Cascading Bandits: Optimizing Recommendation Frequency in Delayed Feedback Environments Supplementary Material

1 Notations

- κ : index function, $\kappa(i)=j$ if and only if $S_{i}=\{j\}$
- ϑ : inverse function of κ, i.e., $\vartheta(i)=j$ if and only if $S_{j}=\{i\}$
- $\mathbf{v}=\left(v_{1}, v_{2}, \cdots, v_{N}\right)$: attraction probabilities of messages
- $\mathbf{R}=\left(R_{1}, R_{2}, \cdots, R_{N}\right)$: reward of messages
- D : re-targeting window
- $f(m)=\lceil m / D\rceil$: frequency when the total number of messages is m
- $q(m)$: the probability of staying in the system after skipping a message (i.e., no click) for users with dissemination frequency $f(m)$
- $\mathbf{q}=(q(1), q(2), \cdots, q(M)):$ a vector of q functions
- $w_{i}(m)$: the examine probability of message i when the total number of messages is m
- $U(\mathbf{S}, \mathbf{v}, q)$: the total payoff for sequence \mathbf{S} when parameters are \mathbf{v} and q
- γ_{i} : the characteristic parameter of message $i, \gamma_{i}=\frac{v_{i} R_{i}}{1-v_{i}(1-q(m))}$
- $T_{i}(t)$: the total number of feedback (i.e., sum of clicks and no-clicks) received for message i by time t
- $c_{i}(t)$: the number of clicks for message i by time t
- $\tilde{T}_{m}(t)$: the total number of no-clicks from users with dissemination frequency $f(m)$
- $b_{m}(t)$: the number of abandoned users with frequency $f(m)$ by time t
- $n_{m}(t):$ equals $\tilde{T}_{m}(t)-b_{m}(t)$
- $\mathcal{E}_{r}: t \in \mathcal{E}_{r}$ if the agent sends message to user r at time t
- $\epsilon_{m}(t)$: the set of time stamps that a message with frequency $f(m)$ is sent
- ρ_{r}^{k} : the time stamps when the $k^{\text {th }}$ message is sent to user r
- m_{r} : the number of total messages for user r and the corresponding frequency is $f\left(m_{r}\right)$
- $e_{t, k}^{r}$: the index of the $k^{t h}$ message sent to user r at time t
- O_{r}^{t} : the messages which have been sent to user r by time t
- $z_{i, t}$: the total number of times that message i is sent to users at time t
- $A_{i}(t)$: the set of time stamps of sending message i by time t
- $\mathbf{w}_{r, i}$: the features of message i at time r
- \mathbf{x}_{r} : the features of user r
- α_{m} : coefficients related to abandonment behavior when the frequency is $f(m)$
- β : coefficients related to the attraction probability of messages
- $Y_{r, i}: Y_{r, i}=1$ if user r clicks on the message i, and $Y_{r, i}=0$ otherwise
- $\hat{Y}_{r, j}: \hat{Y}_{r, j}=1$ if user r remains in the system after she does not click on the $j^{\text {th }}$ message in a list, while $\hat{Y}_{r, j}=0$ otherwise

2 Proofs

Throughout the paper, we will use coupling to prove several key results. For more information on this, we refer the reader to Section 2.2 in [1].

Theorem 2.2 In the optimal sequence \mathbf{S}^{*}, the characteristic parameter of messages $\gamma=\frac{v R}{1-v(1-q(m))}$ are sorted in a descending order.

Proof. We prove this theorem by contradiction. Assume the optimal sequence

$$
\mathbf{S}^{*}=\left(S_{1}, S_{2}, \cdots, S_{i}, S_{i+1}, \cdots, S_{m}\right)
$$

with $\gamma_{\kappa(i)}<\gamma_{\kappa(i+1)}$, which implies $v_{\kappa(i)} R_{\kappa(i)}\left(1-v_{\kappa(i+1)}(1-q(m))\right)<v_{\kappa(i+1)} R_{\kappa(i+1)}\left(1-v_{\kappa(i)}(1-\right.$ $q(m))$). The expected reward

$$
\begin{aligned}
& E\left[U\left(\mathbf{S}^{*}, \mathbf{v}, \mathbf{R}, q(m)\right)\right] \\
= & \sum_{k=1}^{m}\left[v_{\kappa(k)} R_{\kappa(k)} \prod_{s=1}^{k-1} q(m)\left(1-v_{\kappa(s)}\right)\right] \\
= & \sum_{1 \leq k \leq m, k \neq i, i+1}\left[v_{\kappa(k)} R_{\kappa(k)} \prod_{s=1}^{k-1} q(m)\left(1-v_{\kappa(s)}\right)\right]+v_{\kappa(i)} R_{\kappa(i)} \prod_{s=1}^{i-1} q(m)\left(1-v_{\kappa(s)}\right) \\
& +v_{\kappa(i+1)} R_{\kappa(i+1)} \prod_{s=1}^{i-1} q(m)\left(1-v_{\kappa(s)}\right)\left(\left(1-v_{\kappa(i)}\right) q(m)\right) .
\end{aligned}
$$

Consider the sequence $\mathbf{S}^{\prime}=\left(S_{1}, S_{2}, \cdots, S_{i+1}, S_{i}, \cdots, S_{m}\right)$. Similarly we have

$$
\begin{aligned}
& E\left[U\left(\mathbf{S}^{\prime}, \mathbf{v}, \mathbf{R}, q(m)\right)\right] \\
= & \sum_{1 \leq k \leq m, k \neq i, i+1}\left[v_{\kappa(k)} R_{\kappa(k)} \prod_{s=1}^{k-1} q(m)\left(1-v_{\kappa(s)}\right)\right]+v_{\kappa(i+1)} R_{\kappa(i+1)} \prod_{s=1}^{i-1} q(m)\left(1-v_{\kappa(s)}\right) \\
& +v_{\kappa(i)} R_{\kappa(i)} \prod_{s=1}^{i-1} q(m)\left(1-v_{\kappa(s)}\right)\left(\left(1-v_{\kappa(i+1)}\right) q(m)\right) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& E\left[U\left(\mathbf{S}^{*}, \mathbf{v}, \mathbf{R}, q(m)\right)\right]-E\left[U\left(\mathbf{S}^{\prime}, \mathbf{v}, \mathbf{R}, q(m)\right)\right] \\
= & \prod_{s=1}^{i-1}\left(\left(1-v_{\kappa(s)}\right) q(m)\right) \\
& \cdot\left[v_{\kappa(i)} R_{\kappa(i)}+v_{\kappa(i+1)} R_{\kappa(i+1)}\left(\left(1-v_{\kappa(i)}\right) q(m)\right)-v_{\kappa(i+1)} R_{\kappa(i+1)}-v_{\kappa(i)} R_{\kappa(i)}\left(\left(1-v_{\kappa(i)}\right) q(m)\right)\right] \\
< & 0
\end{aligned}
$$

It contradicts with the assumption that \mathbf{S}^{*} is the optimal sequence. Therefore, the characteristic parameter of messages $\gamma=\frac{v R}{1-v(1-q(m))}$ are sorted in a descending order.

Lemma 3.1 For any t, we have $P\left(v_{i, t}^{U C B}-\sqrt{8 \frac{\log t}{T_{i}(t)}}<v_{i}<v_{i, t}^{U C B}\right) \geq 1-\frac{2}{t^{4}}$ for all $i \in X$ and $P\left(q_{t}^{U C B}(m)-\sqrt{8 \frac{\log t}{\widetilde{T}_{m}(t)}}<q(m)<q_{t}^{U C B}(m)\right) \geq 1-\frac{2}{t^{4}}$ for all $1 \leq m \leq M$.

Proof. Firstly, it is easy to verify that $\hat{v}_{i, t}$ and $\hat{q}_{t}(m)$ are unbiased estimators. Applying Hoeffding's inequality, we have

$$
\begin{aligned}
& P\left(v_{i, t}^{U C B}<v_{i}\right)+P\left(v_{i, t}^{U C B}>v_{i}+2 \sqrt{2 \log t / T_{i}(t)}\right) \\
& =P\left(\hat{v}_{i, t}+\sqrt{2 \log t / T_{i}(t)}<v_{i}\right)+P\left(\hat{v}_{i, t}>v_{i}+\sqrt{2 \log t / T_{i}(t)}\right) \\
& =P\left(\left|\hat{v}_{i, t}-v_{i}\right|>\sqrt{2 \log t / T_{i}(t)}\right) \leq 2 \exp (-4 \log t)=\frac{2}{t^{4}} .
\end{aligned}
$$

It implies that

$$
P\left(v_{i, t}^{U C B}-\sqrt{\frac{8 \log t}{T_{i}(t)}}<v_{i}<v_{i, t}^{U C B}\right) \geq 1-\frac{2}{t^{4}} .
$$

Similarly, we have

$$
\begin{aligned}
& P\left(q_{t}^{U C B}(m)<q(m)\right)+P\left(q_{t}^{U C B}(m)>q(m)+2 \sqrt{2 \log t / \tilde{T}_{m}(t)}\right) \\
& =P\left(\hat{q}_{t}(m)+\sqrt{2 \log t / \tilde{T}_{m}(t)}<q(m)\right)+P\left(\hat{q}_{t}(m)>q(m)+\sqrt{2 \log t / \tilde{T}_{m}(t)}\right) \\
& =P\left(\left|\hat{q}_{t}(m)-q(m)\right|>\sqrt{2 \log t / \tilde{T}_{m}(t)}\right) \leq 2 \exp (-4 \log (t))=\frac{2}{t^{4}},
\end{aligned}
$$

which implies that

$$
P\left(q_{t}^{U C B}(m)-\sqrt{\frac{8 \log t}{\tilde{T}_{m}(t)}}<q(m)<q_{t}^{U C B}(m)\right) \geq 1-\frac{2}{t^{4}} .
$$

Lemma 3.2 Assume \mathbf{S}^{*} is the optimal sequence of messages with corresponding total message m^{*}. Under the condition that $0 \leq \mathbf{v} \leq \mathbf{v}^{U C B}$ and $0 \leq q\left(m^{*}\right) \leq q^{U C B}\left(m^{*}\right)$, we have

$$
E\left[U\left(\mathbf{S}^{*}, \mathbf{v}^{U C B}, \mathbf{R}, q^{U C B}\left(m^{*}\right)\right)\right] \geq E\left[U\left(\mathbf{S}^{*}, \mathbf{v}, \mathbf{R}, q\left(m^{*}\right)\right)\right]
$$

Proof. This Lemma describes the monotonic increasing property of total payoff with respect to both \mathbf{v} and $q\left(m^{*}\right)$. First, we couple the recommending process of $\left(\mathbf{S}^{*}, \mathbf{v}, \mathbf{R}, q^{U C B}\left(m^{*}\right)\right)$ (call this process targets on user 1) and ($\mathbf{S}^{*}, \mathbf{v}, \mathbf{R}, q\left(m^{*}\right)$) (call this process targets on user 2). Generate M independent random variables u_{j} for $j=1, \ldots, M$ which all follow the uniform distribution on $[0,1]$. The event $u_{j}<q\left(m^{*}\right)$ means that both users will stay after observing the $j^{\text {th }}$ unsatisfying message, while the event $u_{j}>q^{U C B}\left(m^{*}\right)$ means that both users will leave. $q\left(m^{*}\right) \leq u_{j} \leq q^{U C B}\left(m^{*}\right)$ means that user 1 will stay and user 2 will leave, in which case the coupling breaks. In all cases, recommending the sequence \mathbf{S}^{*} with parameters $\left(\mathbf{v}, q^{U C B}\left(m^{*}\right)\right)$ will have at least the same payoff as recommending the sequence \mathbf{S} with parameter $\left(\mathbf{v}, q\left(m^{*}\right)\right.$). Therefore, the increasing property of total payoff with respect to $q\left(m^{*}\right)$ has been proven.
Then consider two identical recommending lists with the attraction probability of only one message is different. Assume the k-th message has $v_{k 1}>v_{k 2}$, and $v_{i 1}=v_{i 2}, \quad \forall i \neq k$. Denote the expected return of the two lists as $E\left[U_{1}\right]$ and $E\left[U_{2}\right]$, respectively. We have

$$
\begin{aligned}
& E\left[U_{1}\right]-E\left[U_{2}\right] \\
= & \left(1-v_{b e f}\right)\left(v_{k 1} R_{k}+\left(1-v_{k 1}\right) R_{a f t e r}-v_{k 2} R_{k}-\left(1-v_{k 2}\right) R_{a f t e r}\right) \\
= & \left(1-v_{b e f}\right)\left(v_{k 1}-v_{k 2}\right)\left(R_{k}-R_{a f t e r}\right) \\
\geq & 0,
\end{aligned}
$$

with $R_{\text {bef }}, R_{\text {after }}$ means the expected return of all the messages before/after the k-th message respectively. The last inequality holds because $R_{k} \geq R_{\text {after }}$, otherwise removing the k-th message will give a higher return $R_{a f t e r}$. Since k can be any message, we have proven the increasing property of total payoff with respect to \mathbf{v}.

Lemma 3.3 When all messages have identical reward, for $t \in \mathcal{E}_{r}$ and any $q^{\prime} \in(0,1)$, we have

$$
\begin{aligned}
& E_{\pi}\left[E\left[\left(U\left(k, \mathbf{v}, \mathbf{R}, q^{\prime}\right)-U\left(e_{t, k}^{r}, \mathbf{v}, \mathbf{R}, q^{\prime}\right)\right) 1\left(\mathbf{v}_{t}^{U C B} \geq \mathbf{v}\right) \mid \mathcal{F}_{t-1}\right]\right] \\
& \leq E_{\pi}\left[E\left[\left(v_{e_{t, k}^{r}, t}^{U C B}-v_{e_{t, k}^{r}}^{r}\right) 1\left(\mathbf{v}_{t}^{U C B} \geq \mathbf{v}\right) \mid \mathcal{F}_{t-1}\right]\right]
\end{aligned}
$$

where $e_{t, k}^{r}$ is the index of the $k^{\text {th }}$ message sent to user r at time t.

Proof. Given the assumption, $v_{1} \geq v_{2} \geq \cdots \geq v_{N}$ in the optimal list. If $e_{t, k}^{r} \leq k$, the conclusion holds because $v_{e_{t, k}^{r}} \geq v_{k}$, which implies that $E\left[U\left(e_{t, k}^{r}, \mathbf{v}, \mathbf{R}, q\right)\right] \geq E[U(k, \mathbf{v}, \mathbf{R}, q)]$. Otherwise, if $e_{t, k}^{r}>k$, then $v_{e_{t, k}^{r}}^{r} \leq v_{k}$. Note that $v_{e_{t, k}^{r}, t}^{U C B}$ is at least the $k^{t h}$ largest among $\mathbf{v}_{t}^{U C B}$, otherwise $e_{t, k}^{r}$ will not be chosen. With $\mathbf{v}_{t}^{U C B} \geq \mathbf{v}$, we have $v_{k} \leq v_{e_{t, k}^{t}, t}^{U C B}$ because the $k^{t h}$ largest value in sequence $\mathbf{v}_{t}^{U C B}$ is larger than or equal to the $k^{t h}$ largest value in \mathbf{v}. Therefore, we have $v_{e_{t, k}^{r}} \leq v_{k} \leq v_{e_{t, k}^{r}, t}^{U C B}$. It implies that $v_{k}-v_{e_{t, k}^{r}} \leq v_{e_{t, k}^{r}, t}^{U C B}-v_{e_{t, k}^{r}}$. Thus, we have reached the desired result.

Theorem 3.4 The expected regret of Algorithm 2 is bounded above by

$$
\operatorname{Reg}(T) \leq C_{1}\left(N+M^{2}\right) \sqrt{T \log T}+C_{2} N \tau_{\max }
$$

for some constants C_{1} and C_{2}.
Proof. Firstly, we show that $\operatorname{Reg}(T) \leq C \operatorname{Reg} g_{i d e n}(T)$, where $\operatorname{Reg}_{i d e n}(T)$ denotes the regret of Algorithm 2 with messages with identical reward. Define $R_{\max }$ to be the maximum in the actual list, and S^{*} to be the optimal list. Thus, $\operatorname{Reg}(T) \leq R_{\max } U_{\max }^{*} \leq R_{\max } C^{\prime}\left(U^{*}-U^{S}\right)=C R e g_{\text {iden }}(T)$. The second inequality holds because $U_{\text {max }}^{*}$ can be bounded above and C^{\prime} can always be fixed selected in a specific problem.

Then we only need to discuss the identified-reward scenario. We omit the notation \mathbf{R} in the proof below within this scenario. Define the optimal length of message is m^{*} with the corresponding optimal staying probability $q_{*}=q\left(m^{*}\right)$. Assume the sequence offered to user r (entering at time $r)$ is \mathbf{S}^{r} with total message number m_{r}. We want to quantify the difference between the expected profit gained from \mathbf{S}^{r} and \mathbf{S}^{*} where $\mathbf{S}^{*}=\left(1,2, \cdots, m^{*}\right)$. First we note that

$$
\begin{align*}
& E_{\pi}\left[U\left(\mathbf{S}^{*}, \mathbf{v}, q_{*}\right)\right]-E_{\pi}\left[U\left(\mathbf{S}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right] \\
& =E_{\pi}\left[U\left(\mathbf{S}^{*}, \mathbf{v}, q_{*}\right)\right]-E_{\pi}\left[U\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m_{r}\right)\right)\right]+E_{\pi}\left[U\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m_{r}\right)\right)\right]-E_{\pi}\left[U\left(\mathbf{S}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right] . \tag{1}
\end{align*}
$$

Let \mathbf{S}_{0}^{r} denote the recommendation sequence for user r when she enters the system, i.e., \mathbf{S}_{0}^{r} is the optimal sequence given $\mathbf{v}_{r-1}^{U C B}$ and $\mathbf{q}_{r-1}^{U C B}$. Note that this list may change at a later time when more information becomes available. Define events

$$
B_{i, t}=\left\{v_{i, t}^{U C B}-\sqrt{8 \frac{\log t}{T_{i}(t)}}<v_{i}<v_{i, t}^{U C B}\right\} \text { and } E_{m, t}=\left\{q_{t}^{U C B}(m)-\sqrt{8 \frac{\log t}{\hat{T}_{m}(t)}}<q(m)<q_{t}^{U C B}(m)\right\} .
$$

Define $H_{t}=\bigcap_{i \in X} B_{i, t} \bigcap_{1 \leq m \leq M} E_{m, t}$ and $J_{t}=\bigcap_{i \in X} B_{i, t}$. On event H_{t}, firstly we have

$$
\begin{aligned}
& E_{\pi}\left[U\left(\mathbf{S}_{0}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right] \leq E_{\pi}\left[U\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m_{r}\right)\right)\right] \leq E_{\pi}\left[R\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m^{*}\right)\right)\right] \\
& \leq E_{\pi}\left[U\left(\mathbf{S}^{*}, \mathbf{v}_{r-1}^{U C B}, q_{r-1}^{U C B}\left(m^{*}\right)\right)\right] \leq E_{\pi}\left[U\left(\mathbf{S}_{0}^{r}, \mathbf{v}_{r-1}^{U C B}, q_{r-1}^{U C B}\left(m_{r}\right)\right)\right]
\end{aligned}
$$

where the first inequality holds because \mathbf{S}^{*} is the optimal order (arranged from the highest attraction probability to the lowest), the second inequality holds because $q\left(m^{*}\right)$ is the staying probability corresponding to the optimal frequency m^{*}, the third inequality holds because of Lemma 3.2, and the fourth inequality holds because \mathbf{S}_{0}^{r} is the optimal sequence given values $\mathbf{v}_{r-1}^{U C B}$ and $\mathbf{q}_{r-1}^{U C B}$. Thus we have

$$
E_{\pi}\left[\left(U\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m^{*}\right)\right)-U\left(\mathbf{S}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right) 1\left(H_{r-1}\right)\right]
$$

$$
\leq E_{\pi}\left[\left(U\left(\mathbf{S}_{0}^{r}, \mathbf{v}_{r-1}^{U C B}, q_{r-1}^{U C B}\left(m_{r}\right)\right)-U\left(\mathbf{S}_{0}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right) 1\left(H_{r-1}\right)\right]
$$

To get the difference between the expected payoff of two items above, we use coupling to bound the difference between the recommending process \mathbf{S}_{0}^{r} with $q_{r-1}^{U C B}\left(m_{r}\right), \mathbf{v}_{r-1}^{U C B}$ (call this process targets on user 1) and \mathbf{S}_{0}^{r} with $q\left(m_{r}\right), \mathbf{v}$ (call this process targets on user 2). For the $k^{t h}$ recommendation where k ranges from 1 to m_{r}, generate two independent uniform random variables $w_{1} \sim u n i f[0,1]$ and $w_{2} \sim \operatorname{unif}[0,1]$. The event $w_{1} \leq v_{\mathbf{S}_{0}^{r}(k)}$ means that both click on the $k^{\text {th }}$ message. The event $w_{1} \geq v_{\mathbf{S}_{0}^{r}(k), r-1}^{U C B}$ means that both do not click on the $k^{t h}$ message. If $v_{\mathbf{S}_{0}^{r}(k)} \leq w_{1} \leq v_{\mathbf{S}_{0}^{r}(k), r-1}^{U C B}$, the coupling process breaks, i.e., user 1 clicks on the $k^{\text {th }}$ message but user 2 does not click on the message. The event $w_{2} \leq q\left(m_{r}\right)$ denotes that both stay in the system. If $w_{2} \geq q_{r-1}^{U C B}\left(m_{r}\right)$, both exit the system. If $q\left(m_{r}\right)<w_{2}<q_{r-1}^{U C B}\left(m_{r}\right)$ and $w_{1} \geq v_{\mathbf{S}_{0}^{r}(k), r-1}^{U C B}$, user 1 chooses to stay in the system and user 2 exits the system, so the coupling process breaks. Let $\hat{\tau}_{r}$ denote the stopping time that the coupling process breaks. Also define ε_{m} as the set of time stamps that a message with frequency $f(m)$ is sent to user and ρ_{r}^{k} as the time to offer the $k^{t h}$ message to user r. Thus we have

$$
\begin{aligned}
& E_{\pi}\left[E\left[\left(U\left(\mathbf{S}_{0}^{r}, \mathbf{v}_{r-1}^{U C B}, q_{r-1}^{U C B}\left(m_{r}\right)\right)-U\left(\mathbf{S}_{0}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right) 1\left(H_{r-1}\right) \mid \mathcal{F}_{r-1}\right]\right] \\
& \leq E_{\pi}\left[E\left[\sum_{k=1}^{m_{r}} 1\left(\hat{\tau}_{r}=k\right) 1\left(H_{r-1}\right) \mid \mathcal{F}_{r-1}\right]\right] \\
& \leq E_{\pi}\left[E\left[\sum_{k=1}^{m_{r}} \sum_{i=1}^{N} 1\left(i \in \mathbf{S}_{0}^{r}(k)\right)\left(v_{i, r-1}^{U C B}-v_{i}\right) 1\left(H_{r-1}\right) \mid \mathcal{F}_{r-1}\right]\right] \\
& \\
& \quad+E_{\pi}\left[E\left[\sum_{k=1}^{m_{r}} 1\left(\rho_{r}^{k} \in \varepsilon_{m_{r}}\right)\left(q_{r-1}^{U C B}\left(m_{r}\right)-q\left(m_{r}\right)\right) 1\left(H_{r-1}\right) \mid \mathcal{F}_{r-1}\right]\right] \\
& \leq E_{\pi}\left[\sum_{k=1}^{m_{r}} \sum_{i=1}^{N} 1\left(i \in \mathbf{S}_{0}^{r}(k)\right) \sqrt{8 \frac{\log (r-1)}{T_{i}(r-1)}}\right]+E_{\pi}\left[\sum_{k=1}^{m_{r}} 1\left(\rho_{r}^{k} \in \varepsilon_{m_{r}}\right) \sqrt{8 \frac{\log (r-1)}{n_{m_{r}}(r-1)}}\right]
\end{aligned}
$$

Summing over all the time steps, we have

$$
\begin{aligned}
& \sum_{r=1}^{T} E_{\pi}\left[E\left[\left(U\left(\mathbf{S}_{0}^{r}, \mathbf{v}_{r-1}^{U C B}, q_{r-1}^{U C B}\left(m_{r}\right)\right)-U\left(\mathbf{S}_{0}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right) 1\left(H_{r-1}\right) \mid \mathcal{F}_{r-1}\right]\right] \\
& \leq C_{1} \sqrt{\log T} \sum_{r=1}^{T} E_{\pi}\left[\sum_{i=1}^{N} \sum_{k=1}^{m_{r}} 1\left(i \in \mathbf{S}_{0}^{r}(k)\right) \sqrt{\frac{1}{T_{i}(r-1)}}\right] \\
& \quad+C_{1} \sqrt{\log T} \sum_{r=1}^{T} E_{\pi}\left[\sum_{k=1}^{m_{r}} 1\left(\rho_{r}^{k} \in \varepsilon_{m_{r}}\right) \sqrt{\frac{1}{n_{m_{r}}\left(\rho_{r}^{k}-1\right)}}\right] \\
& \leq C_{2} \sqrt{\log T} \sum_{i=1}^{N} E_{\pi}\left[\sqrt{T_{i}(T)}\right]+C_{2} M \sqrt{\log T} \sum_{m=1}^{M} \sum_{t=1}^{T} E_{\pi}\left[1\left(t \in \varepsilon_{m}\right) \sqrt{\frac{1}{n_{m}(t-1)}}\right] .
\end{aligned}
$$

If $t \in \varepsilon_{m}$, then the user has at least probability $1-v_{\max }$ to reject the message, in which case the user has the choice to abandon the system. Therefore, if $t \in \varepsilon_{m}, n_{m}(t+1)=n_{m}(t)+1$ with
probability at least $1-v_{\max }$. It implies that for any $m=1 \cdots M$,

$$
\sum_{t=1}^{T} E_{\pi}\left[1\left(t \in \varepsilon_{m}\right) \sqrt{\frac{1}{n_{m}(t-1)}}\right] \leq \frac{1}{1-v_{\max }} E_{\pi}\left[\sqrt{n_{m}(T)}\right] \leq C_{3} E_{\pi}\left[\sqrt{n_{m}(T)}\right]
$$

Since $\sum_{m=1}^{M} n_{m}(T) \leq T M$ with probability 1 , we have

$$
\sum_{m=1}^{M} E_{\pi}\left[\sqrt{n_{m}(T)}\right] \leq M \sqrt{T}
$$

Since $\sum_{i=1}^{N} T_{i}(T) \leq \min (M, N) T$ with probability 1 , we have

$$
\sum_{i=1}^{N} E_{\pi}\left[\sqrt{T_{i}(T)}\right] \leq \sqrt{N \min (M, N) T}
$$

Thus, we get the inequality that

$$
\begin{aligned}
& \sum_{r=1}^{T} E_{\pi}\left[E\left[\left(U\left(\mathbf{S}_{0}^{r}, \mathbf{v}_{r-1}^{U C B}, q_{r-1}^{U C B}\left(m_{r}\right)\right)-U\left(\mathbf{S}_{0}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right) 1\left(H_{r-1}\right) \mid \mathcal{F}_{r-1}\right]\right] \\
& \leq C_{2} N \sqrt{T \log T}+C_{3} M^{2} \sqrt{T \log T}
\end{aligned}
$$

Applying Lemma 3.1, we have

$$
\begin{aligned}
& \sum_{r=1}^{T} E_{\pi}\left[1\left(H_{r}^{c}\right)\right] \leq \sum_{r=1}^{T} \sum_{i=1}^{N} E_{\pi}\left[1\left(B_{i, r}^{c}\right)\right]+\sum_{r=1}^{T} \sum_{m=1}^{M} E_{\pi}\left[1\left(E_{m, r}^{c}\right)\right] \\
& \leq N \sum_{t=1}^{T} \frac{2}{t^{4}}+M \sum_{t=1}^{T} \frac{2}{t^{4}} \leq C_{4}(N+M) .
\end{aligned}
$$

For Equation (1), now we bound the difference between $E_{\pi}\left[U\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m_{r}\right)\right)\right]$ and $E_{\pi}\left[U\left(\mathbf{S}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right]$. Note that \mathbf{S}^{r} is an adapted sequence, which can be different from \mathbf{S}_{0}^{r}, so we use coupling to bound the difference. We couple the recommending process of \mathbf{S}^{*} (call this to user 1) and \mathbf{S}^{r} (call this to user 2) when the total number of messages is m_{r}. For the $k^{t h}$ recommending message at time t to user r, set $a_{1}=\min \left\{v_{k}, v_{e_{t, k}^{r}, t}\right\}$ and $a_{2}=\max \left\{v_{k}, v_{e_{t, k}^{r}}, t\right.$. Generate two independent uniform random variables $w_{1} \sim$ unif $[0,1]$ and $w_{2} \sim \operatorname{unif}[0,1]$. The event $w_{1}<a_{1}$ denotes that both click on the $k^{t h}$ message. If $w_{1} \geq a_{2}$, both do not choose the $k^{t h}$ recommending message. When $v_{e_{t, k}^{r}, t}<v_{k}, a_{1} \leq w_{2}<a_{2}$ means that the $k^{t h}$ message is chosen in \mathbf{S}^{*} but not in \mathbf{S}^{r}, and vice versa. Either case means that the coupling process breaks. If $w_{2} \geq q\left(m_{r}\right)$, then both exit the system. Otherwise, they will both get the next message unless the whole sequence has run out. Define the stopping time $\tilde{\tau}_{r}$ as the time that the coupling breaks for user r, i.e., the recommendation in \mathbf{S}^{*} with parameters \mathbf{v} and $q\left(m_{r}\right)$ is a success but that in \mathbf{S}^{r} with parameters \mathbf{v} and $q\left(m_{r}\right)$ is a failure. Then we have

$$
E_{\pi}\left[U\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m_{r}\right)\right)\right]-E_{\pi}\left[U\left(\mathbf{S}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right] \leq E_{\pi}\left[\sum_{k=1}^{m_{r}} 1\left(\tilde{\tau}_{r}=k\right)\right]
$$

Now we consider another recommending process \mathbf{S}^{r} with message value $v_{e_{t, k}, t}^{U C B}$ where $t=\rho_{r}^{k}$ for $k=1, \cdots, m_{r}$. Use the same process to couple \mathbf{S}^{r} with parameter $v_{e_{t, k}^{r}, t}^{U C B}$ and \mathbf{v}. Define τ_{r}^{\prime} as the stopping time. On the event that $\mathbf{v}_{\rho_{r}^{k}}^{U C B} \geq \mathbf{v}$ for $k=1, \cdots, m_{l}$ and $\mathbf{q}_{\rho_{r}^{k}}^{U C B} \geq \mathbf{q}$, we have

$$
E\left[\sum_{k=1}^{m_{r}} 1\left(\tilde{\tau}_{r}=k\right)\right] \leq E\left[\sum_{k=1}^{m_{r}} 1\left(\tau_{r}^{\prime}=k\right)\right] .
$$

Recall that $J_{t}=\bigcap_{i \in X} B_{i, t}$. We therefore have

$$
\begin{aligned}
& E_{\pi}\left[E\left[\left(U\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m_{r}\right),\right)-U\left(\mathbf{S}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right) \prod_{k=1}^{m_{r}} 1\left(J_{\rho_{r}^{k}-1}\right) \mid \mathcal{F}_{r-1}\right]\right] \\
& \leq E_{\pi}\left[\sum_{k=1}^{m_{r}} 1\left(\tau_{r}^{\prime}=k\right) 1\left(J_{\rho_{r}^{k}-1}\right) \mid \mathcal{F}_{r-1}\right] \\
& =E_{\pi}\left[\sum_{k=1}^{m_{r}} \sum_{i=1}^{N} 1\left(i \in S_{k}^{r}\right)\left(v_{i, \rho_{r}^{k}-1}^{U C B}-v_{i}\right) 1\left(J_{\rho_{r}^{k}-1}\right)\right] \\
& \leq E_{\pi}\left[\sum_{k=1}^{m_{r}} \sum_{i=1}^{N} 1\left(i \in S_{k}^{r}\right) \sqrt{8 \frac{\log \left(\rho_{r}^{k}-1\right)}{T_{i}\left(\rho_{r}^{k}-1\right)}}\right] .
\end{aligned}
$$

Define $z_{i, t}$ as the total number of times that message i is sent to users at time t. If none of item i is recommended at time $t, z_{i, t}=0$. Define $A_{i}(t)$ as the set of time of recommending i before time t. Summing over all users, we have

$$
\begin{aligned}
& \sum_{r=1}^{T} E_{\pi}\left[U\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m_{r}\right)\right)-U\left(\mathbf{S}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right] \\
& \leq E_{\pi}\left[\sum_{t=1}^{T} \sum_{i=1}^{N} z_{i, t} \sqrt{8 \frac{\log t}{T_{i}(t-1)}}\right]+\sum_{r=1}^{T} E_{\pi}\left[\sum_{k=1}^{m_{r}} 1\left(J_{\rho_{r}^{k}-1}^{c}\right)\right] \\
& \leq C_{5} \sqrt{\log T} \sum_{i=1}^{N} E_{\pi}\left[\sum_{t=1}^{T} z_{i, t} \sqrt{\frac{1}{T_{i}(t-1)}}\right]+D E_{\pi}\left[\sum_{t=1}^{T} 1\left(J_{t}^{c}\right)\right]
\end{aligned}
$$

where D is the duration of the recommending horizon and C is some constant. The last inequality $\sum_{r=1}^{T} E_{\pi}\left[\sum_{k=1}^{m_{r}} 1\left(J_{\rho_{r}^{k}-1}^{c}\right)\right] \leq D E_{\pi}\left[\sum_{t=1}^{T} 1\left(J_{t}^{c}\right)\right]$ holds because the total recommending duration is at most D, which implies that for any r and $k, \rho_{r}^{k} \leq r+D$. Because of the delayed feedback, user response will be received after at most $\tau_{\max }$ time periods. Recall that τ is the delayed time, so we have

$$
T_{i}(t) \geq \sum_{s \in A_{i}(t)} \sum_{j=1}^{z_{i, s}} 1(\tau \leq(t-s))
$$

Since we assume τ has finite support and the maximum possible value is $\tau_{\text {max }}$, an obvious bound would be

$$
T_{i}(t) \geq \sum_{s \in A_{i}\left(t-\tau_{\max }\right)} z_{i, s}
$$

We thus have for each $i \in X$,

$$
\begin{aligned}
& E_{\pi}\left[\sum_{t=1}^{T} z_{i, t} \sqrt{\frac{1}{T_{i}(t-1)}}\right] \leq E_{\pi}\left[\sum_{t=1}^{\tau_{\max }} z_{i, t}\right]+E_{\pi}\left[\sum_{t=\tau_{\max }+1}^{T} z_{i, t} \sqrt{\frac{1}{\sum_{s=1}^{t-\tau_{\max }} z_{i, s}}}\right] \\
& \leq E_{\pi}\left[\sum_{t=1}^{\tau_{\max }} z_{i, t}\right]+E_{\pi}\left[\sum_{t=\tau_{\max }+1}^{T} \sum_{k=1}^{z_{i, t}} \sqrt{\frac{1}{\sum_{s=1}^{t-\tau_{\max }} z_{i, s}}}\right] \\
& \leq E_{\pi}\left[\sum_{t=1}^{\tau_{\text {max }}} z_{i, t}\right]+E_{\pi}\left[\sum_{t=\tau_{\max }+1}^{T} \sum_{k=1}^{z_{i, t}} \sqrt{\frac{1}{\sum_{s=1}^{t-\tau_{\text {max }}} z_{i, s}}}-\sum_{t=\tau_{\max }+1}^{T} \sum_{k=1}^{z_{i, t}} \sqrt{\frac{1}{\sum_{s=1}^{t-1} z_{i, s}+k}}\right. \\
& \left.+\sum_{t=\tau_{\max }+1}^{T} \sum_{k=1}^{z_{i, t}} \sqrt{\frac{1}{\sum_{s=1}^{t-1} z_{i, s}+k}}\right] \\
& \leq E_{\pi}\left[\sum_{t=1}^{\tau_{\max }} z_{i, t}\right]+E_{\pi}\left[\sum_{t=\tau_{\max }+1}^{T} \sum_{k=1}^{z_{i, t}} \sqrt{\frac{1}{\sum_{s=1}^{t-\tau_{\max }} z_{i, s}}}-\sqrt{\frac{1}{\sum_{s=1}^{t-1} z_{i, s}+k}}\right] \\
& +E_{\pi}\left[\sum_{t=\tau_{\max }+1}^{T} \sum_{k=1}^{z_{i, t}} \sqrt{\frac{1}{\sum_{s=1}^{t-1} z_{i, s}+k}}\right] \\
& \leq E_{\pi}\left[\sum_{t=1}^{\tau_{\max }} z_{i, t}\right]+E_{\pi}\left[\sum_{t=\tau_{\max }+1}^{T} \sum_{k=1}^{z_{i, t}} \frac{\sum_{s=t-\tau_{\max }+1}^{t-1} z_{i, s}+k}{2\left(\sum_{s=1}^{t-\tau_{\max }} z_{i, s}\right)^{3 / 2}}\right] \\
& +E_{\pi}\left[\sum_{t=\tau_{\max }+1}^{T} \sum_{k=1}^{z_{i, t}} \sqrt{\frac{1}{\sum_{s=1}^{t-1} z_{i, s}+k}}\right] .
\end{aligned}
$$

Since re-targeting duration is at most D, all users arriving before $t-D$ does not receive any further messages. It implies that $z_{i, t} \leq D$. Thus,

$$
\begin{aligned}
& E_{\pi}\left[\sum_{t=1}^{\tau_{\max }} z_{i, t}\right]+E_{\pi}\left[\sum_{t=\tau_{\max }+1}^{T} \sum_{k=1}^{z_{i, t}} \frac{\sum_{s=t-\tau_{\max }+1}^{t-1} z_{i, s}+k}{2\left(\sum_{s=1}^{t-\tau_{\max }} z_{i, s}\right)^{3 / 2}}\right] \\
& \leq D \tau_{\max }+C_{6} D^{2} \tau_{\max }+D \leq C_{7} \tau_{\max } .
\end{aligned}
$$

We further have

$$
E_{\pi}\left[\sum_{t=\tau_{\max }+1}^{T} \sum_{k=1}^{z_{i, t}} \sqrt{\frac{1}{\sum_{s=1}^{t-1} z_{i, s}+k}}\right] \leq C_{8} E_{\pi}\left[\sqrt{T_{i}(T)}\right] \leq C_{8} \sqrt{T},
$$

where $T_{i}(T)$ denotes the number of message i offerings before time T. Applying Lemma 3.1, we have

$$
E_{\pi}\left[\sum_{t=1}^{T} 1\left(J_{t}^{c}\right)\right] \leq \sum_{i \in X} E_{\pi}\left[\sum_{t=1}^{T} 1\left(B_{i, t}^{c}\right)\right] \leq N \sum_{t=1}^{T} \frac{2}{t^{4}} \leq C_{9} N .
$$

Combining all the results above, we have

$$
\sum_{r=1}^{T} E_{\pi}\left[U\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m^{*}\right)\right)\right]-E_{\pi}\left[U\left(\mathbf{S}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right]
$$

$$
\begin{aligned}
& \leq \sum_{r=1}^{T} E_{\pi}\left[\left(U\left(\mathbf{S}^{*}, \mathbf{v}, q\left(m^{*}\right)\right)-U\left(\mathbf{S}^{r}, \mathbf{v}, q\left(m_{r}\right)\right)\right) 1\left(H_{r}\right)\right]+\sum_{r=1}^{T} E_{\pi}\left[1\left(H_{r}^{c}\right)\right] \\
& \leq C\left(N+M^{2}\right) \sqrt{T \log T}+C^{\prime} N \tau_{\max }
\end{aligned}
$$

References

[1] Remco Van Der Hofstad. Random graphs and complex networks, volume 1. Cambridge university press, 2016.

