively
lower (see experiments 2, 3, 4), indicating that the quality of the generated model-level explanations
is sub-optimal. This result further emphasizes the effectiveness of multi-step sampling, which
progressively increases the explanation confidence. Additionally, we observe that the probability p
increases as K increases, under the same conditions of T (see experiments 1, 3, 5). This suggests that
increasing the number of candidates helps to obtain a good-quality model-level explanation within
fewer steps. In our implementation, we ensure K ě 20 and T ě 50 by default for a balance between
the quality and time complexity.

F Discussions

Limitations. In this paper, we explore the application of denoising diffusion models in generating
counterfactual and model-level explanations for Graph Neural Networks (GNNs). While D4Explainer
has shown promising results in terms of various metrics, including explanation accuracy, robustness,
diversity, etc.It still introduces unique challenges and limitations. Firstly, the computational complex-
ity of training D4Explainer on large-scale graph structures poses scalability concerns. Additionally,
the reliance on the underlying GNN architecture can limit the generalizability of the explanations
across different GNN models. Furthermore, in model-level explanations, high-quality explanations
rely on an appropriate number of nodes, which might require domain-specific knowledge.

Broader Impacts. The social impact of this work is twofold. On one hand, the ability to generate
counterfactual explanations for GNNs can enhance transparency and interpretability, empowering
users to understand and trust the decisions made by these models. By shedding light on the features
and interactions that contribute to specific predictions, this work can facilitate the identification
of biases, discriminatory patterns, and vulnerabilities present in GNNs. However, it is crucial to
acknowledge the limitations and potential risks associated with using generated explanations as they
might not always capture the complete causal relationships present in complex graph structures.
Consequently, relying solely on these explanations may lead to unintended consequences, such as
reinforcing existing biases or making incorrect assumptions about the model’s behavior.

Future Works. Moving forward, several important avenues for future research emerge from this study.
First, addressing the scalability challenges associated with training denoising diffusion models on
large-scale graph structures is a crucial direction. Developing efficient training algorithms, exploring
parallelization strategies, and investigating graph-specific optimizations can significantly improve
the applicability of D4Explainer to real-world large-scale graphs. Secondly, an interesting future
direction is to consider the node attributes and edge attributes during the explanation generation, e.g.,
by performing diffusion processes over continuous features. Moreover, future work should address
the potential risks associated with unintended consequences, biases, and misuse of explanations.
Developing guidelines and frameworks for responsible and accountable use of generated explanations
is crucial, particularly in high-stakes domains such as healthcare, finance, and criminal justice.
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