
MEGABYTE: Modeling Million-byte Sequences with
Multiscale Transformers

Lili Yu∗ Dániel Simig∗ Colin Flaherty∗ Armen Aghajanyan

Luke Zettlemoyer Mike Lewis

Meta AI

Abstract

Autoregressive transformers are spectacular models for short sequences but scale
poorly to long sequences such as high-resolution images, podcasts, code, or books.
We propose MEGABYTE, a multi-scale decoder architecture that enables end-to-
end differentiable modeling of sequences of over one million bytes. MEGABYTE
segments sequences into patches and uses a local submodel within patches and a
global model between patches. This enables sub-quadratic self-attention, much
larger feedforward layers for the same compute, and improved parallelism during
decoding—unlocking better performance at reduced cost for both training and gen-
eration. Extensive experiments show that MEGABYTE allows byte-level models
to perform competitively with subword models on long context language mod-
eling, achieve state-of-the-art density estimation on ImageNet, and model audio
from raw files. Together, these results establish the viability of tokenization-free
autoregressive sequence modeling at scale.

1 Introduction

Patch Embedder

Global Model

Local
Model

Local
Model

Local
Model

Local
Model

_ _ _ _ m e g a b y t e ' ' t r a

 _ m e g _ b y t _ ' ' t r _ n s f

Global Model

Local
Model

Local
Model

Local
Model

Local
Model

_ _ _ _ m e g a b y t e t r a n

 _ m e g _ b y t _ t r a _ s f o

Patch
Embed

Patch
Embed

Patch
Embed

Patch
Embed

Global Model

Local
Model

Local
Model

Local
Model

Local
Model

_ _ _ _ m e g a b y t e t r a n

 _ m e g _ b y t _ t r a _ s f o

m e g a b y t e t r a n s f o r

Patch
Embed

Patch
Embed

Patch
Embed

Patch
Embed

Figure 1: Overview of MEGABYTE with patch size P =
4. A small local model autoregressively predicts each
patch byte-by-byte, using the output of a larger global
model to condition on previous patches. Global and
Local inputs are padded by P and 1 token respectively
to avoid leaking information about future tokens.

Sequences of millions of bytes are ubiquitous;
for example, music, image, or video files typi-
cally consist of multiple megabytes. However,
large transformer decoders (LLMs) typically
only use several thousand tokens of context
(Brown et al., 2020; Zhang et al., 2022a)—both
because of the quadratic cost of self-attention
but also, more importantly, the cost of large feed-
forward networks per-position. This severely
limits the set of tasks where LLMs can be ap-
plied.

We introduce MEGABYTE, a new approach to
modeling long byte sequences. First, byte se-
quences are segmented into fixed-sized patches,
loosely analogous to tokens. Our model then
consists of three parts: (1) a patch embedder,
which simply encodes a patch by losslessly con-
catenating embeddings of each byte, (2) a global
module, a large autoregressive transformer that
inputs and outputs patch representations and (3)
a local module, a small autoregressive model
that predicts bytes within a patch. Crucially, we observe that for many tasks, most byte predictions

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

hembed
t = Eglobal-embed

xt
+ E

pos
t t ∈ [0..T), Eglobal-embed ∈ RV ×DG ,

Epos ∈ RT×DG , hembed ∈ RT×DG

h
global-in
k =

{
Eglobal-pad, if k = 0,
hembed
((k−1)·P):(k·P)

, k ∈ [1, ..,K), Eglobal-pad ∈ RP×DG ,K =
T

P

h
global-out
0:K = transformerglobal(h

global-in
0:K) hglobal-out, hglobal-in ∈ RK×P ·DG

hlocal-in
k,p = wGLh

global-out
k,(p·DG):((p+1)·DG)

+

{
Elocal-pad, if p = 0
Elocal-embed

x(k·P+p−1)
, p ∈ [1, .., P)

Elocal-pad ∈ RDL , wGL ∈ RDG×DL

Elocal-embed ∈ RV ×DL

hlocal-out
k,0:P = transformerlocal(hlocal-in

k,0:P) hlocal-in
k,p ∈ RDL , hlocal-out ∈ RK×P ·DL

p(xt|x0:t) = softmax(Elocal-embedhlocal-out
k,p)

xt
t = k · P + p

Figure 2: Summary of MEGABYTE with vocabulary V , sequence length T , global and local dimensions DG

and DL, and K patches of size P . Transformer layers use masked self attention to not observe future timesteps.

are relatively easy (for example, completing a word given the first few characters), meaning that large
networks per-byte are unnecessary, and a much smaller model can be used for intra-patch modelling.

MEGABYTE has three main advantages over Transformers for long sequence modeling:

1. Sub-quadratic self-attention Most work on long sequence models has focused on mitigat-
ing the quadratic cost of self-attention. MEGABYTE decomposes long sequences into two
shorter sequences, and optimal patch sizes reduces the self-attention cost to O(N

4
3), which

remains tractable for even long sequences.

2. Per-patch feedforward layers In GPT3-size models, more than 98% of FLOPS are used in
computing position-wise feedforward layers. MEGABYTE uses large feedforward layers
per-patch rather than per-position, enabling much larger and more expressive models for the
same cost. With patch size P , where a baseline transformer would use the same feedforward
layer with m parameters P times, MEGABYTE can use a layer with mP parameters once
for the same cost.

3. Parallelism in Decoding Transformers must perform all computations serially during
generation because the input to each timestep is the output from the previous timestep. By
reusing the global representation over multiple time steps during local model decoding,
MEGABYTE allows greater parallelism during generation. For example, a MEGABYTE
model with 1.5B parameters can generate sequences 40% faster than a standard 350M
Transformer, whilst also improving perplexity when trained with the same compute.

Together, these improvements allow us to train much larger and better-performing models for the same
compute budget, scale to very long sequences, and improve generation speed during deployment.

MEGABYTE also provides a strong contrast to existing autoregressive models that typically use some
form of tokenization, where sequences of bytes are mapped to larger discrete tokens (Sennrich et al.,
2015; Ramesh et al., 2021; Hsu et al., 2021). Tokenization complicates pre-processing, multi-modal
modelling, and transfer to new domains, while hiding useful structure from the model. It also means
that most state-of-the-art models are not truly end to end. The most widely used approaches to
tokenization require language-specific heuristics (Radford et al., 2019) or lose information (Ramesh
et al., 2021). Replacing tokenization with efficient and performant byte models would therefore have
many advantages.

We conduct extensive experiments for both MEGABYTE and strong baselines. We use a fixed compute
and data budget across all models to focus our comparisons solely on the model architecture rather
than training resources, which are known to benefit all models. We find that MEGABYTE allows
byte-level models to perform competitively with subword models on long context language modeling,
achieve state-of-the-art perplexities for density estimation on ImageNet, and allow audio modelling
from raw audio files. Together, these results establish the viability of tokenization-free autoregressive
sequence modeling at scale.

2

2 MEGABYTE Transformer
2.1 Overview
MEGABYTE is an autoregressive model for efficiently modeling long input sequences. MEGABYTE
is comprised of 3 components: (1) a patch embedder that inputs a discrete sequence, embeds each
element, and chunks it into patches of length P (2) a large global Transformer that contextualizes patch
representations by performing self-attention over previous patches, and (3) a smaller local Transformer
that inputs a contextualized patch representation from the global model, and autoregressively predict
the next patch.

2.2 Components
Patch Embedder with patch size of P maps a byte sequence x0..T to a sequence of patch embeddings
of length K = T

P and dimension P ·DG.

First, each byte is embedded with a lookup table Eglobal-embed ∈ RV×DG to an embedding of size DG

and positional embeddings are added.

hembed
t = Eglobal-embed

xt
+ Epos

t t ∈ [0..T] (1)

Then, byte embeddings are reshaped into a sequence of K patch embeddings with dimension P ·DG.
To allow autoregressive modelling, the patch sequence is padded to start with a trainable patch-sized
padding embedding (Eglobal-pad ∈ RP×DG), and the last patch is removed from the input. This
sequence is the input to the global model, and is denoted hglobal-in ∈ RK×(P ·DG).

hglobal-in
k =

{
Eglobal-pad, if k = 0,

hembed
((k−1)·P):(k·P), k ∈ [1, ..,K),

(2)

Global Model is a decoder-only Transformer with dimension P ·DG that operates on a sequence of
K patches. It incorporates a self-attention mechanism and causal masking to capture dependencies
between patches. It inputs a sequence of K patch representations hglobal-in

0:K , and outputs an updated
representation hglobal-out

0:K by performing self-attention over previous patches.

hglobal-out
0:K = transformerglobal(hglobal-in

0:K) (3)

The output of the final global layer hglobal
0:K contains K patch representations of dimension P ·DG.

For each of these, we reshape them into sequences of length P and dimension DG, where position p
uses dimensions p ·DG to (p+ 1) ·DG. Each position is then projected to the dimension of the local
model with a matrix wGL ∈ RDG×DL where DL is the local model dimension. We then combine
these with byte embeddings of size DL for the tokens in the next patch Elocal-embed

x(k·P+p−1)
. The local byte

embeddings is offset by one with a trainable local padding embedding (Elocal-pad ∈ RDL) to allow
autoregressive modelling within a patch. This results in a tensor hlocal-in ∈ RK×P×DL .

hlocal-in
k,p = wGLhglobal-out

k,(p·DG):((p+1)·DG) + Elocal-embed
x(k·P+p−1)

(4)

Local Model is a smaller decoder-only Transformer of dimension DL that operates on a single
patch k containing P elements, each of which is the sum of an output from the global model and an
embedding of the previous byte in the sequence. K copies of the local models are run on each patch
independently (and in parallel during training), computing a representation hlocal-out ∈ RK×P ·DL .

hlocal-out
k,0:P = transformerlocal(hlocal-in

k,0:P) (5)

Finally, we can compute the probability distribution over the vocabulary at each position. The pth
element of the kth patch corresponds to element t of the complete sequence, where t = k · P + p:

p(xt|x0:t) = softmax(Elocal-embedhlocal-out
k,p)

xt
(6)

3

2.3 Variations and Extensions
Convolutional Patch Encoder: One limitation of patchifying sequences is that it is not translation
invariant, and byte sequences may receive a different representation depending on their position in
the patch. This may mean, for example, that a model has to relearn the meaning of a word at different
offsets. To mitigate this issue, we experimented with augmenting the Patch Embedder with causal
convolutional layers, which allow translation-invariant contextual representations of the bytes before
they are chunked into patches. We use a stack of convolutional layers, with filter sizes of 3, 5 and 7.

Cross-patch Attention: The Local model uses short sequences for efficiency, and relies on the
Global model for long-range information. However, we can increase the context of the Local model
with little overhead by allowing it to condition on r elements from the previous patch. This approach
allows the Global model to focus on a longer-range context. Specifically, when computing self-
attention in each layer, we concatenate the keys and values with the last r keys and queries from
the previous patch. We use rotary embeddings (Su et al., 2021) to model relative positions between
elements in the sequence. This approach is reminiscent of TransformerXL (Dai et al., 2019) but
differs by being fully differentiable.

Strided Inference: We observed empirically that the per-token loss within each patch increases
towards the end of the patch, as the prediction relies more on the weaker Local model. To alleviate
this issue, we propose strided inference, in which we predict the sequence with two forward passes of
the full model, whose inputs are offset by p/2 positions from each other. We then combine the first
p/2 positions in each patch for our predictions to predict the complete sequence. Similarly to sliding
window methods (Press et al., 2020), this approach doubles the cost of inference but improves results.

3 Efficiency Analysis
3.1 Training Efficiency
Attention The cost of attention in a transformer architecture for a sequence of length T has O(T 2)
complexity. Much work has been explored reducing this; for example, Sparse Transformers (Child
et al., 2019) and Routing Transformers (Roy et al., 2020) show strong results with a complexity
O(T

3
2). Many linear attention mechanisms have also been proposed (Katharopoulos et al., 2020;

Choromanski et al., 2020), although we are not aware of competitive results on large scale language
modeling tasks. As a function of sequence length T and patch size P , the Global model has a sequence
of length P

T so uses O(T
2

P 2) operations, and the Local model uses P
T sequences of length P so uses

O(TP 2

P) = O(PT) operations. The overall cost of MEGABYTE is therefore in O(T
2

P 2 + TP). P is a
hyperparameter that is chosen to create an architecture for sequences of size T . By setting P = T

1
3

the complexity is in O(T
4
3). Using much shorter patches of P = T

1
5 would give a complexity of

O(T
8
5). The cost is less than the transformer for all non-trivial values of P such that 1 < P < T .

Feedforward Layers However, attention is not the main cost in large transformers. Instead of
increasing the sequence length, transformers are more commonly scaled by increasing the dimension
of their latent state d, and the feedforward network cost dominates the model’s overall cost (Kaplan
et al., 2020). For example, in the GPT3 architecture, the quadratic self-attention computation accounts
for only 1.4% of FLOPS. Following the approximation of (Kaplan et al., 2020), a forward pass with
a large transformer with m non-embedding parameters on a sequence of length T uses roughly
2mT FLOPS. MEGABYTE contains two transformers: the Global model uses mg parameters on a
sequence of length T

P , and a Local model with ml parameters that sees T
P sequences of length P ,

giving an estimate of 2T (mg

P +ml) FLOPS. When mg ≫ ml, the FLOPS used by MEGABYTE is
approximately 2Tmg

P , allowing a model P times larger than a transformer with equivalent FLOPS.
This analysis holds irrespective of any efficient attention mechanisms used in the transformer.

Combined Analysis To understand efficiency at different sequence lengths and model sizes,
we calculate the total FLOPS used by transformers, Linear Transformers and MEGABYTE. For
each operation, we use FLOP estimates from (Kaplan et al., 2020), except for attention in Linear
Transformers, which we estimate as 9D FLOPS/token1, where D is the model embedding dimension.
Figure 3 shows that for models of size 660M to 173B and sequence lengths of up to 1M tokens,

1This may underestimate the time taken by Linear Transformer decoders, which use a recurrence mechanism
that is harder to parallelize on current hardware.

4

MEGABYTE with P = 8 uses less FLOPS than either transformers or Linear Transformers. Baseline
model architectures are based on GPT3, and Megabyte global/local model sizes are 452M/151M,
5.8B/604M, 170B/3.2B respectively.

3.2 Generation Efficiency

Figure 3: Computational cost (FLOPS/token) for differ-
ent model architectures at different scales. MEGABYTE
architectures (here with P = 8) use less FLOPS than
equivalently sized Transformers and Linear Transform-
ers (Katharopoulos et al., 2020) across a wide range of
model sizes and sequence lengths, allowing larger mod-
els to be used for the same computational cost.

Generating long sequences with transformers is
slow, because the input to each timestep is the
output from the previous timestep, meaning each
layer must be computed for each token serially.
As running a layer on a single token typically
does not saturate the amount of parallelism avail-
able within a GPU, for analysis, we model each
layer as a constant cost independently of size.
Consider a MEGABYTE model with Lglobal lay-
ers in the Global model and Llocal layers in the
Local model and patch size P , compared with
a Transformer architecture with Llocal + Lglobal
layers. Generating each patch with MEGABYTE
requires a sequence of O(Lglobal + P · Llocal)
serial operations, whereas the Transformer re-
quires O(P ·Lglobal+P ·Llocal) serial operations.
When Lglobal ≫ Llocal (i.e. the Global model
has many more layers than the Local model),
MEGABYTE can reduce inference costs by a
factor close to P .

4 Experimental setup

Controlling for Compute and Data Models show consistent improvements when increasing
both data and compute Kaplan et al. (2020); Hoffmann et al. (2022), meaning that one model can
outperform another because of an increased training budget instead of an improved architecture.
However, in practice, both compute and data are typically limited. We conduct experiments using a
fixed compute and data budget across all models to focus comparisons solely on the model architecture
rather than training resources. To achieve this, we adjust model hyperparameters (mainly, number of
layers) within each architecture so that the forward pass time taken per byte is matched, and then
train all models for the same number of bytes.

Comparison Systems We compare MEGABYTE with both a standard decoder-only Transformer
and PerceiverAR (Hawthorne et al., 2022). PerceiverAR extends the original transformer with a
single cross-attention layer over a much longer context sequence, and is the best performing general
purpose autoregressive model we are aware of and achieves state-of-the-art results across several
modalities. We implemented both models in the same codebase, and all models share a similar data
loader, preprocessing step, and trainer to avoid any artifacts in our compute-controlled experiments.

Training Procedure All models were trained using the Metaseq2 code base Zhang et al. (2022b).
The training used the PyTorch framework Paszke et al. (2019), with fairscale to improve memory
efficiency through fully sharded model and optimizer states Baines et al. (2021). Mixed precision
training was used to improve training efficiency at scale Micikevicius et al. (2017). More training
details and various model parameters can be found in Section A.1 in the Appendix. To validate
our implementation of PerceiverAR, we reproduced their experiments on downsized ImageNet at
64 pixels. By carefully matching hyperparameters, we achieved a bits per byte (bpb) score of 3.53,
compared to the reported 3.54 in the original paper.

Inference Methods Several techniques have been proposed for trading off speed for performance
during inference with language models, including sliding windows Press et al. (2020) and our strided
inference. We only use these methods when comparing with prior published work (Tables 2 and 3).

2https://github.com/facebookresearch/metaseq

5

Dataset Total Bytes bytes/doc Transformer PerceiverAR MEGABYTE

PG-19 10.1GB 411,404 1.057 1.104 1.000
Stories 21.3GB 35,265 1.064 1.070 0.978
Books 79.7GB 509,526 1.097 1.104 1.007
arXiv 91.5GB 58,518 0.816 0.791 0.678
Code 353.7GB 7,461 0.575 0.546 0.411

Table 1: Text dataset sizes and mean document lengths. We also report bpb of various models (Transformer,
PerceiverAR, and MEGABYTE) trained with the same compute.

Tokenizer Vocab Context Length Validation Test

TransformerXL Rae et al. (2019a) SentPiece 32k 512+1024 45.5 36.3
CompressiveTransformer Rae et al. (2019a) SentPiece 32k 512+512+2x512 43.4 33.6
PerceiverAR Hawthorne et al. (2022) SentPiece 32k 2048 45.9 28.9
BlockRecurrent Hutchins et al. (2022) SentPiece 32k 1024+recurrence - 26.5
Transformer byte-level (ours) Bytes 256 2048 81.6 69.4
PerceiverAR byte-level (ours) Bytes 256 8192 119.1 88.8
MEGABYTE Bytes 256 8192 42.8 36.4

Table 2: Larger scale experiments on PG19, converting bits-per-byte to word-level perplexities for comparison
with prior work. Results below the line are compute-matched. MEGABYTE outperforms other byte models by a
wide margin, and gives results competitive with state-of-the-art models trained on subwords.

5 Language Modeling
We evaluated the performance of MEGABYTE on language modeling on a set of 5 diverse datasets
emphasizing long-range dependencies: Project Gutenberg (PG-19), Books, Stories, arXiv, and Code.

Datasets We experiment on a range of long form text datasets. The PG-19 dataset Rae et al. (2019b)
consists of English-language books written before 1919 and is extracted from the Project Gutenberg
online library. The Stories dataset Trinh & Le (2018) is a subset of CommonCrawl data meant to
emulate Winograd schemas. Books Gao et al. (2020) is another collection of English-language books.
The arXiv dataset contains technical publications written in LATEX from the arXiv online archive.
Finally, the Code dataset is a large publicly available dataset of open source code, under Apache,
BSD or MIT licenses. More details on dataset sizes and document lengths are shared in Table 1.

Controlled Experiments Table 1 lists bpb on each dataset. Each model is trained for 80 billion bytes,
and models are scaled to use the same compute budget. We carefully tune hyperparameters for all
architectures to best utilize the available compute budget. MEGABYTE consistently outperforms both
transformers and PerceiverAR across all datasets. We use the same sets of parameters on all dataset.
In all experiments presented in Table 1, transformer has size of 320M with context length of 1024,
PerceiverAR has size of 248M with context size of 8192 and latent size of 1024, and MEGABYTE
global/local model sizes are 758M/262M with context length of 8192 and patch size of 8.

Scaling Experiment We scale up our training data on PG-19 (Table 2), and compare MEGABYTE
with byte baselines, as well as converting all results to word-level perplexities to benchmark with state-
of-art token based models. We train a byte-level Transformer, PerceiverAR and MEGABYTE models
for 400B bytes and the same compute budget using same model parameters as in the controlled
experiments. We find that MEGABYTE outperforms other byte-level models by a wide margin
at this scale.3 We also compare with the best previously reported numbers for sub-word models.
These results may be confounded by differing amounts of compute and tuning used, but show that
MEGABYTE gives results competitive with state-of-the-art models trained on subwords. These results
suggest that MEGABYTE may allow future large language models to be tokenization-free.

6 Image Modeling
Sequence Modeling on ImageNet We test MEGABYTE on variants of the autoregressive image
generation task on ImageNet (Oord et al., 2016), to measure its ability to efficiently use long context.
We test on three different resolutions of images, ranging from 64×64 to 640×640 pixels – the latter

3The only prior byte-level experiments we are aware of are at a smaller scale in Hutchins et al. (2022), who
report results equivalent to test perplexities of 46.5 with a version of the BlockRecurrent transformer, and 49.5
with Memorizing Transformers Wu et al. (2022), compared to 36.4 with our model.

6

https://www.gutenberg.org/
https://www.gutenberg.org/
arxiv.org

requiring the effective modeling of sequences with over 1.2M tokens. This generation task becomes
increasingly challenging as the image’s resolution grows: doing well on this task requires the modeling
of local patterns (textures, lines, etc.) and long-range context that provides information about the
high level structure of the image. Inspired by recent works in Vision Transformers (Dosovitskiy et al.,
2020), we model image data patch by patch (more details can be found in Appendix D.1).

Comparison with State of the Art We train a large MEGABYTE model on ImageNet 64x64 with
Global and Local models sized 2.7B and 350M parameters, respectively, for 1.4T tokens. We estimate
that training this model consumed less than half the GPU hours we would have needed to reproduce
the best PerceiverAR model described by (Hawthorne et al., 2022). As shown in Table 2, MEGABYTE
matches the state-of-the-art performance of PerceiverAR whilst using only half the compute.

ImageNet64 bpb

Routing Transformer (Roy et al., 2020) 3.43
Combiner (Ren et al., 2021) 3.42
Perceiver AR (Hawthorne et al., 2022) 3.40
MEGABYTE 3.40

Table 3: Bits per byte (bpb) on ImageNet
64×64. MEGABYTE matches the current
state-of-the-art while only using half the
amount of GPU hours to train.

Context Image64 Image256 Image640

Total len 12288 196608 1228800

Transformer 1024 3.62 3.801 2.847
Perceiver AR 12000 3.55 3.373 2.345
MEGABYTE Full 3.52 3.158 2.282

Table 4: Bits per byte (bpb) on ImageNet with different
resolutions. All models use the same compute and data.
MEGABYTE scales well to sequences of over 1M tokens.

Scaling to higher resolutions We compare three transformer variants (vanilla, PerceiverAR,
MEGABYTE) to test scalability to long sequences on increasingly large image resolutions. We use
our own implementations of these in the same framework and budget the same amount of GPU hours
and data to train each of these model variants.

MEGABYTE is able to handle all sequence lengths with a single forward pass of up to 1.2M tokens.
We found neither the standard Transformer nor PerceiverAR could model such long sequences
at a reasonable model size, so instead we split images into segments of size 1024 and 12000
respectively. For Megabyte, we set patch size as 12 for Image64 and patch size as 192 for Image256
and Image640 datasets. Model sizes are adjusted to match overall training speeds across models
and we do not use any form of sliding window evaluation in this experiment. As seen in Table 4,
MEGABYTE outperforms baselines across all resolutions in this compute-controlled setting. The
precise settings used for each of the baseline models such as context length and number of latents
are summarized in Table 12. Results show that MEGABYTE outperforms the other systems at all
resolutions, demonstrating an effective model of sequences of over 1M bytes.

7 Audio Modeling
Audio has aspects of both the sequential structure of text and the continuous nature of images, so is
an interesting application for MEGABYTE.

Raw audio is typically stored as a sequence of 16-bit integer values (one per timestep); a softmax layer
would need to output 65,536 probabilities per timestep to model all possible values. To address this
issue, various techniques have been developed to reduce the memory and computational requirements
of the softmax layer. For instance, van den Oord et al. (2016) apply µ-law companding transformation
and quantizes the input into 256 possible values. Alternatively, van den Oord et al. (2017) model the
samples using the discretized mixture of logistics distribution introduced by Salimans et al. (2017).
Finally, Kalchbrenner et al. (2018) use a dual softmax technique to produce 8 coarse and 8 fine bits.
In our approach, we simplify the audio modeling process by directly reading the bytes (256 possible
values) from the audio file and conducting an autoregressive language model on top of that. This
greatly streamlines the modeling process, making it easier and more efficient.

Our audio modeling approach focuses on 16 kHz, 16-bit audio, which equates to 32k bytes per
one-second clip. We use an extensive audio dataset consisting of 2 terabytes (roughly 18,000 hours)
of audio. We use a sequence length of 524,288, a patch size of 32, and a batch size of 32 to facilitate
model training. By utilizing these settings, we can effectively train our model on large volumes of
audio data, helping to improve its accuracy and efficacy. Our model obtains bpb of 3.477, much

7

Global
Size

(Local)
Size bpb Generation

Time (s)

Transformer - 350M 1.064 132
MEGABYTE 1.3B 218M 0.991 93

Table 5: Comparison of bits per byte (bpb) and generation speed of 8192 bytes of transformer model (with
context length 1024) and MEGABYTE with context length 8192 and patch size 8.

lower than the results with perceiverAR (3.543) and vanilla transformer model (3.567). More ablation
results are presented in Table 6.

8 Analysis
We study different behaviors of MEGABYTE. All experiments in the same group use the same
compute.

Generation speed We also compare the text generation speed between MEGABYTE and a trans-
former. We compare a 350M parameter baseline transfomer and a MEGABYTE model with a 1.3B
parameter Global model and a 218M parameter local model, trained on PG19 with equal compute.
As shown in Table 5, the MEGABYTE model achieves much lower perplexity as expected. However,
MEGABYTE also generates a sequence of 8192 tokens 40% faster than transformer, despite having
over 4 times the parameters. This speed up is due to the bulk of the parameters being in the Global
model, which only needs to be computed once for every 8 tokens, whereas all the parameters in the
baseline model are used on every token.

Model Components In Table 6, we analyze the significance of different components in the
MEGABYTE architecture by studying arXiv, Librilight-L and ImageNet256 datasets. Removing Local
(w/o local model) or global (w/o global model) model, we observe a substantial increase in bpb on all
datasets, showing that both parts are crucial. The performance of the model without the cross-patch
local model (w/o cross-patch local model) is competitive, indicating that the architecture is robust to
this modification. We observe slight improvement on the Librilight-L and ImageNet256 datasets by
augmenting the MEGABYTE model with a CNN encoder (w/ CNN encoder). This suggests that the
MEGABYTE architecture can benefit from integrating alternative encoding mechanisms.

Effective Use of Context Long-context models often struggle to benefit from the full context (Sun
et al., 2021). Figure 7 shows that later tokens within each context window have a higher likelihood,
indicating that MEGABYTE can effectively use at least 8k bytes of context on the PG19 dataset.

Arxiv Audio Image256

MEGABYTE 0.6871 3.477 3.158
w/o local model 1.263 5.955 4.768
w/o global model 1.373 3.659 3.181
w/o cross-patch attention 0.6781 3.481 3.259
w/ CNN encoder 0.6871 3.475 3.155

Table 6: Ablation of MEGABYTE model components.
Models with the same dataset are trained using the same
compute. The hyperparameters are listed in Table 12.

Table 7: Average log probability assigned to
different positions within the context length
by MEGABYTE and by a vanilla transformer
model on PG19 test set.

Table 8: An illustration of strided inference with patch
size 8. Blue and yellow represents two inferences that
are shifted by half patch size. Solid line indicates final
probablity being taking during strided inference.

Method Inference Cost bpb

Basic Inference 1X 0.9079
w/ Sliding Window 2X 0.8918
w/ Strided Inference 2X 0.8926
w/ Sliding & Strided 4X 0.8751

Table 9: Performance of various inference tech-
niques on the PG19 test set using our best
MEGABYTE model.

8

Strided Inference We find that within a single patch, on average, the MEGABYTE performs worse
on later tokens within a patch (see Figure 8). Section 2.3 proposes strided inference as a solution,
where two forward passes are performed offset by P

2 tokens, and results from the first half of each
patch are combined. Table 9 shows performance improvements from strided inference, which are
additive with the standard sliding window.

Patch Size. We experimented with various patch sizes on Image256 dataset and found a wide range
of values where MEGABYTE performs similarly. We found similar robustness to patch size choices
across all modalities, although the optimal patch size itself can be different across modalities.

Local to Global model Size Ratio. We experimented with different Local/Global model size ratios
on PG19 dataset. By grouping bytes into patches, MEGABYTE effectively uses P times less tokens
for the Global model as on the Local model—enabling us to increase the size of the Global model
with reduced cost. We find that a given compute budget is spent optimally when the Global model is
larger than the Local model, consistently across all modalities and various patch sizes.

Patch Global Size Local Size bpb

48 125M 114M (L=11) 3.178
192 125M 125M (L=12) 3.158
768 125M 83M (L=8) 3.186

Table 10: Effects of patch size on perfor-
mance on the Image256 dataset. All versions
use the same amount of GPU hours and data.

Global Size Local Size bpb

350M (D=1024,L=24) 290M (D=1024,L=20) 1.014
760M (D=1536,L=24) 262M (D=1024,L=18) 1.002
1.3B (D=2048,L=24) 218M (D=1024,L=15) 0.991

Table 11: Effects of Local / Global model size on the PG19
dataset. Increasing the capacity of global model improves
performance. Models are compute and data matched.

9 Related Work

Prior research has explored the possibility of improving the efficiency of Transformers on long
sequences, primarily motivated by mitigating the quadratic cost of self-attention.

Efficient Encoder Models Several related techniques to ours have been developed for transformer
encoder architectures but cannot be straightforwardly applied to decoders. In particular, patchifying
operations have previously been used in image encoder models such as ViT (Dosovitskiy et al., 2020),
and down- and up-sampling operations have been used for text encoders (Clark et al., 2022), but such
methods cannot be naively applied to decoder-only models without leaking information to future
bytes in the same patch. MEGABYTE generalizes these approaches to an efficient decoder model
by using a intra-patch transformer to predict each sequence element’s likelihood, and offseting the
inputs to the two models to avoid leaking information. Jaegle et al. (2021) use self-attention on a
shorter latent sequence also resembles patchification, but this technique cannot easily be applied to
decoder architectures without leaking information to future timesteps.

Efficient Decoder models Improving the efficiency of decoder models is harder because of the need
to make one prediction per timestep, and not leak information to future timesteps. The most popular
approaches can be categorized as (1) chunking sequences into smaller blocks, and propagating
information from previous blocks with either recurrence (Dai et al., 2019; Hutchins et al., 2022) or
cross-attention (Hawthorne et al., 2022), (2) linear alternatives to attention, which typically involve
forms of token-level recurrence (Katharopoulos et al., 2020) or state space models (Gu et al., 2021;
Smith et al., 2022; Ma et al., 2022), or (3) sparse approximations of attention (Kitaev et al., 2020;
Beltagy et al., 2020; Child et al., 2019; Wu et al., 2022). However, the performance of dense attention
means it is typically still chosen for large scale decoders (Touvron et al., 2023; Chowdhery et al.,
2022). MEGABYTE takes the alternative approach of decomposing the complete sequence into two
shorter sequences, giving sub-quadratic attention. We also note that feedforward networks are the
dominant cost in large decoders, not self-attention. Our approach to compressing sequences allows
much larger models than would be possible when using large feedforward networks at every timestep.

Tokenization The most common approach to shortening sequence lengths in Transformer decoders is
to pre-process the input with a form of tokenization, in which multiple bytes are mapped to a single
discrete token from a fixed vocabulary. For text, this can be done losslessly using methods such as
BPE (Sennrich et al., 2015) and SentencePiece (Kudo & Richardson, 2018), but these approaches can
require language-specific heuristics (Radford et al., 2019), limit out-of-domain performance (Sharami

9

et al., 2023), and can affect prompting and truncated sampling in unpredictable ways.4 The amount
of high-frequency information in images and audio means that tokenization cannot be performed
losslessly, and instead clustering (Hsu et al., 2021) or discrete auto-encoders (Ramesh et al., 2021) are
used to compress the inputs, which lose information and likely limit generative model performance.
Our patches are analogous to traditional lossless tokens, and the Local model performs the role of
mapping a hidden state to a distribution over possible patches.

10 Conclusion
We introduced MEGABYTE, a scaleable architecture for modeling long sequences. MEGABYTE
outperforms existing byte-level models across a range of tasks and modalities, allowing large models
of sequences of over 1 million tokens. It also gives competitive language modeling results with
subword models, which may allow byte-level models to replace tokenization. However, the scale
of experiments here is far below those of state-of-the-art language models (Brown et al., 2020), and
future work should explore scaling MEGABYTE to much larger models and datasets.

References
Baines, M., Bhosale, S., Caggiano, V., Goyal, N., Goyal, S., Ott, M., Lefaudeux, B., Liptchin-

sky, V., Rabbat, M., Sheiffer, S., Sridhar, A., and Xu, M. FairScale: A general purpose mod-
ular PyTorch library for high performance and large scale training. https://github.com/
facebookresearch/fairscale, 2021.

Beltagy, I., Peters, M. E., and Cohan, A. Longformer: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Child, R., Gray, S., Radford, A., and Sutskever, I. Generating long sequences with sparse transformers.
arXiv preprint arXiv:1904.10509, 2019.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P.,
Davis, J., Mohiuddin, A., Kaiser, L., et al. Rethinking attention with performers. arXiv preprint
arXiv:2009.14794, 2020.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung,
H. W., Sutton, C., Gehrmann, S., et al. Palm: Scaling language modeling with pathways. arXiv
preprint arXiv:2204.02311, 2022.

Clark, J. H., Garrette, D., Turc, I., and Wieting, J. Canine: Pre-training an efficient tokenization-free
encoder for language representation. Transactions of the Association for Computational Linguistics,
10:73–91, 2022.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and Salakhutdinov, R. Transformer-xl: Attentive
language models beyond a fixed-length context, 2019. URL https://arxiv.org/abs/1901.
02860.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C., Phang, J., He, H., Thite, A.,
Nabeshima, N., Presser, S., and Leahy, C. The pile: An 800gb dataset of diverse text for language
modeling, 2020.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long sequences with structured state spaces. arXiv
preprint arXiv:2111.00396, 2021.

4For example, whether or not a prompt should end in whitespace depends on details of the subword algorithm.

10

https://github.com/facebookresearch/fairscale
https://github.com/facebookresearch/fairscale
https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/1901.02860

Hawthorne, C., Jaegle, A., Cangea, C., Borgeaud, S., Nash, C., Malinowski, M., Dieleman, S.,
Vinyals, O., Botvinick, M., Simon, I., et al. General-purpose, long-context autoregressive modeling
with perceiver ar. In International Conference on Machine Learning, pp. 8535–8558. PMLR, 2022.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., Casas, D. d. L.,
Hendricks, L. A., Welbl, J., Clark, A., et al. Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556, 2022.

Hsu, W.-N., Bolte, B., Tsai, Y.-H. H., Lakhotia, K., Salakhutdinov, R., and Mohamed, A. Hubert:
Self-supervised speech representation learning by masked prediction of hidden units. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 29:3451–3460, 2021.

Hutchins, D., Schlag, I., Wu, Y., Dyer, E., and Neyshabur, B. Block-recurrent transformers. arXiv
preprint arXiv:2203.07852, 2022.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman, A., and Carreira, J. Perceiver: General
perception with iterative attention. In International conference on machine learning, pp. 4651–4664.
PMLR, 2021.

Kalchbrenner, N., Elsen, E., Simonyan, K., Noury, S., Casagrande, N., Lockhart, E., Stimberg, F.,
van den Oord, A., Dieleman, S., and Kavukcuoglu, K. Efficient neural audio synthesis. CoRR,
abs/1802.08435, 2018. URL http://arxiv.org/abs/1802.08435.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A.,
Wu, J., and Amodei, D. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361,
2020.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International Conference on Machine Learning, pp. 5156–
5165. PMLR, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. In ICLR, 2015.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The efficient transformer. arXiv preprint
arXiv:2001.04451, 2020.

Kudo, T. and Richardson, J. Sentencepiece: A simple and language independent subword tokenizer
and detokenizer for neural text processing. arXiv preprint arXiv:1808.06226, 2018.

Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G., May, J., and Zettlemoyer, L. Mega: moving
average equipped gated attention. arXiv preprint arXiv:2209.10655, 2022.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., Ginsburg, B., Houston, M.,
Kuchaiev, O., Venkatesh, G., et al. Mixed precision training. arXiv preprint arXiv:1710.03740,
2017.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. Pixel Recurrent Neural Networks. ICML,
4:2611–2620, 1 2016. doi: 10.48550/arxiv.1601.06759. URL https://arxiv.org/abs/1601.
06759v3.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., et al. PyTorch: An imperative style, high-performance deep learning library. In
NeurIPS, 2019.

Press, O., Smith, N. A., and Lewis, M. Shortformer: Better language modeling using shorter inputs.
arXiv preprint arXiv:2012.15832, 2020.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. Language models are
unsupervised multitask learners. 2019.

Rae, J. W., Potapenko, A., Jayakumar, S. M., and Lillicrap, T. P. Compressive transformers for
long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019a.

Rae, J. W., Potapenko, A., Jayakumar, S. M., and Lillicrap, T. P. Compressive transformers for
long-range sequence modelling. arXiv preprint arXiv:1911.05507, 2019b.

11

http://arxiv.org/abs/1802.08435
https://arxiv.org/abs/1601.06759v3
https://arxiv.org/abs/1601.06759v3

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever, I. Zero-
shot text-to-image generation. In International Conference on Machine Learning, pp. 8821–8831.
PMLR, 2021.

Ren, H., Dai, H., Dai, Z., Yang, M., Leskovec, J., Schuurmans, D., and Dai, B. Combiner: Full
attention transformer with sparse computation cost, 2021. URL https://arxiv.org/abs/2107.
05768.

Roy, A., Saffar, M., Vaswani, A., and Grangier, D. Efficient content-based sparse attention with
routing transformers, 2020. URL https://arxiv.org/abs/2003.05997.

Salimans, T., Karpathy, A., Chen, X., and Kingma, D. P. Pixelcnn++: Improving the pixelcnn with
discretized logistic mixture likelihood and other modifications. CoRR, abs/1701.05517, 2017. URL
http://arxiv.org/abs/1701.05517.

Sennrich, R., Haddow, B., and Birch, A. Neural machine translation of rare words with subword
units. arXiv preprint arXiv:1508.07909, 2015.

Sharami, J., Shterionov, D., and Spronck, P. A systematic analysis of vocabulary and bpe settings for
optimal fine-tuning of nmt: A case study of in-domain translation. arXiv preprint arXiv:2303.00722,
2023.

Smith, J. T., Warrington, A., and Linderman, S. W. Simplified state space layers for sequence
modeling. arXiv preprint arXiv:2208.04933, 2022.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu, Y. Roformer: Enhanced transformer with
rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Sun, S., Krishna, K., Mattarella-Micke, A., and Iyyer, M. Do long-range language models actually
use long-range context? arXiv preprint arXiv:2109.09115, 2021.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B., Goyal,
N., Hambro, E., Azhar, F., et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

Trinh, T. H. and Le, Q. V. A simple method for commonsense reasoning. arXiv preprint
arXiv:1806.02847, 2018.

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner,
N., Senior, A. W., and Kavukcuoglu, K. Wavenet: A generative model for raw audio. CoRR,
abs/1609.03499, 2016. URL http://arxiv.org/abs/1609.03499.

van den Oord, A., Li, Y., Babuschkin, I., Simonyan, K., Vinyals, O., Kavukcuoglu, K., van den
Driessche, G., Lockhart, E., Cobo, L. C., Stimberg, F., Casagrande, N., Grewe, D., Noury, S.,
Dieleman, S., Elsen, E., Kalchbrenner, N., Zen, H., Graves, A., King, H., Walters, T., Belov, D.,
and Hassabis, D. Parallel wavenet: Fast high-fidelity speech synthesis. CoRR, abs/1711.10433,
2017. URL http://arxiv.org/abs/1711.10433.

Wu, Y., Rabe, M. N., Hutchins, D., and Szegedy, C. Memorizing transformers. arXiv preprint
arXiv:2203.08913, 2022.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li, X., Lin,
V., Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D., Koura, S., Sridhar, A., Wang, T.,
Zettlemoyer, L., and Ai, M. OPT: Open Pre-trained Transformer Language Models. 5 2022a. doi:
10.48550/arxiv.2205.01068. URL https://arxiv.org/abs/2205.01068v4.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M., Li, X., Lin,
X. V., et al. Opt: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068,
2022b.

12

https://arxiv.org/abs/2107.05768
https://arxiv.org/abs/2107.05768
https://arxiv.org/abs/2003.05997
http://arxiv.org/abs/1701.05517
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1711.10433
https://arxiv.org/abs/2205.01068v4

A Supplementary Material

A.1 Training Details

To ensure stable training, we applied gradient clipping with a maximum norm of 1.0 and used the
Adam optimizer with β1 = 0.9, β2 = 0.98 Kingma & Ba (2015). We used the built-in polynomial
decay learning rate scheduler in MetaSeq with 500 warmup updates and the end learning rate set
to 0. All models are trained with pre-norm and using ReLU activation. We apply a dropout of 0.1
throughout, but we do not apply any dropout to embeddings. We also use weight decay of 0.1. To
initialize the weights, we use a variant based on Megatron-LM codebase, which involves using a
normal distribution with a mean of zero and a standard deviation of 0.006. We truncate this normal
distribution within two standard deviations and observed substantial gain in both training stability
and performance.

A.2 Motivation

Why is the local model needed? Many of the efficiency advantages of the MEGABYTE design could
be realized with the Global model alone, which would resemble a decoder version of ViT (Dosovitskiy
et al., 2020). However, the joint distribution over the patch p(xt+1, .., xt+P |x0..t) has an output space
of size 256P so direct modeling is only tractable for very small patches. We could instead factor
the joint distribution into conditionally independent distributions p(xt+1|x0..t)..p(xt+P |x0..t), but
this would greatly limit the model’s expressive power. For example, it would be unable to express
a patch distribution such as 50% cat and 50% dog, and would instead have to assign probability
mass to strings such as cag and dot. Instead, our autoregressive Local model conditions on previous
characters within the patch, allowing it to only assign probability to the desired strings.

Increasing Parameters for Fixed Compute Transformer models have shown consistent improve-
ments with parameter counts (Kaplan et al., 2020). However, the size of models is limited by their
increasing computational cost. MEGABYTE allows larger models for the same cost, both by mak-
ing self attention sub-quadratic, and by using large feedforward layers across patches rather than
individual tokens.

Re-use of Established Components MEGABYTE consists of two transformer models interleaved
with shifting, reshaping and a linear projection. This re-use increases the likelihood that the architec-
ture will inherit the desirable scaling properties of transformers.

A.3 Model Details

As discussed in Section 4, we conduct experiments using a fixed compute and data budget across all
models to focus our comparisons solely on the model architecture rather than training resources. To
achieve this, we adjust model hyperparameters within each architecture so that the time taken for a
single update is matched and then train all models for the same number of updates. We list all of
model details in Table 12 and Table 13.

Model #L dmodel #H dhead

S1 125M 12 768 12 64
S2 350M 24 1024 16 64
S3 760M 24 1536 16 96
S4 1.3B 24 2048 32 64
S5 2.7B 32 2560 32 80
S6 6.7B 32 4096 32 128

Table 12: Common Model architecture details by size. For each model size, we show the number of layers
(#L), the embedding size (dmodel), the number of attention heads (#H), the dimension of each attention head
(dhead).

13

Model (Global) Size Local Size BS LR Context Length (in bytes)

arXiv

Transformer 320M (D=1024, L=22) N/A 72 2.00E-04 1,024
Perceiver AR 248M (D=1024, L=17) N/A 72 2.00E-04 8,192 (1024 latents)
MEGABYTE 758M (D=2048, L=14) 262M (D=1024, L=18) 48 2.00E-04 8,192 (patch size 8)

w/o Local model 2.3B (D=2560, L=20) N/A 48 1.50E-04 8,192 (patch size 4)
w/o global model N/A 350M (D=1024, L=24) 192 2.00E-04 8,192 (patch size 8)
w/o cross-patch Local model 921M (D=2048, L=17) 350M (D=1024, L=24) 48 2.00E-04 8,192 (patch size 8)
w/ CNN encoder 704M (D=2048, L=13) 262M (D=1024, L=18) 48 2.00E-04 8,192 (patch size 8)

Image task 64 (Table 2)

MEGABYTE 2.7B (D=2560, L=32) 350M (D=1024, L=24) 2 2.00E-04 12,288 (patch size 12)

Image task 64 (Table 4)

Transformer 760M (D=1536, L=24) N/A 512 3.00E-04 2,048
Perceiver AR 227M (D=1024, L=16) N/A 512 3.00E-04 12,288 (1024 latents)
MEGABYTE 1.3B (D=2048, L=24) 1.3B (D=2048, L=24) 256 3.00E-04 12,288 (patch size 12)

Image task 256

Transformer 62M (D=768, L=6) N/A 1536 2.00E-04 1,024
Perceiver AR 62M (D=768, L=6) N/A 256 2.00E-04 8,192 (768 latents)
MEGABYTE 125M (D=768, L=12) 125M (D=768, L=12) 16 2.00E-04 196,608 (patch size 192)

w/o local model 2.7B (D=4096, L=32) N/A 16 2.00E-04 196,608 (patch size 48)
w/o global model 125M (D=768, L=12) 125M (D=768, L=12) 16 2.00E-04 196,608 (patch size 192)
w/o cross-patch Local model 250M 156M (D=768, L=15) 16 2.00E-04 196,608 (patch size 192)
w/ CNN encoder 125M (D=768, L=12) 125M (D=768, L=12) 16 2.00E-04 196,608 (patch size 192)

Image task 640

Transformer 83M (D=768, L=8) N/A 4800 3.00E-04 1,024
Perceiver AR 62M (D=768, L=6) N/A 2048 3.00E-04 4,096 (1024 latents)
MEGABYTE 125M (D=768, L=12) 83M (D=768, L=8) 32 3.00E-04 1,228,800 (192 patch size)

audio

Transformer 135M (D=768, L=13) N/A 2048 2.00E-04 1024
Perceiver AR 62M (D=768, L=6) N/A 384 2.00E-04 8,192 (1024 latents)
MEGABYTE 350M (D=1024, L=24) 125M (D=768, L=12) 256 2.00E-04 524,288 (32 patch size)

w/o local model 2.7B (D=4096, L=32) 125M (D=768, L=12) 256 2.00E-04 524,288 (32 patch size)
w/o global model 350M (D=1024, L=24) 125M (D=768, L=12) 256 2.00E-04 524,288 (32 patch size)
w/o cross-patch Local model 350M (D=1024, L=24) 146M (D=768, L=14) 256 2.00E-04 524,288 (32 patch size)
w/ CNN encoder 350M (D=1024, L=24) 125M (D=768, L=12) 256 2.00E-04 524,288 (32 patch size)

Table 13: Model architecture details. We report the model size, the embedding size (D), number of layaers(L),
total batch size (BS), learning rate(LR), and context length. When we vary the number of model layers from the
standard amount for the given size (Table 12), we note this accordingly. For PerceiverAR models, we note the
number of latents used, and for MEGABYTE models we note the patch sizes.

B Pseudocode

Listing 1: Pseudocode of Megabyte model

class MegaByteDecoder:
def __init__(

self ,
global_args ,
local_args ,
patch_size ,

):
self.pad = 0
self.patch_size = patch_size
self.globalmodel = TransformerDecoder(global_args)
self.localmodel = TransformerDecoder(local_args)

def forward(
self ,
bytes ,

):
bytes_global , bytes_local = self.prepare_input(bytes)

14

global_bytes_embedded = self.globalmodel.embed(bytes_global)
global_in = rearrange(

global_bytes_embedded ,
"b (t p) e -> b t (p e)",
p=self.patch_size ,

)
global_output = self.globalmodel(global_in)

global_output_reshaped = rearrange(
global_output ,
"b t (p e) -> (b t) p e",
p=self.patch_size ,

)
local_bytes_embedded = self.localmodel.embed(bytes_local)
local_in = local_bytes_embedded + global_output_reshaped
local_output = self.localmodel(local_in)

batch_size = bytes_global.shape [0]
x = rearrange(local_output , "(b t) l v -> b (t l) v", b=

batch_size)
return x

def prepare_input(self , bytes):
padding_global = bytes.new(bytes.shape[0], self.patch_size).

fill_(self.pad)
bytes_global = torch.cat((padding_global , bytes[:, : -self.

patch_size]), -1)

bytes_input = rearrange(bytes , "b (t p) -> (b t) p", p=self.
patch_size)

padding_local = bytes_input.new(bytes_input.shape [0], 1).fill_
(self.pad)

bytes_local = torch.cat((padding_local , bytes_input [:, :-1]),
-1)

return bytes_global , bytes_local

C PerceiverAR Implementation

To reproduce PerceiverAR in a compute-controlled setting we extended the standard transformer
implementation in metaseq with an additonal cross attention layer to compute the latents and match
the architecture of PerceiverAR. We trained the model by sampling random spans from each text,
matching the procedure used in the PerceiverAR codebase. To be consistent with the original work,
we use sliding window evaluation with a stride of num_latents/2 unless otherwise noted. In several
cases we used the standard metaseq implementation as opposed to specific techniques reported in
the original paper: 1) we used standard attention dropout instead of cross-attention dropout 2) We
did not implement chunked attention. We verified our implementation by reproducing the "Standard
Ordering" experiments in Table 5 of the Perceiver AR paper. After carefully matching context size,
number of latents, the amount of data and training steps used and learning rate, we achieved 3.53 bpb
vs 3.54 reported in the original paper.

D More results

D.1 Patch scan Implementation

Images have a natural structure, containing a grid of n × n pixels each composed of 3 bytes
(corresponding to color channels). We explore two ways of converting images to sequences for
modeling (see Figure 4). Firstly, raster scan where the pixels are linearized into 3 bytes and
concatenated row-by-row. Secondly, patch scan where we create patches of shape p× p× 3 bytes

15

patch 1 patch 2 patch 3

patch 4

Figure 4: Two ways to model 2D data sequentially. Left, raster scan, by taking bytes row by row and left to
right; right, patch scan, where we first split an image into patches, and do raster scan across patches and within a
patch. (T=36, K=9, P=4).

where p =
√

P
3 , and then use a raster scan both within and between patches. Unless otherwise

specified, MEGABYTE models use patch scan for image data.

D.2 Patch scan vs Raster scan

The patch scan method is inspired by recent works in Vision Transformers (Dosovitskiy et al., 2020),
and it is more effective than raster scan for modeling image sequencing. We found it improves both
MEGABYTE and Perceiver AR.

(Global) Size Local Size context bpb

MEGABYTE (patch scan) 62M (D=768, L=6) N/A 8,192 (768 latents) 3.158
MEGABYTE (raster scan) 62M (D=768, L=6) N/A 8,192 (768 latents) 3.428
Perceiver AR (patch scan) 125M (D=768, L=12) 125M (D=768, L=12) 196,608 (patch size 192) 3.373
Perceiver AR (raster scan) 125M (D=768, L=12) 125M (D=768, L=12) 196,608 (patch size 192) 3.552

Table 14: ImageNet256 performance with patch scan vs raster scan for MEGABYTE and Perceiver AR.

D.3 Longer sequence modeling

For our pg19 scaling experiment, we also use longer context length for MEGABYTE. The results are
shown in Table 15. With longer sequence, we didn’t observer further improvement, consistent with
findings in Hawthorne et al. (2022). We think we will benefit more from longer sequence when we
futher scale up the model size and data.

context bpb

MEGABYTE 8,192 (patch size 8) 0.8751
MEGABYTE 16,384 (patch size 8) 0.8787

Table 15: Longer sequence for PG19 dataset. For both experiments, we set global model as 1.3b, local model as
350m, and MEGABYTE patch size as 8.

16

	Introduction
	MegaByte Transformer
	Overview
	Components
	Variations and Extensions

	Efficiency Analysis
	Training Efficiency
	Generation Efficiency

	Experimental setup
	Language Modeling
	Image Modeling
	Audio Modeling
	Analysis
	Related Work
	Conclusion
	Supplementary Material
	Training Details
	Motivation
	Model Details

	Pseudocode
	PerceiverAR Implementation
	More results
	Patch scan Implementation
	Patch scan vs Raster scan
	Longer sequence modeling

