
Strategic stability under regularized learning in games

Abstract

In this paper, we examine the long-run behavior of regularized, no-regret learning in1

finite games. A well-known result in the field states that the empirical frequencies2

of no-regret play converge to the game’s set of coarse correlated equilibria; however,3

our understanding of how the players’ actual strategies evolve over time is much4

more limited – and, in many cases, non-existent. This issue is exacerbated by5

a series of recent results showing that only strict Nash equilibria are stable and6

attracting under regularized learning, thus making the relation between learning7

and pointwise solution concepts particularly elusive. In lieu of this, we take a more8

general approach and instead seek to characterize the setwise rationality properties9

of the players’ day-to-day play. To that end, we focus on one of the most stringent10

criteria of setwise strategic stability, namely that any unilateral deviation from the11

set in question incurs a cost to the deviator – a property known as closedness under12

better replies (club). In so doing, we obtain a remarkable equivalence between13

strategic and dynamic stability: a product of pure strategies is closed under better14

replies if and only if its span is stable and attracting under regularized learning.15

In addition, we estimate the rate of convergence to such sets, and we show that16

methods based on entropic regularization (like the exponential weights algorithm)17

converge at a geometric rate, while projection-based methods converge within a18

finite number of iterations, even with bandit, payoff-based feedback.19

1 Introduction20

Background. The question of whether players can learn to emulate rational behavior through21

repeated interactions has been one of the mainstays of non-cooperative game theory – and it has22

recently gained increased momentum owing to a surge of breakthrough applications to machine23

learning and data science (from online advertising to auctions and multi-agent reinforcement learning).24

Informally, this question can be stated as follows:25

If each player follows an iterative procedure aiming to increase their individual payoff,26

does the players’ long-run behavior converge to a rationally admissible state?27

A natural setting for studying this question is to assume that each player is following a no-regret28

algorithm, i.e., a policy which is asymptotically as good against a given sequence of payoff functions29

as the best fixed strategy in hindsight. In this framework, the link between learning and rationality30

is provided by a folk result which states that, under no-regret learning, the empirical frequency of31

play converges to the game’s set of coarse correlated equilibria (CCE) – also known as the game’s32

Hannan set [22]. This result has been of seminal importance to the field because no-regret play can33

be achieved via a wide class of “regularized learning” policies, as exemplified by the “follow-the-34

regularized-leader” (FTRL) family of algorithms [41, 42] and its variants – optimistic mirror descent35

[13, 36, 37, 43], HEDGE / EXP3 [4, 5, 9, 10], implicitly normalized forecasters [1, 3], etc.36

All these policies have (at least) one thing in common: they seek to provide the tightest possible37

guarantees for each player’s individual regret, thus accelerating convergence to the game’s Hannan set.38

As such, in games where the marginalization of CCE coincides with the game’s Nash equilibria (like39

two-player zero-sum games), we obtain a positive equilibrium convergence guarantee: the long-run40

average frequency of play evolves “as if” the players were rational to begin with – i.e., as if they41

had full knowledge of the game, common knowledge of rationality, the ability to communicate this42

knowledge, etc.43
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On the other hand, in many concrete applications – and, in particular, in the context of regularized44

learning – players learn independently from one another, with no common correlating device. By45

comparison, the Hannan set consists of correlated strategies which, when marginalized, may fail46

even the weakest axioms of rational behavior and rationalizability (such as the elimination of strictly47

dominated strategies). In particular, a well-known example of Viossat & Zapechelnyuk [45] (which48

we discuss in detail in Section 4) shows that it is possible to have negative regret for all time, but still49

employ only strictly dominated strategies throughout the entire horizon of play.50

The reason for this disconnect is that no-regret play has significant predictive power for the empirical51

frequency of play – i.e., the empirical distribution of pure strategy profiles – but much less so for the52

players’ day-to-day sequence of play – that is, the evolution of the players’ actual mixed strategies53

over time. In particular, even when the marginalization of the Hannan set is Nash, the actual trajectory54

of play may – and, in fact, often does – diverge away from the game’s set of equilibria [14, 20, 29–31]55

or exhibits chaotic, unpredictable oscillations [11, 33].56

Motivated by the above, our paper seeks to understand the rationality properties of the players’ actual57

sequence of play under regularized learning, as encoded by the following question:58

Which sets of mixed strategies are stable and attracting under regularized learning?59

Are these sets robust to strategic deviations? And, if so, is the converse also true?60

Our contributions in the context of related work. This question has attracted significant interest61

in the literature, especially in its pointwise version, namely: Which mixed strategy profiles are62

stable and attracting under regularized learning? Are the dynamics’ stable states robust to unilateral63

deviations? And, if so, are these the only stable states of regularized learning?64

In the related setting of population games, the answer to this question is sometimes referred to as the65

“folk theorem of evolutionary game theory” [12, 23, 40, 47]. Somewhat informally, this theorem states66

that, under the replicator dynamics (the continuous-time analogue of the exponential / multiplicative67

weights algorithm, itself an archetypal regularized learning method), the following is true for all68

games: only Nash equilibria are (Lyapunov) stable, and a state is stable and attracting under the69

replicator dynamics if and only it is a strict Nash equilibrium of the underlying game [23, 47].70

In the context of regularized learning, [17, 28] recently showed that a similar equivalence holds for71

the dynamics of FTRL in continuous time: a state is stable and attracting under the FTRL dynamics72

if and only if it is a strict Nash equilibrium. Subsequently, [19] extended this equivalence to an73

entire class of regularized learning schemes, with different types of feedback and/or possible update74

structures – from optimistic methods to algorithms run with bandit, payoff-based information. In75

all these cases, the same principle emerges: a state is asymptotically stable and attracting under76

regularized learning if and only if it is a strict Nash equilibrium.77

This is an important pointwise prediction but it does not cover cases where regularized learning78

algorithms converge to a set – not a point. In this case, the very definition of strategic stability is an79

intricate affair, and there are several definitions that come into play [6, 15, 18, 38]. The first such80

notion that we consider is that of “resilience to strategic deviations”, namely that every unilateral81

deviation from said set is deterred by some other element thereof. Our first contribution in this82

direction is a universal guarantee to the effect that, with probability 1, in any game, and from any83

initial condition, the long-run limit of any regularized learning algorithm is a resilient set.84

This result is significant in its universality, but the notion of resilience is not sufficiently strong to85

disallow irrational behavior – and, in fact, it is subject to similar shortcomings as Hannan consistency.86

On that account, we turn to a much more stringent criterion of setwise strategic stability, that of87

minimal closedness under better replies (m-club). This notion, originally due to Ritzberger & Weibull88

[38], states that any deviation from a product of pure strategies is costly, and it is one of the strictest89

setwise refinements in game theory; in particular, it refines the notion of closedness under rational90

behavior (curb) [6], and it satisfies all the seminal strategic stability requirements of Kohlberg &91

Mertens [25], including robustness to strategic payoff perturbations.92

In this general context, we show that regularized learning enjoys a striking relation with club sets: A93

product of pure strategies is closed under better replies if and only if its span is stable and attracting94

under regularized learning. More to the point, we also estimate the rate of convergence to club sets,95

and we show that convergence occurs at a geometric rate for entropically regularized methods – like96

HEDGE and EXP3 – and in a finite number of iterations under projection-based methods.97
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In light of the above, our results can be seen both as a far-reaching setwise generalization of the folk98

theorem of evolutionary game theory, as well as a bona fide algorithmic analogue of a precursor99

result for the replicator dynamics [39]. Importantly, our analysis covers several different update100

structures – “vanilla” regularized methods, but also their optimistic variants – as well as a wide range101

of information models – from full payoff information to bandit, payoff-based feedback.102

2 Preliminaries103

We start by recalling some basics from game theory, roughly following the classical treatise of104

Fudenberg & Tirole [18]. First, a finite game in normal form consists of (i) a finite set of players105

𝑖 ∈ N ≡ {1, . . . , 𝑁}; (ii) a finite set of actions – or pure strategies – A𝑖 per player 𝑖 ∈ N ; and (iii) an106

ensemble of payoff functions 𝑢𝑖 :
∏
𝑗 A 𝑗 → ℝ, each determining the reward 𝑢𝑖 (𝛼) of player 𝑖 ∈ N107

in a given action profile 𝛼 = (𝛼1, . . . , 𝛼𝑁 ). Collectively, we will write A =
∏
𝑗 A 𝑗 for the game’s108

action space and Γ ≡ Γ(N ,A, 𝑢) for the game with primitives as above.109

During play, each player 𝑖 ∈ N may randomize their choice of action by playing a mixed strategy,110

i.e., a probability distribution 𝑥𝑖 ∈ X𝑖 B Δ(A𝑖) over A𝑖 that selects 𝛼𝑖 ∈ A𝑖 with probability 𝑥𝑖𝛼𝑖 . To111

lighten notation, we will identify 𝛼𝑖 ∈ A𝑖 with the mixed strategy that assigns all weight to 𝛼𝑖 (thus112

justifying the terminology “pure strategies”). Then, writing 𝑥 = (𝑥𝑖)𝑖∈N for the players’ strategy113

profile and X =
∏
𝑖 X𝑖 for the game’s strategy space, the players’ payoff functions may be extended114

to all of X by setting 𝑢𝑖 (𝑥) B 𝔼𝛼∼𝑥 [𝑢𝑖 (𝛼)] =
∑
𝛼∈A 𝑢𝑖 (𝛼) 𝑥𝛼 where, in a slight abuse of notation,115

we write 𝑥𝛼 for the joint probability of playing 𝛼 ∈ A under 𝑥, i.e., 𝑥𝛼 =
∏
𝑖 𝑥𝑖𝛼𝑖 . This randomized116

framework will be referred to as the mixed extension of Γ and we will denote it by Δ(Γ).117

For concision, we will also write (𝑥𝑖; 𝑥−𝑖) = (𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑁 ) for the strategy profile where player118

𝑖 plays 𝑥𝑖 ∈ X𝑖 against the strategy profile 𝑥−𝑖 ∈
∏
𝑗≠𝑖 X 𝑗 of all other players (and likewise for pure119

strategies). In this notation, we also define each player’s mixed payoff vector as120

𝑣𝑖 (𝑥) = (𝑢𝑖 (𝛼𝑖; 𝑥−𝑖))𝛼𝑖∈A𝑖
(1)

so the payoff to player 𝑖 ∈ N under 𝑥 ∈ X becomes 𝑢𝑖 (𝑥) =
∑
𝛼𝑖∈A𝑖

𝑢𝑖 (𝛼𝑖; 𝑥−𝑖) 𝑥𝑖𝛼𝑖 = ⟨𝑣𝑖 (𝑥), 𝑥𝑖⟩.121

The best-response correspondence of player 𝑖 ∈ N is then defined as the set-valued mapping122

br𝑖 : X ⇒ X𝑖 given by br𝑖 (𝑥) = arg max𝑥′
𝑖
∈X𝑖

𝑢𝑖 (𝑥′𝑖 ; 𝑥−𝑖) for all 𝑥 ∈ X . Extending this over all123

players, we will write br =
∏
𝑖 br𝑖 for the product correspondence br(𝑥) = br1 (𝑥) × · · · × br𝑁 (𝑥),124

and we will say that 𝑥∗ ∈ X is a Nash equilibrium (NE) if 𝑥∗ ∈ br(𝑥∗). Equivalently, given that125

𝑢𝑖 (𝑥′𝑖 ; 𝑥−𝑖) is linear in 𝑥′
𝑖
, we conclude that 𝑥∗ is a Nash equilibrium if and only if 𝑢𝑖 (𝑥∗) ≥ 𝑢𝑖 (𝛼𝑖; 𝑥∗−𝑖)126

for all 𝛼𝑖 ∈ A𝑖 and all 𝑖 ∈ N .127

As a final point of note, if 𝑥∗ is a Nash equilibrium where each player has a unique best response – that128

is, br𝑖 (𝑥∗) = {𝑥∗𝑖 } for all 𝑖 ∈ N – we will say that 𝑥∗ is strict because, in this case, 𝑢𝑖 (𝑥∗) > 𝑢𝑖 (𝑥𝑖; 𝑥∗−𝑖)129

for all 𝑥𝑖 ≠ 𝑥∗𝑖 , 𝑖 ∈ N . Among Nash equilibria, strict equilibria are the only ones that are “structurally130

robust” (in the sense that they remain invariant to small perturbations of the underlying game), so131

they play a particularly important role in game theory.132

3 Regularized learning in games133

Throughout our paper, we will consider iterative decision processes that unfold as follows:134

1. At each stage 𝑡 = 1, 2, . . . , every participating agent selects an action.135

2. Agents receive a reward determined by their chosen actions and their individual payoff functions.136

3. Based on this reward (or other feedback), the agents update their strategies and the process repeats.137

In this online setting, a crucial requirement is the minimization of the players’ regret, i.e., the138

difference between a player’s cumulative payoff over time and the player’s best possible strategy in139

hindsight. Formally, if the players’ actions at each epoch 𝑡 = 1, 2, . . . are collectively drawn by the140

probability distribution 𝑧𝑡 ∈ Δ(A), the regret of each player 𝑖 ∈ N is defined as141

Reg𝑖 (𝑇) = max𝛼𝑖∈A𝑖

∑︁𝑇

𝑡=1 [𝑢𝑖 (𝛼𝑖; 𝑧−𝑖,𝑡 ) − 𝑢𝑖 (𝑧𝑡 )], (2)

and we will say that player 𝑖 has no regret if Reg𝑖 (𝑇) = 𝑜(𝑇).142
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One of the most widely used policies to achieve no-regret play is the so-called “follow-the-regularized-143

leader” (FTRL) family of algorithms and its variants [41, 42]. For completeness, we will work144

with a more general regularized learning (RL) template which allows us to simultaneously consider145

different types of feedback, strategy sampling policies, update structures, etc. To lighten notation146

below, we will drop the player index 𝑖 ∈ N when the meaning can be inferred from the context; also,147

to stress the distinction between “strategy-like” and “payoff-like” variables, we will write throughout148

Y𝑖 B ℝA𝑖 and Y B ∏
𝑖 Y𝑖 for the game’s “payoff space”, in direct analogy to X𝑖 and X =

∏
𝑖 X𝑖 for149

the game’s strategy space.150

3.1. The regularized learning template. The general class of regularized learning (RL) methods151

that we will consider proceed in an iterative, two-stage fashion as follows:152

Aggregate payoff information: 𝑌𝑖,𝑡+1 = 𝑌𝑖,𝑡 + 𝛾𝑡 �̂�𝑖,𝑡
Update choice probabilities: 𝑋𝑖,𝑡+1 = 𝑄𝑖 (𝑌𝑖,𝑡+1)

(RL)

In the above:153

1. 𝑋𝑖,𝑡 ∈ X𝑖 denotes the mixed strategy of player 𝑖 at time 𝑡 = 1, 2, . . .154

2. 𝑌𝑖,𝑡 ∈ Y𝑖 is a “score vector” that measures the performance of the player’s actions over time.155

3. 𝑄𝑖 : Y𝑖 → X𝑖 is a “regularized best response” that maps score vectors to choice probabilities.156

4. �̂�𝑖,𝑡 is a surrogate / approximation of the mixed payoff vector 𝑣𝑖 (𝑋𝑡 ) of player 𝑖 at time 𝑡.157

5. 𝛾𝑡 > 0 is a step-size / sensitivity parameter of the form 𝛾𝑡 ∝ 1/𝑡ℓ𝛾 for some ℓ𝛾 ∈ [0, 1].158

In words, at each stage of the process, every player 𝑖 ∈ N observes – or otherwise estimates – a proxy159

�̂�𝑖,𝑡 of their individual payoff vector; subsequently, players augment their actions’ scores based on this160

information, they select a mixed strategy via the regularized choice map 𝑄𝑖 , and the process repeats.161

To streamline our presentation, we discuss in detail the precise definition of �̂� and 𝑄 in Sections 3.2162

and 3.3 below, and we present a series of examples of (RL) in Section 3.4 right after.163

3.2. Aggregating payoff information. As noted above, the main idea of regularized learning is164

to track the players’ payoff vector 𝑣(𝑋𝑡 ). Importantly, there are several different modeling choices165

that can be made here: players may have direct access to their payoff vectors (in the full information166

setting), or some noisy approximation obtained by an inner randomization of the algorithm (e.g.,167

when they receive information on their pure actions); they may have to recreate their payoff vectors168

altogether (as in the bandit setting), or their estimates may be based on a strategy other than the one169

they actually played (as in the case of optimistic algorithms). In all these cases, the surrogate vector170

�̂�𝑡 can be written concisely as171

�̂�𝑡 = 𝑣(𝑋𝑡 ) +𝑈𝑡 + 𝑏𝑡 (3)
where 𝑏𝑡 = 𝔼[�̂�𝑡 |F𝑡 ] − 𝑣(𝑋𝑡 ) and𝑈𝑡 = �̂�𝑡 −𝔼[�̂�𝑡 |F𝑡 ] respectively denote the offset and the random172

error of �̂�𝑡 relative to 𝑣(𝑋𝑡 ). To streamline our presentation, we will also assume that ∥𝑏𝑡 ∥ = O(1/𝑡ℓ𝑏 )173

and ∥𝑈𝑡 ∥ = O(𝑡ℓ𝜎 ) for some ℓ𝑏, ℓ𝜎 ≥ 0; we discuss the specifics of these bounds later in the paper.174

3.3. From scores to strategies. Regarding the “scores-to-strategies” step of (RL), we will follow175

the classical approach of Shalev-Shwartz [41] and assume that each player is employing a choice176

map – or regularized best response – of the general form177

𝑄𝑖 (𝑦𝑖) = arg max𝑥𝑖∈X𝑖
{⟨𝑦𝑖 , 𝑥𝑖⟩ − ℎ𝑖 (𝑥𝑖)} for all 𝑦𝑖 ∈ Y𝑖 . (4)

In the above, the regularizer ℎ𝑖 : X𝑖 → ℝ acts as a penalty that smooths out the “hard” argmax178

correspondence 𝑦𝑖 ↦→ arg max𝑥𝑖∈X𝑖
⟨𝑦𝑖 , 𝑥𝑖⟩. Accordingly, instead of following the “leader” (i.e.,179

playing the strategy with the highest propensity score), players follow the “regularized leader” – that180

is, they allow for a certain degree of uncertainty in their choice of strategy [9, 28, 41, 42].181

To ease notation, we will work with kernelized regularizers of the form ℎ𝑖 (𝑥𝑖) =
∑
𝛼𝑖∈A𝑖

𝜃 (𝑥𝑖𝛼𝑖 ) for182

some continuous function 𝜃 : [0, 1] → ℝ with inf𝑧∈ (0,1] 𝜃′′ (𝑧) > 0. We will also say that the players’183

regularizers are steep if lim𝑧→0+ 𝜃
′ (𝑧) = −∞, and non-steep otherwise.184

Example 3.1. A standard family of kernelized regularizers is given by 𝜃 (𝑧) = 𝑧𝜌/[𝜌(𝜌 − 1)] for185

𝜌 ∈ (0, 1) ∪ (1, 2] and 𝜃 (𝑧) = 𝑧 log 𝑧 for 𝜌 = 1 [9, 26, 28, 49]. This family includes:186

• For 𝜌 = 2, the quadratic regularizer 𝜃 (𝑧) = 𝑧2/2, which yields the Euclidean projection map187

𝑄𝑖 (𝑦𝑖) = ΠX𝑖
(𝑦𝑖) ≡ arg min𝑥𝑖∈X𝑖

∥𝑦𝑖 − 𝑥𝑖 ∥2. (5)
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• For 𝜌 = 1, the entropic regularizer 𝜃 (𝑧) = 𝑧 log 𝑧, which induces the logit choice map188

𝑄𝑖 (𝑦𝑖) = Λ𝑖 (𝑦𝑖) ≡
(exp(𝑦𝑖𝛼𝑖 ))𝛼𝑖∈A𝑖∑
𝛼𝑖∈A𝑖

exp(𝑦𝑖𝛼𝑖 )
(6)

• For 𝜌 = 1/2, the fractional power regularizer 𝜃 (𝑧) = −4
√
𝑧 that underlies the TSALLIS-INF189

algorithm of [1, 49] (see also Section 3.4 below). ♦190

3.4. Specific algorithms. We now proceed to discuss some archetypal examples of (RL).191

Algorithm 1 (Follow the regularized leader). The standard “follow-the-regularized-leader” (FTRL)192

method of Shalev-Shwartz & Singer [42] is obtained when players observe their full payoff vectors,193

that is, �̂�𝑖,𝑡 = 𝑣𝑖 (𝑋𝑡 ). In this case, (RL) boils down to the deterministic update rule194

𝑌𝑖,𝑡+1 = 𝑌𝑖,𝑡 + 𝛾𝑡 𝑣𝑖 (𝑋𝑡 ) 𝑋𝑖,𝑡+1 = 𝑄𝑖 (𝑌𝑖,𝑡+1)
or, more explicitly195

𝑋𝑖,𝑡+1 = arg max𝑥𝑖∈X𝑖

{∑︁𝑡

𝑠=1 𝛾𝑠𝑢𝑖 (𝑥𝑖; 𝑋−𝑖,𝑠) − ℎ𝑖 (𝑥𝑖)
}

(FTRL)

For a detailed discussion of (FTRL), see [9, 26, 41]. We only note here that, as a special case,196

when (FTRL) is run with the logit choice setup of Eq. (6), a standard calculation yields the seminal197

exponential / multiplicative weights algorithm – or HEDGE [4, 27, 46] – namely198

𝑋𝑖𝛼𝑖 ,𝑡+1 =
𝑋𝑖𝛼𝑖 ,𝑡 exp(𝛾𝑡𝑢𝑖 (𝛼𝑖; 𝑋−𝑖,𝑡 ))∑

𝛼′
𝑖
∈A𝑖

𝑋𝑖𝛼′
𝑖
,𝑡 exp(𝛾𝑡𝑢𝑖 (𝛼′𝑖 ; 𝑋−𝑖,𝑡 ))

(HEDGE)

For an appetizer to the literature on (HEDGE), see [2, 9, 10, 26, 41] and references therein. ♦199

Algorithm 2 (Optimistic FTRL). A notable variant of FTRL – originally due to Popov [35] and200

subsequently popularized by Rakhlin & Sridharan [36, 37] – is the so-called optimistic FTRL method.201

This scheme employs an “optimistic” correction intended to anticipate future steps, and it updates as202

𝑌𝑖,𝑡+1 = 𝑌𝑖,𝑡 + 𝛾𝑡 [2𝑣𝑖 (𝑋𝑡 ) − 𝑣𝑖 (𝑋𝑡−1)] (Opt-FTRL)
with 𝑋𝑖,𝑡 = 𝑄𝑖 (𝑌𝑖,𝑡 ). As a special case, if (Opt-FTRL) is run with the logit choice map (6), we obtain203

the familiar update rule known as optimistic multiplicative weights (OMW) [13, 36, 37, 43].204

Compared to (FTRL), the gain vector �̂�𝑡 = 2𝑣(𝑋𝑡 ) − 𝑣(𝑋𝑡−1) of (Opt-FTRL) has offset 𝑏𝑡 = 𝑣(𝑋𝑡 ) −205

𝑣(𝑋𝑡−1) relative to 𝑣(𝑋𝑡 ). Thus, even though (Opt-FTRL) assumes full access to the players’ mixed206

payoff vectors, it uses this information differently than (FTRL): in particular, the offset of (Opt-FTRL)207

is non-zero by design, not because of some systematic error in the payoff measurement process. ♦208

Now, up to this point, we have not detailed how players might observe their full, mixed payoff209

vectors. This assumption simplifies the analysis immensely, but it is not realistic in applications to210

e.g., online advertising and network science, where players may only be able to observe their realized211

payoffs, and have no information about the strategies of other players or actions they did not play.212

On that account, we describe below a range of payoff-based policies where players estimate their213

counterfactual, “what-if” payoffs indirectly.214

The most common way to achieve this is via the importance-weighted estimator215

IWE𝑖𝛼𝑖 (𝑥) =
1{�̂�𝑖 = 𝛼𝑖}

𝑥𝑖𝛼𝑖
𝑢𝑖 (�̂�) for all 𝛼𝑖 ∈ A𝑖 , 𝑖 ∈ N , (IWE)

where 𝑥 ∈ X is the players’ strategy profile, and �̂� ∈ A is drawn according to 𝑥. This estimator is at216

the heart of the online learning literature [9, 10, 26, 41] and it leads to the following methods:217

Algorithm 3 (Bandit FTRL). Plugging (IWE) directly into (RL) yields the bandit FTRL policy218

𝑌𝑖,𝑡+1 = 𝑌𝑖,𝑡 + 𝛾𝑡 IWE𝑖 ( �̂�𝑡 ) 𝑋𝑖,𝑡+1 = 𝑄𝑖 (𝑌𝑖,𝑡+1) (B-FTRL)
where (IWE) is sampled at the mixed strategy profile219

�̂�𝑖,𝑡 = (1 − 𝛿𝑡 )𝑋𝑖,𝑡 + 𝛿𝑡 unifA𝑖
(7)

for some “explicit exploration” parameter 𝛿𝑡 ∝ 1/𝑡ℓ𝛿 , ℓ𝛿 > 0, which specifies the mix between 𝑋𝑖,𝑡220

and the uniform distribution unifA𝑖
on A𝑖 . As we discuss in the sequel, this combination of (IWE)221

with the explicit exploration mechanism (7) means that the surrogate payoff vector �̂�𝑡 = IWE( �̂�𝑡 )222

used to update (B-FTRL) has offset and noise bounded respectively as 𝑏𝑡 = O(𝛿𝑡 ) and𝑈𝑡 = O(1/𝛿𝑡 ).223

Two special cases of (B-FTRL) that have attracted significant attention in the literature are:224
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1. The exponential weights algorithm for exploration and exploitation (EXP3) [5, 10, 26], obtained225

by running (B-FTRL) with the logit choice map (6).226

2. The Tsallis implicitly normalized forecaster (TSALLIS-INF) [1, 3, 48, 49] that was proposed as a227

more efficient alternative to EXP3, and which updates as228

𝑋𝑖,𝑡 = arg max𝑥𝑖∈X𝑖

{
⟨𝑌𝑖,𝑡 , 𝑥𝑖⟩ + 4

∑︁
𝛼𝑖∈A𝑖

√
𝑥𝑖𝛼𝑖

}
(TSALLIS-INF)

i.e., as (B-FTRL) with the fractional power regularizer 𝜃 (𝑧) = −4
√
𝑧 of Example 3.1. ♦229

For illustration purposes, we provide some more examples of (RL) in Appendix B.230

4 First results: resilience to strategic deviations231

We are now in a position to begin our analysis of the rationality properties of the players’ long-232

run behavior under (RL). To that end, we should first note that no-regret play may still lead to233

counterintuitive and highly non-rationalizable outcomes, e.g., with all players selecting dominated234

strategies for all time. The example below is adapted from Viossat & Zapechelnyuk [45]:235

Example 4.1. Consider the 4 × 4 symmetric 2-player game with payoff bimatrix236

𝐴 𝐵 𝐶 𝐷

𝐴 (1, 1) (1, 2/3) (0, 0) (0,−1/3)
𝐵 (2/3, 1) (2/3, 2/3) (−1/3, 0) (−1/3,−1/3)
𝐶 (0, 0) (0,−1/3) (1, 1) (1, 2/3)
𝐷 (−1/3, 0) (−1/3,−1/3) (2/3, 1) (2/3, 2/3)

In this game, 𝐵 and 𝐷 are strictly dominated for both players by their stronger “twins” (𝐴 and 𝐶237

respectively). However, it is easy to check that if both players choose between (𝐵, 𝐵) and (𝐷, 𝐷) with238

probability 1/2 each, the resulting distribution of play 𝑧 ∈ Δ(A) satisfies 𝑢𝑖 (𝛼𝑖; 𝑧−𝑖) − 𝑢𝑖 (𝑧) ≤ −1/6239

for all 𝛼𝑖 ∈ {𝐴, 𝐵, 𝐶, 𝐷}, 𝑖 = 1, 2. As a result, the players’ regret under 𝑧𝑡 ≡ 𝑧 is negative, even240

though both players play strictly dominated strategies at all times. ♦241

The example above shows that the no-regret property does not suffice to exclude non-rationalizable242

outcomes by itself. In addition, it also shows that predictions based on correlated play are not always243

appropriate for describing the players’ behavior under (RL): the end-state of any regularized learning244

algorithm will be a closed connected set of mixed strategies, so it is not possible to play only (𝐵, 𝐵)245

or (𝐷, 𝐷) in the long run. We are thus led to the following natural question: What are the rationality246

properties of long-run play under (RL)? Is the players’ behavior robust to strategic deviations?247

To study this question formally, we will focus on the limit set L(𝑋) of 𝑋𝑡 under (RL), viz.248

L(𝑋) B
⋂

𝑡
cl{𝑋𝑠 : 𝑠 ≥ 𝑡} ≡ {𝑥 ∈ X : 𝑋𝑡𝑘 → 𝑥 for some subsequence 𝑋𝑡𝑘 of 𝑋𝑡 }. (8)

In words, L(𝑋) is the set of limit points of 𝑋𝑡 or, equivalently, the smallest subset of X to which249

𝑋𝑡 converges. Clearly, the simplest instance of a limit set is when L(𝑋) is a singleton, i.e., when250

𝑋𝑡 converges to a point. This case has attracted significant interest in the literature: for example, if251

L(𝑋) = {𝑥∗} then, for certain special cases of (RL), it is known that 𝑥∗ is a Nash equilibrium of Γ252

[29]. However, beyond this relatively simple regime, the structure of the limit sets of (RL) could be253

arbitrarily complicated and their rationality properties are not well-understood.254

With this in mind, as a first attempt to study whether the long-run behavior of (RL) is “robust to255

strategic deviations”, we will consider the notion of resilience, as defined below:256

Definition 1. A closed subset S of X is resilient to strategic deviations – or simply resilient – if, for257

every deviation 𝑥𝑖 ∈ X𝑖 of every player 𝑖 ∈ N , we have 𝑢𝑖 (𝑥∗) ≥ 𝑢𝑖 (𝑥𝑖 , 𝑥∗−𝑖) for some 𝑥∗ ∈ S.258

Informally, S is resilient if every unilateral deviation from S is deterred by some (possibly different)259

element thereof. In particular, if S is a singleton, we immediately recover the definition of a Nash260

equilibrium; beyond this base case, other examples include the set of undominated strategies of a261

game, the support face of the equilibria of two-player zero-sum games, etc.262

Importantly, as we show below, the limit sets of (RL) are almost surely resilient in all games:263

Theorem 1. Let 𝑋𝑡 , 𝑡 = 1, 2, . . . , be the sequence of play generated by (RL) with step-size / gain264

parameters ℓ𝛾 > 2ℓ𝜎 and ℓ𝑏 > 0. Then, with probability 1, the limit set L(𝑋) of 𝑋𝑡 is resilient.265
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Proof sketch. The proof of Theorem 1 boils down to two interleaved arguments that we detail in266

??. The first hinges on showing that, if ℙ(L(𝑋) = S) > 0 for some non-random S ⊆ X , S267

must be resilient. This is argued by contradiction: if 𝑝𝑖 ∈ X𝑖 is a unilateral deviation violating268

Definition 1, we must also have lim inf𝑡→∞ [𝑢𝑖 (𝑝𝑖; 𝑋−𝑖,𝑡 ) − 𝑢𝑖 (𝑋𝑡 )] > 0 with positive probability.269

However, the existence of a strategy that consistently outperforms 𝑋𝑡 runs contrary to the fact that270

strategies that (RL) selects against underperforming strategies. We make this intuition precise via271

an energy argument that leverages a series of results from martingale limit theory (which is where272

the requirements for 𝛾𝑡 , 𝑏𝑡 and𝑈𝑡 come in). Then, to get the stronger statement that the random set273

L(𝑋) is resilient w.p.1, we show that the above remains true if 𝑝𝑖 is replaced by a deviation 𝑞𝑖 which274

is close enough to 𝑝𝑖 and has rational entries. Since there is a countable number of such profiles,275

we can use a union bound on an enumeration of the rationals to isolate a deviation witnessing the276

negation of Definition 1 and apply our argument for non-random sets to conclude our proof. ■277

Theorem 1 is our first universal guarantee for (RL), so some remarks are in order. First, we should278

point out that the requirements ℓ𝑏 > 0 and 2ℓ𝜎 < ℓ𝛾 are a priori implicit because they depend on the279

offset and magnitude statistics of the feedback sequence �̂�𝑡 . However, in most learning algorithms,280

these quantities are under the explicit control of the players: for example, as we show in Appendix B,281

Algorithm 2 has ℓ𝑏 = ℓ𝛾 while, for Algorithm 3, we have ℓ𝑏 = ℓ𝜎 = ℓ𝛿 . In this way, when instantiated282

to Algorithms 1–3 (and special cases thereof), Theorem 1 yields the following corollary:283

Corollary 1. Suppose that Algorithms 1–3 are run with ℓ𝛾 ∈ (0, 1] and, for Algorithm 3, ℓ𝛿 ∈284

(0, ℓ𝛾/2). Then, with probability 1, the limit set L(𝑋) of 𝑋𝑡 is resilient.285

Now, since Theorem 1 applies to all games, it would seem to provide a universally positive answer286

to whether (RL) is robsut to strategic deviations. However, this is not so: a direct calculation shows287

that the face of X that is spanned by the dominated strategies (𝐵, 𝐵) and (𝐷, 𝐷) of Example 4.1288

is resilient, so Theorem 1 cannot exclude convergence to a set where dominated strategies survive.289

Thus, just like no-regret play, the notion of resilience does not suffice by itself to capture the idea290

of rational behavior. This is because, albeit natural, resilience is too lax to provide a meaningful291

link between robustness to unilateral deviations – a game-theoretic requirement – and stability under292

regularized learning – a dynamic requirement. We address this question in detail in the next section.293

5 A characterization of strategic stability under regularized learning294

Similar to the set of pure strategies that arise from no-regret play, the main limitation of resilience295

is that a payoff-improving deviation may be countered by an action profile where the deviator also296

switched to a different strategy; in other words, resilience is not a self-enforcing barrier to deviations.297

In view of this, we will focus below on a much more stringent criterion of strategic stability, namely298

that any deviation from the set in question incur a cost to the deviating agent.299

Club sets. The above idea can be made precise as follows: First, define the better-reply correspon-300

dence of player 𝑖 ∈ N as btr𝑖 (𝑥) = {𝑥′𝑖 ∈ X𝑖 : 𝑢𝑖 (𝑥′𝑖 ; 𝑥−𝑖) ≥ 𝑢𝑖 (𝑥)}, and write btr =
∏
𝑖 btr𝑖 for301

the product correspondence btr(𝑥) = btr1 (𝑥) × · · · × btr𝑁 (𝑥). [In words, btr𝑖 assigns to each302

𝑥 ∈ X those strategies of player 𝑖 that are (weakly) better against 𝑥 than 𝑥𝑖 .] In addition, given a303

product of pure strategies C =
∏
𝑖∈N C𝑖 with C𝑖 ⊆ A𝑖 for all 𝑖 ∈ N , let S = Δ(C) denote the span of304

C, and let P (X ) denote the collection of all such sets. We then say that S ∈ P (X ) is closed under305

better replies – a club set for short – if it is closed under btr, i.e., btr(S) ⊆ S; finally, S is said to306

be minimally club (m-club) if it does not admit a proper club subset.307

Of course, the entire strategy space X is closed under better replies so, a priori, club sets could also308

contain dominated strategies and / or other non-rationalizable outcomes. By contrast, minimal club309

sets are much more rigid in their relation to rational behavior because any unilateral deviation from310

an m-club set is costly, and m-club sets are minimal in this regard. On that account, m-club sets can311

be seen as the closest setwise analogue to strict Nash equilibria.312

This analogy is accentuated further by the following properties of m-club sets (all due to Ritzberger313

& Weibull [38], who introduced the concept):314

1. Every game admits an m-club set; and if this set is a singleton, then it is a strict Nash equilibrium.315
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2. Any m-club set S is fixed under better replies, that is, btr(S) = S (implying in turn that S cannot316

contain any dominated strategies, including iteratively dominated ones).317

3. Any m-club set S contains an essential equilibrium component, i.e., a component of Nash equilibria318

such that every small perturbation of the game admits a nearby equilibrium; in addition, this319

component has full support on S , i.e., it employs all pure strategy profiles that lie in S.1320

Going back to our online learning setting, the above leads to the following natural set of questions:321

Are club sets (minimal or not) stable under the dynamics of regularized learning?322

Are they attracting? And, if so, are they the only such sets?323

Any answer to these questions – positive or negative – would be an important step in delineating the324

relation between strategic stability (in the above sense) and dynamic stability under (RL). To that325

end, we start by formalizing some notions of dynamic stability that will be central in the sequel:326

Definition 2. Fix some subset S of X and a tolerance level 𝜖 > 0. We then say that S is:327

1. Stochastically stable if, for every neighborhood U of S in X , there exists a neighborhood U1 of S328

such that329

ℙ(𝑋𝑡 ∈ U for all 𝑡 = 1, 2, . . . ) ≥ 1 − 𝜖 whenever 𝑋1 ∈ U1. (9)

2. Stochastically attracting if there exists a neighborhood U1 of S such that330

ℙ(lim𝑡→∞ dist(𝑋𝑡 ,S) = 0) ≥ 1 − 𝜖 whenever 𝑋1 ∈ U1. (10)

3. Stochastically asymptotically stable if it is stochastically stable and attracting.331

4. Irreducibly stable if S is stochastically asymptotically stable and it does not admit a strictly smaller332

stochastically asymptotically subset S ′ with supp(S ′) ⊊ supp(S).333

With all this in hand, our main result below provides a sharp characterization of strategic stability in334

the context of regularized learning:335

Theorem 2. Fix some set S ∈ P (X ) and suppose that (RL) is run with a steep regularizer and336

step-size / gain parameters ℓ𝛾 ∈ [0, 1], ℓ𝑏 > 0, and ℓ𝜎 < 1/2. Then:337

1. S is stochastically asymptotically stable under (RL) if and only if it is a club set.338

2. S is irreducibly stable under (RL) if and only if it is an m-club set.339

In addition, we also get the following convergence rate estimates for club sets:340

Theorem 3. Let S ∈ P (X ) be a club set, and let 𝑋𝑡 , 𝑡 = 1, 2, . . . , be the sequence of play generated341

by (RL) with parameters ℓ𝛾 ∈ [0, 1], ℓ𝑏 > 0, and ℓ𝜎 < 1/2. Then, for all 𝜖 > 0, there exists an (open,342

unbounded) initialization domain D ⊆ Y such that, with probability at least 1 − 𝜖 , we have343

dist(𝑋𝑡 ,S) ≤ 𝐶𝜑
(
𝑐1 − 𝑐2

∑𝑡
𝑠=1 𝛾𝑠

)
whenever 𝑌1 ∈ D (11)

where 𝐶, 𝑐1, 𝑐2 are constants (𝐶, 𝑐2 > 0), and the rate function 𝜑 is given by 𝜑(𝑧) = (𝜃′)−1 (𝑧) if344

𝑧 > lim𝑧→0+ 𝜃
′ (𝑧), and 𝜑(𝑧) = 0 otherwise.345

Specifically, if we instantiate Theorem 3 to Algorithms 1–3, we get the explicit estimates:346

Corollary 2. Suppose that Algorithms 1–3 are run with ℓ𝛾 ∈ [0, 1] and, for Algorithm 3, ℓ𝛿 ∈347

(0, 1/2). Then, with notation as in Theorem 3, 𝑋𝑡 converges to S at a rate of348

dist(𝑋𝑡 ,S) ≤ 𝐶 ·


[1 − 𝑐∑𝑡

𝑠=1 𝛾𝑠]+ if 𝜃 (𝑧) = 𝑧2/2 # quadratic regularization
exp

(
−𝑐∑𝑡

𝑠=1 𝛾𝑠
)

if 𝜃 (𝑧) = 𝑧 log 𝑧 # entropic regularization

1
/ (
𝑐 +∑𝑡

𝑠=1 𝛾𝑠
)2 if 𝜃 (𝑧) = −4

√
𝑧 # fractional regularization

(12)

for positive constants 𝐶, 𝑐 > 0. In particular, the projection-based variants of Algorithms 1–3349

converge to m-club sets in a finite number of steps.350

1Formally, a component X ∗ of Nash equilibria of Γ is essential if, for all 𝜀 > 0, there exists 𝛿 > 0 such that
any perturbation of the payoffs of Γ by at most 𝛿 produces a Nash equilibrium that is 𝜀-close to X ∗ [44]. This
property – known as “essentiality” – has a long history as one of the strictest setwise solution refinements in
game theory; in particular, it satisfies all the seminal strategic stability requirements of Kohlberg & Mertens
[25], including robustness to strategic payoff perturbations. For an in-depth discussion, see van Damme [44].
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Figure 1: The long-run behavior of EXP3 (Algorithm 3) in four representative 2 × 2 × 2 games. In all cases, the
dynamics converge to m-club sets, either strict equilibria themselves, or spanning an essential component of
Nash equilibria. The details of the numerics and the games being played are provided in the appendix.

Proof sketch. The proof of Theorems 2 and 3 is quite involved so we defer it to Appendix D. At351

a high level, it hinges on constructing a family of “primal-dual” energy functions, one per pure352

deviation from the set S under study. If unilateral deviations from S incur a cost to the deviator (that353

is, if S is club), these energy functions can be “bundled together” to produce a suitable Lyapunov-like354

function for S. In more detail, the minimization of each individual energy function implies that the355

score variable 𝑌𝑡 of (RL) diverges along an “astral direction” in the payoff space Y – i.e., it escapes356

to infinity along the interior of a certain convex cone of Y [16]. Because this minimization occurs at357

infinity, the aggregation of offsets and random errors in (RL) affords some extra “wiggle room” in358

our martingale analysis, so we are able to show that 𝑋𝑡 = 𝑄(𝑌𝑡 ) remains close to S under a much359

wider range of parameters compared to Theorem 1. Then, a series of convex analysis arguments in360

the spirit of [28] coupled with the definition of 𝑄 allows us to show that the escape of 𝑌𝑡 along the361

intersection of all these cones implies convergence to S at the specified rate.362

On the converse side, if an asymptotically stable set is not club, we can find a non-costly (and possibly363

profitable) deviation 𝑧 from S which is selected against by (RL). However, this extinction runs364

contrary to the reinforcement of better replies under (RL), an argument which can be made precise365

by applying the martingale law of large numbers to ⟨𝑌𝑡 , 𝑧⟩ [21]. The irreducible stability of m-club366

sets then follows by invoking this criterion reductively for any potentially stable subset S ′ of S . ■367

Discussion and remarks. Theorems 2 and 3 are our main results linking dynamic and strategic368

stability, so we conclude with a series of remarks. First, we should note that Theorem 2 can be369

summed up as follows: a product of pure strategies is (minimally) closed under better replies if and370

only if its span is (irreducibly) stable under regularized learning. Importantly, this equivalence is371

based solely on the game’s payoff data: it does not depend on the specific choices underlying (RL),372

including the choice map employed by each player, whether some players are using an optimistic373

adjustment or not, if they have access to their full payoff vectors, etc. As such, this equivalence374

provides a crisp operational criterion for identifying which pure strategy combinations ultimately375

persist under regularized learning – and, via Theorem 3, how fast this identification takes place.376

In this light, Theorem 2 essentially states that the only robust prediction that can be made for377

the outcome of a regularized learning process is (minimal) closedness under better replies. This378

interpretation has significant cutting power for the emergence of rational behavior. To begin, in terms379

of equilibrium play, it effortlessly implies that a pure strategy profile is stochastically asymptotically380

stable under (RL) if and only if it is a strict Nash equilibrium. A version of this equivalence was381

only recently proved in [17] and [19] (in continuous and discrete time respectively), so Theorem 2382

can be seen as a far-reaching generalization of these recent results. More to the point, since every383

m-club set S contains an essential equilibrium component that is fully supported in S, Theorem 2384

also provides an important link between dynamic and structural stability: if an equilibrium – or a385

component of equilibria – is not robust to perturbations of the underlying game, it cannot be robustly386

identified by a regularized learning process (and vice versa). This remark is of particular importance387

for extensive-form games as such games often have non-generic equilibrium components that cannot388

be treated otherwise by the existing theory.389

Finally, we should stress that Theorems 2 and 3 guarantee convergence even with a constant step-size.390

Together with the finite-time convergence guarantees of Corollary 2 for projection-based methods,391

this feature is a testament to the robustness of club sets as, in the presence of uncertainty, convergence392

almost always requires a vanishing step-size which can slow convergence down to a crawl. We find393

this robust convergence landscape particularly intriguing for future research on the topic.394
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A Auxiliary results499

In this appendix we collect some basic properties of the regularized choice maps and some results500

from probability theory that will be useful in the sequel.501

A.1. Regularized choice maps and their properties. Thoughout this appendix, we will suppress502

the player index 𝑖 ∈ N , and we will follow standard conventions in convex analysis [39] that treat ℎ503

as an extended-real-valued function ℎ : V → ℝ∪ {∞} with ℎ(𝑥) = ∞ for all 𝑥 ∈ V \ X . With this in504

mind, the subdifferential of a ℎ at 𝑥 ∈ X is defined as505

𝜕ℎ(𝑥) B {𝑦 ∈ Y : ℎ(𝑥′) ≥ ℎ(𝑥) + ⟨𝑦, 𝑥′ − 𝑥⟩ for all 𝑥′ ∈ X }, (A.1)

where Y denotes here the algebraic dual V∗ of V . Accordingly, the domain of subdifferentiability of506

ℎ is dom 𝜕ℎ B {𝑥 ∈ dom ℎ : 𝜕ℎ ≠ ∅}, and the convex conjugate of ℎ is defined as507

ℎ∗ (𝑦) = max
𝑥∈X
{⟨𝑦, 𝑥⟩ − ℎ(𝑥)} (A.2)

for all 𝑦 ∈ Y . We then have the following basic results.508

Lemma A.1. Let ℎ be a regularizer on X , and let 𝑄 : Y → X be the induced choice map. Then:509

1. 𝑄 is single-valued, and, for all 𝑥 ∈ X , 𝑦 ∈ Y , we have 𝑥 = 𝑄(𝑦) ⇐⇒ 𝑦 ∈ 𝜕ℎ(𝑥).510

2. For all 𝑥 ∈ riX , we have 𝜕ℎ(𝑥) = {(𝜃′ (𝑥𝛼) + 𝜇)𝛼∈A : 𝜇 ∈ ℝ}.511

3. For all 𝑦 ∈ Y , we have 𝑄(𝑦) = ∇ℎ∗ (𝑦).512

4. 𝑄 is (1/𝐾)-Lipschitz continuous with 𝐾 B inf (0,1] 𝜃′′ (𝑧). In particular, as a special case, the logit513

choice map Λ is 1-Lipschitz continuous in the (𝐿1, 𝐿∞) pair of norms on Y and X respectively.514

5. If 𝑦𝛼 − 𝑦𝛼′ → −∞ for some 𝛼′ ≠ 𝛼, then 𝑄𝛼 (𝑦) → 0.515

Remark. Some of the properties presented in Lemma A.1 are well known in the literature on516

regularized learning methods (see e.g., [28] and references therein), but we provide a proof of the517

entire lemma for completeness. ♦518

Proof of Lemma A.1. For the first property of 𝑄, note that the maximum in (4) is attained for all519

𝑦 ∈ Y because ℎ is lower-semicontinuous (l.s.c.) and strongly convex. Furthermore, 𝑥 solves (4) if520

and only if 𝑦 − 𝜕ℎ(𝑥) ∋ 0, i.e., if and only if 𝑦 ∈ 𝜕ℎ(𝑥).521

For our second claim, if 𝑥 ∈ ri(X ), the first-order stationarity conditions for the convex problem (4)522

that defines 𝑄 become523

𝑦𝛼 − 𝜃′ (𝑥𝛼) = 𝜇 for all 𝛼 ∈ A, (A.3)
because the inequality constraints 𝑥𝛼 ≥ 0 are all inactive (recall that 𝑥 ∈ ri(X ) by assumption). Now,524

by the first part of the theorem we have 𝑥 = 𝑄(𝑦) if and only if 𝑦 ∈ 𝜕ℎ(𝑥), so we conclude that525

𝜕ℎ(𝑥) = {(𝜃′ (𝑥𝛼) + 𝜇)𝛼∈A : 𝜇 ∈ ℝ}, as claimed.526

For the fourth item, the expression 𝑄 = ∇ℎ∗ is an immediate consequence of Danskin’s theorem,527

while the Lipschitz continuity of 𝑄 follows from standard results, see e.g., [39, Theorem 12.60(b)].528

For our last claim, let 𝑦𝑡 be a sequence in Y such that 𝑦𝛼,𝑡 − 𝑦𝛼′ ,𝑡 → −∞ and let 𝑥𝑡 = 𝑄(𝑦𝑡 ). Then,529

by descending to a subsequence if necessary, assume there exists some 𝜀 > 0 such that 𝑥𝛼,𝑡 ≥ 𝜀 > 0530

for all 𝑡. Then, by the defining relation 𝑄(𝑦) = arg max{⟨𝑦, 𝑥⟩ − ℎ(𝑥)} of 𝑄, we have:531

⟨𝑦𝑡 , 𝑥𝑡 ⟩ − ℎ(𝑥𝑡 ) ≥ ⟨𝑦𝑡 , 𝑥′⟩ − ℎ(𝑥′) (A.4)

for all 𝑥′ ∈ X . Therefore, taking 𝑥′𝑡 = 𝑥𝑡 + 𝜀(𝑒𝛼′ − 𝑒𝛼), we readily obtain532

𝜀(𝑦𝛼,𝑡 − 𝑦𝛼′ ,𝑡 ) ≥ ℎ(𝑥𝑡 ) − ℎ(𝑥′𝑡 ) ≥ min ℎ −max ℎ (A.5)

which contradicts our original assumption that 𝑦𝛼,𝑡 − 𝑦𝛼′ ,𝑡 → −∞. With X compact, the above shows533

that 𝑥∗𝛼 = 0 for any limit point 𝑥∗ of 𝑥𝑡 , i.e. 𝑄𝛼 (𝑦𝑡 ) → 0. ■534

The second collection of results concerns the Fenchel coupling, an energy function that was first535

introduced in [28, 29] and is defined as follows:536

𝐹 (𝑝, 𝑦) = ℎ(𝑝) + ℎ∗ (𝑦) − ⟨𝑦, 𝑝⟩ for all 𝑝 ∈ X and 𝑦 ∈ Y . (A.6)

This coupling will play a major role in the proofs of Theorem 1, so we prove two of its most basic537

properties below.538
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Lemma A.2. For all 𝑝 ∈ X and all 𝑦, 𝑦′ ∈ Y , we have:539

𝑎) 𝐹 (𝑝, 𝑦) ≥ 1
2𝐾 ∥𝑄(𝑦) − 𝑝∥

2. (A.7a)

𝑏) 𝐹 (𝑝, 𝑦′) ≤ 𝐹 (𝑝, 𝑦) + ⟨𝑦′ − 𝑦, 𝑄(𝑦) − 𝑝⟩ + 1
2𝐾 ∥𝑦

′ − 𝑦∥2∞. (A.7b)
In particular, if ℎ(0) = 0, we have540

(𝐾/2)∥𝑄(𝑦)∥2 ≤ ℎ∗ (𝑦) ≤ −min ℎ + ⟨𝑦, 𝑄(𝑦)⟩ + (2/𝐾)∥𝑦∥2∞ for all 𝑦 ∈ Y . (A.8)

Proof of Lemma A.2. By the strong convexity of ℎ relative to ∥·∥ (cf. Lemma A.1), we have541

ℎ(𝑥) + 𝑡⟨𝑦, 𝑝 − 𝑥⟩ ≤ ℎ(𝑥 + 𝑡 (𝑝 − 𝑥))
≤ 𝑡ℎ(𝑝) + (1 − 𝑡)ℎ(𝑥) − 1

2𝐾𝑡 (1 − 𝑡)∥𝑥 − 𝑝∥
2, (A.9)

leading to the bound542

1
2𝐾 (1 − 𝑡)∥𝑥 − 𝑝∥

2 ≤ ℎ(𝑝) − ℎ(𝑥) − ⟨𝑦, 𝑝 − 𝑥⟩ = 𝐹 (𝑝, 𝑦) (A.10)

for all 𝑡 ∈ (0, 1]. The bound (A.7a) then follows by letting 𝑡 → 0+ in (A.10).543

For our second claim, we have544

𝐹 (𝑝, 𝑦′) = ℎ(𝑝) + ℎ∗ (𝑦′) − ⟨𝑦′, 𝑝⟩

≤ ℎ(𝑝) + ℎ∗ (𝑦) + ⟨𝑦′ − 𝑦,∇ℎ∗ (𝑦)⟩ + 1
2𝐾
∥𝑦′ − 𝑦∥2∞ − ⟨𝑦′, 𝑝⟩

= 𝐹 (𝑝, 𝑦) + ⟨𝑦′ − 𝑦, 𝑄(𝑦) − 𝑝⟩ + 1
2𝐾
∥𝑦′ − 𝑦∥2∞, (A.11)

where the inequality in the second line follows from the fact that ℎ∗ is (1/𝐾)-strongly smooth [39,545

Theorem 12.60(e)]. ■546

A.2. Basic results from probability theory. We conclude this appendix with some useful results547

from probability theory that we will use freely throughout the sequel. For a complete treatment, we548

refer the reader to Hall & Heyde [21].549

Lemma A.3 (Azuma-Hoeffding inequality). Let 𝑀𝑡 ∈ ℝ, 𝑡 = 1, 2, . . . , be a martingale with550

∥𝑀𝑡 − 𝑀𝑡−1∥∞ ≤ 𝜎𝑡 (a.s.). Then, for all 𝜂 > 0, we have551

ℙ

(
|𝑀𝑡 | ≤

(
2 log(2𝑡2/𝜂)

∑︁𝑡

𝑠=1 𝜎
2
𝑠

)1/2
for all 𝑡

)
≥ 1 − 𝜂. (A.12)

Lemma A.4 (Kolmogorov’s inequality). Let 𝑍𝑡 ∈ ℝ, 𝑡 = 1, 2, . . . , be a martingale difference552

sequence that is bounded in 𝐿2. Then:553

ℙ

(
max
𝑠≤𝑡

∑︁𝑠

ℓ=1 𝑍ℓ ≥ 𝜀
)
≤ 1
𝜀2𝔼

[(∑︁𝑡

𝑠=1 𝑍𝑠

)2
]

for all 𝜀 > 0. (A.13)

Lemma A.5 (Doob’s maximal inequality). Let 𝑍𝑡 ∈ ℝ, 𝑡 = 1, 2, . . . , be a martingale difference554

sequence that is bounded in 𝐿 𝑝 for some 𝑝 ≥ 1. Then555

ℙ

(
max
𝑠≤𝑡
|𝑍𝑠 | > 𝜀

)
≤ 1
𝜀𝑝

𝔼
[
|𝑍𝑡 |𝑝

]
for all 𝜀 > 0. (A.14)

Lemma A.6 (Burkholder–Davis–Gundy inequality). Let 𝑍𝑡 , 𝑡 = 1, 2, . . . , be a martingale difference556

sequence in ℝ𝑛. Then, for all 𝑝 > 1, there exist constants 𝑐𝑝 , 𝐶𝑝 that depend only on 𝑝 and are such557

that558

𝑐𝑝 𝔼

[
𝑡∑︁
𝑠=1
∥𝑍𝑠 ∥22

] 𝑝/2
≤ 𝔼

[
max
𝑠≤𝑡

 𝑠∑︁
ℓ=1

𝑍ℓ

𝑝
2

]
≤ 𝐶𝑝 𝔼

[
𝑡∑︁
𝑠=1
∥𝑍𝑠 ∥22

] 𝑝/2
. (A.15)

Lemma A.7 (Robbins–Siegmund). Let F𝑡 , 𝑡 = 1, 2, . . . , be a filtration on a complete probability559

space (Ω,F ,ℙ), and suppose that the sequences 𝑋𝑡 , 𝐿𝑡 and 𝐾𝑡 F𝑡 -measurable, nonnegative, and560

such that561

𝔼[𝑋𝑡+1 |F𝑡 ] ≤ 𝑋𝑡 (1 + 𝐿𝑡 ) + 𝐾𝑡 with probability 1. (A.16)
Then, 𝑋𝑡 converges to some random variable 𝑋∞ with probability 1 on the event562 {∑∞

𝑡=1 𝐿𝑡 < ∞ and
∑∞
𝑡=1 𝐾𝑡 < ∞

}
.563
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Figure 2: The long-run behavior of Algorithms 1–3 in a 2 × 2 × 2 game. Algorithms 1 and 2 were run with
a logit choice map as per (HEDGE); Algorithm 3 was run with both variants, EXP3 and TSALLIS-INF. All
algorithms were run for 5 × 105 iterations with 𝛾𝑡 = 1/𝑡0.4 and 𝛿𝑡 = 0.1/𝑡0.15; color indicates time, with darker
hues indicating later iterations. The face to the left is closed under better replies, so 𝑋𝑡 converges quickly to said
face (as per Theorems 2 and 3).

B Specific algorithms and their properties564

B.1. Known algorithms as special cases of (RL). To complement our analysis in the main part of565

our paper, we detail below how Algorithms 1–3 can be recast in the general framework of (RL). To566

lighten notation, we will assume that 𝑏𝑡 ,𝑈𝑡 and �̂�𝑡 are respectively bounded as567

∥𝑏𝑡 ∥∞ ≤ 𝐵𝑡 ∥𝑈𝑡 ∥∞ ≤ 𝜎𝑡 and ∥ �̂�𝑡 ∥∞ ≤ 𝑀𝑡 (B.1)

and we will set568

𝐺 B max
𝑖∈N

max
𝛼∈A
|𝑣𝑖 (𝛼) | (B.2)

so we can take 𝑀𝑡 = 𝐺 + 𝐵𝑡 + 𝜎𝑡 in (B.1). We will also make free use of the fact that 𝑣 is Lipschitz569

continuous on X , and we will write 𝐿 for its Lipschitz modulus in the (𝐿1, 𝐿∞) pair of norms on X570

and Y respectively, viz.571

∥𝑣(𝑥′) − 𝑣(𝑥)∥∞ ≤ 𝐿∥𝑥′ − 𝑥∥1 for all 𝑥, 𝑥′ ∈ X . (B.3)

We now proceed to establish the required bounds for Algorithms 1–3:572

Algorithm 1. Since �̂�𝑡 = 𝑣(𝑋𝑡 ), we readily get 𝑏𝑡 = 𝑈𝑡 = 0 by definition, so Algorithm 1 fits the573

scheme (RL) for free with ℓ𝑏 = ∞, ℓ𝜎 = 0. ♦574

Algorithm 2. For the case of (Opt-FTRL), we have �̂�𝑡 = 2𝑣(𝑋𝑡 ) − 𝑣(𝑋𝑡−1) so 𝑏𝑡 = 𝑣(𝑋𝑡 ) − 𝑣(𝑋𝑡−1),575

which is F𝑡 -measurable. We thus get576

∥𝑏𝑡 ∥∞ = ∥𝔼[�̂�𝑡 |F𝑡 ] − 𝑣(𝑋𝑡 )∥∞ ≤ 𝔼[∥𝑣(𝑋𝑡 ) − 𝑣(𝑋𝑡−1)∥∞ |F𝑡 ]
≤ 𝐿 𝔼[∥𝑋𝑡 − 𝑋𝑡−1∥ |F𝑡 ] # by (B.3)
= 𝐿 𝔼[∥𝑄(𝑌𝑡 ) −𝑄(𝑌𝑡−1)∥∞ |F𝑡 ] # by (Opt-FTRL)
≤ (𝐿/𝐾) 𝔼[∥𝑌𝑡 − 𝑌𝑡−1∥∞ |F𝑡 ] # by Lemma A.1
≤ 𝛾𝑡 (𝐿/𝐾) 𝔼[2𝑣(𝑋𝑡 ) − 𝑣(𝑋𝑡−1) |F𝑡 ] # by (Opt-FTRL)
≤ 3𝐿𝐺/𝐾 · 𝛾𝑡 # by (B.2)

= O(𝛾𝑡 ) = O(1/𝑡ℓ𝛾 ) (B.4)

Moreover, given that �̂� is F𝑡 -measurable, we readily get𝑈𝑡 = 0. ♦577

Algorithm 3. Since �̂�𝑡 is sampled according to �̂�𝑡 = (1 − 𝛿𝑡 )𝑋𝑖,𝑡 + 𝛿𝑡 unifA𝑖
(cf. Eq. (7) in578

Section 3), we readily obtain 𝔼[�̂�𝑖,𝑡 |F𝑡 ] = 𝑣𝑖 ( �̂�𝑡 ), and hence, by (B.3), we get579

𝐵𝑡 = O(∥ �̂�𝑡 − 𝑋𝑡 ∥) = O(𝛿𝑡 ) = O(1/𝑡ℓ𝛿 ). (B.5)

Moreover, since �̂�𝑖𝛼𝑖 ,𝑡 ≥ 𝛿𝑡/𝐴𝑖 , it follows that ∥ �̂�𝑡 ∥∞ = O(1/𝛿𝑡 ) = O(𝑡ℓ𝛿 ). ♦580

For comparison purposes, we illustrate the algorithms’ behavior in a simple 2 × 2 × 2 game in Fig. 2.581
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Representative Regularizer (𝜃) Feedback Bias (𝐵𝑡 ) Variance (𝜎𝑡 )

Algorithm 1 HEDGE 𝑧 log 𝑧 full info 0 0
Algorithm 2 OMW 𝑧 log 𝑧 full info O(1/𝑡ℓ𝛾 ) 0
Algorithm 3 EXP3 𝑧 log 𝑧 payoff O(1/𝑡ℓ𝛿 ) O(𝑡ℓ𝛿 )
Algorithm 3 TSALLIS-INF −4

√
𝑧 payoff O(1/𝑡ℓ𝛿 ) O(𝑡ℓ𝛿 )

Algorithm 4 MP general full info O(1/𝑡ℓ𝛾 ) 0
Algorithm 5 CMW 𝑧 log 𝑧 full info O(1/𝑡ℓ𝛿 ) 0

Table 1: A range of algorithms adhering to the general template (RL) and their bias and variance characteristics
when run with a step-size sequence of the form 𝛾𝑡 = 𝛾/𝑡ℓ𝛾 , ℓ𝛾 ∈ (0, 1], and, where applicable, a sampling
parameter 𝛿𝑡 = 𝛿/𝑡ℓ𝛿 .

B.2. Further algorithms and illustrations. To demonstrate the breadth of (RL) as an algorithmic582

template, we provide below some more examples of algorithms from the game-theoretic literature583

that can be recast as special cases thereof (see also Table 1 for a recap).584

Algorithm 4 (Mirror-prox). A progenitor of (Opt-FTRL) is the so-called mirror-prox (MP) algorithm585

[24, 32], which updates as:586

𝑌𝑡 = 𝑌𝑡 + 𝛾𝑡 𝑣(𝑋𝑡 ) 𝑌𝑡+1 = 𝑌𝑡 + 𝛾𝑡 𝑣( �̃�𝑡 )
�̃�𝑡 = 𝑄(𝑌𝑡 ) 𝑋𝑡+1 = 𝑄(𝑌𝑡+1).

(MP)

The main difference between (MP) and (Opt-FTRL) is that the former utilizes two surrogate gain587

vectors per iteration – meaning in particular that the interim, leading state �̃�𝑡 is generated with payoff588

information from 𝑋𝑡 , not �̃�𝑡−1. This method has been used extensively in the literature for solving589

variational inequalities and two-player, zero-sum games, cf. Juditsky et al. [24] and references therein.590

A calculation similar to that for (Opt-FTRL) shows that Algorithm 4 has 𝐵𝑡 = O(1/𝑡ℓ𝛾 ) and 𝜎𝑡 = 0591

because the algorithm has no further randomization. ♦592

Algorithm 5 (Clairvoyant multiplicative weights). A recent variant of the HEDGE algorithm is the593

so-called clairvoyant multiplicative weights (CMW) algorithm [34]594

𝑌𝑖,𝑡+1 = 𝑌𝑖,𝑡 + 𝛾𝑡 𝑣𝑖 (𝑋𝑡+1) 𝑋𝑖,𝑡+1 = Λ𝑖 (𝑌𝑖,𝑡+1). (CMW)

The main difference between (CMW) and (HEDGE) is that the proxy payoff vector �̂�𝑡 in (CMW) is595

based on the future state 𝑋𝑡+1 and not the current state 𝑋𝑡 . To perform this “clairvoyant” update,596

the players of the game must coordinate to solve an implicit fixed point problem, so (CMW) is only597

meaningful when one has access to the payoff function 𝑣(·). In this regard, (CMW) can be seen as a598

Bregman proximal point method in the general spirit of Bauschke et al. [7].599

To cast (CMW) as an instance of the generalized template (RL), simply note that the sequence of600

input signals is given by �̂�𝑡 = 𝑣(𝑋𝑡+1), so𝑈𝑡 = 0 and 𝑏𝑡 = 𝑣(𝑋𝑡+1) − 𝑣(𝑋𝑡 ) = O(𝛾𝑡 ) = O(1/𝑡ℓ𝛾 ). ♦601

C Proof of Theorem 1602

Our main goal in this appendix will be to prove Theorem 1 on the resilience properties of (RL). For603

convenience, we restate below the relevant result for ease of reference:604

Theorem 1. Let 𝑋𝑡 , 𝑡 = 1, 2, . . . , be the sequence of play generated by (RL) with step-size / gain605

parameters ℓ𝛾 > 2ℓ𝜎 and ℓ𝑏 > 0. Then, with probability 1, the limit set L(𝑋) of 𝑋𝑡 is resilient.606

Proof. Our proof that L(𝑋) is resilient hinges on an energy-based technique that we will employ607

repeatedly in other parts of our analysis. To begin, introduce a player-strategy deviation pair (𝑖, 𝑧𝑖),608

and say that a set is resilient to (𝑖, 𝑧𝑖) if there exists an element of the set, say 𝑥∗, which counters609

said deviation, i.e., such that 𝑢𝑖 (𝑥∗) ≥ 𝑢𝑖 (𝑧𝑖; 𝑥∗−𝑖). In this specific case, our proof proceeds by610

contradiction, namely by assuming that, with positive probability, L(𝑋) is not resilient to (𝑖, 𝑧𝑖). The611

main steps of our proof unfold as follows:612
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Step 1. Assume that L(𝑋) is not resilient to (𝑖, 𝑧𝑖) with positive probability. Then there exists613

𝑐, 𝜖, 𝑡0 > 0 such that614

ℙ
(
𝑢𝑖 (𝑧𝑖; 𝑋𝑡 ,−𝑖) ≥ 𝑢𝑖 (𝑋𝑡 ) + 𝑐 for all 𝑡 ≥ 𝑡0

)
≥ 𝜖 . (C.1)

Proof of Step 1. The function 𝑓 : 𝑥 ∈ X ↦→ 𝑢𝑖 (𝑧𝑖; 𝑥−𝑖) − 𝑢𝑖 (𝑥) is continuous and X is compact, so615

there is a definite function 𝜂 ≡ 𝜂(𝛿) such that if ∥𝑥 − 𝑥′∥ ≤ 𝜂(𝛿), then | 𝑓 (𝑥) − 𝑓 (𝑥′) | ≤ 𝛿. Now, by616

assumption, {∀𝑥∗ ∈ L(𝑋), 𝑢𝑖 (𝑧𝑖; 𝑥∗−𝑖) > 𝑢𝑖 (𝑥∗)} is of positive probability. We thus get617

0 < ℙ
{
∀𝑥∗ ∈ L(𝑋), 𝑢𝑖 (𝑧𝑖; 𝑥∗−𝑖) > 𝑢𝑖 (𝑥∗)

}
= ℙ

{
inf

𝑥∗∈L(𝑋)

(
𝑢𝑖 (𝑧𝑖; 𝑥∗−𝑖) − 𝑢𝑖 (𝑥∗)

)
> 0

}
(C.2a)

= ℙ

(⋃
𝑚>0

{
inf

𝑥∗∈L(𝑋)

(
𝑢𝑖 (𝑧𝑖; 𝑥∗−𝑖) − 𝑢𝑖 (𝑥∗)

)
> 2−𝑚

})
(C.2b)

≤ 1
2
ℙ
{
∀𝑥∗ ∈ L(𝑋), 𝑢𝑖 (𝑧𝑖; 𝑥∗−𝑖) − 𝑢𝑖 (𝑥∗) > 2𝑐

}
(C.2c)

for some 𝑐 > 0 in (C.2c), and where (C.2a) is because L(𝑋) is closed – hence compact – almost618

surely. Therefore, by definition of 𝜂(·),619

0 < ℙ
{
∀𝑥∗ ∈ X , dist(𝑥∗,L(𝑋)) ≤ 𝜂(𝑐) ⇒ 𝑢𝑖 (𝑧𝑖; 𝑥∗−𝑖) − 𝑢𝑖 (𝑥∗) > 𝑐

}
= 2𝜖 (C.2d)

Now, let 𝑡0 such that ℙ{∀𝑡 ≥ 𝑡0, dist(𝑋𝑡 ,L(𝑋)) ≤ 𝜂(𝑐)} > 1 − 𝜖
2 . Then by construction, we get620

ℙ
{
∀𝑡 ≥ 𝑡0, 𝑢𝑖 (𝑧𝑖; 𝑋𝑡 ,−𝑖) > 𝑢𝑖 (𝑋𝑡 ) + 𝑐

}
> 𝜖. (C.3)

■
and our proof is complete.621

Intuitively, the existence of an action that consistently outperforms 𝑋𝑡 runs contrary to the behavior622

that one would expect from any regularized learning algorithm. We will proceed to make this intuition623

precise below by means of an energy argument. To that end, consider the Fenchel coupling624

𝐹𝑡 = ℎ𝑖 (𝑧𝑖) + ℎ∗𝑖 (𝑌𝑖,𝑡 ) − ⟨𝑌𝑖,𝑡 , 𝑧𝑖⟩ (C.4)
Then, by Lemma A.2 in Appendix A, we readily get that625

𝐹𝑡+1 ≤ 𝐹𝑡 − 𝛾𝑡 ⟨�̂�𝑖,𝑡 , 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩ +
𝛾2
𝑡

2𝜅ℎ
∥ �̂�𝑖,𝑡 ∥2∞. (C.5)

where, in obvious notation, we are identifying 𝑧𝑖 ∈ A𝑖 with the corresponding vertex 𝑒𝑧𝑖 of X𝑖 =626

Δ(A𝑖). To proceed, the main idea will be to relate 𝛾𝑡 ⟨�̂�𝑖,𝑡 , 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩ to its “perfect” counterpart627

𝛾𝑡 ⟨𝑣𝑖 (𝑋𝑡 ), 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩. We formalize this below.628

Step 2. If L(𝑋) is not resilient to (𝑖, 𝑧𝑖), there exists 𝑡1 ≥ 𝑡0 such that, with probability 𝜀′/2 > 0, and629

for all 𝑡 ≥ 𝑡1, we have630

𝐹𝑡 ≤ 𝐹𝑡0 −
𝑐

2

𝑡∑︁
𝑠=𝑡0

𝛾𝑠 . (C.6)

Proof of Step 2. With probability 𝜀′ and for all 𝑡 ≥ 𝑡0, we have631

𝛾𝑡 ⟨�̂�𝑖,𝑡 , 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩ = 𝛾𝑡 ⟨𝑣𝑖 (𝑋𝑡 ), 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩ + 𝛾𝑡 ⟨𝑈𝑖,𝑡 , 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩ + 𝛾𝑡 ⟨𝑏𝑖,𝑡 , 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩ (C.7)

≥
[
𝑐 + ⟨𝑈𝑖,𝑡 , 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩ + ⟨𝑏𝑖,𝑡 , 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩

]
𝛾𝑡 . (C.8)

The combination of Eqs. (C.5) and (C.8) then provides the following upper bound of 𝐹𝑡+1:632

𝐹𝑡+1 ≤ 𝐹𝑡 − 𝑐𝛾𝑡 + 𝛾𝑡 ⟨𝑈𝑖,𝑡 , 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩ + 𝛾𝑡 ⟨𝑏𝑖,𝑡 , 𝑧𝑖 − 𝑋𝑖,𝑡 ⟩ +
𝛾2
𝑡

2𝜅ℎ
∥ �̂�𝑖,𝑡 ∥2∞ (C.9)

≤ 𝐹𝑡0 − 𝑐
𝑡∑︁
𝑠=𝑡0

𝛾𝑠 +
𝑡∑︁
𝑠=𝑡0

𝛾𝑠 ⟨𝑈𝑠,𝑖 , 𝑧𝑖 − 𝑋𝑠,𝑖⟩︸                      ︷︷                      ︸
𝐸𝑈,𝑡

+
𝑡∑︁
𝑠=𝑡0

𝛾𝑠 ⟨𝑏𝑠,𝑖 , 𝑧𝑖 − 𝑋𝑠,𝑖⟩︸                     ︷︷                     ︸
𝐸𝑏,𝑡

+
𝑡∑︁
𝑠=𝑡0

∥ �̂�𝑠,𝑖 ∥2∞
2𝜅ℎ

𝛾2
𝑠 . (C.10)

We are thus left to show is that 𝑐
∑𝑡
𝑠=𝑡0

𝛾𝑠 is the dominant term above. To do so, we proceed to633

examine each term individually:634
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• Second-order term: We first deal with the second-order term
∑𝑡
𝑠=𝑡0

∥ �̂�𝑠,𝑖 ∥2∞
2𝜅ℎ 𝛾2

𝑠 . By expanding the635

∥ �̂�𝑠,𝑖 ∥2∞, we readily get636 ∑𝑡
𝑠=𝑡0
∥ �̂�𝑠,𝑖 ∥2∞𝛾2

𝑠

𝜏𝑡
= O

(∑𝑡
𝑠=1 𝛾

2
𝑠 (1 + 𝐵2

𝑠 + 𝜎2
𝑠 )∑𝑡

𝑠=1 𝛾𝑠

)
. (C.11)

However, by our assumptions on the parameters of (RL), we readily get637

lim
𝑡→∞

𝛾2
𝑡 (1 + 𝐵2

𝑡 + 𝜎2
𝑡 )

𝛾𝑡
= 0 (C.12)

so we conclude that638

lim
𝑡→∞

∑𝑡
𝑠=1 𝛾

2
𝑠 (1 + 𝐵2

𝑠 + 𝜎2
𝑠 )∑𝑡

𝑠=1 𝛾𝑠
(C.13)

by the Stolz-Cesàro theorem.639

• Bias term: By far the most immediate, the bias term 𝐸𝑏,𝑡 is bounded as640

𝐸𝑏,𝑡 ≤ 2
𝑡∑︁
𝑠=𝑡0

∥𝑏𝑖,𝑡 ∥∞𝛾𝑠 ≤ 2
𝑡∑︁
𝑠=𝑡0

𝐵𝑠𝛾𝑠 = o

(
𝑡∑︁
𝑠=𝑡0

𝛾𝑠

)
as 𝑡 →∞. (C.14)

• Noise term: Finally, the noise term 𝐸𝑈,𝑡 is bounded by means of the Azuma-Hoeffding inequality,641

cf. Lemma A.3 in Appendix A. Specifically, with probability at least 1 − 𝜀′/2, we have642

𝐸𝑈,𝑡 B
𝑡∑︁
𝑠=𝑡0

𝛾𝑠 ⟨𝑈𝑠,𝑖 , 𝑧𝑖 − 𝑋𝑠,𝑖⟩

≤ 2

(
𝑡∑︁
𝑠=𝑡0

∥𝑈𝑠,𝑖 ∥2∞𝛾2
𝑠

)1/2√︂
2 log

(
4𝑡2
𝜀′

)
≤ 2

(
𝑡∑︁
𝑠=𝑡0

𝜎2
𝑠 𝛾

2
𝑠

)1/2√︂
2 log

(
4𝑡2
𝜀′

)
. (C.15)

for all 𝑡 ≥ 𝑡0. To proceed, note that a second application of the Stolz-Cesàro theorem yields643 ∑𝑡
𝑠=𝑡0

𝜎2
𝑠 𝛾

2
𝑠 = o(∑𝑡

𝑠=𝑡0
𝛾𝑠) and, moreover, note that log(4𝑡2/𝜀′) = O(∑𝑡

𝑠=𝑡0
𝛾𝑠). Taking square644

roots and multiplying then yields that645

𝐸𝑈,𝑡 = o

(
𝑡∑︁
𝑠=𝑡0

𝛾𝑠

)
(C.16)

with probability at least 1 − 𝜀′/2.646

We are now in a position to establish the bound Eq. (C.6). Indeed, putting Eqs. (C.13), (C.14)647

and (C.16) together, we readily infer that there exists 𝑡1 ≥ 𝑡0 such that, with probability at least648

1 − 𝜀′/2, we have649

𝑡∑︁
𝑠=𝑡0

𝛾𝑠 ⟨𝑈𝑠,𝑖 , 𝑧𝑖 − 𝑋𝑠,𝑖⟩ +
𝑡∑︁
𝑠=𝑡0

𝛾𝑠 ⟨𝑏𝑠,𝑖 , 𝑧𝑖 − 𝑋𝑠,𝑖⟩ +
𝑡∑︁
𝑠=𝑡0

∥ �̂�𝑠,𝑖 ∥2∞
2𝜅ℎ

𝛾2
𝑠 ≤

𝑐

2

𝑡∑︁
𝑠=𝑡0

𝛾𝑠 (C.17)

for all 𝑡 ≥ 𝑡1. This proves Eq. (C.6) and concludes our proof. ■650

Summarizing the above, we have shown that, with probability at least 1 − 𝜀′/2, we have651

𝐹𝑡+1 ≤ 𝐹𝑡0 −
𝑐

2

𝑡∑︁
𝑠=𝑡0

𝛾𝑠 → −∞ as 𝑡 →∞. (C.18)

Since 𝐹 is nonnegative (by Lemma A.2), we have established that the event where L(𝑋) is not652

resilient to (𝑖, 𝑧𝑖) is an event of probability zero. However, since there are uncountably many strategic653

deviations, the proof is not yet complete; the last step involves an approximation by deviations with654

rational entries.655
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Step 3. L(𝑋) is almost-surely resilient.656

Proof of Step 3. The key point of the proof is the observation that a closed set is resilient if and657

only if it is rationally resilient, i.e., it nullifies all rational deviations 𝑧𝑖 ∈ X𝑖 ∩ ℚA𝑖 (which are658

countably many). Indeed, if L(𝑋) is not resilient with positive probability, then, likewise, L(𝑋) will659

not be rationally resilient with positive probability either. Because there are countably many rational660

deviations, there must be a rational strategic deviation (𝑖, 𝑧𝑖) (with 𝑧𝑖 ∈ X𝑖 ∩ ℚA𝑖 ) to which L(𝑋) is661

not resilient. This comes in contradiction with the conclusions of Step 2. ■662

This concludes the last required step, so the proof of Theorem 1 is now complete. ■663

D Proof of Theorems 2 and 3664

In this last appendix, our goal is to prove our characterization of club sets, namely:665

Theorem 2. Fix some set S ∈ P (X ) and suppose that (RL) is run with a steep regularizer and666

step-size / gain parameters ℓ𝛾 ∈ [0, 1], ℓ𝑏 > 0, and ℓ𝜎 < 1/2. Then:667

1. S is stochastically asymptotically stable under (RL) if and only if it is a club set.668

2. S is irreducibly stable under (RL) if and only if it is an m-club set.669

Theorem 3. Let S ∈ P (X ) be a club set, and let 𝑋𝑡 , 𝑡 = 1, 2, . . . , be the sequence of play generated670

by (RL) with parameters ℓ𝛾 ∈ [0, 1], ℓ𝑏 > 0, and ℓ𝜎 < 1/2. Then, for all 𝜖 > 0, there exists an (open,671

unbounded) initialization domain D ⊆ Y such that, with probability at least 1 − 𝜖 , we have672

dist(𝑋𝑡 ,S) ≤ 𝐶𝜑
(
𝑐1 − 𝑐2

∑𝑡
𝑠=1 𝛾𝑠

)
whenever 𝑌1 ∈ D (11)

where 𝐶, 𝑐1, 𝑐2 are constants (𝐶, 𝑐2 > 0), and the rate function 𝜑 is given by 𝜑(𝑧) = (𝜃′)−1 (𝑧) if673

𝑧 > lim𝑧→0+ 𝜃
′ (𝑧), and 𝜑(𝑧) = 0 otherwise.674

Our proof strategy will be to construct a sheaf of “linearized” energy functions which, when bundled675

together, yield a suitable Lyapunov-like function for S . To do so, let C =
∏
𝑖 C𝑖 denote the support of676

S (cf. the definition of club sets), and let677

Z𝑖 = {𝑒𝑖𝛼′
𝑖
− 𝑒𝑖𝛼𝑖 : 𝛼𝑖 ∈ C𝑖 , 𝛼′𝑖 ∈ A𝑖 \ C𝑖} (D.1)

and678

Z =
⋃

𝑖∈N Z𝑖 (D.2)
denote the set of all pure strategic deviations from S. Then, our ensemble of candidate energy679

functions will be given by680

𝐸𝑧 (𝑦) = ⟨𝑦, 𝑧⟩ for 𝑧 ∈ Z , 𝑦 ∈ V∗. (D.3)

The motivation for this definition is given by the following lemma.681

Lemma D.1. Suppose that the sequence 𝑦𝑡 ∈ V∗, 𝑡 = 1, 2, . . . , has 𝐸𝑧 (𝑦𝑡 ) → −∞ for all 𝑧 ∈ Z as682

𝑡 →∞. Then the sequence 𝑥𝑡 = 𝑄(𝑦𝑡 ) converges to S as 𝑡 →∞.683

Proof. Let 𝑧 = 𝑒𝑖𝛼′
𝑖
− 𝑒𝑖𝛼𝑖 for some 𝑖 ∈ N , 𝛼𝑖 ∈ C𝑖 , and 𝛼′

𝑖
∈ A𝑖 \ C𝑖 . Since 𝐸𝑧 (𝑦𝑡 ) → −∞ by684

assumption, we get 𝑦𝑖𝛼′
𝑖
,𝑡 − 𝑦𝑖𝛼𝑖 ,𝑡 → −∞ and hence, by Lemma A.1, we conclude that 𝑄𝑖𝛼′

𝑖
(𝑥𝑡 ) → 0685

as 𝑡 →∞. In turn, given that this holds for all 𝑖 ∈ N and all 𝛼′
𝑖
∈ A𝑖 \C𝑖 , we conclude that 𝑥𝑡 = 𝑄(𝑦𝑡 )686

converges to S. ■687

In view of the above, we will focus on showing that 𝐸𝑧 (𝑌𝑡 ) → −∞ for all 𝑧 ∈ Z . As a first step, we688

establish a basic template inequality for the evolution of 𝐸𝑧 under (RL).689

Lemma D.2. Fix some 𝑧 ∈ Z and let 𝐸𝑡 B 𝐸𝑧 (𝑌𝑡 ). Then, for all 𝑡 = 1, 2, . . . , we have690

𝐸𝑡+1 ≤ 𝐸𝑡 + 𝛾𝑡 ⟨𝑣(𝑋𝑡 ), 𝑧⟩ + 𝛾𝑡𝜉𝑡 + 𝛾𝑡𝜓𝑡 (D.4)

where the error terms 𝜉𝑡 and 𝜓𝑡 are given by691

𝜉𝑡 = ⟨𝑈𝑡 , 𝑧⟩ and 𝜓𝑡 = 2𝐵𝑡 . (D.5)
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Proof. Simply set 𝑦← 𝑌𝑡+1 in 𝐸𝑧 (𝑦), invoke the definition of the update 𝑌𝑡 ← 𝑌𝑡+1 in (RL), and note692

that |⟨𝑏𝑡 , 𝑧⟩| ≤ ∥𝑧∥∥𝑏𝑡 ∥∞ ≤ 2𝐵𝑡 by the definition of Z . ■693

The key take-away from (D.4) is that, if 𝑋𝑡 is close to S and 𝛼𝑖 ∈ C𝑖 , 𝛼′𝑖 ∈ A𝑖 \ C𝑖 , we will have694

⟨𝑣(𝑋𝑡 ), 𝑧⟩ = 𝑣𝑖𝛼′
𝑖
(𝑋𝑡 ) − 𝑣𝑖𝛼𝑖 (𝑋𝑡 ) = 𝑢𝑖 (𝛼′𝑖 ; 𝑋−𝑖,𝑡 ) − 𝑢𝑖 (𝛼𝑖; 𝑋−𝑖,𝑡 ) < 0 (D.6)

by the continuity of 𝑢𝑖 and the assumption that S is a club set. More concretely, by the definition of695

the better-reply correspondence, we have696

⟨𝑣(𝑥∗), 𝑧⟩ < 0 for all 𝑥∗ ∈ S and all 𝑧 ∈ Z (D.7)

and hence, by continuity, there exists a neighborhood B of S such that697

⟨𝑣(𝑥), 𝑧⟩ < 0 for all 𝑥 ∈ B and all 𝑧 ∈ Z . (D.8)

In other words, as long as 𝑋𝑡 is sufficiently close to S, (D.4) exhibits a consistent negative drift698

pushing 𝐸𝑡 towards −∞.699

To exploit this “dynamic consistency” property of S , it will be convenient to introduce the family of700

sets701

D(𝜖) = {𝑦 ∈ V∗ : ⟨𝑦, 𝑧⟩ < −𝜖 for all 𝑧 ∈ Z} (D.9)
As we show below, these sets are mapped under 𝑄 to neighborhoods of S, so they are particularly702

well-suited to serve as initialization domains for (RL). This is encoded in the following properties:703

Lemma D.3. Let 𝑥 = 𝑄(𝑦) for some 𝑦 ∈ V∗. Then, for all 𝛼𝑖 , 𝛼′𝑖 , 𝑖 ∈ N , we have704

𝑥𝑖𝛼𝑖 ≤ 𝜑
(
𝜃 (1−) + 𝑦𝑖𝛼′

𝑖
− 𝑦𝑖𝛼𝑖

)
(D.10)

with 𝜑 defined as per Theorem 3, i.e.,705

𝜑(𝑧) =


0 if 𝑧 ≤ 𝜃′ (0+),
(𝜃′)−1 (𝑧) if 𝜃′ (0+) < 𝑧 < 𝜃′ (1−),
1 if 𝑧 ≥ 𝜃′ (1−).

(D.11)

Corollary D.1. For all 𝛿 > 0 there exists some 𝜖𝛿 ∈ ℝ such that, for all 𝜖 > 𝜖𝛿 and all 𝑦 ∈ D𝜖 , we706

have707

𝑄𝑖𝛼′
𝑖
(𝑦𝑖) < 𝛿 for all 𝛼′𝑖 ∈ A𝑖 \ C𝑖 and all 𝑖 ∈ N . (D.12)

Proof of Lemma D.3. Suppressing the player index for simplicity, the first-order stationarity condi-708

tions for the convex problem (4) readily give709

𝑦𝛼 − 𝜃′ (𝑥𝛼) = 𝜇 − 𝜈𝛼, (D.13)

where 𝜇 is the Lagrange multiplier for the equality constraint
∑
𝛼 𝑥𝛼 = 1, and 𝜈𝛼 is the complementary710

slackness multiplier of the inquality constraint 𝑥𝛼 ≥ 0 (so 𝜈𝛼 = 0 whenever 𝑥𝛼 > 0). Thus, rewriting711

(D.13) for some 𝛼 ∈ A, we get712

𝑦𝛼′ − 𝑦𝛼 = 𝜃′ (𝑥𝛼′ ) − 𝜃′ (𝑥𝛼) + 𝜈𝛼 − 𝜈𝛼′ (D.14)

and hence713

𝜃′ (𝑥𝛼′ ) = 𝜃′ (𝑥𝛼) + 𝜈𝛼′ − 𝜈𝛼 + 𝑦𝛼′ − 𝑦𝛼 ≤ 𝜃′ (1−) + 𝜈𝛼′ + 𝑦𝛼′ − 𝑦𝛼, (D.15)
where we used the fact that 𝜈𝛼 ≥ 0. Now, if 𝜃′ (1−) + 𝑦𝛼′ − 𝑦𝛼 < 𝜃′ (0+) and 𝑥𝛼′ > 0 (so 𝜈𝛼′ = 0), we714

will have 𝜃′ (𝑥𝛼′ ) < 𝜃′ (0+), a contradiction. This shows that 𝑥𝛼′ = 0 if 𝜃′ (1−) + 𝑦𝛼′ − 𝑦𝛼 < 𝜃′ (0+),715

so (D.10) is satisfied in this case. Otherwise, if 𝑥𝛼′ > 0, we must have 𝜈𝛼′ = 0 by complementary716

slackness, so (D.10) follows by applying the second branch of (D.11) to (D.15). ■717

The above provides us with a fairly good handle on the local geometric and dynamic properties of718

S. On the flip side however, the various error terms in (D.5) may be positive, so 𝐸𝑡 may fail to be719

decreasing and 𝑋𝑡 may drift away from S. On that account, it will be convenient to introduce the720

aggregate error processes721

I𝑡 =
𝑡∑︁
𝑠=1

𝛾𝑠𝜉𝑠 and II𝑡=
𝑡∑︁
𝑠=1

𝛾𝑠𝜓𝑠 . (D.16)

Intuitively, the aggregates (D.16) measure the total effect of each error term in (D.4), so we will722

establish a first series of results under the following general requirements:723
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1. Subleading error growth:724

lim
𝑡→∞

I𝑡/𝜏𝑡 = 0 (Sub.I)

lim
𝑡→∞

II𝑡/𝜏𝑡 = 0 (Sub.II)

where 𝜏𝑡 =
∑𝑡
𝑠=1 𝛾𝑠 and both limits are to be interpreted in the almost sure sense.725

2. Drift dominance:726

ℙ(I𝑡 ≤ 𝐶𝜏𝛼𝑡 /2 for all 𝑡) ≥ 1 − 𝜂 (Dom.I)

ℙ(II𝑡 ≤ 𝐶𝜏𝛼𝑡 /2 for all 𝑡) ≥ 1 − 𝜂 (Dom.II)

for some 𝐶 > 0 and 𝛼 ∈ [0, 1).727

In a nutshell, (Sub) posits that the aggregate error processes I𝑡 and II𝑡 of (D.16) are subleading728

relative to the long-run drift of (D.4), while (Dom) goes a step further and asks that said errors729

are asymptotically dominated by the drift in (D.4). Accordingly, under these implicit error control730

conditions, we obtain the interim convergence result below:731

Proposition D.1. Let S be a club set, fix some confidence threshold 𝜂 > 0, and let 𝑋𝑡 = 𝑄(𝑌𝑡 )732

be the sequence of play generated by (RL). If (Sub) and (Dom) hold, there exists an unbounded733

initialization domain D ⊆ V∗ such that734

ℙ(𝑋𝑡 converges to S | 𝑌1 ∈ D) ≥ 1 − 2𝜂. (D.19)

Proof of Proposition D.1. Fix some 𝑧 ∈ Z , let 𝐸𝑡 = 𝐸𝑧 (𝑌𝑡 ), and pick 𝛼 ∈ [0, 1) so that (Dom) holds735

for some 𝐶 > 0. In addition, set 𝑐 = − sup𝑥∈B⟨𝑣(𝑥), 𝑧⟩ > 0, let 𝑡0 = inf{𝑡 : 𝑐𝜏𝑡 > 𝐶𝜏𝛼𝑡 }, and write736

Δ𝐸 = max𝑡 {𝐶𝜏𝛼𝑡 − 𝑐𝜏𝑡 }. Then, if 𝑌1 is initialized in D← D(𝜖 +Δ𝐸) where 𝜖 is such that D(𝜖) ⊆ B,737

we will have 𝑌𝑡 ∈ D(𝜖) for all 𝑡. Indeed, this being trivially the case for 𝑡 = 1, assume it to be the738

case for all 𝑠 = 1, 2, . . . , 𝑡. Then, by (D.4) and our inductive hypothesis, we get739

𝐸𝑡+1 ≤ 𝐸1 −
𝑡∑︁
𝑠=1

𝛾𝑠 ⟨𝑣(𝑋𝑠), 𝑧⟩ + I𝑡 + II𝑡 ≤ −𝜖 − Δ𝐸 − 𝑐𝜏𝑡 + 𝐶𝜏𝛼𝑡 /2 + 𝐶𝜏𝛼𝑡 /2 ≤ −𝜖 − Δ𝐸 + Δ𝐸 = −𝜖

(D.20)

i.e., 𝐸𝑡+1 ∈ D(𝜖), as claimed.740

Now, since 𝐸𝑡 ∈ D(𝜖) for all 𝑡, we conclude that741

𝐸𝑡+1 ≤ 𝐸1 − 𝑐𝜏𝑡 + I𝑡 + II𝑡 for all 𝑡 = 1, 2, . . . (D.21)

Thus, if (Sub) holds, we readily get 𝐸𝑡 → −∞ with probability 1 on the event that (Dom.I) and742

(Dom.II) both hold. This implies that 𝐸𝑡 → −∞, and since 𝑧 ∈ Z above is arbitrary, we conclude743

that 𝑋𝑡 → S with probability at least 1 − 2𝜂, as claimed. ■744

We are now in a position to prove Theorem 2.745

Proof of Theorem 2. Our proof will hinge on showing that (Sub) and (Dom) hold under the stated746

step-size and sampling parameter schedules. Our claim will then follow by a direct application of747

Proposition D.1 and a reduction to a suitable subface of X .748

First, regarding (Sub), the law of large numbers for martingale difference sequences [21, Theorem749

2.18] shows that I𝑡/𝜏𝑡 → 0 with probability 1 on the event
{∑

𝑡 𝛾
2
𝑡 𝔼[𝜉2

𝑡 |F𝑡 ]/𝜏2
𝑡 < ∞

}
. However750

𝔼[𝜉2
𝑡 |F𝑡 ] ≤ 22 𝔼[∥𝑈𝑡 ∥2∞ |F𝑡 ] ≤ 22𝜎2

𝑡 = O(𝑡2ℓ𝜎 ) (D.22)

so, in turn, we get751 ∑︁
𝑡

𝛾2
𝑡 𝔼[𝜉2

𝑡 |F𝑡 ]
𝜏2
𝑡

= O
(∑︁
𝑡

𝛾2
𝑡 𝜎

2
𝑡

𝜏2
𝑡

)
= O

(∑︁
𝑡

𝑡−2ℓ𝛾 𝑡2ℓ𝜎

𝑡2(1−ℓ𝛾 )

)
= O

(∑︁
𝑡

1
𝑡2−2ℓ𝜎

)
< ∞ (D.23)

given that ℓ𝜎 < 1/2. This establishes (Sub.I); the remaining requirement (Sub.II) follows trivially by752

noting that
∑𝑡
𝑠=1 𝛾𝑠𝐵𝑠

/ ∑𝑡
𝑠=1 𝛾𝑠 → 0 if and only if 𝐵𝑡 → 0, which is immediate from the theorem’s753

assumptions.754
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Second, regarding (Dom), since 𝐵𝑡 is deterministic and 𝐵𝑡 = O(1/𝑡ℓ𝑏 ) for some ℓ𝑏 > 0, it is always755

possible to find 𝐶 > 0 and 𝛼 ∈ (0, 1) so that (Dom.II) holds. We are thus left to establish (Dom.I).756

To that end, let I∗𝑡 = sup1≤𝑠≤𝑡 |I𝑡 | and set 𝑃𝑡 B ℙ
(
I∗𝑡 > 𝐶𝜏𝛼𝑡 /2

)
so757

𝑃𝑡 ≤
𝔼[|I𝑡 |𝑞]
(𝐶/2)𝑞𝜏𝛼𝑞𝑡

≤ 𝑐𝑞
𝔼[

(∑𝑡
𝑠=1 𝛾

2
𝑠 ∥𝑈𝑠 ∥2∞

)𝑞/2
]

𝜏
𝛼𝑞
𝑡

(D.24)

where 𝑐𝑞 is a positive constant depending only on 𝐶 and 𝑞, and we used Kolmogorov’s inequality758

(Lemma A.4) in the first step and the Burkholder–Davis–Gundy inequality (Lemma A.6) in the759

second.760

To proceed, we will require the following variant of Hölder’s inequality [8, p. 15]:761 (
𝑡∑︁
𝑠=1

𝑎𝑠𝑏𝑠

)𝜌
≤

(
𝑡∑︁
𝑠=1

𝑎
𝜆𝜌

𝜌−1
𝑠

)𝜌−1
𝑡∑︁
𝑠=1

𝑎
(1−𝜆)𝜌
𝑠 𝑏

𝜌
𝑠 (D.25)

valid for all 𝑎𝑠 , 𝑏𝑠 ≥ 0 and all 𝜌 > 1, 𝜆 ∈ [0, 1). Then, substituting 𝑎𝑠 ← 𝛾2
𝑠 , 𝑏𝑠 ← ∥𝑈𝑠 ∥2∞,762

𝜌 ← 𝑞/2 and 𝜆← 1/2 − 1/𝑞, (D.24) gives763

𝑃𝑡 ≤ 𝑐𝑞

(∑𝑡
𝑠=1 𝛾𝑠

)𝑞/2−1 ∑𝑡
𝑠=1 𝛾

1+𝑞/2
𝑠 𝔼[∥𝑈𝑠 ∥𝑞∞]

𝜏
𝛼𝑞
𝑡

≤ 𝑐𝑞
∑𝑡
𝑠=1 𝛾

1+𝑞/2
𝑠 𝜎

𝑞
𝑠

𝜏
1+(𝛼−1/2)𝑞
𝑡

(D.26)

We now consider two cases, depending on whether the numerator of (D.26) is summable or not.764

Case 1: ℓ𝛾 (1+𝑞/2) ≥ 1+𝑞ℓ𝜎 . In this case, the numerator of (D.26) is summable under the theorem’s765

assumptions, so the fraction in (D.26) behaves as O(1/𝑡 (1−ℓ𝛾 ) (1+(𝛼−1/2)𝑞) ).766

Case 2: ℓ𝛾 (1 + 𝑞/2) < 1 + 𝑞ℓ𝜎 . In this case, the numerator of (D.26) is not767

summable under the theorem’s assumptions, so the fraction in (D.26) behaves as768

O
(
𝑡1−ℓ𝛾 (1+𝑞/2)+𝑞ℓ𝜎

/
𝑡 (1−ℓ𝛾 ) (1+(𝛼−1/2)𝑞) ) .769

Thus, working out the various exponents, a tedious – but otherwise straightforward – calculation770

shows that there exists some 𝛼 ∈ (0, 1) such that 𝑃𝑡 is summable as long as ℓ𝜎 < 1/2 − 1/𝑞 and771

0 ≤ ℓ𝛾 < 𝑞/(2 + 𝑞). Hence, if 𝛾 is sufficiently small relative to 𝜂, we conclude that772

ℙ(I𝑡 ≤ 𝐶𝜏𝛼𝑡 /2 for all 𝑡) ≥ 1 −∑
𝑡 𝑃𝑡 ≥ 1 − 𝜂/2. (D.27)

Finally, if ℓ𝛾 > 1/2 + ℓ𝜎 , (Dom.I) is a straightforward consequence of (D.24) for 𝑞 = 2.773

With all this in hand, the final steps of our proof proceed as follows:774

Closedness =⇒ Stability. Our assertion follows by invoking Proposition D.1. ■775

Stability =⇒ Closedness. Suppose that S is not club. Then there exists some pure strategy 𝛼 ∈ C776

and some deviation 𝛼′ ∉ C such that the deviation from 𝛼 to 𝛼′ is not costly to the deviating player.777

Thus, if we consider the restriction of the game to the face spanned by 𝛼 and 𝛼′ (a single-player game778

with two strategies), the corresponding score difference will be779

𝑦𝛼′ ,𝑡 − 𝑦𝛼,𝑡 ≥
∑︁
𝑠=1

𝛾𝑠𝑏𝑠 +
∑︁
𝑠=1

𝛾𝑠𝑈𝑠 (D.28)

By our standing assumptions for 𝑏𝑡 and 𝑈𝑡 (and Doob’s martingale convergence theorem for the780

latter), both
∑
𝑠=1 𝛾𝑠𝑏𝑠 and

∑
𝑠=1 𝛾𝑠𝑈𝑠 will be bounded from below by some (a.s.) finite random781

variable 𝐴0. Since 𝜃 is steep, it follows that, with probability 1, lim inf𝑡→∞ (𝑦𝛼,𝑡 ) > 0, so C cannot be782

stable. ■783

Minimality =⇒ Irreducible Stability. Suppose that S is m-club. Then, by our previous claim, S784

is stochastically asymptotically stable. If S contains a proper subface S ′ ⊊ S that is also stochastically785

asymptotically stable, S ′ must be club by the converse implication of the first part of the theorem.786

However, in that case, S would not be m-club, a contradiction which proves our claim. ■787
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Irreducible Stability =⇒ Minimality. For our last claim, assume that S is irreducibly stable. By788

the first part of our theorem, this implies that S is club. Then, if it so happens that S is not m-club, it789

would contain a proper club subface S ′ ⊊ S; by the first part of our theorem, this set would be itself790

stochastically asymptotically stable, in contradiction to the irreducibility assumption. This shows that791

S is m-club and concludes our proof. ■792

We are only left to establish the convergence rate estimate of Theorem 3.793

Proof of Theorem 3. Going back to (D.21) and invoking Lemma D.3 shows that there exist constants794

𝑐1 > 0 and 𝑐2 ∈ ℝ such that, for all 𝛼𝑖 ∈ A𝑖 \ C𝑖 , 𝑖 ∈ N , we have795

𝑋𝑖𝛼𝑖 ,𝑡 ≤ 𝜑(𝜃 (1−) + 𝐸𝑡 ) ≤ 𝜑(𝑐2 − 𝑐1𝜏𝑡 ) (D.29)
with probability 1 on the events of (Dom). We thus get796

dist1 (𝑋𝑡 ,S) ≤
∑︁
𝑖∈N

∑︁
𝛼𝑖∈A𝑖\C𝑖

𝜑(𝑐2 − 𝑐1𝜏𝑡 ), (D.30)

and our proof is complete. ■797

As for the rate estimates of Corollary 2, the proof boils down to a simple derivation of the correspond-798

ing rate functions:799

Proof of Corollary 2. By a straightforward calculation, we have:800

1. If 𝜃 (𝑧) = 𝑧 log 𝑧 then 𝜑(𝑧) = exp(1 + 𝑧).801

2. If 𝜃 (𝑧) = −4
√
𝑧 then 𝜑(𝑧) = 4/𝑧2.802

3. If 𝜃 (𝑧) = 𝑧2/2 then 𝜑(𝑧) = [𝑧]10.803

Our claims then follow immediatly from the rate estimate (11) of Theorem 2. ■804

E Details on the numerics805

In all our experiments, we ran the EXP3 variant of bandit FTRL (B-FTRL) (cf. Algorithm 3) with806

step-size and sampling radius parameters 𝛾𝑡 = 0.2 × 𝑡−1/2 and 𝛿𝑡 = 0.1 × 𝑡−0.15 respectively. The807

algorithm was run for 𝑇 = 104 iterations and, to reduce graphical clutter, we plotted only every third808

point of each trajectory. Trajectories have been colored throughout with darker hues indicating later809

times (e.g., light blue indicates that the trajectory is closer in time to its starting point, darker shades810

of blue indicate proximity to the termination time). The algorithm’s initial conditions were taken811

from a uniform initialization grid of the form 𝑦1 ∈ {−1, 0, 1}3 and perturbed by a uniform random812

number in [−0.1,−0.1] to avoid non-generic initializations.813

The payoffs of the chosen games were normalized to [−1, 1] and players are assumed to choose814

between two actions labeled “𝑂” and “1”. The specific tableaus are shown in the table below, next to815

the respective portrait (all taken from Fig. 1.816
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(0, 1
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(0, 1

, 1)
(1, 0
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(1, 0

, 1)
(1, 1

, 0)
(1, 1

, 1)

1 1 0 0 0 0 1 1

1 1 0 0 0 0 1 1

0 0 0 0 0 0 0 0
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D
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A
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T
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Player I

Player II

Player III

I, II, III
(0, 0

, 0)
(0, 0

, 1)
(0, 1

, 0)
(0, 1

, 1)
(1, 0

, 0)
(1, 0

, 1)
(1, 1

, 0)
(1, 1

, 1)

0 0 0 0 0.1 0.1 0.1 0.1

1 0 0 1 0 1 1 0

0 1 1 0 1 0 0 1
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(1, 0
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-1 1 -1 1 1 -1 1 -1
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