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1 Notations

• κ : index function, κ(i) = j if and only if Si = {j}

• ϑ : inverse function of κ, i.e., ϑ(i) = j if and only if Sj = {i}

• v = (v1, v2, · · · , vN ): attraction probabilities of messages

• R = (R1, R2, · · · , RN ): reward of messages

• D: re-targeting window

• f(m) = ⌈m/D⌉: frequency when the total number of messages is m

• q(m) : the probability of staying in the system after skipping a message (i.e., no click) for
users with dissemination frequency f(m)

• q = (q(1), q(2), · · · , q(M)): a vector of q functions

• wi(m): the examine probability of message i when the total number of messages is m

• U(S,v, q): the total payoff for sequence S when parameters are v and q

• γi: the characteristic parameter of message i, γi =
viRi

1−vi(1−q(m))

• Ti(t): the total number of feedback (i.e., sum of clicks and no-clicks) received for message i
by time t

• ci(t): the number of clicks for message i by time t

• T̃m(t): the total number of no-clicks from users with dissemination frequency f(m)

• bm(t): the number of abandoned users with frequency f(m) by time t

• nm(t): equals T̃m(t)− bm(t)

• Er : t ∈ Er if the agent sends message to user r at time t

• ϵm(t) : the set of time stamps that a message with frequency f(m) is sent

• ρkr : the time stamps when the kth message is sent to user r

• mr : the number of total messages for user r and the corresponding frequency is f(mr)
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• ert,k : the index of the kth message sent to user r at time t

• Ot
r: the messages which have been sent to user r by time t

• zi,t: the total number of times that message i is sent to users at time t

• Ai(t): the set of time stamps of sending message i by time t

• wr,i: the features of message i at time r

• xr : the features of user r

• αm : coefficients related to abandonment behavior when the frequency is f(m)

• β: coefficients related to the attraction probability of messages

• Yr,i: Yr,i = 1 if user r clicks on the message i, and Yr,i = 0 otherwise

• Ŷr,j : Ŷr,j = 1 if user r remains in the system after she does not click on the jth message in a
list, while Ŷr,j = 0 otherwise

2 Proofs

Throughout the paper, we will use coupling to prove several key results. For more information on
this, we refer the reader to Section 2.2 in [1].

Theorem 2.2 In the optimal sequence S∗, the characteristic parameter of messages γ = vR
1−v(1−q(m))

are sorted in a descending order.

Proof. We prove this theorem by contradiction. Assume the optimal sequence

S∗ = (S1, S2, · · · , Si, Si+1, · · · , Sm),

with γκ(i) < γκ(i+1), which implies vκ(i)Rκ(i)(1 − vκ(i+1)(1 − q(m))) < vκ(i+1)Rκ(i+1)(1 − vκ(i)(1 −
q(m))). The expected reward

E[U(S∗,v,R, q(m))]

=
m∑
k=1

[vκ(k)Rκ(k)

k−1∏
s=1

q(m)(1− vκ(s))]

=
∑

1≤k≤m,k ̸=i,i+1

[vκ(k)Rκ(k)

k−1∏
s=1

q(m)(1− vκ(s))] + vκ(i)Rκ(i)

i−1∏
s=1

q(m)(1− vκ(s))

+ vκ(i+1)Rκ(i+1)

i−1∏
s=1

q(m)(1− vκ(s))((1− vκ(i))q(m)).
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Consider the sequence S′ = (S1, S2, · · · , Si+1, Si, · · · , Sm). Similarly we have

E[U(S′,v,R, q(m))]

=
∑

1≤k≤m,k ̸=i,i+1

[vκ(k)Rκ(k)

k−1∏
s=1

q(m)(1− vκ(s))] + vκ(i+1)Rκ(i+1)

i−1∏
s=1

q(m)(1− vκ(s))

+ vκ(i)Rκ(i)

i−1∏
s=1

q(m)(1− vκ(s))((1− vκ(i+1))q(m)).

Thus,

E[U(S∗,v,R, q(m))]− E[U(S′,v,R, q(m))]

=
i−1∏
s=1

((1− vκ(s))q(m))

· [vκ(i)Rκ(i) + vκ(i+1)Rκ(i+1)((1− vκ(i))q(m))− vκ(i+1)Rκ(i+1) − vκ(i)Rκ(i)((1− vκ(i))q(m))]

<0.

It contradicts with the assumption that S∗ is the optimal sequence. Therefore, the characteristic
parameter of messages γ = vR

1−v(1−q(m)) are sorted in a descending order. □

Lemma 3.1 For any t, we have P
(
vUCB
i,t −

√
8 log t
Ti(t)

< vi < vUCB
i,t

)
≥ 1 − 2

t4
for all i ∈ X and

P
(
qUCB
t (m)−

√
8 log t

T̃m(t)
< q(m) < qUCB

t (m)
)
≥ 1− 2

t4
for all 1 ≤ m ≤ M .

Proof. Firstly, it is easy to verify that v̂i,t and q̂t(m) are unbiased estimators. Applying Hoeffding’s
inequality, we have

P
(
vUCB
i,t < vi

)
+ P

(
vUCB
i,t > vi + 2

√
2 log t/Ti(t)

)
= P

(
v̂i,t +

√
2 log t/Ti(t) < vi

)
+ P

(
v̂i,t > vi +

√
2 log t/Ti(t)

)
= P

(
|v̂i,t − vi| >

√
2 log t/Ti(t)

)
≤ 2exp(−4 log t) =

2

t4
.

It implies that

P

(
vUCB
i,t −

√
8 log t

Ti(t)
< vi < vUCB

i,t

)
≥ 1− 2

t4
.

Similarly, we have

P
(
qUCB
t (m) < q(m)

)
+ P

(
qUCB
t (m) > q(m) + 2

√
2 log t/T̃m(t)

)
= P

(
q̂t(m) +

√
2 log t/T̃m(t) < q(m)

)
+ P

(
q̂t(m) > q(m) +

√
2 log t/T̃m(t)

)
= P

(
|q̂t(m)− q(m)| >

√
2 log t/T̃m(t)

)
≤ 2 exp(−4 log(t)) =

2

t4
,
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which implies that

P

(
qUCB
t (m)−

√
8 log t

T̃m(t)
< q(m) < qUCB

t (m)

)
≥ 1− 2

t4
.

□

Lemma 3.2 Assume S∗ is the optimal sequence of messages with corresponding total message m∗.
Under the condition that 0 ≤ v ≤ vUCB and 0 ≤ q(m∗) ≤ qUCB(m∗), we have

E[U(S∗,vUCB,R, qUCB(m∗))] ≥ E[U(S∗,v,R, q(m∗))].

Proof. This Lemma describes the monotonic increasing property of total payoff with respect to
both v and q(m∗). First, we couple the recommending process of (S∗,v,R, qUCB(m∗)) (call this
process targets on user 1) and (S∗,v,R, q(m∗)) (call this process targets on user 2). Generate M
independent random variables uj for j = 1, . . . ,M which all follow the uniform distribution on
[0,1]. The event uj < q(m∗) means that both users will stay after observing the jth unsatisfying
message, while the event uj > qUCB(m∗) means that both users will leave. q(m∗) ≤ uj ≤ qUCB(m∗)
means that user 1 will stay and user 2 will leave, in which case the coupling breaks. In all cases,
recommending the sequence S∗ with parameters (v, qUCB(m∗)) will have at least the same payoff
as recommending the sequence S with parameter (v, q(m∗)). Therefore, the increasing property of
total payoff with respect to q(m∗) has been proven.

Then consider two identical recommending lists with the attraction probability of only one message
is different. Assume the k-th message has vk1 > vk2, and vi1 = vi2, ∀i ̸= k. Denote the expected
return of the two lists as E[U1] and E[U2], respectively. We have

E[U1]− E[U2]

=(1− vbef )(vk1Rk + (1− vk1)Rafter − vk2Rk − (1− vk2)Rafter)

=(1− vbef )(vk1 − vk2)(Rk −Rafter)

≥0,

with Rbef , Rafter means the expected return of all the messages before/after the k-th message
respectively. The last inequality holds because Rk ≥ Rafter, otherwise removing the k-th message
will give a higher return Rafter. Since k can be any message, we have proven the increasing property
of total payoff with respect to v. □

Lemma 3.3 When all messages have identical reward, for t ∈ Er and any q′ ∈ (0, 1), we have

Eπ[E[(U(k,v,R, q′)− U(ert,k,v,R, q′))1(vUCB
t ≥ v)|Ft−1]]

≤ Eπ

[
E
[(

vUCB
ert,k,t

− vert,k

)
1(vUCB

t ≥ v)|Ft−1

]]
,

where ert,k is the index of the kth message sent to user r at time t.
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Proof. Given the assumption, v1 ≥ v2 ≥ · · · ≥ vN in the optimal list. If ert,k ≤ k, the conclusion
holds because vert,k ≥ vk, which implies that E[U(ert,k,v,R, q)] ≥ E[U(k,v,R, q)]. Otherwise, if

ert,k > k, then vert,k ≤ vk. Note that vUCB
ert,k,t

is at least the kth largest among vUCB
t , otherwise ert,k

will not be chosen. With vUCB
t ≥ v, we have vk ≤ vUCB

ert,k,t
because the kth largest value in sequence

vUCB
t is larger than or equal to the kth largest value in v. Therefore, we have vert,k ≤ vk ≤ vUCB

ert,k,t
.

It implies that vk − vert,k ≤ vUCB
ert,k,t

− vert,k . Thus, we have reached the desired result. □

Theorem 3.4 The expected regret of Algorithm 2 is bounded above by

Reg(T ) ≤ C1(N +M2)
√

T log T + C2Nτmax

for some constants C1 and C2.

Proof. Firstly, we show that Reg(T ) ≤ CRegiden(T ), where Regiden(T ) denotes the regret of
Algorithm 2 with messages with identical reward. Define Rmax to be the maximum in the actual
list, and S∗ to be the optimal list. Thus, Reg(T ) ≤ RmaxU

∗
max ≤ RmaxC

′(U∗−US) = CRegiden(T ).
The second inequality holds because U∗

max can be bounded above and C ′ can always be fixed selected
in a specific problem.

Then we only need to discuss the identified-reward scenario. We omit the notation R in the proof
below within this scenario. Define the optimal length of message is m∗ with the corresponding
optimal staying probability q∗ = q(m∗). Assume the sequence offered to user r (entering at time
r) is Sr with total message number mr. We want to quantify the difference between the expected
profit gained from Sr and S∗ where S∗ = (1, 2, · · · ,m∗). First we note that

Eπ[U(S∗,v, q∗)]− Eπ[U(Sr,v, q(mr))]

= Eπ[U(S∗,v, q∗)]− Eπ[U(S∗,v, q(mr))] + Eπ[U(S∗,v, q(mr))]− Eπ[U(Sr,v, q(mr))]. (1)

Let Sr
0 denote the recommendation sequence for user r when she enters the system, i.e., Sr

0 is the
optimal sequence given vUCB

r−1 and qUCB
r−1 . Note that this list may change at a later time when more

information becomes available. Define events

Bi,t =

{
vUCB
i,t −

√
8
log t

Ti(t)
< vi < vUCB

i,t

}
and Em,t =

{
qUCB
t (m)−

√
8
log t

T̂m(t)
< q(m) < qUCB

t (m)

}
.

Define Ht =
⋂

i∈X Bi,t
⋂

1≤m≤M Em,t and Jt =
⋂

i∈X Bi,t. On event Ht, firstly we have

Eπ[U(Sr
0,v, q(mr))] ≤ Eπ[U(S∗,v, q(mr))] ≤ Eπ[R(S∗,v, q(m∗))]

≤ Eπ[U(S∗,vUCB
r−1 , qUCB

r−1 (m∗))] ≤ Eπ[U(Sr
0,v

UCB
r−1 , qUCB

r−1 (mr))],

where the first inequality holds because S∗ is the optimal order (arranged from the highest attraction
probability to the lowest), the second inequality holds because q(m∗) is the staying probability
corresponding to the optimal frequency m∗, the third inequality holds because of Lemma 3.2, and
the fourth inequality holds because Sr

0 is the optimal sequence given values vUCB
r−1 and qUCB

r−1 . Thus
we have

Eπ[(U(S∗,v, q(m∗))− U(Sr,v, q(mr)))1(Hr−1)]
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≤ Eπ[(U(Sr
0,v

UCB
r−1 , qUCB

r−1 (mr))− U(Sr
0,v, q(mr)))1(Hr−1)].

To get the difference between the expected payoff of two items above, we use coupling to bound the
difference between the recommending process Sr

0 with qUCB
r−1 (mr),v

UCB
r−1 (call this process targets

on user 1) and Sr
0 with q(mr),v (call this process targets on user 2). For the kth recommendation

where k ranges from 1 to mr, generate two independent uniform random variables w1 ∼ unif [0, 1]
and w2 ∼ unif [0, 1]. The event w1 ≤ vSr

0(k)
means that both click on the kth message. The event

w1 ≥ vUCB
Sr
0(k),r−1 means that both do not click on the kth message. If vSr

0(k)
≤ w1 ≤ vUCB

Sr
0(k),r−1,

the coupling process breaks, i.e., user 1 clicks on the kth message but user 2 does not click on the
message. The event w2 ≤ q(mr) denotes that both stay in the system. If w2 ≥ qUCB

r−1 (mr), both
exit the system. If q(mr) < w2 < qUCB

r−1 (mr) and w1 ≥ vUCB
Sr
0(k),r−1, user 1 chooses to stay in the

system and user 2 exits the system, so the coupling process breaks. Let τ̂r denote the stopping
time that the coupling process breaks. Also define εm as the set of time stamps that a message
with frequency f(m) is sent to user and ρkr as the time to offer the kth message to user r. Thus we
have

Eπ

[
E[(U(Sr

0,v
UCB
r−1 , qUCB

r−1 (mr))− U(Sr
0,v, q(mr)))1(Hr−1)|Fr−1]

]
≤ Eπ

[
E

[
mr∑
k=1

1(τ̂r = k)1(Hr−1)|Fr−1

]]

≤ Eπ

[
E

[
mr∑
k=1

N∑
i=1

1(i ∈ Sr
0(k))

(
vUCB
i,r−1 − vi

)
1(Hr−1)|Fr−1

]]

+ Eπ

[
E

[
mr∑
k=1

1(ρkr ∈ εmr)(q
UCB
r−1 (mr)− q(mr))1(Hr−1)|Fr−1

]]

≤ Eπ

[
mr∑
k=1

N∑
i=1

1(i ∈ Sr
0(k))

√
8
log(r − 1)

Ti(r − 1)

]
+ Eπ

[
mr∑
k=1

1(ρkr ∈ εmr)

√
8
log(r − 1)

nmr(r − 1)

]
.

Summing over all the time steps, we have

T∑
r=1

Eπ

[
E[(U(Sr

0,v
UCB
r−1 , qUCB

r−1 (mr))− U(Sr
0,v, q(mr)))1(Hr−1)|Fr−1]

]
≤ C1

√
log T

T∑
r=1

Eπ

[
N∑
i=1

mr∑
k=1

1(i ∈ Sr
0(k))

√
1

Ti(r − 1)

]

+ C1

√
log T

T∑
r=1

Eπ

[
mr∑
k=1

1(ρkr ∈ εmr)

√
1

nmr(ρ
k
r − 1)

]

≤ C2

√
log T

N∑
i=1

Eπ[
√

Ti(T )] + C2M
√

log T

M∑
m=1

T∑
t=1

Eπ

[
1(t ∈ εm)

√
1

nm(t− 1)

]
.

If t ∈ εm, then the user has at least probability 1 − vmax to reject the message, in which case
the user has the choice to abandon the system. Therefore, if t ∈ εm, nm(t + 1) = nm(t) + 1 with
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probability at least 1− vmax. It implies that for any m = 1 · · ·M ,

T∑
t=1

Eπ

[
1(t ∈ εm)

√
1

nm(t− 1)

]
≤ 1

1− vmax
Eπ[
√
nm(T )] ≤ C3Eπ[

√
nm(T )].

Since
∑M

m=1 nm(T ) ≤ TM with probability 1, we have

M∑
m=1

Eπ[
√
nm(T )] ≤ M

√
T .

Since
∑N

i=1 Ti(T ) ≤ min(M,N)T with probability 1, we have

N∑
i=1

Eπ[
√

Ti(T )] ≤
√
N min(M,N)T .

Thus, we get the inequality that

T∑
r=1

Eπ

[
E[(U(Sr

0,v
UCB
r−1 , qUCB

r−1 (mr))− U(Sr
0,v, q(mr)))1(Hr−1)|Fr−1]

]
≤ C2N

√
T log T + C3M

2
√

T log T .

Applying Lemma 3.1, we have

T∑
r=1

Eπ[1(H
c
r)] ≤

T∑
r=1

N∑
i=1

Eπ[1(B
c
i,r)] +

T∑
r=1

M∑
m=1

Eπ[1(E
c
m,r)]

≤ N
T∑
t=1

2

t4
+M

T∑
t=1

2

t4
≤ C4(N +M).

For Equation (1), now we bound the difference between Eπ[U(S∗,v, q(mr))] and Eπ[U(Sr,v, q(mr))].
Note that Sr is an adapted sequence, which can be different from Sr

0, so we use coupling to bound
the difference. We couple the recommending process of S∗ (call this to user 1) and Sr (call this
to user 2) when the total number of messages is mr. For the kth recommending message at time
t to user r, set a1 = min{vk, vert,k,t} and a2 = max{vk, vert,k,t}. Generate two independent uniform

random variables w1 ∼ unif [0, 1] and w2 ∼ unif [0, 1]. The event w1 < a1 denotes that both
click on the kth message. If w1 ≥ a2, both do not choose the kth recommending message. When
vert,k,t < vk, a1 ≤ w2 < a2 means that the kth message is chosen in S∗ but not in Sr, and vice versa.

Either case means that the coupling process breaks. If w2 ≥ q(mr), then both exit the system.
Otherwise, they will both get the next message unless the whole sequence has run out. Define the
stopping time τ̃r as the time that the coupling breaks for user r, i.e., the recommendation in S∗

with parameters v and q(mr) is a success but that in Sr with parameters v and q(mr) is a failure.
Then we have

Eπ[U(S∗,v, q(mr))]− Eπ[U(Sr,v, q(mr))] ≤ Eπ

[
mr∑
k=1

1(τ̃r = k)

]
.
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Now we consider another recommending process Sr with message value vUCB
ert,k,t

where t = ρkr for

k = 1, · · · ,mr. Use the same process to couple Sr with parameter vUCB
ert,k,t

and v. Define τ ′r as the

stopping time. On the event that vUCB
ρkr

≥ v for k = 1, · · · ,ml and qUCB
ρkr

≥ q, we have

E

[
mr∑
k=1

1(τ̃r = k)

]
≤ E

[
mr∑
k=1

1(τ ′r = k)

]
.

Recall that Jt =
⋂

i∈X Bi,t. We therefore have

Eπ

[
E

[
(U(S∗,v, q(mr), )− U(Sr,v, q(mr)))

mr∏
k=1

1(Jρkr−1)

∣∣∣∣∣Fr−1

]]

≤ Eπ

[
mr∑
k=1

1(τ ′r = k)1(Jρkr−1)|Fr−1

]

= Eπ

[
mr∑
k=1

N∑
i=1

1(i ∈ Sr
k)
(
vUCB
i,ρkr−1 − vi

)
1(Jρkr−1)

]

≤ Eπ

[
mr∑
k=1

N∑
i=1

1(i ∈ Sr
k)

√
8
log(ρkr − 1)

Ti(ρkr − 1)

]
.

Define zi,t as the total number of times that message i is sent to users at time t. If none of item i
is recommended at time t, zi,t = 0. Define Ai(t) as the set of time of recommending i before time
t. Summing over all users, we have

T∑
r=1

Eπ [U(S∗,v, q(mr))− U(Sr,v, q(mr))]

≤ Eπ

[
T∑
t=1

N∑
i=1

zi,t

√
8

log t

Ti(t− 1)

]
+

T∑
r=1

Eπ

[
mr∑
k=1

1(Jc
ρkr−1)

]

≤ C5

√
log T

N∑
i=1

Eπ

[
T∑
t=1

zi,t

√
1

Ti(t− 1)

]
+DEπ

[
T∑
t=1

1(Jc
t )

]
,

where D is the duration of the recommending horizon and C is some constant. The last inequality∑T
r=1Eπ

[∑mr
k=1 1(J

c
ρkr−1

)
]
≤ DEπ

[∑T
t=1 1(J

c
t )
]
holds because the total recommending duration is

at most D, which implies that for any r and k, ρkr ≤ r +D. Because of the delayed feedback, user
response will be received after at most τmax time periods. Recall that τ is the delayed time, so we
have

Ti(t) ≥
∑

s∈Ai(t)

zi,s∑
j=1

1(τ ≤ (t− s)).

Since we assume τ has finite support and the maximum possible value is τmax, an obvious bound
would be

Ti(t) ≥
∑

s∈Ai(t−τmax)

zi,s.
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We thus have for each i ∈ X,

Eπ

[
T∑
t=1

zi,t

√
1

Ti(t− 1)

]
≤ Eπ

[
τmax∑
t=1

zi,t

]
+ Eπ

[
T∑

t=τmax+1

zi,t

√
1∑t−τmax

s=1 zi,s

]

≤ Eπ

[
τmax∑
t=1

zi,t

]
+ Eπ

[
T∑

t=τmax+1

zi,t∑
k=1

√
1∑t−τmax

s=1 zi,s

]

≤ Eπ

[
τmax∑
t=1

zi,t

]
+ Eπ

[
T∑

t=τmax+1

zi,t∑
k=1

√
1∑t−τmax

s=1 zi,s
−

T∑
t=τmax+1

zi,t∑
k=1

√
1∑t−1

s=1 zi,s + k

+
T∑

t=τmax+1

zi,t∑
k=1

√
1∑t−1

s=1 zi,s + k

]

≤ Eπ

[
τmax∑
t=1

zi,t

]
+ Eπ

[
T∑

t=τmax+1

zi,t∑
k=1

√
1∑t−τmax

s=1 zi,s
−
√

1∑t−1
s=1 zi,s + k

]

+ Eπ

[
T∑

t=τmax+1

zi,t∑
k=1

√
1∑t−1

s=1 zi,s + k

]

≤ Eπ

[
τmax∑
t=1

zi,t

]
+ Eπ

[
T∑

t=τmax+1

zi,t∑
k=1

∑t−1
s=t−τmax+1 zi,s + k

2(
∑t−τmax

s=1 zi,s)3/2

]

+ Eπ

[
T∑

t=τmax+1

zi,t∑
k=1

√
1∑t−1

s=1 zi,s + k

]
.

Since re-targeting duration is at most D, all users arriving before t−D does not receive any further
messages. It implies that zi,t ≤ D. Thus,

Eπ

[
τmax∑
t=1

zi,t

]
+ Eπ

[
T∑

t=τmax+1

zi,t∑
k=1

∑t−1
s=t−τmax+1 zi,s + k

2(
∑t−τmax

s=1 zi,s)3/2

]
≤ Dτmax + C6D

2τmax +D ≤ C7τmax.

We further have

Eπ

[
T∑

t=τmax+1

zi,t∑
k=1

√
1∑t−1

s=1 zi,s + k

]
≤ C8Eπ[

√
Ti(T )] ≤ C8

√
T ,

where Ti(T ) denotes the number of message i offerings before time T . Applying Lemma 3.1, we
have

Eπ

[
T∑
t=1

1(Jc
t )

]
≤
∑
i∈X

Eπ

[
T∑
t=1

1(Bc
i,t)

]
≤ N

T∑
t=1

2

t4
≤ C9N.

Combining all the results above, we have

T∑
r=1

Eπ[U(S∗,v, q(m∗))]− Eπ[U(Sr,v, q(mr))]
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≤
T∑

r=1

Eπ[(U(S∗,v, q(m∗))− U(Sr,v, q(mr)))1(Hr)] +

T∑
r=1

Eπ[1(H
c
r)]

≤ C(N +M2)
√
T log T + C ′Nτmax.

□
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