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Abstract

Bayesian brain theory suggests that the brain employs generative models to un-
derstand the external world. The sampling-based perspective posits that the brain
infers the posterior distribution through samples of stochastic neuronal responses.
Additionally, the brain continually updates its generative model to approach the
true distribution of the external world. In this study, we introduce the Hierarchical
Exponential-family Energy-based (HEE) model, which captures the dynamics of
inference and learning. In the HEE model, we decompose the partition function
into individual layers and leverage a group of neurons with shorter time constants
to sample the gradient of the decomposed normalization term. This allows our
model to estimate the partition function and perform inference simultaneously,
circumventing the negative phase encountered in conventional energy-based mod-
els (EBMs). As a result, the learning process is localized both in time and space,
and the model is easy to converge. To match the brain’s rapid computation, we
demonstrate that neural adaptation can serve as a momentum term, significantly
accelerating the inference process. On natural image datasets, our model exhibits
representations akin to those observed in the biological visual system. Furthermore,
for the machine learning community, our model can generate observations through
joint or marginal generation. We show that marginal generation outperforms joint
generation and achieves performance on par with other EBMs.

1 Introduction

Human behavioral studies [1, 2, 3] and animal neurophysiological studies [4, 5] have suggested that
the brain performs statistically optimal Bayesian inference to interpret the external world [6, 7, 8, 9].
One promising theory for implementing Bayesian inference in the brain is to interpret the variability
of neural responses as Monte Carlo sampling of the posterior distribution [10]. This perspective
naturally accounts for the irregular firing patterns and other response properties observed in sensory
cortex neurons [11, 12, 13]. Numerous sampling-based models [10, 14, 15, 16, 17, 12, 13, 18] have
been proposed to elucidate neural dynamics and the underlying mechanisms of Bayesian inference.

To facilitate the brain’s ability to derive meaningful representations from sensory input, it must
continually update its generative model to approximate the true distribution of the external world [19].
Previous approaches often neglect this critical learning process. They either maintain fixed parameters
for their generative model [15, 17, 16], or they employ biologically implausible methods like the
variational approach with backpropagation (BP) for training [9]. Is there a generative model that
integrates sampling-based inference with the capability to learn locally in both time and space?
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Energy-based models (EBMs) [20] provide a framework for inference with sampling method and
learning with spatially localized rules. The reason for non-locality in time is the need to estimate
the partition function. To estimate the global partition function, the network has to perform a top-
down pass to obtain a negative sample. This process is referred to as the negative phase. During
this pass, it disrupts the neural network’s stored inference results, which is essentially the same
reason for the temporal non-locality as in the case of BP. Recently, predictive coding networks
(PCNs) [21, 22, 23, 24] use the Gaussian distribution to avoid the negative phase since the partition
function of Gaussian is constant. But further study [25] reveals that the Gaussian assumption is
restrictive when dealing with complex probability distributions. Moreover, setting aside biological
constraints, estimating the partition function itself poses a significant challenge. In the field of machine
learning, various sampling methods, such as amortized generation [26] and implicit generation [27],
have been proposed to tackle this issue. However, both of these methods involve the use of the
negative phase, which is known for being challenging to converge. Generative adversarial networks
(GANs) address this issue by utilizing a discriminative model, but GANs are notoriously difficult to
train in practice.

Besides, the inference dynamic of Gibbs sampling [28, 20] or Langevin sampling [29] in EBMs
essentially perform random walks in local regions rather than the whole posterior space, which is too
slow to be compatible with brain functions [16]. Therefore, it is crucial to investigate whether neural
circuits in the brain have the capacity of realizing sampling-based inference rapidly.

Summary of the work. In Sec.2, we propose that our brain holds an EBM as the intrinsic generative
model to interpret the external world. The neural dynamics employ a sampling-based method for
Bayesian inference. Simultaneously, the learning dynamic aims to minimize the discrepancy between
the observed distribution of intrinsic model and the real world. In Section 3, we introduce the
Hierarchical Exponential-family Energy-based (HEE) model, which allocates the partition function
across each layer. This allocation shifts the estimation of the total sample space required for
calculating the partition function from a product of individual layer spaces to a sum of layer spaces.
This approach enhances the convergence of our model. Furthermore, we efficiently sample the
normalization term of the exponential-family in each layer using a group of neurons with fast
dynamics. This localizes the learning process in both time and space. In Sec.4, we find that
incorporating noisy adaptation, a generic feature of neuronal responses, into the inference dynamics
effectively yields a second-order Langevin dynamic. In Sec.5, we validate the capabilities of the HEE
model using 2D synthetic datasets and FashionMNIST [30]. Then, we incorporate receptive field as
the biological constrains to the HEE model training on CIFAR10 [31]. We show that the HEE model
can achieve a performance comparable with previous EBMs [27]. We also investigate the neural
representation of semantic information, including orientation, color and category, which exhibit
similarities to biological visual systems. And the neural adaptation can trigger neural phenomena
including oscillations and transient which are widely observed in biological systems. In Sec.6, we
discuss several related theories and models.

Main Contributions. We propose a hierarchical EBM whose learning process is localized both in
time and space, which could potentially serve as a mechanism for the brain to utilize changes in
synaptic strength for learning. And our brain-inspired EBM also presents a technique for estimating
the partition function, which is a challenging problem within the machine learning community.

2 The intrinsic generative model

In this section, we propose that our brain holds energy-based models (EBMs) as the intrinsic
generative model consisting of two components: inference and learning. Inference is believed to
be carried out through neural sampling [10, 20], while learning is accomplished through long-term
synaptic plasticity [32].

Let x be the observation received by our brain, and let z be the latent variable represented by neurons.
The joint distribution of the EBMs is written as pθ(x, z) = pθ(x|z)pθ(z), where θ are stored in the
connection weights of neurons (Fig.1A). The EBMs aims to minimize the difference between the
intrinsic marginal distribution pθ(x) and the true distribution of the external world ptrue(x), which is
described by the Kullback–Leibler divergence,

min
θ

DKL [ptrue(x) ∥ pθ(x)] . (1)
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Figure 1: (A) The directed graphical model of the energy-based model (EBM). (B) The latent variable
z receives the likelihood information pθ(x|z) from the observation x and combines it with the prior
knowledge pθ(z) to perform the inference dynamic. And the connected weights θ changes following
the learning dynamic (dashed line). (C) The latent variable z performs inference dynamic and the
observation x performs generation dynamic, which leads to the distribution of x, z ∼ pθ(x, z). And
the connection weights θ are fixed (solid line). (D) The latent variable doesn’t receive likelihood
information from observation and z ∼ pθ(z), x ∼ pθ(x) which is called marginal generation.

The neural system can adopts the gradient based learning method such as gradient decent. And the
gradients is calculated as (see SI for detailed proof),

∇θDKL [ptrue(x) ∥ pθ(x)] = −Ex∼ptrue(x)Ez∼pθ(z|x) [∇θ ln pθ(x, z)] . (2)

The second expectation of the above equation requires the posterior of a given observation x, which is
calculated as pθ(z|x) = pθ(x, z)/pθ(x). Practically, the posterior is intractable for the denominator
pθ(x) requires complex integral. Variational inference is usually used to solve this problem (such as
VAE [33]). And the EBMs adopts the sampling method to avoid complex calculations. By leveraging
the relationship ∇z ln pθ(z|x) = ∇z ln pθ(x, z) ,the samples of posterior can be offered by the neural
dynamic (Langevin sampling),

τz
dz

dt
= ∇z ln pθ(x, z) +

√
2τzξ, (3)

where ξ is Gaussian white noise and τz is the time constant. The stationary distribution of the above
dynamic is our target distribution pθ(z|x). The sampling algorithm, along with the joint distribution,
determines the connections of neurons and their inference dynamic (Fig.1B).

For the learning dynamic, the brain receives the observations from the real world continuously
(Ex∼ptrue(x)), and the neural dynamic mentioned above can produce samples of their posterior simul-
taneously (Ez∼pθ(z|x)). The parameters can be updated according to the gradient, which is often
implemented by Hebbian learning rules(Fig.1B),

τθ
dθ

dt
= −∇θDKL [ptrue(x) ∥ pθ(x)] = ∇θ ln pθ(x, z), (4)

where τθ is the time constant of synapses.

For neuroscience, this is the end of the story. Nevertheless, EBMs can also generate observations
which the machine learning society follow with interest. In the generation process, the observation is
not fixed but undergoes the Langevin sampling,

τx
dx

dt
= ∇x ln pθ(x, z) +

√
2τxξ. (5)

The latent variable z can follow the inference dynamic Eq.(3). In this case, the observation x and
latent variable z together follow the joint distribution pθ(x, z). Thus, the observation x can produce
samples following pθ(x), which is called joint generation (Fig.1C). However, in order to get the
marginal distribution pθ(x), the latent variable z just needs to follow the prior distribution pθ(z)
rather than reaching the posterior. In this case, the generation dynamic of latent variable is written as,

τz
dz

dt
= ∇z ln pθ(z) +

√
2τzξ. (6)
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And the stationary distribution of Eq.(5) performed by observation x still equals to pθ(x), which
is called marginal generation (Fig.1D). In Sec.5, we will see that the marginal generation performs
better than joint generation. Here is an informal understanding. The process of sampling (x, z) can
be understood as searching for a specific pair. We assume that the size of the x-space is O(m) and
the size of the z-space is O(n). In joint generation, the search is conducted simultaneously in both
the x-space and z-space, resulting in a required search space of O(n ∗m). In marginal generation,
the process involves initially searching in the z-space according to pθ(z). Once z is found, it is fixed.
This step’s search space size is O(n). Then, x is searched based on pθ(x|z) in the x-space. This
step’s search space size is O(m), leading to a combined required search space size of O(n+m).

3 Exponential-family energy-based model

In this section, we provide a neural implementation of the HEE model and outline the specific
dynamics involved in inference, learning, and generation, as discussed in Section 2. Approximating
the target distribution ptrue(x) which is diverse and complex requires a good representation ability of
the model. Exponential families include many of the most common distributions (such as normal,
Poisson, gamma distribution and so on). Moreover, exponential families can be easily parameterized,
allowing for generalization and flexibility in modeling various types of distributions.

Let x0 ∈ Rn0 be the observation (such as an image) received by our brain. And there are L layers of
neurons representing the latent variables x1:L = {x1,x2, ...,xL}, xl ∈ Rnl . The joint distribution
is a Markov chain (Fig.2A) starting with p(xL) = exp

[
ηT
Lϕ(xL) + g(xL)−A(ηL)

]
,

pθ(x0:L) = p(xl)

L−1∏
l=0

pθ(xl|xl+1), pθ(xl|xl+1) = exp
[
ηT
l ϕ(xl) + g(xl)−A(ηl)

]
. (7)

The natural parameter ηl ∈ Rnl is a function of xl+1 with parameters θl ∈ Rnl×nl+1 , which is
written as ηl = θlf(xl+1), where f(·) is the activation function. And ηL is constant. The sufficient
statistic ϕ(xl) ∈ Rnl and the base measure g(xl) ∈ R is the function of xl. A(ηl) ∈ R is the
normalize term (log-partition function) to make sure the sum of the probability equals to 1. In order
to get the inference dynamic, we substitute the joint distribution Eq.(7) into the Langevin dynamic
Eq.(3) obtaining,

τz
dxl

dt
= f ′(xl)θ

T
l−1 [ϕ(xl−1)−A′(ηl−1)] + ϕ′(xl)ηl + g′(xl) +

√
2τzξl, (8)

where f ′(xl), ϕ
′(xl) ∈ Rnl×nl are diagonal matrices. The derivative of log-partition A′(ηl−1) is

intractable for it needs complex integral. Here, we use a group of interneurons εl−1 ∈ Rnl−1 to rep-
resent the term ϕ(xl−1)−A′(ηl−1). It can be proved that A′(ηl−1) = Exl−1∼pθ(xl−1|xl) [ϕ(xl−1)]
(See SI for detailed proof). Thus, in order to calculate A′(ηl−1), the interneurons need to produce
samples xl−1 following the distribution pθ(xl−1|xl) in a short time compared with the inference
dynamic. Therefore, the dynamic of εl−1 can be written as,

εl−1 = ϕ(xl−1)− ϕ(ul−1), τu
dul−1

dt
= ϕ′(ul−1)ηl−1 + g′(ul−1) +

√
2τuξu. (9)

By setting the time constant τu ≪ τz
1, we can ensure that ul−1 converges much faster than xl, and the

stationary distribution of ul−1 corresponds to pθ(ul−1|xl). This leads to εl−1 = ϕ(xl−1)−A′(ηl−1).

Now, we can rewrite the inference dynamic Eq.(8) into,

τz
dxl

dt
= f ′(xl)θ

T
l−1εl−1 + ϕ′(xl)ηl + g′(xl) +

√
2τzξl. (10)

The first term on the right side of the dynamic equation indicates that neurons xl receive feedback
from interneurons εl−1, which provides likelihood information pθ(xl−1|xl). The second term shows

1There are various types of interneurons that target on pyramidal cells, comprising approximately 10-20% of
the overall neuron population in the cerebral cortex [34]. The interneurons in the HEE model bear the closest
resemblance to the Large Basket Cell or Nest Basket Cell [35], which collectively constitute around 50% of
interneurons. Their electrophysiological characteristics include fast spiking, non-accommodating, and non-
adapting behaviors. These interneurons have also been identified in the visual cortex of ferrets [36], displaying
short-duration action potentials (approximately 0.5 ms at half height). This suggests that these neurons have
shorter time constants compared to pyramidal cells.
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Figure 2: (A) The directed graphical model of the hierarchical exponential-family energy-based
(HEE) model . (B) The inference and learning dynamic of HEE model. The red arrows represent the
likelihood information and the black arrows represent the prior information. Neurons xl receive the
likelihood information from εl−1 and receive prior information ηl from εl. The interneurons εl−1

receive the natural parameter ηl−1 from neurons xl and perform the Langevin sampling dynamic
to approximate A′(ηl−1). Then, the interneurons compare it with the the sufficient statistic ϕ(xl−1)
received from xl−1 to calculate the value of εl−1. The dashed line shows that the connection weights
θ will perform gradient decent in the learning dynamic. (C) The neural connection diagram between
layer l and layer l + 1.

that neurons xl receive prior knowledge pθ(xl|xl+1) from interneurons εl through a feedforward
loop. The term g′(xl) controls the self-connections within layer l (Fig.2B). εl−1 is also called the
error term in PCNs. Here, we show that the predictions in PCNs essentially estimate the log-partition.

Then, we can obtain the learning dynamic by substituting the joint distribution Eq.(7) into the gradient
decent dynamic Eq.(4),

τθ
dθl
dt

= [ϕ(xl)−A′(ηl)] f(xl+1)
T = εlf(xl+1)

T . (11)

The derivatives of the log-partition function are stored in the interneurons εl. As a result, the synaptic
changes are determined solely by local neurons, adhering to Hebbian rules.

After inference and learning, our model can also generate observations. During joint generation, the
dynamics of neurons x1:L follow the same principles as the inference dynamics described by Eq.(10).
By substituting the joint distribution Eq.(7) into the Langevin dynamic Eq.(5), we can generate new
samples from the model by,

τx
dx0

dt
= ϕ′(x0)η0 + g′(x0) +

√
2τxξ0 (12)

And for marginal generation, we can substitute the prior distribution described in Eq.(7) into Eq.(6)
obtaining the dynamic of neurons x1:L,

τz
dxl

dt
= ϕ′(xl)ηl + g′(xl) +

√
2τzξl. (13)

4 Neural adaptation accelerate the sampling process

Langevin sampling essentially performs random walks in local regions rather than the whole posterior
space [37], because the drift term ∇z ln pθ(x, z) in Eq.(3) will vanish near the local minima and
only noise term remains (Fig.3A). Sampling the entire posterior space is a time-consuming process
and does not align with the brain’s ability to perform tasks quickly. Therefore, it is important to
implement a faster sampling algorithms for our model.

In this section, we show that by including noisy adaptation, the network is able to speed up the
inference dynamic significantly. Adaptation is a common phenomenon observed in neural systems,
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∑
l nl = 10000).

where negative feedback mechanisms are employed to suppress neuronal responses when they reach
high levels. Here, we show that the neural adaptation v can introduce an auxiliary variable to
implement a faster sampling algorithm, which is called second-order Langevin dynamics (SLD),

τz
dz

dt
= ∇z ln pθ(z|x)− v +

√
2τzξ, (14)

τv
dv

dt
= −mv

2
+m

√
2τvξ, (15)

where m > 0 controls the adaptation strength. The auxiliary variable v can keep the network moving
while reaching the local minima, which essentially serves as the momentum term (Fig.3B). When
there is no adaptation (m = 0), the above dynamic will degenerate to the Langevin sampling (LS)
described in Eq.(3). And the stationary distribution of the above dynamic remains to be pθ(z|x)
(See SI for proof). By substituting the joint distribution of exponential family Eq.(7) into the above
dynamic, we can obtain the SLD inference dynamic,

τz
dxl

dt
= f ′(xl)θ

T
l−1εl−1 + ϕ′(xl)ηl + g′(xl)− vl +

√
2τzξl, (16)

τv
dvl

dt
= −mvl

2
+m

√
2τvξl. (17)

Here we exemplify the neural adaptation with spike frequency adaptation (SFA) [38]. In the neural
system, the adaptation current vl accumulates the noise term ξl coming from the ion concentrations,
release of neural transmitters, activation/inactivation of ion channels and so on, which is described by
Eq.(17). The adaptation current induces suppression on neurons xl, acting as momentum variables to
accelerate the sampling process (Eq.(16)).

We conduct further investigation to elucidate the precise mechanism by which noisy adaptation
facilitates the acceleration of the sampling process in the HEE model. Considering that the energy
function − ln pθ(x1:L|x) is non-convex, the sampling process can be divided into two parts. In the
first part, the network needs to find a local minima and samples near the local minima, which takes a
certain amount of time called recurrence time Trec (Fig.3C). In the second part, the network needs to
leave the local minima and find a new one, which takes a certain amount of time called the escape
time Tesc. Typically, we have Trec ≪ Tesc. The total time to get stationary distribution can be
approximated by T = Tesc + Trec. It can be proved that [39] the recurrence time is bounded by
Trec = O (1/λ1(HJ)). λ1(HJ) is the smallest eigenvalue of the matrix HJ ,

HJ =

(
H/τz I/τz
0 mI/(2τv)

)
(18)

where H is the Hessien matrix of the energy function − ln pθ(x1:L|x0). The smallest eigenvalue
of HJ is calculated as λ1(HJ) = min{λ1(H)/τz,m/(2τv)}. Thus, in the case m > 2λ1(H)τv/τz ,
the SLD can reduce the recurrence time Trec to accelerate the sampling process. And the escape
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Figure 4: Evaluation on 2D synthetic datasets and FashionMNIST: a mixture of four Gaussian
distribution (first line), a mixture of four banana-shaped distribution (second line), pinwheel-shaped
distribution (third line).

time is bounded by Tesc = O
(√

1/ det(HJ)
)

. The determinant of HJ is calculated as det(HJ) =

det(H)(mτ/2τv)
∑

nl . Thus, det(HJ) is monotonically increaseing with m, indicating that the
larger m is, the shorter the time it takes to escape from the local minima.

The analysis presented above demonstrates that the convergence speed of the inference dynamic is
determined by the values of λ1(H) and det(H). This valuable insight can be leveraged to guide
the design of the network architecture, enabling the creation of more efficient and effective models.
Specifically, with a fixed total number of neurons

∑
l nl, increasing the number of layers L results in

a deeper network, while decreasing the number of layers results in a wider network. Practically, we
show that det(H) will decrease with layers L while λ1 will increase (Fig.3D), which indicates that
there is a trade-off between the recurrence time Trec and the escaping time Tesc with different layers
L (See SI for detailed setting and analysis).

5 Experiment

In this section, we firstly validate the capability of HEE model for approaching complex distribution
by examining the quality of generation. Then, we show that our model demonstrates similarity in
the representation of natural images to the biological visual system. And adaptation can induce
oscillatory behavior and transient overshoots in neurons during the inference phase.

5.1 Generation

Firstly, we conducted experiments using three variations of the HEE model, each with different
ϕ(x) functions and sampling methods (Tabel 1), to evaluate their capabilities. The experiments
were performed on both 2D synthetic datasets and the FashionMINST. We use the fully connected
architecture, i.e., θl has no zero elements. The results (second and third column) show that HEE with
linear statistic (HEE-L) struggles to capture the complex distribution. Moreover, we theoretically
prove that HEE-L can only approach unimodal distributions (See SI for detailed proof). For HEE-NL,
some modes are missing while using the joint generation. And when the spacing between modes
is large, there is an issue of non-uniformity among different modes. And the marginal generation
converge much faster than the joint generation. In FashionMNIST, it takes less time for marginal
method to get the generation of high-quality images.
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Model ϕ(x) Sampling method

HEE-L x LS
HEE-NL sigmoid(x) LS
HEE-NL-A sigmoid(x) SLD

Table 1: Table of different HEE models.

Then, we employ the HEE-NL-A with layers
L = 10 on the CIFAR10 unconditional. The
sparse connection is employed as a method
to mimic the receptive field behavior found
in biological systems. We quantitatively
evaluate image quality of HEE-NL-A with
Inception score [40] and FID score [41] in
Tabel 2. Overall, we achieve a performance comparable with the previous EBMs. And the generation
quality of the marginal method is better than joint method, which agrees with the previous results [42].

5.2 Inference

We further use the HEE-NL-A trained on CIFAR10 to explore the relationship between the latent
features and semantic information, including orientation, color and category.

Orientation: Simple cells [43] and complex cells [44] are the most prominent and widely observed
neurons in the biological visual system that exhibit tuning to orientation. They are found in the
primary visual cortex (V1) of numerous animal species [45, 46]. We present the model with gabor
images of different orientations commonly used in experiments (Fig.6A) and compute the mean and
variance of the neural responses for each neuron. Then, we use a Gaussian curve with bandwidth
limited from 20◦ to 90◦ and a two-modes Gaussian curve to fit the simple cell and complex cell,
respectively (Fig.6A&B). We find that the proportion of simple cells and complex cells remains
relatively consistent across each layer and both decrease with increasing layers in our model (Fig.6C).

End stopping: In the HEE model, interneurons essentially represent the error term in the PCNs. We
have observed the phenomenon of ’end stopping’ in interneurons (Fig.6D), which aligns with the
end-stopping behavior observed in error neurons in the PCNs [21].

Color: Recent study shows that there is a hierarchical representation for chromatic processing across
the ventral pathway of macaque [47]. We present our model using reshaped natural images [48] and
employ principal component analysis to demonstrate that the middle layer’s neural representation’s
most informative dimensions carry chromatic information (Fig.6E).

Category: Visual object recognition is believed to be solved by the brain hierarchically [49]. A
recent study [50] demonstrate that the inferotemporal cortex, situated in the deeper layer of the visual
pathway, is capable of constructing a linear map of the object space. For each layer in our model,
we employed a linear support vector machine (SVM) to classify the ten labels of the CIFAR10. The
SVM was trained using the average neural responses as features. Fig.6F illustrates the projection
of the features in the last layer onto the SVM weights corresponding to the "cat" and "dog" labels.
Furthermore, we observe that the classification accuracy improves as we move up the layers of our
model (Fig.6G), which is consistent with findings in both biological visual systems [50] and the
artificial neural networks [51].

Phenomena: Oscillations [52] and transients [53] are two kinds of spatial-temporal dynamic features
in neural systems, which play a crucial role during the sampling process [13]. Here, we show that by
adjusting the adaptation strength m, the oscillation frequency of the HEE model can span within the

Model IS FID

HEE-NL-A (Joint) 5.95 43.21
EBM (single) [27] 6.02 40.58
HEE-NL-A (Marginal) 6.47 37.05
MEG (Generator) [42] 6.49 35.02
EBM (10 ensemble) 6.78 38.20
MEG (MCMC) 7.31 33.18

Table 2: Table of Inception and FID scores. Figure 5: Marginal generation of HEE-NL-A on
CIFAR10.
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Figure 6: (A)(B) The red dots show the average firing rate of two neurons in x1 with different
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location corresponding to the projection of their average neural response in layer 5 onto the first
two principal components. Red images are located in the upper left corner, while blue-green images
are located in the lower right corner. (F) The true label of cat, dog, and other categories should be
respectively located in the second, fourth, and third quadrants. (G) The classification accuracy of the
SVM in each layer. (H) We sampled and statistically analyzed the distribution of the highest firing
rate frequencies of all neurons during the inference phase in the first 100τz for different values of
m. The gamma band is centered around the dashed line. (I) We sampled and statistically assessed
the maximum change in firing rates of all neurons during the inference phase in the first 100τz for
different values of m. We refer to the mean of the maximum change values as the ’average step
size’. We utilize the average step size of the neurons during the sampling process as an indicator of
transients.

range of 20-80 Hz (gamma band), which is widely observed in visual systems [54] (Fig.6H). And
stimulus-onset transients of the firing rate can also be enhanced by the adaptation (Fig.6I).

6 Discussion

The present study investigates the sampling-based inference and learning dynamic within the frame-
work of an intrinsic generative model. We introduce the HEE model as a neural implementation that
utilizes neural dynamics and Hebbian learning. Additionally, we demonstrate that the inclusion of
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neural adaptation can significantly accelerate the sampling process and give rise to various dynamic
phenomena throughout the network. In this section, we will discuss several related theories and
models.

Probabilistic Population Code (PPC) [55, 56] is another theory that explains how the brain perform
Bayesian inference, in which neural responses are interpreted as the parameters of the probability
distributions. We adopted the idea [57] that PPC theory incorporates two generative models. In the
framework of PPC, the experimenter presents the subject with observation x (gabor image) based on
the semantic information s (orientation), which actually defines an external generative model from s
to x. And the subjects holds an intrinsic generative model with latent variable z represented by neural
response to interpret the observation x. PPC theory integrates two generative models into a single
generative model, in which the neural response z is regarded as the observation generated from the
semantic information s. We propose that the learning dynamic occurs exclusively within the intrinsic
generative model, as the brain is not aware of the external generative model.

Energy-based models (EBMs) [20, 58] When EBMs were initially proposed [20], they had latent
variables corresponding to neurons. Later, to enhance the model’s expressive power, hierarchical
structures were introduced [59, 60]. Such EBMs could typically ensure local learning in space. As
artificial neural networks have become increasingly powerful, it has been observed that for generative
tasks, there’s no need to explicitly introduce neurons as latent variables within EBMs. Instead, one
can directly employ a neural network to represent the energy [27]. Training such EBMs often involves
utilizing BP. The distinction between these EBMs and traditional EBMs is akin to the difference
between dynamic systems and recurrent neural networks.

Regardless of whether it’s the traditional EBMs or the new type of EBMs, both involve the challenge
of estimating the partition function. This difficulty arises from the fact that as the depth of the energy
function increases, the total sample space required multiplies the space for each layer. In the case of
HEE, we allocate the partition function across each layer. As a result, the total sample space required
is the sum of the spaces for each layer. This significantly reduces the required sample space.

Predictive coding networks (PCNs) [21, 22] The interneurons in the HEE model serve a similar
role to the prediction error in PCNs. And our theoretical analysis shows that the predictions in PCNs
essentially represent the decomposed log-partition function. And PCNs don’t stress the sampling-
based inference, which requires them to approximate the energy function using variation inference by
delta function. Sampling-based inference can assist the network in exploring the posterior probability
space, leading to a more accurate estimation of the energy function. Additionally, it can account for
the observed neural variability in experiments.

Diffusion models (DDPMs) [61, 62] The HEE model and DDPMs share the same joint distribution
and both exhibit a hierarchical Markov structure, which may contribute to the HEE model’s strong
expressive potential. The marginal generation is also called latent space MCMC [63, 42], which is
similar to the generation process of DDPMs. While DDPMs unfolds the Markov chain over time, the
HEE model unfold it between layers of neurons. However, in order to reach a better performance,
DDPMs use a fixed diffusion process as the inference dynamic, which may not be adopted by our
brain since the latent variables in our brain carry semantic information (such as simple cells [43]).

Speed up sampling [17, 38] In previous work, inhibition neurons were used to serve as momentum
terms to accelerate sampling [17]. However, this approach required a one-to-one correspondence
between inhibition neurons and excitatory neurons. In our approach, we consider the adaptive
properties inherent in each neuron itself to serve as momentum, naturally resolving the one-to-one
correspondence issue. Furthermore, our consideration extends to sampling in a non-convex energy
space, which differs from the prior focus solely on convex space convergence properties [38].
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