
A Description of architectures377

Motion Compensation We compare our method to the traditional motion-compensated coding378

approach that forms the core of inter-picture coding in well established compression standards such379

as MPEG. Block matching is an essential component of these standards, allowing the compression of380

video content by up to three orders of magnitude with moderate loss of information. For each block381

in a frame, typical coders search for the most similar spatially displaced block in the previous frame382

(typically measured with MSE), and communicate the displacement coordinates to allow prediction383

of frame content by translating blocks of the (already transmitted) previous frame. We implemented384

a “diamond search” algorithm [29] operating on blocks of 8 ⇥ 8 pixels, with a maximal search385

distance of 8 pixels which balances accuracy of motion estimates and speed of estimation (the search386

step is computationally intensive). We use the estimated displacements to perform causal motion387

compensation (cMC), using displacement vectors estimated from the previous two observed frames388

(xt�1 and xt) to predict the next frame (xt+1) rather than the current one (as in MPEG).389

Complex Steerable Pyramid We consider a fixed multiscale oriented representation of image390

content: a steerable pyramid [11, 10] covering 16 orientations and 5 scales on the DAVIS dataset391

(resp. 16 orientations and 4 scales on VanHateren dataset). This choice of number of orientations and392

number of sacles maximizes prediction performance on the corresponding datasets.393

Polar Predictor We use 16 pairs of convolutional channels with filters of size 17 ⇥ 17 pixels,394

without biases (no additive constants). For the multiscale version, the representation is computed395

inside a fixed Laplacian pyramid [9]. We used 4 scales for the DAVIS dataset (and respectively 4396

scales for the VANH dataset). Within this multiscale representation, the learned filters are applied397

with zero padding (ie. "same" boundary condition).398

Quadratic Predictor We consider a multiscale architecture (cf. Polar Predictor) with 16 groups of399

4 convolutional filters for the analysis (fw) and synthesis (gw) mappings. The quadratic predictor (pw)400

operates on groups of 4 coefficients and contains 12 quadratic units. It is therefore more expressive401

than the Polar Predictor architecture and contains phase advance as a special case.402

Vanilla CNN Finally, we implemented a more direct convolutional neural network predictor (CNN),403

that maps two successive observed frames to an estimate of the next frame [12]. For this, we used a404

CNN composed of 20 stages, each consisting of 64 channels, and computed with 3 ⇥ 3 filters without405

additive constants, followed by half-wave rectification. To facilitate learning, a skip connection copies406

the current frame x(t) and the network only outputs residuals that get added to the current frame in407

order to predict the next frame: x̂(t+1) = x(t)+ fw([x(t), x(t � 1)]. This model jointly transforms408

and processes pairs of frames to generate predictions, while both polar predictor (PP) and quadratic409

predictor (QP) separate spatial processing and temporal extrapolation.410

B Description of datasets and optimization411

DAVIS To train, test and compare these models, we use the DAVIS dataset [14], which was412

originally designed as a benchmark for video object segmentation. Image sequences in this dataset413

contain diverse motion of scenes and objects (eg., with fixed or moving camera, and objects moving at414

different speeds and directions), which make next frame prediction challenging. Each clip is sampled415

at 25 frames per second, and is approximately 3 seconds long. The set is subdivided into 60 training416

videos (4741 frames) and 30 test videos (2591 frames). We pre-processed the data, converting all417

frames to monochrome luminance values, and scaling their range to the interval [�1, 1]. Frames are418

cropped to a 256 ⇥ 256 central region, where most of the motion tends to occur, and then spatially419

down-sampled to 128 ⇥ 128 pixels.420

VanHateren We also consider a smaller dataset of natural image sequences obtained from Hans van421

Hateren [13], as described in [3] and downloaded from https://github.com/cadieu/twolayer.422

The top missing band of the images is cropped from 128 by 128 pixels to 112 by 128 pixels. The423

dataset is standardized to zero mean and unit variance, and it is split into 292 snippets of 11 frames424

for training and 33 snippets of 11 frames each for testing. There is no spatial downsampling or425

whitening.426
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Boundary handling The computation of this prediction error is restricted to the center of the427

image because moving content that enters from outside the video frame is inherently unpredictable.428

Specifically, we trim a 17-pixel strip from each side, yielding frames of size 94 ⇥ 94 pixels.429

Training procedure We assume the temporal evolution of natural signals to be sufficiently and430

appropriately diverse for training, and do not apply any additional data augmentation procedures.431

We train on brief temporal segments containing 11 frames, which allows for prediction of 9 frames,432

processing these in batches of size 4. We train each model for 200 epochs on DAVIS using the433

Adam optimizer [30] with default parameters and a learning rate of 3 · 10�4. The learning rate is434

automatically halved when the test loss plateaus. In the CNN, we use batch normalization before435

every half-wave rectification, rescaling by the standard deviation of channel coefficients (but with no436

additive bias terms).437

C Planted symmetries438

D Learned filters439

E Predictions examples440
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(a) Translation (cyclic boundary) (b) Rotation

(c) Translation and rotation (d) Translation (open boundary)

Figure 5: Filters of polar predictor networks trained to predict small synthetic sequences. We
randomly select 100 image patches of size 16⇥ 16 from the DAVIS dataset and generate training data
by manually transforming them - applying translations or rotations. We verify that PP recovers the
known harmonic functions: Fourier modes for translation (panel a), and disk harmonics for rotation
(panel b). To show that the recovery of harmonics is robust, we design two additional synthetic
datasets. i) the combination of translational and rotational sequences. In this case, PP learns filters
that correspond to either group, suggesting that our approach can generalize to situations with more
than than one group at play (panel c); ii) generalized translation sequences: spatially sliding a square
window on a large image (ie. new content creeps in and falls off at boundaries), instead of using cyclic
boundary condition (ie. content wraps around the edges). In this case, PP learns localized Fourier-like
modes (panel d), indicating that approximate group actions still provide meaningful training signal -
although some filters are less structured. In each panel, the 32 pairs of filters are sorted by their norm.
Notice that some of the filters are not structured and generally miss high frequency harmonics. This
is due to the spectral properties of the datasets, which have more power at lower frequencies, and to
the discretization of the transformations.
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(a) spatial domain filters (b) corresponding Fourier amplitude spectra

Figure 6: Filters of a polar predictor trained to predict natural videos from the DAVIS dataset. The
32 pairs of convolutional filters are sorted by their norm and their amplitude spectrum is displayed at
corresponding locations on the right panel. Observe that the filters are selective for orientation and
spatial frequency, tile the frequency spectrum, and form quadrature pairs.

Example predictions

cMC

25.70

x(t � 1) x(t) x(t + 1)

PSNR 21.67

SPyr

26.49

mPP

26.98

mQP

27.28

CNN

26.44
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Figure 7: A typical example image sequence from the DAVIS test set. The first three frames on the
top row display the unprocessed images, and last five frames show the respective prediction for each
method (with their shorthand above). The bottom row displays error maps computed as the difference
between the target image x(t + 1) and each predicted next frame on the corresponding position in the
first row. Images, predictions and error maps are all shown on the same scale.
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