Cascading Bandits: Optimizing Recommendation Frequency in Delayed Feedback Environments

Supplementary Material

1 Notations

- κ : index function, $\kappa(i) = j$ if and only if $S_i = \{j\}$
- ϑ : inverse function of κ , i.e., $\vartheta(i) = j$ if and only if $S_j = \{i\}$
- $\mathbf{v} = (v_1, v_2, \cdots, v_N)$: attraction probabilities of messages
- $\mathbf{R} = (R_1, R_2, \cdots, R_N)$: reward of messages
- D: re-targeting window
- $f(m) = \lceil m/D \rceil$: frequency when the total number of messages is m
- q(m): the probability of staying in the system after skipping a message (i.e., no click) for users with dissemination frequency f(m)
- $\mathbf{q} = (q(1), q(2), \cdots, q(M))$: a vector of q functions
- $w_i(m)$: the examine probability of message *i* when the total number of messages is *m*
- $U(\mathbf{S}, \mathbf{v}, q)$: the total payoff for sequence \mathbf{S} when parameters are \mathbf{v} and q
- γ_i : the characteristic parameter of message $i, \gamma_i = \frac{v_i R_i}{1 v_i (1 q(m))}$
- $T_i(t)$: the total number of feedback (i.e., sum of clicks and no-clicks) received for message i by time t
- $c_i(t)$: the number of clicks for message *i* by time *t*
- $\tilde{T}_m(t)$: the total number of no-clicks from users with dissemination frequency f(m)
- $b_m(t)$: the number of abandoned users with frequency f(m) by time t
- $n_m(t)$: equals $\tilde{T}_m(t) b_m(t)$
- $\mathcal{E}_r : t \in \mathcal{E}_r$ if the agent sends message to user r at time t
- $\epsilon_m(t)$: the set of time stamps that a message with frequency f(m) is sent
- ρ_r^k : the time stamps when the k^{th} message is sent to user r
- m_r : the number of total messages for user r and the corresponding frequency is $f(m_r)$

- $e_{t,k}^r$: the index of the k^{th} message sent to user r at time t
- O_r^t : the messages which have been sent to user r by time t
- $z_{i,t}$: the total number of times that message *i* is sent to users at time *t*
- $A_i(t)$: the set of time stamps of sending message *i* by time *t*
- $\mathbf{w}_{r,i}$: the features of message *i* at time *r*
- \mathbf{x}_r : the features of user r
- α_m : coefficients related to abandonment behavior when the frequency is f(m)
- β : coefficients related to the attraction probability of messages
- $Y_{r,i}$: $Y_{r,i} = 1$ if user r clicks on the message i, and $Y_{r,i} = 0$ otherwise
- $\hat{Y}_{r,j}$: $\hat{Y}_{r,j} = 1$ if user r remains in the system after she does not click on the j^{th} message in a list, while $\hat{Y}_{r,j} = 0$ otherwise

2 Proofs

Throughout the paper, we will use coupling to prove several key results. For more information on this, we refer the reader to Section 2.2 in [1].

Theorem 2.2 In the optimal sequence \mathbf{S}^* , the characteristic parameter of messages $\gamma = \frac{vR}{1-v(1-q(m))}$ are sorted in a descending order.

Proof. We prove this theorem by contradiction. Assume the optimal sequence

$$\mathbf{S}^* = (S_1, S_2, \cdots, S_i, S_{i+1}, \cdots, S_m),$$

with $\gamma_{\kappa(i)} < \gamma_{\kappa(i+1)}$, which implies $v_{\kappa(i)}R_{\kappa(i)}(1-v_{\kappa(i+1)}(1-q(m))) < v_{\kappa(i+1)}R_{\kappa(i+1)}(1-v_{\kappa(i)}(1-q(m)))$. The expected reward

$$E[U(\mathbf{S}^*, \mathbf{v}, \mathbf{R}, q(m))]$$

$$= \sum_{k=1}^{m} [v_{\kappa(k)} R_{\kappa(k)} \prod_{s=1}^{k-1} q(m)(1 - v_{\kappa(s)})]$$

$$= \sum_{1 \le k \le m, k \ne i, i+1} [v_{\kappa(k)} R_{\kappa(k)} \prod_{s=1}^{k-1} q(m)(1 - v_{\kappa(s)})] + v_{\kappa(i)} R_{\kappa(i)} \prod_{s=1}^{i-1} q(m)(1 - v_{\kappa(s)})]$$

$$+ v_{\kappa(i+1)} R_{\kappa(i+1)} \prod_{s=1}^{i-1} q(m)(1 - v_{\kappa(s)})((1 - v_{\kappa(i)})q(m)).$$

Consider the sequence $\mathbf{S}' = (S_1, S_2, \cdots, S_{i+1}, S_i, \cdots, S_m)$. Similarly we have

$$E[U(\mathbf{S}', \mathbf{v}, \mathbf{R}, q(m))]$$

$$= \sum_{1 \le k \le m, k \ne i, i+1} [v_{\kappa(k)} R_{\kappa(k)} \prod_{s=1}^{k-1} q(m)(1 - v_{\kappa(s)})] + v_{\kappa(i+1)} R_{\kappa(i+1)} \prod_{s=1}^{i-1} q(m)(1 - v_{\kappa(s)})$$

$$+ v_{\kappa(i)} R_{\kappa(i)} \prod_{s=1}^{i-1} q(m)(1 - v_{\kappa(s)})((1 - v_{\kappa(i+1)})q(m)).$$

Thus,

$$\begin{split} &E[U(\mathbf{S}^{*}, \mathbf{v}, \mathbf{R}, q(m))] - E[U(\mathbf{S}', \mathbf{v}, \mathbf{R}, q(m))] \\ &= \prod_{s=1}^{i-1} ((1 - v_{\kappa(s)})q(m)) \\ &\cdot [v_{\kappa(i)}R_{\kappa(i)} + v_{\kappa(i+1)}R_{\kappa(i+1)}((1 - v_{\kappa(i)})q(m)) - v_{\kappa(i+1)}R_{\kappa(i+1)} - v_{\kappa(i)}R_{\kappa(i)}((1 - v_{\kappa(i)})q(m))] \\ &< 0. \end{split}$$

It contradicts with the assumption that \mathbf{S}^* is the optimal sequence. Therefore, the characteristic parameter of messages $\gamma = \frac{vR}{1-v(1-q(m))}$ are sorted in a descending order.

Lemma 3.1 For any t, we have $P\left(v_{i,t}^{UCB} - \sqrt{8\frac{\log t}{T_i(t)}} < v_i < v_{i,t}^{UCB}\right) \ge 1 - \frac{2}{t^4}$ for all $i \in X$ and $P\left(q_t^{UCB}(m) - \sqrt{8\frac{\log t}{\tilde{T}_m(t)}} < q(m) < q_t^{UCB}(m)\right) \ge 1 - \frac{2}{t^4}$ for all $1 \le m \le M$.

Proof. Firstly, it is easy to verify that $\hat{v}_{i,t}$ and $\hat{q}_t(m)$ are unbiased estimators. Applying Hoeffding's inequality, we have

$$\begin{split} &P\left(v_{i,t}^{UCB} < v_i\right) + P\left(v_{i,t}^{UCB} > v_i + 2\sqrt{2\log t/T_i(t)}\right) \\ &= P\left(\hat{v}_{i,t} + \sqrt{2\log t/T_i(t)} < v_i\right) + P\left(\hat{v}_{i,t} > v_i + \sqrt{2\log t/T_i(t)}\right) \\ &= P\left(|\hat{v}_{i,t} - v_i| > \sqrt{2\log t/T_i(t)}\right) \le 2exp(-4\log t) = \frac{2}{t^4}. \end{split}$$

It implies that

$$P\left(v_{i,t}^{UCB} - \sqrt{\frac{8\log t}{T_i(t)}} < v_i < v_{i,t}^{UCB}\right) \ge 1 - \frac{2}{t^4}$$

Similarly, we have

$$\begin{split} P\left(q_t^{UCB}(m) < q(m)\right) + P\left(q_t^{UCB}(m) > q(m) + 2\sqrt{2\log t/\tilde{T}_m(t)}\right) \\ &= P\left(\hat{q}_t(m) + \sqrt{2\log t/\tilde{T}_m(t)} < q(m)\right) + P\left(\hat{q}_t(m) > q(m) + \sqrt{2\log t/\tilde{T}_m(t)}\right) \\ &= P\left(|\hat{q}_t(m) - q(m)| > \sqrt{2\log t/\tilde{T}_m(t)}\right) \le 2\exp(-4\log(t)) = \frac{2}{t^4}, \end{split}$$

which implies that

$$P\left(q_t^{UCB}(m) - \sqrt{\frac{8\log t}{\tilde{T}_m(t)}} < q(m) < q_t^{UCB}(m)\right) \ge 1 - \frac{2}{t^4}.$$

Lemma 3.2 Assume \mathbf{S}^* is the optimal sequence of messages with corresponding total message m^* . Under the condition that $0 \leq \mathbf{v} \leq \mathbf{v}^{UCB}$ and $0 \leq q(m^*) \leq q^{UCB}(m^*)$, we have

$$E[U(\mathbf{S}^*, \mathbf{v}^{UCB}, \mathbf{R}, q^{UCB}(m^*))] \ge E[U(\mathbf{S}^*, \mathbf{v}, \mathbf{R}, q(m^*))].$$

Proof. This Lemma describes the monotonic increasing property of total payoff with respect to both \mathbf{v} and $q(m^*)$. First, we couple the recommending process of $(\mathbf{S}^*, \mathbf{v}, \mathbf{R}, q^{UCB}(m^*))$ (call this process targets on user 1) and $(\mathbf{S}^*, \mathbf{v}, \mathbf{R}, q(m^*))$ (call this process targets on user 2). Generate M independent random variables u_j for $j = 1, \ldots, M$ which all follow the uniform distribution on [0,1]. The event $u_j < q(m^*)$ means that both users will stay after observing the j^{th} unsatisfying message, while the event $u_j > q^{UCB}(m^*)$ means that both users will leave. $q(m^*) \le u_j \le q^{UCB}(m^*)$ means that user 1 will stay and user 2 will leave, in which case the coupling breaks. In all cases, recommending the sequence \mathbf{S}^* with parameters $(\mathbf{v}, q^{UCB}(m^*))$ will have at least the same payoff as recommending the sequence \mathbf{S} with parameter $(\mathbf{v}, q(m^*))$. Therefore, the increasing property of total payoff with respect to $q(m^*)$ has been proven.

Then consider two identical recommending lists with the attraction probability of only one message is different. Assume the k-th message has $v_{k1} > v_{k2}$, and $v_{i1} = v_{i2}$, $\forall i \neq k$. Denote the expected return of the two lists as $E[U_1]$ and $E[U_2]$, respectively. We have

$$E[U_1] - E[U_2]$$

=(1 - v_{bef})(v_{k1}R_k + (1 - v_{k1})R_{after} - v_{k2}R_k - (1 - v_{k2})R_{after})
=(1 - v_{bef})(v_{k1} - v_{k2})(R_k - R_{after})
≥0,

with R_{bef} , R_{after} means the expected return of all the messages before/after the k-th message respectively. The last inequality holds because $R_k \ge R_{after}$, otherwise removing the k-th message will give a higher return R_{after} . Since k can be any message, we have proven the increasing property of total payoff with respect to **v**.

Lemma 3.3 When all messages have identical reward, for $t \in \mathcal{E}_r$ and any $q' \in (0,1)$, we have

$$E_{\pi}[E[(U(k, \mathbf{v}, \mathbf{R}, q') - U(e_{t,k}^{r}, \mathbf{v}, \mathbf{R}, q'))1(\mathbf{v}_{t}^{UCB} \ge \mathbf{v})|\mathcal{F}_{t-1}]]$$

$$\leq E_{\pi}\left[E\left[\left(v_{e_{t,k}^{r}, t}^{UCB} - v_{e_{t,k}^{r}}\right)1(\mathbf{v}_{t}^{UCB} \ge \mathbf{v})|\mathcal{F}_{t-1}\right]\right],$$

where e_{tk}^r is the index of the k^{th} message sent to user r at time t.

Proof. Given the assumption, $v_1 \ge v_2 \ge \cdots \ge v_N$ in the optimal list. If $e_{t,k}^r \le k$, the conclusion holds because $v_{e_{t,k}^r} \ge v_k$, which implies that $E[U(e_{t,k}^r, \mathbf{v}, \mathbf{R}, q)] \ge E[U(k, \mathbf{v}, \mathbf{R}, q)]$. Otherwise, if $e_{t,k}^r > k$, then $v_{e_{t,k}^r} \le v_k$. Note that $v_{e_{t,k}^{UCB}}^{UCB}$ is at least the k^{th} largest among \mathbf{v}_t^{UCB} , otherwise $e_{t,k}^r$ will not be chosen. With $\mathbf{v}_t^{UCB} \ge \mathbf{v}$, we have $v_k \le v_{e_{t,k}^r,t}^{UCB}$ because the k^{th} largest value in sequence \mathbf{v}_t^{UCB} is larger than or equal to the k^{th} largest value in \mathbf{v} . Therefore, we have $v_{e_{t,k}^r} \le v_k \le v_{e_{t,k}^r,t}^{UCB}$. It implies that $v_k - v_{e_{t,k}^r} \le v_{e_{t,k}^{r,t}} - v_{e_{t,k}^r}$. Thus, we have reached the desired result.

Theorem 3.4 The expected regret of Algorithm 2 is bounded above by

$$Reg(T) \le C_1(N+M^2)\sqrt{T\log T} + C_2N\tau_{max}$$

for some constants C_1 and C_2 .

Proof. Firstly, we show that $Reg(T) \leq CReg_{iden}(T)$, where $Reg_{iden}(T)$ denotes the regret of Algorithm 2 with messages with identical reward. Define R_{max} to be the maximum in the actual list, and S^* to be the optimal list. Thus, $Reg(T) \leq R_{max}U_{max}^* \leq R_{max}C'(U^*-U^S) = CReg_{iden}(T)$. The second inequality holds because U_{max}^* can be bounded above and C' can always be fixed selected in a specific problem.

Then we only need to discuss the identified-reward scenario. We omit the notation \mathbf{R} in the proof below within this scenario. Define the optimal length of message is m^* with the corresponding optimal staying probability $q_* = q(m^*)$. Assume the sequence offered to user r (entering at time r) is \mathbf{S}^r with total message number m_r . We want to quantify the difference between the expected profit gained from \mathbf{S}^r and \mathbf{S}^* where $\mathbf{S}^* = (1, 2, \dots, m^*)$. First we note that

$$E_{\pi}[U(\mathbf{S}^{*}, \mathbf{v}, q_{*})] - E_{\pi}[U(\mathbf{S}^{r}, \mathbf{v}, q(m_{r}))] = E_{\pi}[U(\mathbf{S}^{*}, \mathbf{v}, q_{*})] - E_{\pi}[U(\mathbf{S}^{*}, \mathbf{v}, q(m_{r}))] + E_{\pi}[U(\mathbf{S}^{*}, \mathbf{v}, q(m_{r}))] - E_{\pi}[U(\mathbf{S}^{r}, \mathbf{v}, q(m_{r}))].$$
(1)

Let \mathbf{S}_0^r denote the recommendation sequence for user r when she enters the system, i.e., \mathbf{S}_0^r is the optimal sequence given \mathbf{v}_{r-1}^{UCB} and \mathbf{q}_{r-1}^{UCB} . Note that this list may change at a later time when more information becomes available. Define events

$$B_{i,t} = \left\{ v_{i,t}^{UCB} - \sqrt{8\frac{\log t}{T_i(t)}} < v_i < v_{i,t}^{UCB} \right\} \text{ and } E_{m,t} = \left\{ q_t^{UCB}(m) - \sqrt{8\frac{\log t}{\hat{T}_m(t)}} < q(m) < q_t^{UCB}(m) \right\}$$

Define $H_t = \bigcap_{i \in X} B_{i,t} \bigcap_{1 \le m \le M} E_{m,t}$ and $J_t = \bigcap_{i \in X} B_{i,t}$. On event H_t , firstly we have

$$E_{\pi}[U(\mathbf{S}_{0}^{r}, \mathbf{v}, q(m_{r}))] \leq E_{\pi}[U(\mathbf{S}^{*}, \mathbf{v}, q(m_{r}))] \leq E_{\pi}[R(\mathbf{S}^{*}, \mathbf{v}, q(m^{*}))]$$
$$\leq E_{\pi}[U(\mathbf{S}^{*}, \mathbf{v}_{r-1}^{UCB}, q_{r-1}^{UCB}(m^{*}))] \leq E_{\pi}[U(\mathbf{S}_{0}^{r}, \mathbf{v}_{r-1}^{UCB}, q_{r-1}^{UCB}(m_{r}))],$$

where the first inequality holds because \mathbf{S}^* is the optimal order (arranged from the highest attraction probability to the lowest), the second inequality holds because $q(m^*)$ is the staying probability corresponding to the optimal frequency m^* , the third inequality holds because of Lemma 3.2, and the fourth inequality holds because \mathbf{S}_0^r is the optimal sequence given values \mathbf{v}_{r-1}^{UCB} and \mathbf{q}_{r-1}^{UCB} . Thus we have

$$E_{\pi}[(U(\mathbf{S}^*, \mathbf{v}, q(m^*)) - U(\mathbf{S}^r, \mathbf{v}, q(m_r)))1(H_{r-1})]$$

$$\leq E_{\pi}[(U(\mathbf{S}_{0}^{r}, \mathbf{v}_{r-1}^{UCB}, q_{r-1}^{UCB}(m_{r})) - U(\mathbf{S}_{0}^{r}, \mathbf{v}, q(m_{r})))1(H_{r-1})].$$

To get the difference between the expected payoff of two items above, we use coupling to bound the difference between the recommending process \mathbf{S}_0^r with $q_{r-1}^{UCB}(m_r), \mathbf{v}_{r-1}^{UCB}$ (call this process targets on user 1) and \mathbf{S}_0^r with $q(m_r), \mathbf{v}$ (call this process targets on user 2). For the k^{th} recommendation where k ranges from 1 to m_r , generate two independent uniform random variables $w_1 \sim unif[0, 1]$ and $w_2 \sim unif[0, 1]$. The event $w_1 \leq v_{\mathbf{S}_0^r(k)}$ means that both click on the k^{th} message. The event $w_1 \geq v_{\mathbf{S}_0^r(k), r-1}^{UCB}$ means that both click on the k^{th} message. The event $w_1 \geq v_{\mathbf{S}_0^r(k), r-1}^{UCB}$ means that both do not click on the k^{th} message. If $v_{\mathbf{S}_0^r(k)} \leq w_1 \leq v_{\mathbf{S}_0^r(k), r-1}^{UCB}$, the coupling process breaks, i.e., user 1 clicks on the k^{th} message but user 2 does not click on the message. The event $w_2 \leq q(m_r)$ denotes that both stay in the system. If $w_2 \geq q_{r-1}^{UCB}(m_r)$, both exit the system. If $q(m_r) < w_2 < q_{r-1}^{UCB}(m_r)$ and $w_1 \geq v_{\mathbf{S}_0^r(k), r-1}^{UCB}$, user 1 chooses to stay in the system and user 2 exits the system, so the coupling process breaks. Let $\hat{\tau}_r$ denote the stopping time that the coupling process breaks. Also define ε_m as the set of time stamps that a message with frequency f(m) is sent to user and ρ_r^k as the time to offer the k^{th} message to user r. Thus we have

$$E_{\pi} \left[E[(U(\mathbf{S}_{0}^{r}, \mathbf{v}_{r-1}^{UCB}, q_{r-1}^{UCB}(m_{r})) - U(\mathbf{S}_{0}^{r}, \mathbf{v}, q(m_{r})))1(H_{r-1})|\mathcal{F}_{r-1}] \right]$$

$$\leq E_{\pi} \left[E \left[\sum_{k=1}^{m_{r}} 1(\hat{\tau}_{r} = k)1(H_{r-1})|\mathcal{F}_{r-1} \right] \right]$$

$$\leq E_{\pi} \left[E \left[\sum_{k=1}^{m_{r}} \sum_{i=1}^{N} 1(i \in \mathbf{S}_{0}^{r}(k)) \left(v_{i,r-1}^{UCB} - v_{i} \right) 1(H_{r-1})|\mathcal{F}_{r-1} \right] \right]$$

$$+ E_{\pi} \left[E \left[\sum_{k=1}^{m_{r}} 1(\rho_{r}^{k} \in \varepsilon_{m_{r}})(q_{r-1}^{UCB}(m_{r}) - q(m_{r}))1(H_{r-1})|\mathcal{F}_{r-1} \right] \right]$$

$$\leq E_{\pi} \left[\sum_{k=1}^{m_{r}} \sum_{i=1}^{N} 1(i \in \mathbf{S}_{0}^{r}(k)) \sqrt{8 \frac{\log(r-1)}{T_{i}(r-1)}} \right] + E_{\pi} \left[\sum_{k=1}^{m_{r}} 1(\rho_{r}^{k} \in \varepsilon_{m_{r}}) \sqrt{8 \frac{\log(r-1)}{n_{m_{r}}(r-1)}} \right]$$

Summing over all the time steps, we have

$$\sum_{r=1}^{T} E_{\pi} \left[E[(U(\mathbf{S}_{0}^{r}, \mathbf{v}_{r-1}^{UCB}, q_{r-1}^{UCB}(m_{r})) - U(\mathbf{S}_{0}^{r}, \mathbf{v}, q(m_{r})))1(H_{r-1})|\mathcal{F}_{r-1}] \right]$$

$$\leq C_{1}\sqrt{\log T} \sum_{r=1}^{T} E_{\pi} \left[\sum_{i=1}^{N} \sum_{k=1}^{m_{r}} 1(i \in \mathbf{S}_{0}^{r}(k))\sqrt{\frac{1}{T_{i}(r-1)}} \right]$$

$$+ C_{1}\sqrt{\log T} \sum_{r=1}^{T} E_{\pi} \left[\sum_{k=1}^{m_{r}} 1(\rho_{r}^{k} \in \varepsilon_{m_{r}})\sqrt{\frac{1}{n_{m_{r}}(\rho_{r}^{k}-1)}} \right]$$

$$\leq C_{2}\sqrt{\log T} \sum_{i=1}^{N} E_{\pi}[\sqrt{T_{i}(T)}] + C_{2}M\sqrt{\log T} \sum_{m=1}^{M} \sum_{t=1}^{T} E_{\pi} \left[1(t \in \varepsilon_{m})\sqrt{\frac{1}{n_{m}(t-1)}} \right].$$

If $t \in \varepsilon_m$, then the user has at least probability $1 - v_{max}$ to reject the message, in which case the user has the choice to abandon the system. Therefore, if $t \in \varepsilon_m$, $n_m(t+1) = n_m(t) + 1$ with probability at least $1 - v_{max}$. It implies that for any $m = 1 \cdots M$,

$$\sum_{t=1}^{T} E_{\pi} \left[1(t \in \varepsilon_m) \sqrt{\frac{1}{n_m(t-1)}} \right] \le \frac{1}{1 - v_{max}} E_{\pi}[\sqrt{n_m(T)}] \le C_3 E_{\pi}[\sqrt{n_m(T)}]$$

Since $\sum_{m=1}^{M} n_m(T) \leq TM$ with probability 1, we have

$$\sum_{m=1}^{M} E_{\pi}[\sqrt{n_m(T)}] \le M\sqrt{T}.$$

Since $\sum_{i=1}^{N} T_i(T) \leq \min(M, N)T$ with probability 1, we have

$$\sum_{i=1}^{N} E_{\pi}[\sqrt{T_i(T)}] \le \sqrt{N\min(M, N)T}.$$

Thus, we get the inequality that

$$\sum_{r=1}^{T} E_{\pi} \left[E[(U(\mathbf{S}_{0}^{r}, \mathbf{v}_{r-1}^{UCB}, q_{r-1}^{UCB}(m_{r})) - U(\mathbf{S}_{0}^{r}, \mathbf{v}, q(m_{r})))1(H_{r-1}) | \mathcal{F}_{r-1}] \right] \\ \leq C_{2}N\sqrt{T\log T} + C_{3}M^{2}\sqrt{T\log T}.$$

Applying Lemma 3.1, we have

$$\sum_{r=1}^{T} E_{\pi}[1(H_{r}^{c})] \leq \sum_{r=1}^{T} \sum_{i=1}^{N} E_{\pi}[1(B_{i,r}^{c})] + \sum_{r=1}^{T} \sum_{m=1}^{M} E_{\pi}[1(E_{m,r}^{c})]$$
$$\leq N \sum_{t=1}^{T} \frac{2}{t^{4}} + M \sum_{t=1}^{T} \frac{2}{t^{4}} \leq C_{4}(N+M).$$

For Equation (1), now we bound the difference between $E_{\pi}[U(\mathbf{S}^*, \mathbf{v}, q(m_r))]$ and $E_{\pi}[U(\mathbf{S}^r, \mathbf{v}, q(m_r))]$. Note that \mathbf{S}^r is an adapted sequence, which can be different from \mathbf{S}_0^r , so we use coupling to bound the difference. We couple the recommending process of \mathbf{S}^* (call this to user 1) and \mathbf{S}^r (call this to user 2) when the total number of messages is m_r . For the k^{th} recommending message at time t to user r, set $a_1 = \min\{v_k, v_{e_{t,k}^r,t}\}$ and $a_2 = \max\{v_k, v_{e_{t,k}^r,t}\}$. Generate two independent uniform random variables $w_1 \sim unif[0, 1]$ and $w_2 \sim unif[0, 1]$. The event $w_1 < a_1$ denotes that both click on the k^{th} message. If $w_1 \geq a_2$, both do not choose the k^{th} recommending message. When $v_{e_{t,k}^r,t} < v_k, a_1 \leq w_2 < a_2$ means that the k^{th} message is chosen in \mathbf{S}^* but not in \mathbf{S}^r , and vice versa. Either case means that the coupling process breaks. If $w_2 \geq q(m_r)$, then both exit the system. Otherwise, they will both get the next message unless the whole sequence has run out. Define the stopping time $\tilde{\tau}_r$ as the time that the coupling breaks for user r, i.e., the recommendation in \mathbf{S}^* with parameters \mathbf{v} and $q(m_r)$ is a success but that in \mathbf{S}^r with parameters \mathbf{v} and $q(m_r)$ is a failure. Then we have

$$E_{\pi}[U(\mathbf{S}^*, \mathbf{v}, q(m_r))] - E_{\pi}[U(\mathbf{S}^r, \mathbf{v}, q(m_r))] \le E_{\pi}\left[\sum_{k=1}^{m_r} 1(\tilde{\tau}_r = k)\right].$$

Now we consider another recommending process \mathbf{S}^r with message value $v_{e_{t,k}^r,t}^{UCB}$ where $t = \rho_r^k$ for $k = 1, \dots, m_r$. Use the same process to couple \mathbf{S}^r with parameter $v_{e_{t,k}^r,t}^{UCB}$ and \mathbf{v} . Define τ_r' as the stopping time. On the event that $\mathbf{v}_{\rho_r^k}^{UCB} \geq \mathbf{v}$ for $k = 1, \dots, m_l$ and $\mathbf{q}_{\rho_r^k}^{UCB} \geq \mathbf{q}$, we have

$$E\left[\sum_{k=1}^{m_r} 1(\tilde{\tau}_r = k)\right] \le E\left[\sum_{k=1}^{m_r} 1(\tau'_r = k)\right].$$

Recall that $J_t = \bigcap_{i \in X} B_{i,t}$. We therefore have

$$E_{\pi} \left[E \left[\left(U(\mathbf{S}^{*}, \mathbf{v}, q(m_{r}),) - U(\mathbf{S}^{r}, \mathbf{v}, q(m_{r})) \right) \prod_{k=1}^{m_{r}} 1(J_{\rho_{r}^{k}-1}) \middle| \mathcal{F}_{r-1} \right] \right]$$

$$\leq E_{\pi} \left[\sum_{k=1}^{m_{r}} 1(\tau_{r}' = k) 1(J_{\rho_{r}^{k}-1}) \middle| \mathcal{F}_{r-1} \right]$$

$$= E_{\pi} \left[\sum_{k=1}^{m_{r}} \sum_{i=1}^{N} 1(i \in S_{k}^{r}) \left(v_{i,\rho_{r}^{k}-1}^{UCB} - v_{i} \right) 1(J_{\rho_{r}^{k}-1}) \right]$$

$$\leq E_{\pi} \left[\sum_{k=1}^{m_{r}} \sum_{i=1}^{N} 1(i \in S_{k}^{r}) \sqrt{8 \frac{\log(\rho_{r}^{k}-1)}{T_{i}(\rho_{r}^{k}-1)}} \right].$$

Define $z_{i,t}$ as the total number of times that message *i* is sent to users at time *t*. If none of item *i* is recommended at time *t*, $z_{i,t} = 0$. Define $A_i(t)$ as the set of time of recommending *i* before time *t*. Summing over all users, we have

$$\sum_{r=1}^{T} E_{\pi} \left[U(\mathbf{S}^{*}, \mathbf{v}, q(m_{r})) - U(\mathbf{S}^{r}, \mathbf{v}, q(m_{r})) \right]$$

$$\leq E_{\pi} \left[\sum_{t=1}^{T} \sum_{i=1}^{N} z_{i,t} \sqrt{8 \frac{\log t}{T_{i}(t-1)}} \right] + \sum_{r=1}^{T} E_{\pi} \left[\sum_{k=1}^{m_{r}} 1(J_{\rho_{r}^{k}-1}^{c}) \right]$$

$$\leq C_{5} \sqrt{\log T} \sum_{i=1}^{N} E_{\pi} \left[\sum_{t=1}^{T} z_{i,t} \sqrt{\frac{1}{T_{i}(t-1)}} \right] + DE_{\pi} \left[\sum_{t=1}^{T} 1(J_{t}^{c}) \right],$$

where D is the duration of the recommending horizon and C is some constant. The last inequality $\sum_{r=1}^{T} E_{\pi} \left[\sum_{k=1}^{m_r} \mathbb{1}(J_{\rho_r^k-1}^c) \right] \leq DE_{\pi} \left[\sum_{t=1}^{T} \mathbb{1}(J_t^c) \right]$ holds because the total recommending duration is at most D, which implies that for any r and k, $\rho_r^k \leq r + D$. Because of the delayed feedback, user response will be received after at most τ_{max} time periods. Recall that τ is the delayed time, so we have

$$T_i(t) \ge \sum_{s \in A_i(t)} \sum_{j=1}^{z_{i,s}} 1(\tau \le (t-s)).$$

Since we assume τ has finite support and the maximum possible value is τ_{max} , an obvious bound would be

$$T_i(t) \ge \sum_{s \in A_i(t - \tau_{max})} z_{i,s}$$

We thus have for each $i \in X$,

$$\begin{split} & E_{\pi} \left[\sum_{t=1}^{T} z_{i,t} \sqrt{\frac{1}{T_{i}(t-1)}} \right] \leq E_{\pi} \left[\sum_{t=1}^{\tau_{max}} z_{i,t} \right] + E_{\pi} \left[\sum_{t=\tau_{max}+1}^{T} z_{i,t} \sqrt{\frac{1}{\sum_{s=1}^{t-\tau_{max}} z_{i,s}}} \right] \\ & \leq E_{\pi} \left[\sum_{t=1}^{\tau_{max}} z_{i,t} \right] + E_{\pi} \left[\sum_{t=\tau_{max}+1}^{T} \sum_{k=1}^{z_{i,t}} \sqrt{\frac{1}{\sum_{s=1}^{t-\tau_{max}} z_{i,s}}} \right] \\ & \leq E_{\pi} \left[\sum_{t=1}^{\tau_{max}} z_{i,t} \right] + E_{\pi} \left[\sum_{t=\tau_{max}+1}^{T} \sum_{k=1}^{z_{i,t}} \sqrt{\frac{1}{\sum_{s=1}^{t-\tau_{max}} z_{i,s}}} - \sum_{t=\tau_{max}+1}^{T} \sum_{k=1}^{z_{i,t}} \sqrt{\frac{1}{\sum_{s=1}^{t-1} z_{i,s} + k}} \right] \\ & \leq E_{\pi} \left[\sum_{t=1}^{\tau_{max}} z_{i,t} \right] + E_{\pi} \left[\sum_{t=\tau_{max}+1}^{T} \sum_{k=1}^{z_{i,t}} \sqrt{\frac{1}{\sum_{s=1}^{t-\tau_{max}} z_{i,s}}} - \sqrt{\frac{1}{\sum_{s=1}^{t-1} z_{i,s} + k}} \right] \\ & + E_{\pi} \left[\sum_{t=\tau_{max}+1}^{T} \sum_{k=1}^{z_{i,t}} \sqrt{\frac{1}{\sum_{s=1}^{t-1} z_{i,s} + k}} \right] \\ & \leq E_{\pi} \left[\sum_{t=1}^{\tau_{max}} z_{i,t} \right] + E_{\pi} \left[\sum_{t=\tau_{max}+1}^{T} \sum_{k=1}^{z_{i,t}} \sqrt{\frac{1}{\sum_{s=1}^{t-\tau_{max}+1} z_{i,s} + k}} \right] \\ & \leq E_{\pi} \left[\sum_{t=1}^{\tau_{max}} z_{i,t} \right] + E_{\pi} \left[\sum_{t=\tau_{max}+1}^{T} \sum_{k=1}^{z_{i,t}} \frac{\sum_{s=1}^{t-\tau_{max}+1} z_{i,s} + k}{2(\sum_{s=1}^{t-\tau_{max}} z_{i,s})^{3/2}} \right] \\ & + E_{\pi} \left[\sum_{t=\tau_{max}+1}^{T} \sum_{k=1}^{z_{i,t}} \sqrt{\frac{1}{\sum_{s=1}^{t-1} z_{i,s} + k}} \right]. \end{split}$$

Since re-targeting duration is at most D, all users arriving before t - D does not receive any further messages. It implies that $z_{i,t} \leq D$. Thus,

$$E_{\pi} \left[\sum_{t=1}^{\tau_{max}} z_{i,t} \right] + E_{\pi} \left[\sum_{t=\tau_{max}+1}^{T} \sum_{k=1}^{z_{i,t}} \frac{\sum_{s=t-\tau_{max}+1}^{t-1} z_{i,s} + k}{2(\sum_{s=1}^{t-\tau_{max}} z_{i,s})^{3/2}} \right]$$

$$\leq D\tau_{max} + C_6 D^2 \tau_{max} + D \leq C_7 \tau_{max}.$$

We further have

$$E_{\pi}\left[\sum_{t=\tau_{max}+1}^{T}\sum_{k=1}^{z_{i,t}}\sqrt{\frac{1}{\sum_{s=1}^{t-1}z_{i,s}+k}}\right] \le C_{8}E_{\pi}[\sqrt{T_{i}(T)}] \le C_{8}\sqrt{T},$$

where $T_i(T)$ denotes the number of message *i* offerings before time *T*. Applying Lemma 3.1, we have

$$E_{\pi}\left[\sum_{t=1}^{T} 1(J_t^c)\right] \le \sum_{i \in X} E_{\pi}\left[\sum_{t=1}^{T} 1(B_{i,t}^c)\right] \le N \sum_{t=1}^{T} \frac{2}{t^4} \le C_9 N.$$

Combining all the results above, we have

$$\sum_{r=1}^{T} E_{\pi}[U(\mathbf{S}^*, \mathbf{v}, q(m^*))] - E_{\pi}[U(\mathbf{S}^r, \mathbf{v}, q(m_r))]$$

$$\leq \sum_{r=1}^{T} E_{\pi}[(U(\mathbf{S}^*, \mathbf{v}, q(m^*)) - U(\mathbf{S}^r, \mathbf{v}, q(m_r)))1(H_r)] + \sum_{r=1}^{T} E_{\pi}[1(H_r^c)]$$

$$\leq C(N + M^2)\sqrt{T\log T} + C'N\tau_{max}.$$

References

[1] Remco Van Der Hofstad. Random graphs and complex networks, volume 1. Cambridge university press, 2016.