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Abstract

Global Routing (GR) is a core yet time-consuming task in VLSI systems. It re-
cently attracted efforts from the machine learning community, especially generative
models, but they suffer from the non-connectivity of generated routes. We argue
that the inherent non-connectivity can harm the advantage of its one-shot genera-
tion and has to be post-processed by traditional approaches. Thus, we propose a
novel definition, called hub, which represents the key point in the route. Equipped
with hubs, global routing is transferred from a pin-pin connection problem to a
hub-pin connection problem. Specifically, to generate definitely-connected routes,
this paper proposes a two-phase learning scheme named HubRouter, which in-
cludes 1) hub-generation phase: A condition-guided hub generator using deep
generative models; 2) pin-hub-connection phase: An RSMT construction module
that connects the hubs and pins using an actor-critic model. In the first phase,
we incorporate typical generative models into a multi-task learning framework to
perform hub generation and address the impact of sensitive noise points with stripe
mask learning. During the second phase, HubRouter employs an actor-critic model
to finish the routing, which is efficient and has very slight errors. Experiments
on simulated and real-world global routing benchmarks are performed to show
our approach’s efficiency, particularly HubRouter outperforms the state-of-the-
art generative global routing methods in wirelength, overflow, and running time.
Moreover, HubRouter also shows strength in other applications, such as RSMT
construction and interactive path replanning.

1 Introduction

As the scale of integrated circuits (ICs) increases rapidly, the quality and efficiency of current
Electronic Design Automation (EDA) technologies are being ceaselessly challenged. Among the
various tasks from logic synthesis [50] to placement and routing [7], global routing (GR) [8, 24, 36,
43, 31, 35, 6, 48] is one of the complex and time-consuming combinatorial problems in modern Very
Large Scale Integration (VLSI) design. As a posterior step of component placement, it generates
routing paths to interconnect pins of IC components from a netlist, which are already placed on the
physical layout [6]. The objective of global routing is basically to minimize total wirelength while
avoiding congestion in the final layout2. However, even its simplified ‘two-pin’ case (see Fig. 8 in
Appendix C for illustration) that routes every net with only two pins under design constraints turns
out to be an NP-complete problem [27].

∗Correspondence author. This work was partly supported by China Key Research and Development Program
(2020AAA0107600), NSFC (62222607) and SJTU Scientific and Technological Innovation Funds.

2Another routing task called detailed routing [3] is orthogonal to this work. To our knowledge, there is so far
no learning-related work on problems whose scale is even much larger than global routing (see example in [6]).
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Figure 1: Example of an un-
connected route. Up: Original
route; Down: Generated route.

Table 1: Characteristics of global routing approaches. Classi-
cal and RL-based methods generally transfer routing into 2-pin
problems. In particular, [31] is highly sensitive to chip scales.
The generative model PRNet can generate each route in one-shot
but cannot guarantee connectivity which requires considerable
post-processing for failed routes. HubRouter in this paper has all
the advantages of PRNet and in particular ensures connectivity.

Model Type Multi-pin Connectivity Scalability

BoxRouter [8] Classical % ! %

DRL [31] RL % ! %

PRNet [6] Generative ! % ∆*

HubRouter (ours) Generative ! ! !

* Scalable for one-shot generation, but not scalable for post-processing.

Traditional works [8, 24, 36, 43] adopt (strong) heuristics to greedily solve global routing. However,
the diversity and scale could pose new challenges to classical algorithms, which call for strategy
updating and improvement by human experts on a continuous basis. To mitigate the reliance
on manual efforts and facilitate the overall design automation and quality, machine learning has
been adopted for global routing, as one of its diverse applications in chip design ranging from logic
synthesis [40, 39] to placement [32, 28], etc. Specifically, deep reinforcement learning (DRL) [31, 35]
and generative models [48] have been adopted to tackle global routing (sometimes also along with
other tasks, e.g., placement [6] in the design pipeline). However, DRL methods suffer from large state
space and often need to spend enormous time on generating routes as the scale of grids increases on
the test instance, i.e., the netlist, which is practically intimidating for real-world global routing. The
generative approaches can be more computationally tractable due to the potential one-shot generation
capability and train/test the model on different instances. In fact, the generative models have
recently been adopted in different design tasks [5, 56] beyond EDA (partly) for its higher efficiency
compared with the iterative RL-based decision-making procedure, while a common challenge is
how to effectively incorporate the rules and constraints in the generative models. However, though
generative global routing approaches [6] inject connectivity constraints into the training objective,
they often degenerate to an exhaustive search in post-processing when the generated initial routes
fail to satisfy connectivity, as shown in Fig. 1. Our experimental results will show that the routes for
difficult nets have a very low average connectivity rate of less than 20%, which means that over 80%
generated routes for difficult nets require time-consuming post-processing. This greatly harms the
inference time and indicates a serious challenge for the routing problem.

To address this intractable issue, our main idea is to propose a novel definition, ‘hub’, which means
the (virtual) key point in the route. By transferring the pin-pin connection problem to the hub-pin
connection problem, situations where routes are unconnected in generative approaches can be avoided.

Specifically, we propose a novel two-phase learning scheme for global routing, named HubRouter,
which includes 1) hub-generation phase: A condition-guided hub generator using deep generative
models under a multi-task learning framework; 2) pin-hub-connection phase: A post-processing
rectilinear Steiner minimum tree (RSMT) construction module that links the hubs using an actor-critic
model. In the generation phase, hubs, routes, and stripe masks (a practical module as illustrated in
Sec. 3.1) are together generated under a multi-task framework by generative models with optional
choices, including Generative Adversarial Nets (GAN) [11], Variational Auto-Encoder (VAE) [26],
and Diffusion Probabilistic Models (DPM) [16]. Though only hubs are required as outputs in this
phase, we find it helpful to simultaneously generate routes and stripe masks together with hubs,
where routes are used to obtain the local perception and stripe masks are capable of removing noise
points. In the connection phase, we regard the connection of generated hubs as an RSMT construction
problem, which is NP-complete [10]. Equipped with an actor-critic model [47], this phase can be
conducted in a more scalable way [33] with very slight errors. We also introduce a special case
that when hubs in the first phase are correctly generated for an RSMT route, its reconstruction time
complexity can be reduced to O(n log n), which shows the scalability potential of HubRouter.

With this two-phase learning scheme, the proposed HubRouter enforces all generated routes to be
connected and save the post-processing time in generative approaches [6]. Apart from the strength in
global routing, HubRouter is of generality to deal with other applications. We evaluate HubRouter in
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Figure 2: Diagrams of a) chip canvas; b) grid graph; c) condition image, with pin positions and
capacity; d) route, and examples of 4 types of hubs; e) all hubs generated from d).

RSMT construction and interactive path replanning. Table 1 compares different routing methods and
the highlights of this paper are:

1) We empirically show that the recent generative global routing approaches could suffer from the
inherent non-connectivity of generated routes. Inspired by this observation, this paper proposes a
new concept, namely hub, which means a key point in the route. With hubs generated for each net,
pins can be connected efficiently under connectivity assurance.

2) Equipped with the concept of hubs, we devise HubRouter, which is a novel two-phase learning
scheme for global routing, including (virtual) hub generation and pin-hub connection. Compared with
generating routes directly, this scheme ensures the connectivity of all generated routes by generating
intermediate hubs and then connecting them with pins. The connectivity assurance alleviates the
time-consuming post-processing.

3) In the generation phase, we introduce a condition-guided generative framework under the perspec-
tive of multi-task learning, where routes and stripe masks are generated together with hubs to improve
hubs’ generation quality. In the connection phase, we adopt an actor-critic network to effectively
simulate the RSMT construction. Moreover, we illustrate that when hubs are correctly generated for
an RSMT route, the reconstruction can be optionally performed in O(n log n) time complexity.

4) Multiple experiments on simulated and real-world datasets are performed to illustrate the effec-
tiveness of HubRouter. Especially, HubRouter ensures the connectivity of generated routes and
outperforms the state-of-the-art generative global routing models in wirelength, overflow, and time.
We also introduce two applications other than global routing to show the generality of HubRouter.

2 Background and Preliminaries

Global Routing. In VLSI design, global routing is a stage after placement, which determines the
paths for nets and interconnects the pins on a chip layout. Typically, given a physical chip and a
netlist, we have a chip canvas and several nets (see Fig. 2(a)), where each net includes some pins
on the fixed positions decided by macro/standard cells in the previous placement process. In global
routing, the chip canvas is further divided into rectangular tiles, where the tiles are formed into a
grid graph G(V, E) (see Fig. 2(b)). Nodes V = {vi}|V|

i=1, also named global routing cells (GCells),
represent the tiles and we need to link all the tiles that contain pins. The nodes containing pins are
dyed dark red in Fig. 2(b). Edges E represent the paths among adjacent nodes, where each edge
eij ∈ E has its given capacity cij and usage uij . The main objective of global routing is to connect
all the required connections and on this basis, reduce the routing wirelength (WL) and overflow (OF).
The overflow here refers to oij = max(0, uij − cij), i.e., the exceeded number of routes compared to
the given capacity on a tile.

Generative Global Routing. Actually, global routing is a combinatorial problem and can be
formulated as a 0-1 integer linear programming (0-1 ILP) problem [4], but it is still NP-complete.
Despite that various works [24, 8, 31] denote the layout of global routing as a routing graph, generative
models [6] give a novel insight that regards the layout as an image and treats route generation as
independent conditional image generation. Specifically, pixels are used to represent tiles in global
routing, and a routing output image is generated from a given condition image. The condition image
contains three channels, with the first channel being the locations of pins and the other two channels
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Figure 3: Pipeline of the proposed two-phase scheme. 1) hub-generation phase: Route, hub, and
mask are fed to three optional generative models, i.e., GAN, VAE, and DPM, with condition guided.
The generated hub image is further masked by a stripe mask module; 2) pin-hub-connection phase:
The hubs generated in the first phase are fed to an actor-critic network to obtain its RSMT construction
by learning Rectilinear Edge Sequence (RES), and finally the connected route is obtained.

being the capacity of horizontal/vertical grid edges. The routing image is a grayscale image with a
value of 255 representing routed and 0 representing unrouted. Examples of condition and routing
images are respectively shown in Fig. 2(c) and 2(d).

Hub. Fig. 2(d) also introduces hubs, the main concept proposed in this paper, with 4 different types,
which can be vividly represented as ‘+,⊤, ⌞, ·’. Formally, we have
Definition 1 (Hub). Given a one-channel image with m× n pixels, let pij (1 ≤ i ≤ m, 1 ≤ j ≤ n)
denote the pixel in the i-th row and j-th column, whose value rij = 1/0 respectively represent
routed/unrouted. Auxiliary denote r0j = r(m+1)j = ri0 = ri(n+1) = 0, then the pixel pij is a hub if
and only if rij = 1 and it satisfies any of the following condition:

(1) + : r(i−1)j = r(i+1)j = ri(j−1) = ri(j+1) = 1; (2) ⊤ : r(i−1)j + r(i+1)j + ri(j−1) + ri(j+1) = 3;

(3) ⌞: r(i−1)j + r(i+1)j = 1 and ri(j−1) + ri(j+1) = 1; (4) · : r(i−1)j + r(i+1)j + ri(j−1) + ri(j+1) = 1.

This means that any routed pixel is a hub unless it has exactly two opposite routed neighbor pixels.
In Fig. 2(e), we give an example of all the hubs generated from Fig. 2(d).

Difference between Hubs and Steiner Points. The intuition of hubs is similar to the concept of
Rectilinear Steiner Point (RSP) [21], but we claim that there are essential differences between them.
RSPs are searched for a global minimum total distance, while hubs are used to determine a path.
Obviously, RSPs are special cases of hubs, and hubs can generate paths of different shapes at will (not
only the shortest). Furthermore, traditional approaches can obtain hubs only after accomplishing the
routing, while the characteristics of machine-learning approaches naturally give them the capability
of learning such hubs. We envision that HubRouter has more applications compared with RSPs. To
show this, we also conduct some applications, including RSMT construction and interactive path
replanning in Sec. 4.4. Related works in this work are presented in Appendix A.

3 From Pin-Pin to Hub-Pin Connection: A Two-phase Routing Scheme

Approach Overview. We formulate global routing as a two-phase learning model. The first phase
is called the hub-generation phase, where we approximate the conditional distribution pθ(x|z, c)
to the prior distribution p(x|c) when given z ∼ pz(z) and condition c. Here z is a latent variable
from a prior distribution (usually assumed as Gaussian distribution) while c and x are respectively
condition and input images (route, extracted hubs, and stripe mask). The second phase is called the
pin-hub-connection phase, where we link the hubs generated in the first phase to obtain the final route.
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(a) Route Sample. (b) Generated Hub. (c) Bad Connected Route. (d) Stripe Mask Control.

Figure 4: Illustration of how the stripe mask alleviates the noise impact. (a) A route sample. (b)
The generated hubs, where the black/blue points are respectively hubs/noises. The gray stripes are
generated masks. (c) Without the stripe mask, the route will be lengthened by some wrong and
redundant paths (blue). (d) Two paths with the same length scheduled by the stripe mask.

This process can be treated as RSMT construction, and we follow REST [33] to use an RL-based
algorithm to finish the routing. We respectively introduce these two phases in Sec. 3.1 and Sec. 3.2.
In the generation phase, we also propose a multi-task learning framework to improve the quality of
generated hubs, especially a novel stripe mask learning method is proposed to alleviate the negative
effects caused by noise points cases. The overall algorithm is in Appendix B.

3.1 Hub-generation Phase: Multi-task Learning of Hub, Mask, and Unused Pre-Routing

Hub generation can be formulated as an image-to-image task because the prior distribution p(x|c) is
given from training dataset {xi, ci}Ni=1 with N samples, where N denotes the total number of nets for
training. So, it seems that we can learn a distribution pψ(x|c) and can generate x′ ∼ pψ(x|c = c′)
given a new condition c′ out of the training dataset. However, since the results of hub generation
are not unique, a generative probabilistic distribution pθ(x|z, c) conditioned on c can better describe
the routing. The main objective of hub generation is to minimize the difference between probability
distributions p(x|c) and pθ(x|z, c) while it often differs in expression under different perspectives.
With the help of the rapid development of deep generative models, various works give us optional
choices to address hub generation. In Appendix B, we respectively introduce how to incorporate
GAN [11, 37], VAE [26, 44], and DPM [16, 17] into our generative framework.

Note that PRNet [6] has a similar generation model structure to ours, yet we fall into different plights.
PRNet employs a bi-discriminator [54] in CGAN [37] to inject the connectivity constraints into the
training objective. This constraint indeed works and increases the correctness (all pins are connected
within one route) rate by over 10%, but it is almost useless for complicated cases, as will further be
discussed in Sec. 4.2. Under our two-phase learning scheme, the connectivity can be guaranteed,
but the generated noise points have a more negative impact on the final results. Thus, we propose a
multi-task learning framework in the following to handle this potential weakness.

We claim that hub generation is highly different from other image generation missions because subtle
noises can hardly affect their generation quality. When generating hubs, a noise point, especially the
outermost one, can largely harm the wirelength of routing. We show this challenging phenomenon in
Fig. 4(b) and 4(c), where two noise points (blue) in Fig. 4(b) lead to a much longer route in Fig. 4(c)
since all the generated hubs should be connected within one route in our scheme. As discussed
in some other special generation tasks like layout generation [5], high reconstruction accuracy is
typically maintained during training to ensure the generation is suitable for its requirement. Following
this setting, we further devise a multi-task learning framework, whereby the input in Sec. 3.1 is
defined as x = {x(hub),x(rt),x(msk)} with three components, respectively hub, route, and mask.
Note that although the hub generation is the main purpose in the first phase, we still generate routes
and masks for auxiliary usages. In particular, the routes x(rt) are pre-routing results and are unused in
the second phase, which is employed to better obtain the continuous local perception in CNN-based
networks. We further propose a novel mask learning module named stripe mask to focus on bad cases
for hub generation. Specifically, the stripe mask is defined as a matrix x(msk) ∈ {0, 1}m×n, where
x
(msk)
ij = 1 means there is a hub in the i-th row or j-th column; otherwise x

(msk)
ij = 0. At inference
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time, the generated hubs are masked by a binarized stripe mask x̂
(hub)
ij = x

(hub)
ij × x̃

(msk)
ij with

x̃
(msk)
ij = I

max

 1

m

m∑
i=1

x
(msk)
ij ,

1

n

n∑
j=1

x
(msk)
ij

 >
1

2

 , (1)

where I[·] is an indicator function yielding 1/0 if the input is correct/wrong. Eq. 1 shows that unless
the noises in vertical/horizontal lines are dense, the stripe mask will not be formed. Fig. 4(c) shows
that, with the help of the stripe mask, the blue noise points can be masked, and the generated route
can be shortened by removing the redundant (blue) paths. Empirically, an appropriate stripe mask
can eliminate most of these noise points. The reasons why we use the stripe mask rather than other
masks [46] are due to the characteristics of global routing: Compared with other generation tasks, 1)
Noise points will greatly impact the routing quality, and the stripe mask learning can eliminate most
of them; 2) the routing result is not required to be unique while the stripe mask module is capable of
providing different choices of routing. As shown in Fig. 4(d), two black hubs can choose an arbitrary
yellow point as a turning point to connect each other while the length of paths is the same.

3.2 Pin-hub-connection Phase: RSMT Construction

After the hub-generation phase, the hub points will be sent to the pin-hub-connection phase to link
all the generated hubs and obtain the final route. In this phase, the connection process is regarded
as a rectilinear Steiner minimum tree (RSMT) construction problem, which is proved to be NP-
complete [10]. Note that it seems to be possible to directly use RSMT construction to perform
global routing; however, we claim that the hub-generation phase is essential because 1) Without
the generated hubs, RSMT construction can only find the shortest route and fail to generate an
appropriate route under restriction; 2) A good hub-generation phase for RSMT route reconstruction
can be reduced to O(n log n), as stated in the following theorem:

Remark 1. [Reconstruction Bonus] Suppose a set of hubs in an RSMT route is correctly generated,
then its RSMT reconstruction can be performed in O(n log n) time complexity.

We further illustrate it in Appendix C. Remark 1 introduces the optimal time complexity of the pin-
hub-connection phase for the ideal cases. While without this strong assumption, we follow REST [33]
to learn the Rectilinear edge sequence (RES) under an actor-critic neural network framework. Given
a point set P = {(xi, yi)}|P|

i=1, we want to get the RES, which is a sequence of |P| − 1 index pairs
[(v1, h1), . . . , (v|P|−1, h|P|−1)] and pair (vi, hi) means connecting point vi and hi with rectilinear
edges. RES can be modeled as a sequential decision-making problem, so it is advantageous in RL.
Note that the validity and existence of RES for the RSMT construction are already proved in REST.

As shown in Fig. 3, the actor network is used to create RES results with given coordinate points, while
the critic network sets a baseline to predict the expected length of RSMT constructed by the actor
network and guide the actor network to obtain better performance. According to the evaluation of the
critic network, the actor network will update the policy to minimize the RSMT length. Specifically,
the actor network is devised via an auto-encoder to learn better representations. We draw B point
sets V̄ = {V1, V2, . . . , VB}, and construct valid RES sets R(Vi) for each point set Vi. The objective
is to minimize the expected advantage of the RSMT as follows:

min
ξ

EVi∼V̄ ,ri∼R(Vi) [bζ(Vi)− b(Vi, ri)] pξ(ri), (2)

where bζ(Vi) is a predicted length of RSMT by the critic network and b(Vi, ri) is the actual length
evaluated in linear time. pξ(ri) is the learnable probability of generating a specific RES with regard
to ξ. This objective is learned with an RL-algorithm [52]. Apart from the actor network, the critic
one is learned simply by mean square error (MSE) with gradient descent training:

min
ζ

EVi∼V̄ ,ri∼R(Vi)∥bζ(Vi)− b(Vi, ri)∥2. (3)

At test time, in line with [33], we apply 8 transformations that rotate the point set by [0, 90, 180, 270]
degrees with/without swapping x and y coordinates and then choose the best solution. This trick is
relatively more effective when hubs are not well generated.
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Table 2: Experiments on ISPD-07 with 4 kinds of cases (detailedly introduced in Appendix D ). We
compare HubRouter with PRNet [6] on three metrics. Optimal results are in bold.

Metric Case PRNet HubRouter HubRouter HubRouter
(GAN) (VAE) (DPM) (GAN)

Route-small-4 0.806 1.000±0.000 1.000±0.000 1.000±0.000

Correctness Route-small 0.334 1.000±0.000 1.000±0.000 1.000±0.000

Rate (%) Route-large-4 0.196 1.000±0.000 1.000±0.000 1.000±0.000

Route-large 0.040 1.000±0.000 1.000±0.000 1.000±0.000

Route-small-4 1.001 1.099±0.020 1.060±0.011 1.011±0.003

Wirelength Route-small 1.009 1.042±0.006 1.174±0.009 1.002±0.001

Rate (%) Route-large-4 * - 1.122±0.039 1.100±0.021 1.005±0.002

Route-large * - 1.041±0.014 1.242±0.021 1.001±0.000

Route-small-4 14.99 7.14±0.19 673.21±5.08 7.16±0.05

Generation Time Route-small 18.51 7.70±0.20 670.23±2.45 8.36±0.35

(GPU Sec) Route-large-4 19.47 7.24±0.30 673.01±5.18 7.53±0.16

Route-large 19.22 10.65±0.09 672.86±4.44 9.75±0.35

* The correctness rate is too low for PRNet to reasonably evaluate the wirelength rate.

4 Experiment and Analysis

We introduce datasets and setups in Sec. 4.1. To show the performance of HubRouter, in Sec. 4.3,
we respectively perform global routing on three kinds of datasets with both classical and learning
baselines. Ablation study is performed to evaluate key modules in HubRouter. In Sec. 4.4, we
introduce two applications, including RSMT construction and interactive path replanning. Finally, we
analyze the time overhead and show the scalability of HubRouter. Each experiment in this section is
run on a machine with i9-10920X CPU, NVIDIA RTX 3090 GPU and 128 GB RAM, and is repeated
3 times under different seeds with mean and standard deviation values in line with [6].

4.1 Datasets and Setups

Datasets. For training, we construct global routing instances by adopting NCTU-GR [34] to route on
ISPD-07 routing benchmarks [38], which is in line with [6]. For test, we split the samples outside
the training set into 4 types of routes according to the number of pins and the distance of pins. In
detail, ‘Route-small-4’ and ‘Route-small’ respectively represent cases with no more than and more
than 4 pins and the Half-perimeter wirelength (HPWL) of pins is less than 16. Here, HPWL =
[max(xi)−min(xi)]+ [max(yi)−min(yi)] for a group of pin positions {(xi, yi)}

np

i=1 in a net with
np pins. ‘Route-large-4’ and ‘Route-large’ are similar, whose HPWL is more than 16. Moreover,
we introduce ISPD-98 [1] routing benchmarks and some simulated small-scale cases used by a deep
reinforcement learning (DRL) method [31], named DRL-8 and DRL-16.

Metrics. On ISPD-07 routing benchmarks, we choose correctness (all pins are connected within one
route) rate and wirelength ratio (WLR, the ratio of the generated route length to the ground truth route
length) introduced in [6] as our metrics. In the experiments of ISPD-98 and DRL cases, wirelength
(WL), overflow (OF), and routing runtime are adopted. We also investigate some common metrics
for generative models like Fréchet Inception Distance (FID) [15] and Inception Score (IS) [2, 42],
but they are not suitable for taking on the real performance on global routing.

Other Implementation Details. Details of training/test datasets and other protocols, including
introduction of baselines and model structures, are presented in Appendix D.

4.2 Unconnected Cases in Previous Generative Global Routing Approaches

We investigate the state-of-the-art generative global routing approach [6] and show that its correctness
rate (CrrtR) is extremely low for cases with complex connection of pins. As declared in Table 2,
the CrrtR is only 0.04 for the Route-large case. This is reasonable because connectivity is assured
only when almost each pixel of routed path is correctly generated in the routing image, which is a
very strict condition for complex cases. However, under our proposed two-phase learning scheme,
HubRouter guarantees the CrrtR on all nets with the intermediately generated hubs. Moreover, despite

7



Table 3: Experiments on ISPD-98 (IBM01-06) and GRL cases. Wirelength (WL) and running
time are compared among 4 baselines and HubRouter (brown) with generative structures (HR-VAE,
HR-DPM, HR-GAN). Optimal results of WL and time are in bold. The results of DQN [31] on
ISPD-98 are out of time (OOT) within 2 weeks, so only GRL cases are displayed.

Metric Model IBM01 IBM02 IBM03 IBM04 IBM05 IBM06 GRL-8 GRL-16

WL

Labyrinth [24] 75909 201286 187345 195856 420581 341618 2376 8204
Boxrouter [8] 63687 172304 147463 169033 410614 280477 2328 7991

DQN [31] OOT OOT OOT OOT OOT OOT 2434 8356
PRNet [6] 61950 172802 152037 170493 420274 287777 2497 8172
HR-VAE 64703±1498 176492±6830 159968±3281 179895±5274 434942±2916 300448±5560 2415±33 8584±244

HR-DPM 66446±1586 190588±2337 168454±2486 183696±1736 475820±5516 316700±2843 2285±7 7746±29

HR-GAN 61056±151 167545±236 147050±208 164298±326 411857±472 278198±423 2306±8 7768±30

Time
(Sec)

Labyrinth [24] 6.47 10.14 12.07 36.81 7.54 18.43 < 1 second < 1 second
Boxrouter [8] 7.01 12.91 11.74 41.76 13.45 29.17 < 1 second < 1 second

DQN [31] OOT OOT OOT OOT OOT OOT > 1 day > 1 day
PRNet [6] 254.31 585.23 523.34 573.19 1606.00 1227.31 11.54 28.25
HR-VAE 9.66±0.08 9.69±0.04 10.19±0.06 12.93±0.07 14.58±0.00 17.28±0.16 5.83±0.01 5.88±0.02

HR-DPM 1796.09±38.68 2772.29±16.83 2936.52±21.23 3865.21±25.07 4369.47±22.56 4965.08±121.46 37.00±2.58 53.90±2.85

HR-GAN 41.02±0.51 46.58±0.56 52.04±2.35 67.31±3.51 72.28±3.72 88.02±4.45 6.31±0.20 6.38±0.04
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Figure 5: Initialized overflow on ISPD-98 (IBM01-06) and the DRL cases.

that PRNet only counts the wirelength of the connected routes, HubRouter (GAN) is competitive
with it in WLR. Note that we only evaluate the inference time of generation in Table 2 (total time is
analyzed in the next part), where PRNet is efficient with its one-shot superiority, though HubRouter
(VAE/GAN) are still slightly better than it. An exception comes that HubRouter (DPM) suffers from
time-consuming sampling for its multiple sampling steps.

4.3 Benchmarking Global Routing and Ablation Study

We test the WL, OF, and inference time on IBM01-06 from ISPD-98 as well as DRL cases. The
detailed inference time that is divided into generation time and connection time is shown in Ap-
pendix E.4. As shown in Table 3, the WL of HubRouter (GAN) outperforms others on ISPD-98
cases while HubRouter (DPM) hits the optimum on DRL cases. This implies that HubRouter (DPM)
is more capable on small-scale cases as the model complexity is not very high that easily incurs
overfitting; however, due to its large inference time, we do not decide to increase its model complexity,
but we believe it has high potential with more support of computing power. In addition, though
HubRouter (VAE) fails to reach the top in WL, it is the fastest among all ML-based algorithms and is
even competitive with classical algorithms in some cases. Since there exists the theoretical lower
bound of this task [8], we also compare the relative error on ISPD-98 cases in Appendix E.3 to better
demonstrate the performance of HubRouter. As these generative models empirically show different
behaviors, we argue that when given a new dataset, the choice of generative algorithms is decided
by the industrial needs. Specifically, if one needs high quality, GAN is the best. If speed is highly
required, VAE is the best. If one has abundant resources, DPM can be adopted. Note that PRNet is
significantly more time-consuming in this experiment compared with the results in Table 2 due to
its post-processing. In line with PRNet [6], as the overflow is decreased by rerouting, we compare
the initialized overflow among ML-based algorithms. As shown in Fig. 5, HubRouter-GAN has a
minimal overflow in all test cases.

Ablation study is conducted in both generation and connection phases to show the influence of the
introduced modules. As depicted in Table 4, in the hub-generation phase, we respectively denote the
HubRouter with inputs of hubs, hubs + routers, and hubs + routers + stripe masks as HubRouter-h,
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Table 4: Ablation Study on ISPD-07 with HubRouter (using GAN as generative embodiment).

Generation-phase Model HubRouter-h HubRouter-hr HubRouter-hrm

WLR 1.031 1.022 1.005

Connection-phase Model HubRouter-RMST HubRouter (T=1) HubRouter (T=8)

WLR 1.099 1.087 1.005

Add points
Original

Route

Replanning

Figure 6: Samples of interactive path replanning. The first line is routes with some added points
while the second line is the replanned paths.

HubRouter-hr, and HubRouter-hrm. Among all, HubRouter-hrm reaches the optimal wirelength
rate and HubRouter-hr also outperforms HubRouter-h, which indicates that the multi-task learning
with route and stripe mask is effective. In the pin-hub-connection phase, HubRouter-RMST is
denoted as the one using R-MST as the connection model. In addition, HubRouter (T=1)/(T=8)
respectively represent the HubRouter with/without 8 transformations introduced in Sec. 3.2. As
expected, HubRouter (T=8) performs the best. Details on hyperparameter are in Appendix E.

4.4 Further Studies and Discussion

We envision that HubRouter can do more than just global routing. Here, we respectively perform
RSMT construction and interactive path replanning to reflect the generality of HubRouter. The
HubRouter in this section uses GAN as the generative embodiment due to its better performance.

RSMT Construction. It is intuitive that global routing for each net without overflow constraint is to
minimize the wirelength, and thus is close to the problem of RSMT construction. A key question is
whether the generated hubs can enhance the construction of the pure RSMT during the connection
phase. To evaluate it, we test the average percent errors compared with GeoSteiner [51] on the
random point data given by REST [33], together with running time, in Table 5. We compare baselines
including R-MST 1, BGA [23], FLUTE [53] and REST [33]. When degree is smaller than 25 REST
performs the best, but HubRouter outperforms others when degree is larger than 30. In particular, an
unintuitive phenomenon shows that HubRouter performs even better with a higher degree. This is
due to the characteristic of hub generation since a noise point in a dense case has much less impact
on the error of wirelength than in a sparse case. Apart from the error, REST has the shortest running
time depending on large batch size. However, HubRouter has to run sequentially in this task because
degrees are different after generating some new hubs.

Interactive Path Replanning. Path replanning [19] refers to the process of revising a given path
when the environment changes. It is a technique used in human-machine interaction. HubRouter
is capable of deciding a new path with user-defined hubs. Fig. 6 shows samples of interactive path
replanning results, where HubRouter connects new points and maintains most of the previous paths.

Analysis of Scalability and Time Overhead. We claim that HubRouter is scalable in both phases.
In the generation phase, for a fixed scale of routing graph, similar to PRNet [6], the hub generation
is one-shot. This implies that its generation speed is unrelated to the number of pins and is linear
to the number of nets, as respectively shown in Fig. 7 (left/middle). For connection, we show in
Sec. 3.2 that the RSMT construction can degrade to a O(n log n) R-MST problem under some ideal
assumptions. In addition, as depicted in Fig. 7 (right), equipped with an actor-critic network, the time
overhead of HubRouter increases more slowly than pure RSMT construction.

Non End-to-End framework. HubRouter is a two-phase framework that is designed with careful
analysis. It differs from PRNet [6], which is an end-to-end attempt to produce the routes directly, but

1https://github.com/shininglion/rectilinear_spanning_graph
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Figure 7: Generation time of HubRouter is constant to number of pins (left) and is linear to number of
nets (middle). The RSMT construction time of HubRouter rises slower than GeoSteiner [51] (right).

Table 5: Experiments on RSMT construction. HubRouter and four baselines are compared to the
RSMT solver GeoSteiner (GeoSt) and the best results on errors are in bold. Time overhead is also
evaluated on GeoSt, REST, and HubRouter. Mean and variance are given with three trials.

Degree Average Percent Errors (%) Time (Sec)
GeoSt R-MST BGA FLUTE REST HubRouter GeoSt REST HubRouter

5 0.00 10.91 0.23 0.00 0.00 0.24±0.07 0.31±0.02 11.89±0.24 13.44±2.41

10 0.00 11.96 0.48 0.04 0.01 0.18±0.02 4.05±0.03 12.16±0.10 16.43±0.30

15 0.00 12.19 0.53 0.06 0.03 0.15±0.01 9.26±0.08 13.80±0.43 16.92±2.43

20 0.00 12.41 0.57 0.11 0.07 0.13±0.01 17.35±0.19 14.79±0.17 19.85±1.32

25 0.00 12.47 0.58 0.18 0.12 0.12±0.01 29.01±0.07 16.68±0.54 23.01±1.99

30 0.00 12.56 0.60 0.23 0.16 0.10±0.01 43.00±0.17 18.53±0.29 27.02±2.30

35 0.00 12.63 0.62 0.26 0.21 0.09±0.01 60.32±0.20 19.67±0.85 33.11±2.12

40 0.00 12.65 0.63 0.29 0.25 0.08±0.01 78.80±0.06 20.91±0.51 39.42±3.26

45 0.00 12.67 0.63 0.30 0.32 0.07±0.01 102.26±0.21 22.36±0.42 49.57±3.05

50 0.00 12.72 0.64 0.29 0.36 0.06±0.01 125.26±0.41 23.79±0.20 61.55±3.07

faces the challenge of non-connectivity and inefficient post-processing. HubRouter addresses this by
generating hubs in the middle stage and connecting them with pins to ensure connectivity. However,
this two-stage framework involves a discretization process, which prevents differentiable learning
and simultaneous optimization. We also pursuit the cost-effective end-to-end solver for further work.

5 Conclusion and Outlook

We have proposed HubRouter, a generative global router in VLSI with a two-phase learning scheme:
the hub-generation phase and the pin-hub-connection phase. In the generation phase, HubRouter
generates hubs instead of routes while in the connection phase, it connects the hubs with RSMT
construction. Experiments on real-world and simulated datasets show its effectiveness as well as
scalability. When adopting HubRouter, the potential negative impacts should be taken care: 1) The
incorrect generation might lead to poor routing results; 2) Generative models are computationally
intensive and might consume a lot of resources.

This paper also has some limitations for future work: 1) The two-phase scheme is not end-to-end
under a joint training scheme; 2) The supervised module for hub generation depends on large amount
of training data; 3) Like SOTA generative global routing algorithms [6], the further decrease on
overflow needs a reroute process; 4) Finally, it would also be compelling to integrate the learning-
based methods of logic synthesis [55], with routing methodologies, including those presented in this
work. This would allow for a data-driven approach to the chip design pipeline.

10



References
[1] C. J. Alpert. The ispd98 circuit benchmark suite. In Proceedings of the 1998 international

symposium on Physical design, pages 80–85, 1998.

[2] A. Borji. Pros and cons of gan evaluation measures: New developments. Computer Vision and
Image Understanding, 215:103329, 2022.

[3] G. Chen, C. W. Pui, H. Li, J. Chen, B. Jiang, and E. F. Young. Detailed routing by sparse grid
graph and minimum-area-captured path search. In Proceedings of the 24th Asia and South
Pacific Design Automation Conference, 2019.

[4] H.-Y. Chen and Y.-W. Chang. Global and detailed routing. In Electronic Design Automation,
pages 687–749. Elsevier, 2009.

[5] C.-Y. Cheng, F. Huang, G. Li, and Y. Li. Play: Parametrically conditioned layout generation
using latent diffusion. arXiv preprint arXiv:2301.11529, 2023.

[6] R. Cheng, X. Lyu, Y. Li, J. Ye, J. Hao, and J. Yan. The policy-gradient placement and generative
routing neural networks for chip design. In Advances in Neural Information Processing Systems,
2022.

[7] R. Cheng and J. Yan. On joint learning for solving placement and routing in chip design. In
Advances in Neural Information Processing Systems, 2021.

[8] M. Cho, K. Lu, K. Yuan, and D. Z. Pan. Boxrouter 2.0: Architecture and implementation of a
hybrid and robust global router. In 2007 IEEE/ACM International Conference on Computer-
Aided Design, pages 503–508. IEEE, 2007.

[9] J. de Vincente, J. Lanchares, and R. Hermida. Rsr: A new rectilinear steiner minimum tree
approximation for fpga placement and global routing. In Proceedings. 24th EUROMICRO
Conference (Cat. No. 98EX204), volume 1, pages 192–195. IEEE, 1998.

[10] M. R. Garey and D. S. Johnson. The rectilinear steiner tree problem is np-complete. SIAM
Journal on Applied Mathematics, 32(4):826–834, 1977.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In NIPS, 2014.

[12] W. Guo, H.-L. Zhen, X. Li, W. Luo, M. Yuan, Y. Jin, and J. Yan. Machine learning methods in
solving the boolean satisfiability problem. Machine Intelligence Research, pages 1–16, 2023.

[13] M. Hanan. On steiner’s problem with rectilinear distance. SIAM Journal on Applied mathematics,
14(2):255–265, 1966.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[15] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

[16] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[17] J. Ho and T. Salimans. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep
Generative Models and Downstream Applications, 2021.

[18] J.-M. Ho, G. Vijayan, and C.-K. Wong. New algorithms for the rectilinear steiner tree problem.
IEEE transactions on computer-aided design of integrated circuits and systems, 9(2):185–193,
1990.

[19] K. Honda, R. Yonetani, M. Nishimura, and T. Kozuno. When to replan? an adaptive replan-
ning strategy for autonomous navigation using deep reinforcement learning. arXiv preprint
arXiv:2304.12046, 2023.

11



[20] F. K. Hwang. On steiner minimal trees with rectilinear distance. SIAM journal on Applied
Mathematics, 30(1):104–114, 1976.

[21] F. K. Hwang. An o (n log n) algorithm for rectilinear minimal spanning trees. Journal of the
ACM (JACM), 26(2):177–182, 1979.

[22] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 1125–1134, 2017.
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A Related Works

Global Routing. Traditional global routing algorithms typically start with decomposing multi-pin
nets into two-pin nets by minimum spanning tree (MST) or rectilinear Steiner tree (RST) [9, 18].
Then, two-pin nets are routed by heuristic-based methods such as pattern routing [24] and maze
routing. Finally, a rip-up and reroute [43] process is adopted to refine the final result. Negotiation-
based rip-up and reroute algorithms [36, 8] reveal their superiority by considering rerouting history.
In addition to classical solutions, recent methods start to resort to learning techniques. RL-based
routers with a DQN agent [31] sequentially decide every route direction in a net and aim to generate a
better result than A* router, but they are time-consuming and currently often only applicable to small
grids, rather than realistic settings. Generative models are recently introduced to generate routes in a
net without decomposing it into two-pin nets. [48] uses generative models to speed up global routing
at the cost of reduced routability. In PRNet [6], global routing is solved by conditional generative
models (specifically CGAN [37]), but it still heavily depends on unscalable post-processing due to
some unconnected routes. This paper achieves connectivity by decomposing global routing into a
two-phase learning scheme.

Generative Model. GAN [11], VAE [26], and DPM [16] are three widely-used deep generative
models applied in the generation of different forms of data. Moreover, some works [37, 44, 17]
incorporate conditions to make the generation under more fine-grained control, which is important
in applications like layout design [5, 56], combinatorial optimization [29], and chip design [6].
Generation tasks also attract the research on the distributions of real-world data [30], which show
high potentials. In this paper, we present a novel and more scalable hub generation scheme to address
global routing problems.

RSMT Construction. Rectilinear Steiner minimum tree (RSMT) gives the shortest possible solution
to interconnect pins in a net. This problem belongs to the class of combinatorial problems [12, 57] that
are NP-Complete [10] and challenging for machine learning researchers. Since it is computationally
intractable to find an optimal solution in general, rectilinear minimum spanning tree (R-MST) [21] is
widely used to approximate RSMT with time complexity of O(n log n) [21], but its length is at most
1.5× of the optimal RSMT [20]. FLUTE [53] designs a look-up table for small nets and decomposes
larger nets into smaller nets that can be solved by the table. REST [33] introduces rectilinear edge
sequence (RES) to encode RSMT and train an actor-critic neural network by reinforcement learning.
Compared to existing RSMT solvers, this paper performs RSMT construction after a hub generation
phase, and as such, global routing is completed by connecting the pins and generated hubs.

B Algorithm

B.1 Deep Generative Approaches

We incorporate three prevailing generative models into our generation framework. These approaches
give us different perspectives of hub generation:

GAN [11]. Conditional GAN (CGAN) [37] applies a discriminator D(·) to classify whether the input
is real or fake (generated), which minimizes the logistic loss function − logDϕ(p(x|c))− log(1−
Dϕ(pθ(x|c, z))) with regard to ϕ. It equals maximizing its negative value. Meanwhile, the generated
distribution pθ(x|c, z) is called a generator in GAN, which approximates to p(x|c) by deceiving the
discriminator with regard to θ. Together optimize the above objectives, we have a min-max strategy:

min
θ

max
ϕ

N∑
i=1

[logDϕ(xi) + log(1−Dϕ(pθ(x|c = ci, z ∼ pz(z))))] . (4)

We use neural networks to learn the discriminator Dϕ(·) and the generator pθ(x|c, z).
VAE [26]. Conditional VAE (CVAE) [44] minimizes Kullback-Leibler (KL) divergence to approx-
imate a simulated inference network qϕ(z|x, c) to the intractable posterior distribution pθ(z|x, c),
such that we can apply the stochastic gradient variational Bayes (SGVB) framework to optimize the
variational lower bound

log pθ(x|c) ≥ −KL [qϕ(z|x, c)∥pθ(z|x, c)]︸ ︷︷ ︸
1

+Eqϕ(z|x,c) log pθ(x|c, z)︸ ︷︷ ︸
2

. (5)
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Figure 8: The simplified 2-pin problem, namely, routing the source and target node (pin) under
constraints while searching for the shortest wirelength for a single net. The constraints represent the
obstacles derived from capacity.

Note that the first term in Eq. 5 is easy to integrate since the KL divergence for Gaussian dis-
tribution has closed form, and the second term is often simplified by Monte-Carlo sampling
Eqϕ(z|x,c) log pθ(x|c, z) ≈ 1

L

∑L
l=1 log pθ(x|c, z(l)). So, the objective of minimizing the empir-

ical lower bound can be written as:

min
θ,ϕ

[
−KL (qϕ(z|x, c)∥pθ(z|c)) +

1

L

L∑
l=1

log pθ

(
x|c, z(l)

)]
, (6)

where z(l) = gϕ(x, c, ϵ
(l)), ϵ(l) ∼ N (0, I) is a reparameterization trick [26] and L is the number of

samples. Neural networks are used to learn the encoder qϕ(z|x, c), the decoder pθ(x|c, z), and the
conditional prior network pθ(z|c).
DPM [16]. DPM injects noise into the original data step by step until it turns out to be a known
distribution and reverses these steps when sampling. DPM respectively defines these processes as the
forward process qθ(xt|xt−1) and the reverse process pθ(xt−1|xt) with t ∈ {1, · · · , T}:

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI),

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t ),

(7)

where I is an identity matrix, {βt}Tt=1 are fixed variance schedules with ascending values, and
αt = 1 − βt. {σ2

t }Ti=1 are also fixed values. Similar to VAE, with training the variational lower
bound of the marginal log likelihood and reparameterization, we finally obtain the condition-guided
DPM objective:

min
θ

[
Ex,c,ϵ∼N (0,I),t∼U({t}T

t=1)

[
∥ϵ− ϵθ(zt, c, t)∥2

]]
. (8)

Following classifier-free guidance [17], we initialize zT and denoise it by ϵ̂t = (1+w) · ϵθ(zt, c, t)−
w · ϵθ(zt, t), and accelerate the sampling process with fewer sampling steps by DDIM [45].

B.2 Training and Sampling

Adam [25] is used to train in both generation and connection phases. Specifically, Alg. 1 and Alg. 2
illustrate the training processes of these two phases, while Alg. 3 shows the sampling process.
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Algorithm 1 Training in Hub-generation Phase.
Input: Number of iterations n_iters, minibatch size m, condition images c, real route images x(rt),

generative model mode mode ∈ {GAN,V AE,DPM}, maximum time step T in DPM.
1 for iter from 1 to n_iters do
2 Sample minibatch of m condition images {c1, · · · , cm}, real route images {x(rt)

1 , · · · ,x(rt)
m };

3 Compute x
(hub)
i and x

(msk)
i for each x

(rt)
i , and compose xi = {x(hub)

i ,x
(rt)
i ,x

(msk)
i } (i =

1, · · · ,m);
4 if mode = GAN then
5 Sample minibatch of m noise images {z1, · · · , zm}, where zi ∼ N (0, I) (i = 1, · · · ,m);
6 Ascend the stochastic gradient of the discriminator in Eq. 4:

∇ϕ
[
1
m

∑m
i=1 [logDϕ(xi) + log(1−Dϕ(pθ(x|c = ci, z = zi)))]

]
;

7 Sample minibatch of m noise images {z1, · · · , zm};
8 Descend the stochastic gradient of the generator in Eq. 4:

∇θ
[
1
m

∑m
i=1 [log(1−Dϕ(pθ(x|c = ci, z = zi)))]

]
;

9 else if mode = V AE then
10 Sample minibatch of m noise images {ϵ1, · · · , ϵm}, where ϵi ∼ N (0, I) (i = 1, · · · ,m);
11 Compute {z1, · · · , zm} using the reparameterization trick [26];
12 Descend the stochastic gradient of Eq. 6:

∇θ,ϕ
[
1
m

∑m
i=1 (−KL (qϕ(z|x = xi, c = ci)∥pθ(z|c = ci)) + log pθ (x|c = ci, z = zi))

]
;

13 // Let L = 1.
14 else if mode = DPM then
15 Sample minibatch of m noise images {ϵ1, · · · , ϵm}, where ϵi ∼ N (0, I) (i = 1, · · · ,m);
16 Sample minibatch of m time steps {t1, · · · , tm}, where ti ∼ U({1, · · · , T}) (i = 1, · · · ,m);
17 Descend the stochastic gradient of Eq. 8:

∇θ
[
Ex,c,ϵ∼N (0,I),t∼U({t}T

t=1)

[
∥ϵ− ϵθ(zt, c, t)∥2

]]
;

Output: Trained models with parameters θ and ϕ.

Algorithm 2 Training in Pin-hub-connection Phase.
Input: Number of iterations n_iters, minibatch size B.

18 for iter from 1 to n_iters do
19 Sample B random point sets V̄ = {V1, · · · , VB}.
20 Construct valid RES sets R(Vi) for each point set Vi;
21 Sample a single RES ri ∼ R(Vi) for each point set Vi;
22 Linearly evaluate the actual length b(Vi, ri);
23 Descend the gradient in the actor network according to Eq. 2 using reinforcement algorithm [52]:

1
B

∑B
i=1 [bζ(Vi)− b(Vi, ri)]∇ξ [pξ(ri)];

24 Descend the gradient in the critic network according to Eq. 3:

∇ζ
[

1
B

∑B
i=1 ∥bζ(Vi)− b(Vi, ri)∥2

]
.

Output: The trained model with parameters ξ and ζ.

C Definition and Theorem

C.1 2-pin Problem

Fig. 8 gives an example of the ‘2-pin’ problem, which is the simplest version of global routing, but it
turns out to be an NP-Complete problem [27, 31].

C.2 Bonus of RSMT Reconstruction

Lemma 1. Rectilinear Steiner points are hubs.
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Algorithm 3 Sampling Routes.
Input: Condition image c0, generative model mode mode ∈ {GAN,V AE,DPM}, trained gen-

erative models and the RSMT connection model, DDIM [45] timesteps {t̂1, · · · , t̂d}, guide
weight w in DPM.

25 // Hub-generation Phase.
26 if mode = GAN then
27 Sample a noise sample z0 ∼ N (0, I);
28 Generate x0 = pθ(x|c = c0, z = z0);
29 else if mode = V AE then
30 Sample a noise sample z0 ∼ N (0, I);
31 Generate x0 = pθ(x|c = c0, z = z0);
32 else if mode = DPM then
33 Sample a noise sample xt̂d = ϵt̂d ∼ N (0, I);
34 for t̂j from t̂d to t̂1 do
35 Compute previous αt̂j−1

and current αt̂j ;
36 Predict the noise: ϵ̂t̂j = (1 + w) · ϵθ(xt̂j , ct̂j , t̂j)− w · ϵθ(xt̂j , t̂j);
37 Predict x0: px0

← (zt̂d −
√
1− αt̂j ϵ̂t̂j )/

√αt̂j ;

38 Compute variance: σt̂j (η) = η
√
(1− αt̂j−1

)/(1− αt̂j )(1− αt̂j/αt̂j−1
);

39 // We directly set η = 0 here.
40 Compute the direction pointing to xt̂j : dxt̂j

=
√
1− αt̂j−1

− σ2
t̂j
· ϵ̂t̂j ;

41 Compute xt̂j−1
: xt̂j−1

= √αt̂j−1
· px0

+ dxt̂j
+ σt̂j (η) · ϵt̂j , where ϵt̂j ∼ N (0, I).

42 Finally, we have x0;
43 // Denote x = x0, and xij as its element in i-th row and j-th column.

44 Compute the binarized strip mask x̃(msk) according to Eq. 1, where each x̃
(msk)
ij is computed as:

x̃
(msk)
ij = I

[
max

(
1
m

∑m
i=1 x

(msk)
ij , 1

n

∑n
j=1 x

(msk)
ij

)
> 1

2

]
;

45 // Note that x = {x(hub),x(rt),x(msk)}.
46 Compute the masked hubs: x̂(hub)

ij = x
(hub)
ij × x̃

(msk)
ij ;

47 Obtain the union of hubs and pins V ;
48 // Pin-hub-connection Phase.
49 Obtain the RES r according to the maximum pξ(ri), where ri ∼ R(V );
50 Compare 8 transformations introduced in Sec. 3.2 and pick the optimal route with the shortest length.

Output: The generated route and its length.

Proof According to Hanan theory [13], the rectilinear Steiner points can be restricted to the Hanan
grid. The definition of hubs in this paper implies that all the routed points on the intersection of
Hanan grid are hubs, so rectilinear Steiner points must be hubs. □

Remark 1. [Reconstruction Bonus] Suppose a set of hubs in an RSMT route is correctly generated,
then its RSMT reconstruction can be performed in O(n log n) time complexity.

Proof According to Lemma 1, since all the rectilinear Steiner points are hubs, there is no need
to introduce extra rectilinear Steiner points when generating an R-MST towards all the hubs. So,
the RSMT problem is degraded to an R-MST problem, which has been proved to be addressed in
O(n log n) time complexity [21]. □

D Experimental Protocols

D.1 Dataset.

Real-world Datasets ISPD-07 [38] and ISPD-98 [1], and the simulated dataset constructed by [31]
(we call ‘DRL’) are employed in this work.
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Table 6: Summary of the test dataset. We respectively show the scale size, vertical/horizontal capacity,
number of nets, and average/maximum number of pins for each net.

CASE IBM01 IBM02 IBM03 IBM04 IBM05 IBM06 DRL-8 DRL-16
SIZE 64×64 80×64 80×64 96×64 128×64 128×64 8×8 16×16

CAP. (V / H) 24 / 28 44 / 68 40 / 60 40 / 46 84 / 126 40 / 66 4 / 4 6 / 6
#NETS 11507 18429 21621 26163 27777 33354 20 30

AVG. #PINS 4.31 4.88 4.10 3.86 5.25 4.21 5.25 6.12
MAX #PINS 42 134 55 46 17 35 8 10

In line with [6], we construct training datasets by adopting [34] to route on ISPD-07 benchmarks
and we declare the details unstated in [6]. We initialize the capacity given by the benchmarks and
sequentially route the nets using the results of [34]. Each time the capacity is updated, a condition
image, consisting of the current capacity and the positions of pins to be routed in the next net, is
generated. Meanwhile, a ground-truth route image is generated and saved correspondingly. By
clipping them to the same scale 64× 64 (if possible) randomly, the image will be saved to different
directories, i.e., Route-small-4, Route-small, Route-large-4, and Route-large, according to the number
of pins np and their HPWL. Specifically,

1) Route-small-4: np ≤ 4 and HPWL ≤ 16;

2) Route-small: np > 4 and HPWL ≤ 16;

3) Route-large-4: np ≤ 4 and HPWL > 16;

4) Route-large: np > 4 and HPWL > 16.

Examples are partly shown in Fig. 10. This division on the one hand originates according to
the observation from [6] that the average pin number is about 4 in most chip cases, as shown in
Table 6, and on the other hand, we would like to show the non-connectivity of previous generative
global routing approaches under different situations. We choose bigblue4, newblue3, newblue4, and
newblue7 (name of the cases in ISPD-07) as the training cases and generate 15K training samples for
each case’s each category. Thus, we have a total of nearly 240K (some categories cannot generate a
maximum of 15K samples). In Table 2, we test the cases of adaptec1, adaptec2, newblue1, newblue2,
bigblue1, and bigblue2 in ISPD-07 with a total 10K samples for each category.

Cases in ISPD-98 and DRL are used as test data in Table 3 and Fig. 5; however, their scales are not
the same as the input data. So, we clip the ISPD-98 and pad the DRL to ensure scale consistence.
Very few (<0.1%) nets in ISPD-98 cannot satisfy the input scale due to their exceeded pin positions.
For these special samples, we divide them into multiple samples and then feed them to the model.
Note that there might be better solutions to deal with the scale problem, e.g., the input-size-adapting
module in [6], but it is not the main focus of this work. Moreover, two simulated dataset DRL-8 and
DRL-16, whose scales are respectively 8× 8 and 16× 16, are generated using the tool 1 introduced
by [31]. We randomly generate 10 cases for DRL-8 and DRL-16, respectively. More information
about the test dataset is detailed in Table 6.

D.2 Baselines.

The baselines referred in Table 3 are introduced as follows:

1) Labyrinth [24], a classical routing algorithm that discusses how the concept of pattern routing can
be used to guide the router to a solution that minimizes interconnect delay without damaging the
routability of the circuit;

2) BoxRouter [8], a classical global router that first employs a pre-routing strategy to identify the most
congest area and then performs box expansion and progressive integer linear programming(ILP);

3) DQN [31], a reinforcement learning global routing algorithm with A* router burn-in memory and
conjoint optimization;

1https://github.com/haiguanl/DQN_GlobalRouting

18

https://github.com/haiguanl/DQN_GlobalRouting


4) PRNet [6], a joint learning framework that together addresses the placement and routing problems,
where the routing is based on generative approches.

In the RSMT construction experiment in Sec. 4.4, the referred baselines are:

1) GeoSteiner [51], the optimal RSMT construction solver;

2) R-MST, an efficient implementation of R-MST construction with time complexity of O(n log n);

3) BGA [23], a practical O(n log2 n) sub-optimal solution of RSMT construction with heuristics.

4) FLUTE [53], a fast and accurate RSMT construction approach by using a look-up table. Note that
it can reach the optimal solution for nets up to 9 degrees.

5) REST [33], a state-of-the-art RL-based approach that uses an actor-critic network to predict the
Rectilinear edge sequence (RES) for RSMT construction.

D.3 Model Setting.

In the hub-generation phase, VAE employs a CNN [48] structure while GAN uses a ResNet [14, 22]
structure, which is in line with [6], but we make some revisions. For instance, [6] utilizes a bi-
discriminator [54] to inject the correctness constraint to the objectives, but our proposed HubRouter
no longer requires it within the two-phase learning scheme. In addition, the model structure of
DPM follows [17] due to the condition guidance and uses a U-Net [41] structure, but we make it
lightweight to achieve more rapid sampling time. Fig. 9 details the components of the generative
models in this work. In the pin-hub-connection phase, we follow REST [33] to use a multi-head
attention encoder [49] in its auto-encoder framework.

E Experimental Analysis

E.1 Hyperparameters

We search hyperparameters on the validation dataset with the learning rate in [0.001, 0.0001] and
reduce the learning rates by 0.96 after every 10 epochs until the validation loss no longer decreases
for over 20 epochs or the number of epochs reaches a maximum of 200. In the hub-generation phase,
we optionally choose three generative models, including GAN, VAE, and DPM. For GAN and VAE,
we use similar structures and search the number of ResNet blocks in [3, 6, 9] and the number of
downsampling/upsampling layers in [2, 3, 4]. For DPM, we search the number of DDIM steps in
[25, 50, 75], the guide weight w in [0.0, 1.5, 2.0], and the maximum timestep in [500, 1000]. The
best models are chosen by the optimal wirelength rate while keeping the generation time tolerable.
Each experiment is trained with a batch size of 64 and the optimizer Adam [25] with the decay
rate of first(second)-order moment estimation 0.5(0.999) and the L2 penalty coefficient 0.01. In the
experiments in Sec. 4, the number of ResNet blocks and the number of downsampling/upsampling
layers for GAN and VAE are respectively set as 9 and 2. For DPM, we set the number of DDIM steps
as 50, the guide weight w as 1.5, and the maximum timestep as 500. In the pin-hub-connection, we
follow REST 1 [33] and employ the model with adjusted parameters.

E.2 Correspondence between Hub and Route

The main idea of the two-phase learning scheme originates from our observation and curiosity -
whether the hub and the route have high correspondence. If so, we could conclude that the optimal
final routes would approximately be the same for generating hubs or generating routes directly.
According to the definition in Def. 1, it is apparent that each route can uniquely determine its hubs,
but regretfully the opposite is not true. That is to say, when given a group of hubs, we cannot decide
uniquely what their original route is; however, we empirically find the correspondence between
hubs and routes is high. To show this, we generate the hubs according to the definition for each net
in ISPD-07 and then use these generated hubs and pins to construct RSMT. As shown in Table 7,
the correspondence rates are respectively 99.7% and 98.18% for Route-small-4 and Route-large-4
and importantly these two categories occupy large proportions (totally over 80%) in ISPD-98 and
ISPD-07 cases. Though the correspondence rate in Route-large is not high, the mean square error

1https://github.com/cuhk-eda/REST
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Table 7: Correspondence between hubs and routes. The correspondence rate and mean square error
(MSE) are computed on ISPD-07 cases.

Category Route-small-4 Route-small Route-large-4 Route-large

Correspondence Rate (%) 99.7 80.31 98.18 48.75
MSE < 10−5 0.0004 0.0002 0.003

Proportion in ISPD-98 (%) 65.38 4.69 15.94 13.99
Proportion in ISPD-07 (%) 66.25 9.67 14.89 9.19

Table 8: Relative error on ISPD-98 cases. The first line introduces the theoretical lower bound
introduced in [7]. Optimal results are in bold.

Model IBM01 IBM02 IBM03 IBM04 IBM05 IBM06
Lower Bound [7] 60142 165863 145678 162734 409709 275868

Labyrinth [22] 0.262 0.589 0.693 0.551 0.181 1.093
BoxRouter [7] 0.059 0.107 0.03 0.105 0.015 0.077

PRNet [6] 0.03 0.115 0.106 0.129 0.176 0.198
HR-GAN 0.015 0.028 0.023 0.026 0.036 0.039

(MSE) between the generated route and the real one is still extremely low. These observations ensure
that the hub generation can be effective for global routing.

E.3 Relative Error on ISPD-98 cases

To judge the improvement of gaining on the optimal wirelength rather than the absolute value, we
further compare the relative error in Table 8, where the relative error is computed as (WL− b)/b.
Here, b denotes the theoretical lower bound [8]. As shown in this table, the WL promotion of
HubRouter is notable compared with the SOTA generative global routing method (PRNet).

E.4 Generation Time and Connection Time

We present the breakdown of the inference time for each phase on ISPD-98 (IBM01-06) and GRL
cases in Table 9. From an overall perspective, the connection phase has comparable time costs for the
three generative models. The generation phase, however, dominates the overall time consumption.
This indicates that HubRouter achieves faster performance than other generative models by reducing
the time spent in the connection phase.

Table 9: Generation and connection time in the experiments on ISPD-98 (IBM01-06) and GRL cases.

Metric Model IBM01 IBM02 IBM03 IBM04 IBM05 IBM06 GRL-8 GRL-16

Generation
Time (Sec.)

HR-VAE 8.13 6.68 7.47 8.01 9.90 12.18 5.78 5.77
HR-DPM 1802 2841 3014 3839 4329 5110 36.76 49.55
HR-GAN 40.12 45.36 49.02 61.33 68.47 91.50 6.04 6.26

Connection
Time (Sec.)

HR-VAE 1.67 3.23 2.87 5.09 5.08 5.04 0.04 0.11
HR-DPM 1.80 3.51 2.88 4.99 5.04 4.98 0.04 0.11
HR-GAN 1.72 3.30 2.84 5.00 5.04 5.11 0.04 0.11

E.5 Route Generation Results

Examples of the condition and real route images, as well as the route generation results of Route-
small-4, Route-small, Route-large-4, Route-large introduced in Appendix D.1 are depicted in Fig. 10.
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(a) Route-small-4.

(b) Route-small.

(c) Route-large-4.

(d) Route-large.

Figure 10: Condition images (first line), Real route images (second line), and the route images
generated by our propose two-phase learning scheme (third line), randomly sampled in a) Route-
small-4; b) Route-small; c) Route-large-4; d) Route-large.
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