
Decompose a Task into Generalizable Subtasks in
Multi-Agent Reinforcement Learning

Zikang Tian1,2,3, Ruizhi Chen4, Xing Hu1,5, Ling Li2,4, Rui Zhang1, Fan Wu2,3,4,
Shaohui Peng4, Jiaming Guo1, Zidong Du1,5, Qi Guo1, Yunji Chen1,2∗

1SKL of Processors, Institute of Computing Technology, CAS, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

3Cambricon Technologies, Beijing, China
4Intelligent Software Research Center, Institute of Software, CAS, Beijing, China
5Shanghai Innovation Center for Processor Technologies, SHIC, Shanghai, China

{tianzikang21s, cyj}@ict.ac.cn,

Abstract

In recent years, Multi-Agent Reinforcement Learning (MARL) techniques have
made significant strides in achieving high asymptotic performance in single task.
However, there has been limited exploration of model transferability across tasks.
Training a model from scratch for each task can be time-consuming and expensive,
especially for large-scale Multi-Agent Systems. Therefore, it is crucial to develop
methods for generalizing the model across tasks. Considering that there exist
task-independent subtasks across MARL tasks, a model that can decompose such
subtasks from the source task could generalize to target tasks. However, ensuring
true task-independence of subtasks poses a challenge. In this paper, we propose
to decompose a task into a series of generalizable subtasks (DT2GS), a novel
framework that addresses this challenge by utilizing a scalable subtask encoder
and an adaptive subtask semantic module. We show that these components endow
subtasks with two properties critical for task-independence: avoiding overfitting
to the source task and maintaining consistent yet scalable semantics across tasks.
Empirical results demonstrate that DT2GS possesses sound zero-shot generalization
capability across tasks, exhibits sufficient transferability, and outperforms existing
methods in both multi-task and single-task problems.

1 Introduction

In the last few years, many works in MARL field prospers, including value-based algorithms
[26, 25, 20, 27, 30, 39, 10, 17], and policy-based algorithms [6, 36, 35, 11, 24, 7]. However,
these works mainly focused on the model’s asymptotic performance in a single task, neglecting
its transferability across tasks. Training an optimal model on a single task requires millions of
interactions with the environment [21, 16], particularly when dealing with large-scale Multi-Agent
Systems, whereas transferring the model across tasks can reduce training cost by dozens of times
[2, 5]. As the number of tasks increases, the reduction in training costs due to model transfer will
become even more significant.

Knowledge reuse is a common approach for model generalization across tasks in the MARL field [4].
Recent knowledge reuse methods for online MARL can be roughly classified into two categories:
network-design-based methods and task-embedding-based methods. Network-design-based methods
[33, 9, 1] implicitly reuse knowledge extracted from the source task to the target task by constructing

∗Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

universal model structure across tasks by utilizing Population Invariant Structure such as Transformer
[9] or GNN [1]. However, it’s unclear whether the knowledge extracted from the source task is suitable
for the target task. Task-embedding-based methods [19, 23, 14] reuse knowledge by calculating task
similarity using learned task embeddings that capture task dynamics. However, accurately mapping
task dynamics to task embeddings requires numerous tasks as samples. In a word, current knowledge
reuse methods for online MARL still have limitations, that is, inefficient knowledge reuse and reliance
on a large number of tasks samples. Additionally, we provide a section for related work in Appendix
A to introduce these methods more specifically.

Compared with the common knowledge reused in these methods above, there exists an alternative
knowledge named task-independent subtasks that can relieve these two limitations. These task-
independent subtasks, such as "hit and run", "focuse fire", "disperse and line up", etc, are certainly
applicable across tasks [41], improving the efficiency of knowledge reuse. Besides, these task-
independent subtasks can be decomposed from few tasks, so as to remove the reliance on a large
number of tasks samples. However, ensuring the task-independence of decomposed subtasks is a
challenge. Task-independence of subtasks refers to their effectiveness across tasks, which requires
two essential properties: (1) avoiding overfitting to the source task, (2) maintaining consistent yet
scalable semantics across tasks. In this paper, we propose DT2GS, a novel framework devoted to
generalize model across tasks by decomposing subtasks from the source tasks and endowing them
with these two properties necessary for task-independence.

The proposed framework, DT2GS, aims to decompose a task into a series of generalizable subtasks,
as shown in Figure 1. DT2GS is primarily composed of two parts: the scalable subtask encoder and
the adaptive action decoder. The scalable subtask encoder assigns a subtask to each agent based on
its {subtask, entity-observation} history rather than the {action, observation} history. This approach
helps prevent the process of assigning subtasks from overfitting to the source task. The adaptive
action decoder leverages the assigned subtasks and current entity-observations to calculate the specific
actions for interacting with environment. Within this decoder, the adaptive subtask semantic module
ensures that the assigned subtasks have consistent yet scalable semantics across tasks based on their
effects on entities. Based on the experimental results, our framework exhibits several desirable
properties as follows:

• zero-shot generalization capability: the trained model can be effectively depolyed to
multiple target tasks without any fine-tuning;

• robust transferability: significantly accelerated model convergence on complex target
tasks and achieving an average speedup of 100×;

• better asymptotic performance: achieved state-of-the-art (SOTA) results on multi-task
and single-task problems;

• better subtask interpretability: decomposed task-independent subtasks with practical
behavioral semantics that is consistent yet scalable across tasks.

2 Preliminary

2.1 Background

In this paper, a fully cooperative multi-agent system (MAS) is described as a decentralized partially
observable Markov decision processes (Dec-POMDP) [18], which is defined by a tuple G =<
S,A, O, γ, n,A,Ω, R, P >. S is the global state space. A is the action space shared for all agents.
O is the shared individual observation space for all agents. γ is the discount factor. n is the number of
agents. A = {1, ..., n} is the set of agents our algorithm controlled. At each timestep t, agent i obtains
an individual observation oti ∈ O from dynamic environment according to the observation function
Ω(st, i). And if we suppose agent i are controlled by policy π, which takes oti or history individual
observations τ ti as input and parameterized by θi, agent i will select an action ati according to π(ati|oti).
Therefore, a joint action At = (a1, a2, ..., an) ∈ A will be formed where ai corresponds to agent i.
After passing the joint action At into the environment, a global reward signal rt = R(st, At) shared
by all agents will be received and the environment will transmit into next state st+1 according to the
transition function P (st+1|st, At) : S ×A×S → [0, 1]. The goal of agents is defined as finding the

2

policy π to maximize the objective function

J(π) = E[
∞∑

t′=0

γt′R(st
′
, At′)] (1)

where γt′R(st
′
, At′) is the discounted return of all agents.

2.2 Generalizable model structure in MARL

For model generalization in MAS, a generalizable model structure is necessary for addressing
the problem of varying state/observation/action space (S/O/A) across tasks. Here we define the
agents controlled by MARL policy and agents built-in tasks as entities. In this paper, we use
n,m, nally, nenemy denotes the number of agents, entities, allies and enemies, respectively. And
the following equation holds: n = nally + 1,m = n + nenemy. As demonstrated in ASN [33],
an agent’s observation oi can be constructed as a concatenation of m entity-observations: oi =
[oi,1, oi,2, ..., oi,m], where oi,1 is the observation of agent i on itself and environment, and the rest are
the observations of agent i on other m− 1 entities. Additionally, action space A can be decomposed
into two components: Aself , which consists of actions affecting the agent itself or the environment,
and Ainteractive, which contains actions that directly interact with other entities. This alignment
between entity-observations and actions, which is referred as action semantics, forms the foundation
for computing the value or probability of an action based on its aligning entity-observation, leading
in a generalizable model structure across tasks.

𝑜1
𝑡 ,𝑘1

𝑡−1

Scalable
Subtask
Encoder

𝑜𝑛
𝑡 , 𝑘𝑛

𝑡−1

Scalable
Subtask
Encoder

…

𝑜𝑛
𝑡 , 𝑘𝑛

𝑡−1

……[]

Cognition Encoder: MLP

𝑜𝑠𝑒𝑙𝑓

𝑜𝑎𝑙𝑙𝑦

𝑜𝑒𝑛𝑒𝑚𝑦

𝑘

PI Operator: Gaussian
Product

Env Cognition

GRU
ℎ𝑛
𝑡−1

ℎ𝑛
𝑡

FC && Gumbel Softmax𝑘𝑛
𝑡

Entity-obs
Embedding

……

Subtask
Embedding

Adaptive Subtask
Semantics

Action Decision Module

Action/Value

……

Adaptive Subtask
Semantics

…

Mean-
Pooling

… …

……

Split

𝑎𝑎𝑙𝑙𝑦

𝑎𝑒𝑛𝑒𝑚𝑦

𝑎𝑠𝑒𝑙𝑓

Adaptive Action Decoder

……[]

Similarity

𝑒𝑚𝑏(𝑜𝑠𝑒𝑙𝑓)

𝑒𝑚𝑏(𝑜𝑎𝑙𝑙𝑦)

𝑒𝑚𝑏(𝑜𝑒𝑛𝑒𝑚𝑦)

𝑒𝑚𝑏(𝑘)

Figure 1: DT2GS Framework. The DT2GS Framework comprises two modules: the Scalable Subtask
Encoder and the Adaptive Action Decoder, where the Adaptive Subtask Semantic module serves
as the core of the Adaptive Action Decoder. The Scalable Subtask Encoder effectively assigns
subtasks to agents without overfitting to the source task. With the Adaptive Subtask Semantic module
endowing assigned subtasks with consistent yet scalable semantics across tasks, the action decoder
takes the entity-observations and subtasks as inputs to generate actions for interacting with the
environment.

3 DT2GS Framework

DT2GS primarily consists of two components: the scalable subtask encoder and the adaptive action
decoder, as shown in Figure 1. DT2GS begins with the scalable subtask encoder, which assigns
a subtask to each agent based on its {subtask, entity-observation} history instead of the {action,
observation} history, so as to avoid overfitting to the source tasks. Then the adaptive action decoder
calculates the specific actions for interacting with environment by leveraging the assigned subtasks

3

and current entity-observations. Within this decoder, the adaptive subtask semantic module, which
plays a core role, ensures that the assigned subtasks have consistent yet scalable semantics across
tasks based on their effects on entities. With the proposed scalable subtask encoder and the adaptive
subtask semantic module, DT2GS endows the decomposed subtasks with task-independence, leading
model generalizable across tasks. A pseudocode is provided in Appendix H to illustrate the DT2GS
framework.

Scalable Subtask Encoder

𝑜𝑖
𝑡−1 𝑎𝑖

𝑡−1

𝑘𝑖
𝑡−1

𝑜𝑖
𝑡 𝑎𝑖

𝑡

𝑘𝑖
𝑡

𝑜𝑖
𝑡+1 𝑎𝑖

𝑡+1

𝑘𝑖
𝑡+1

𝑘𝑖
𝑡−1 𝑘𝑖

𝑡 𝑘𝑖
𝑡+1

ℎ𝑖
𝑡−1 ℎ𝑖

𝑡 ℎ𝑖
𝑡+1

𝑡𝑎𝑠𝑘−𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

𝑡𝑎𝑠𝑘−𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡
{𝑜𝑖,𝑗
𝑡+1}{𝑜𝑖,𝑗

𝑡 }

Figure 2: Scalable Subtask Encoder. The Scalable Subtask Encoder assigns subtasks to each agent
based on its behavioral history representation, which is depicted by its {subtask, entity-observation}
history instead of commonly used {action, observation} history. The red dashed-line box denotes
the {action, observation} history, which is task-dependent. Specifically, at each timestep t, agent i
obtains its subtask kti by utilizing its observation oti, last action at−1

i , history latent embedding ht−1
i

produced by RNN. On the contrary, the red solid-line box denotes the {subtask, entity-observation}
history, which is task-independent. Specifically, at each timestep t+ 1, agent i obtains its subtask
kt+1
i by utilizing its entity-observation {ot+1

i,j } = [ot+1
i,1 , ot+1

i,2 , ..., ot+1
i,m], last subtask kti , history latent

embedding ht
i produced by RNN.

3.1 Scalable Subtask Encoder

An agent’s history, which comprises its observations and behavioral history, contains valuable
information about its characteristics, such as velocity, attack distance, etc. Therefore, analyzing an
agent’s history can help us identify the most suitable subtask for the agent to perform. Typically
[38], a recurrent neural network, such as LSTM [8] or GRU [3], is employed to construct the agent’s
history representation from its {action, observation} history. The history representation is then passed
to a softmax operator, which samples a one-hot subtask for the agent. However, since actions and
observations are task-dependent, this approach may lead to subtask encoder that overfits to the source
task, making the source model non-generalizable. Considering that the subtasks history of an agent
not only reflects its behavior history, but also is task-independent, and the entity-observations history
is more general across tasks than observations history, our scalable subtask encoder assigns a subtask
to each agent based on its {subtask, entity-observation} history rather than {action, observation}
history, as illustrated in the red solid-line box in Figure 2.

The detail of the scalable subtask encoder is demonstrated in Figure 1 right. By replacing ob-
servations with entity-observations, we first design a structure that can obtain fixed-dimensional
observation embeddings, regardless of the number of entity-observations contained in the observation.
Additionally, since permuting the order of entity-observations in the observation does not change
the information[13], we use a Permutation Invariant operator, namely, Gaussian Product, to obtain
the observation embedding. Specifically, we first use a MLP parameterized by θe to embed the
entity-observation as an entity-embedding:

(µt
i,j , σ

t
i,j) = fθe(o

t
i,j), j = 1, ...,m (2)

and the observation embedding eti, which is also referred to as Env Cognition of agent i in Figure 1,
is constructed as:

4

eti ∼ N (µt
i, σ

t
i), where N (µt

i, σ
t
i) ∝

m∏
j=1

N (µt
i,j , σ

t
i,j) (3)

Then we utilize a trajectory encoder based on GRU, which is parameterized by θh, to obtain an
agent’s history representation. The GRU takes an agent’s observation embedding eti, last subtask
kt−1
i and previous hidden state ht−1

i as inputs, and generates a new hidden state ht
i as its history

representation:
ht
i = fθh(e

t
i, k

t−1
i , ht−1

i) (4)

Afterwards, we use the Gumbel-Softmax trick with a categorical reparameterization [12] to assign a
subtask kti to agent i based on its current history representation ht

i:

kti ∼ Gumbel-Softmax(ht
i) (5)

where kti ∈ Rnk is a nk-dimensional one-hot vector and nk is a hyperparameter denoting the
total number of subtasks. The Gumbel-Softmax operator allows our process of subtask assignment
trainable by the way of gradient backpropagation.

Figure 3: Adaptive Subtask Semantic module. The Adaptive Subtask Semantic Module en-
dows subtasks and actions with adaptive semantics. zk denotes the embedding of subtask k.
Entity-observations are denoted by o = [oself , oally1 , ..., oallynally , oenemy1 , ..., oenemynenemy] (we
replace nenemy with ne in Figure 3 for convenience). With subtask embedding and entity-
observations, we obtain the semantics ϕk of subtask k and the semantics of actions φ =

[φself , φally1 , ..., φallynally , φenemy1 , ..., φenemynenemy] by utilizing the Attention mechanism [29].

3.2 Adaptive Subtask Semantics

The generalizable subtasks should maintain consistent yet scalable semantics across tasks. The
traditional method of constructing subtask semantics is embedding one-hot subtasks into vector
representations based on MLP. However, this approach endows target subtasks with completely
identical semantics as source subtasks when deploying the source model to the target tasks, neglecting
the difference between source and target tasks so as to restrict the zero-shot generalization of subtask
semantics across tasks. To overcome this limitation, our adaptive subtask semantic module leverages
the inductive bias that subtask semantics refers to the effects of an agent on entities when it performs
a given subtask. This approach endows subtasks with semantics that can adaptively adjust based on
the agent’s effects on entities, thereby enabling greater zero-shot generalization of subtask semantics
across tasks.

5

Since a subtask’s semantics actually refers to the effects of an agent on entities when it performs this
subtask, we construct subtask semantics as the weighted sum of entities, where the weight represents
the degree of effects. And considering that we have obtained one-hot subtask and entity-observations,
we utilize the Attention mechanism [29] without position embedding, which is scalable across tasks
regardless of the number of entities and permutation invariant about the order of entity-observaitons
in the observation, to obtain the subtask semantics, as illustrated in Figure 3. Specifically, we take
one-hot subtask embedding

zti = Embedding(kti) (6)

as the query and entity-observations’ embedding as the keys as well as values: Q̂t
i = WQz

t
i ,K

t
i =

WKoti, V
t
i = WV o

t
i, where WQ,WK ,WV are learnable parameters and oti = [oti,1, o

t
i,2, ..., o

t
i,m].

Then we construct adaptive subtask semantics ϕt
i as follows:

ϕt
i = softmax(

Q̂t
iK

t
i
T

√
dK

)V t
i , Q̂t

i = WQz
t
i (7)

where dK is the feature dimension of Kt
i . Additionally, to make the process of obtaining actions

scalable across tasks, we extended the model structure of ASN [33]. Since the alignment between
actions and entity-observations may discrepant from the prior, we construct the adaptive action
semantics φt

i = [φt
i,1, φ

t
i,2, ..., φ

t
i,m] by utilizing the Self-Attention mechanism taking the entity-

observations as inputs:

φt
i = softmax(

Qt
iK

t
i
T

√
dK

)V t
i , Qt

i = WQo
t
i (8)

Subsequently, we calculate the value or probability of each action in current observation by comparing
the similarity of subtask semantics with action semantics:

Qvalue(aj |oti) or Pr(aj |oti) = similarity(ϕt
i, φ

t
i,j) (9)

where similarity is a trainable MLP taking the concatenate of ϕt
i and φt

i,j as inputs.

4 Experiments

4.1 Experimental Setup

We evaluated the performance of DT2GS on the StarCraft Multi-Agent Challenge (SMAC) [22] and
the multi-agent particle world environments (MPE) [16] (shown in Appendix D). SMAC contains
several tasks that are similar but different, such as the marine-series tasks ({3m, 8m, 8m_vs_9m,
10m_vs_11m, 25m, 27m_vs_30m}) and the stalker_zealot-series tasks (2s3z, 3s5z, 3s5z_vs_3s6z).
Besides, changing the number of agents and landmarks in MPE can also form a series of tasks. These
tasks met our requirements of cross-task generalization, allowing us to evaluate the ability of DT2GS
to generalize across different tasks.

In the generalization capability part of experiments, we selected ASN [33] and UPDeT [9] as baselines.
ASN was chosen because it promotes the development of universal models across tasks in MARL. For
the sake of fairness in comparison, we make ASN generalizable across tasks by utilizing the attention
mechanism and use "ASN_G" to denote this generalizable ASN. UPDeT was selected because it
constructs a universal model across tasks via policy decoupling with self-attention, which is also used
in the adaptive subtask semantic module of DT2GS in Sec 3.2. In addition, we implemented DT2GS,
UPDeT, and ASN_G based on MAPPO [40], which is considered SOTA in on-policy MARL.

In the asymptotic performance part of experiments, we added another five baselines for comparison:
MAPPO[40], LDSA [38], ROMA [31], RODE [32], and HSD [37]. LDSA, ROMA, RODE, and
HSD focus on concepts like skills/options/roles in MARL, which are similar to subtasks studied in
our method.

Additionally, We set the number of subtasks nk to 4 and averaged all results over 4 random seeds.
And the experiments are arranged as follows: Firstly, we evaluated the zero-shot generalization
capability of DT2GS across tasks. Secondly, we analyzed the practical semantics of subtasks on
the marine-series tasks. Thirdly, we conducted several experiments to exhibit the transferability
of DT2GS across tasks. Finally, we demonstrated that DT2GS achieves SOTA performance on
multi-task and most single-task problems in terms of asymptotic performance.

6

4.2 Zero-Shot Generalization across Tasks

In this section, we designed 8 different zero-shot generalization scenarios, where each scenario
includes a target task that is more difficult than the source task. That is to say, the relationship from
the source task to the target task is extrapolated. For example, the target task may be larger in scale
(like 8m→ 25m) or contain a greater disparity in military strength than the source task (3s_vs_4z
→ 3s_vs_5z). We deployed the model trained on the source tasks to the target tasks without any
finetune. As shown in Figure 4, DT2GS significantly outperforms UPDeT and ASN_G in terms of
zero-shot generalization capability, achieving an average test winning rate surpass of about 22% and
34%, respectively, over all 8 zero-shot generalization scenarios.

Figure 4: The figure shows a comparison of zero-shot generalization capability between DT2GS,
UPDeT, and ASN_G across various source and target tasks. The horizontal axis represents the source
task→ the target task, where (a) 3s_vs_4z→ 3s_vs_5z, (b) 2s3z→ 3s5z, (c) 3s5z→ 3s5z_vs_3s6z,
(d) 8m → 8m_vs_9m, (e) 8m → 10m_vs_11m, (f) 8m → 25m, (g) 8m_vs_9m → 25m, and (h)
8m_vs_9m→ 5m_vs_6m. The vertical axis represents the winning rate when deploying the source
model to target task without any finetue. The red, green, and purple histograms correspond to DT2GS,
UPDeT, and ASN_G, respectively. The missing histograms indicate that the winning rate of deploying
the source model to target task is 0%.

4.3 Analysis of Subtask Semantics

In this section, we analyzed the practical semantics of subtasks based on the marine-series tasks. We
first trained a DT2GS model from scratch on the 8m task and then deployed it to 8m and 10m_vs_11m,
as shown in Figure 5 left. In the 8m and 10m_vs_11m tasks, the DT2GS agents initially utilized
subtask_1 to scatter the formation and advance towards the enemy at t = 1. When the enemies
reached the attack range of DT2GS agents at t = 6, most of these agents selected subtask_2 to
focus fire on enemies while also paying attention to their own health in order to move back when in
danger, thereby avoiding the decrease in firepower caused by personnel reduction. And other agents
chose subtask_4 to slightly adjust their relative position with the enemies to seek a better position for
firepower output. At t = 13, some agents sensed that their allies’ health was too low while their own
health was safe enough. These agents switched subtask from subtask_2 to subtask_3, which means
charging. And the specific behavior was to attack while moving closer to the enemies’ position to
attract hatred so as to avoid the decrease in firepower caused by the death of allies. At the end of the
battle (after t = 21), all agents changed their subtasks to subtask_3 to concentrate their firepower to
end the battle. We observed that under the subtask of charge, even if an agent was close to death, it
would not move back to disperse hatred as overall withdrawal would lead to failed combat.

Furthermore, we conducted zero-shot generalization experiments on additional marine tasks, and
the corresponding change process of subtask percentage is shown in Figure 6. We observed that the
change process of each subtask’s percentage in the source task (8m) is quite similar to that in the target
tasks (10m_vs_11m, 5m_vs_6m, 8m_vs_9m, 25m, and 27m_vs_30m). This result demonstrates that
the subtasks decomposed by DT2GS from the source task (8m) are task-independent across tasks and

7

disperse

hit and run

charge

pos adjust

8m

10m_vs_11m

t=1 t=6 t=7 t=13 t=21 t=24 Subtask Percentage

dead

dead

Figure 5: Visualization of the practical semantics of subtasks (left) and the change process of subtask
percentage (right) in 8m (up) and 10m_vs_11m (down). The results for both tasks are obtained from
the source model’s evaluation on the corresponding task, where the source model is acquired by
learning from scratch in task 8m.

therefore effective for the target tasks. Both results from Figure 5 and Figure 6 further suggest that
DT2GS policy has sound zero-shot generalization capability by decomposing the task into a series of
task-independent subtasks.

Figure 6: Changes of subtask percentage when deploying the source model, which is learned from
scratch on 8m, to 6 marine tasks. The subtask percentage is calculated as p(k) = Nk

Na
, where p(k)

is the percentage of subtask k, Nk is the number of agents that select subtask k, and Na is the total
number of agents.

4.4 Transferability across Tasks

Figure 7 (a) illustrates four scenarios that we designed to evaluate the transferability of DT2GS
policy. In all four scenarios, the relationships from the source task to the target task are extrapolation,
including an increase in entity types (3s5z_vs_3s6z→ 1c3s5z), an increase in the number of enemies
(3s5z→ 3s5z_vs_3s6z and 3s_vs_4z→ 3s_vs_5z), as well as an increase in the total scale of entities
(8m_vs_9m→ 27m_vs_30m).

As we can see, DT2GS_finetune demonstrated significantly efficient convergence as well as higher
and more stable asymptotic performance compared with UPDeT_finetune and ASN_G_finetune in
all transfer scenarios. Notably, in the scenario where the source task was 3s5z (easy) and the target
task was 3s5z_vs_3s6z (superhard), DT2GS_finetune achieved optimal performance with only 6400
steps interaction with environment, whereas learning from scratch required at least 6 million steps.
Furthermore, compared to other baselines of learning from scratch, DT2GS_finetune accelerated

8

the model’s convergence on target tasks by an average of 100×. In conclusion, DT2GS_finetune
exhibited better performance than baselines on the following evaluation metrics [28, 4]: jumpstart,
time to threshold and asymptotic performance, demonstrating significantly sufficient transferability.

(a) Transferability (b) Single-Task

Figure 7: (a) Comparison of transferability between DT2GS and baselines, where baselines include
transfer of UPDeT (UPDeT_finetune), ASN_G (ASN_G_finetune) and learning from scratch of
DT2GS, UPDeT, ASN, MAPPO. (b) Comparison of performance on Single-Task between DT2GS
and baselines, including UPDeT, ASN, MAPPO, HSD, RODE, ROMA and LDSA, on 3 superhard
tasks (3s5z_vs_3s6z, 6h_vs_8z, corridor) and 1 hard task (5m_vs_6m).

4.5 Performance on Multi-task and Single-task

In this section, we first designed 2 multi-task problems, including the marine-series tasks ({3m,
8m, 8m_vs_9m, 10m_vs_11m}) and stalker_zealot-series tasks ({2s3z, 3s5z, 3s5z_vs_3s6z}), to
demonstrate the representational capacity of DT2GS. In each multi-task problem, the policy interacted
synchronously with multiple tasks that make up this multi-task to collect data, which was shuffled
and used to update the policy. As shown in Figure 8, DT2GS exhibited better learning efficiency and
more stable asymptotic performance compared with UPDeT and ASN_G.

Figure 8: Comparison of performance on multi-task problems between DT2GS and baselines,
including UPDeT and ASN_G.

Subsequently, we also compared DT2GS with baselines on single-task scenarios. We selected four
representative scenarios, including superhard / hard tasks, as shown in Figure 7 (b), while performance
on other scenarios is presented in the Appendix B. Our evaluation metrics included learning efficiency
and final asymptotic performance. Compared to MAPPO, DT2GS significantly improved both
metrics, particularly in superhard tasks such as 3s5z_vs_3s6z and 6h_vs_8z. In addition, compared
to other baselines based on MAPPO, including UPDeT and ASN, DT2GS consistently outperformed
them in terms of learning efficiency and asymptotic performance, on average.

9

5 Conclusion

Model generalization has emerged as a promising approach to reduce training costs. In this paper, we
proposed DT2GS, an effective approach for addressing the problem of model generalization across
tasks in the MARL field. Our insight is that task-independent subtasks exist across tasks, making
it possible to generalize the model across tasks. Based on this insight, we assumed that the model
can be generalized to target tasks if it can decompose task-independent subtasks from source tasks.
The challenge then becomes ensuring that the subtasks we decompose from the source task are truly
task-independent. Regarding this issue, we proposed two properties that enable task-independence
of subtasks: (1) avoiding overfitting to the source task, (2) maintaining consistent yet scalable
semantics across tasks. Then we proposed DT2GS to endow the subtasks with these two properties
by introducing the scalable subtask encoder and the adaptive subtask semantic module, respectively.
Empirical results demonstrated that DT2GS can decompose tasks into a series of generalizable
subtasks, leading to a generalizable MARL policy. Nevertheless, it would be beneficial to consider
task-specific subtasks as well when there is a significant distribution shift between source and target
tasks. In our future work, we will focus on expanding the generalization scenarios of DT2GS to
address this limitation.

6 Acknowledgements

This work is partially supported by the NSF of China(under Grants 61925208, U22A2028,
62222214, 62002338, 62102399, U19B2019, 92364202), CAS Project for Young Scientists in
Basic Research(YSBR-029), Youth Innovation Promotion Association CAS and Xplore Prize.

References
[1] Akshat Agarwal, Sumit Kumar, and Katia Sycara. Learning transferable cooperative behavior

in multi-agent teams. arXiv preprint arXiv:1906.01202, 2019.

[2] Georgios Boutsioukis, Ioannis Partalas, and Ioannis Vlahavas. Transfer learning in multi-agent
reinforcement learning domains. In Recent Advances in Reinforcement Learning: 9th European
Workshop, EWRL 2011, Athens, Greece, September 9-11, 2011, Revised Selected Papers 9,
pages 249–260. Springer, 2012.

[3] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[4] Felipe Leno Da Silva and Anna Helena Reali Costa. A survey on transfer learning for multiagent
reinforcement learning systems. Journal of Artificial Intelligence Research, 64:645–703, 2019.

[5] Sabre Didi and Geoff Nitschke. Multi-agent behavior-based policy transfer. In Applications of
Evolutionary Computation: 19th European Conference, EvoApplications 2016, Porto, Portugal,
March 30–April 1, 2016, Proceedings, Part II 19, pages 181–197. Springer, 2016.

[6] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[7] Qingxu Fu, Tenghai Qiu, Jianqiang Yi, Zhiqiang Pu, and Shiguang Wu. Concentration network
for reinforcement learning of large-scale multi-agent systems. arXiv preprint arXiv:2203.06416,
2022.

[8] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[9] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. Updet: Universal multi-agent rein-
forcement learning via policy decoupling with transformers. arXiv preprint arXiv:2101.08001,
2021.

10

[10] Shariq Iqbal, Christian A Schroeder De Witt, Bei Peng, Wendelin Böhmer, Shimon Whiteson,
and Fei Sha. Randomized entity-wise factorization for multi-agent reinforcement learning. In
International Conference on Machine Learning, pages 4596–4606. PMLR, 2021.

[11] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In
International conference on machine learning, pages 2961–2970. PMLR, 2019.

[12] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[13] HAO Jianye, Xiaotian Hao, Hangyu Mao, Weixun Wang, Yaodong Yang, Dong Li, Yan Zheng,
and Zhen Wang. Boosting multiagent reinforcement learning via permutation invariant and
permutation equivariant networks. In The Eleventh International Conference on Learning
Representations.

[14] Yong Liu, Yujing Hu, Yang Gao, Yingfeng Chen, and Changjie Fan. Value function transfer
for deep multi-agent reinforcement learning based on n-step returns. In IJCAI, pages 457–463.
Macao, 2019.

[15] Qian Long, Zihan Zhou, Abhibav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang. Evolution-
ary population curriculum for scaling multi-agent reinforcement learning. arXiv preprint
arXiv:2003.10423, 2020.

[16] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in neural
information processing systems, 30, 2017.

[17] Shuang Luo, Yinchuan Li, Jiahui Li, Kun Kuang, Furui Liu, Yunfeng Shao, and Chao Wu. S2rl:
Do we really need to perceive all states in deep multi-agent reinforcement learning? arXiv
preprint arXiv:2206.11054, 2022.

[18] Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

[19] Rongjun Qin, Feng Chen, Tonghan Wang, Lei Yuan, Xiaoran Wu, Zongzhang Zhang, Chongjie
Zhang, and Yang Yu. Multi-agent policy transfer via task relationship modeling. arXiv preprint
arXiv:2203.04482, 2022.

[20] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted qmix: Expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. Advances
in neural information processing systems, 33:10199–10210, 2020.

[21] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In International conference on machine learning, pages 4295–4304.
PMLR, 2018.

[22] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nan-
tas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

[23] Lukas Schäfer, Filippos Christianos, Amos Storkey, and Stefano V Albrecht. Learning task
embeddings for teamwork adaptation in multi-agent reinforcement learning. arXiv preprint
arXiv:2207.02249, 2022.

[24] Wenling Shang, Lasse Espeholt, Anton Raichuk, and Tim Salimans. Agent-centric representa-
tions for multi-agent reinforcement learning. arXiv preprint arXiv:2104.09402, 2021.

[25] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran:
Learning to factorize with transformation for cooperative multi-agent reinforcement learning.
In International conference on machine learning, pages 5887–5896. PMLR, 2019.

11

[26] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296,
2017.

[27] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceed-
ings of the tenth international conference on machine learning, pages 330–337, 1993.

[28] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(7), 2009.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[30] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

[31] Tonghan Wang, Heng Dong, Victor Lesser, and Chongjie Zhang. Roma: Multi-agent reinforce-
ment learning with emergent roles. arXiv preprint arXiv:2003.08039, 2020.

[32] Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
Rode: Learning roles to decompose multi-agent tasks. arXiv preprint arXiv:2010.01523, 2020.

[33] Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,
Changjie Fan, and Yang Gao. Action semantics network: Considering the effects of actions in
multiagent systems. arXiv preprint arXiv:1907.11461, 2019.

[34] Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen,
Changjie Fan, and Yang Gao. From few to more: Large-scale dynamic multiagent curriculum
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
7293–7300, 2020.

[35] Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. Dop: Off-
policy multi-agent decomposed policy gradients. In International Conference on Learning
Representations, 2020.

[36] Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. Probabilistic recursive reasoning
for multi-agent reinforcement learning. arXiv preprint arXiv:1901.09207, 2019.

[37] Jiachen Yang, Igor Borovikov, and Hongyuan Zha. Hierarchical cooperative multi-agent
reinforcement learning with skill discovery. arXiv preprint arXiv:1912.03558, 2019.

[38] Mingyu Yang, Jian Zhao, Xunhan Hu, Wengang Zhou, Jiangcheng Zhu, and Houqiang Li.
Ldsa: Learning dynamic subtask assignment in cooperative multi-agent reinforcement learning.
Advances in Neural Information Processing Systems, 35:1698–1710, 2022.

[39] Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. arXiv
preprint arXiv:2002.03939, 2020.

[40] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu.
The surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural
Information Processing Systems, 35:24611–24624, 2022.

[41] Fuxiang Zhang, Chengxing Jia, Yi-Chen Li, Lei Yuan, Yang Yu, and Zongzhang Zhang.
Discovering generalizable multi-agent coordination skills from multi-task offline data. In The
Eleventh International Conference on Learning Representations, 2023.

12

A Related Work

Transfer learning across tasks in online MARL Transfer learning across tasks is a promising
approach to accelerate the convergence of models, especially in large-scale MAS. The first method
of transfer learning in online MARL domains is BITER [2], which uses the joint policy learned
in the source task to bias the initial policy of agents in the target tasks. After more than a decade
of development, some methods have been proposed in this field. In this regard, we classify these
methods into two categories based on their characteristics, namely Network-design-based methods
and Task-embedding-based methods.

The Network-design-based methods implicitly reuse knowledge from source tasks by constructing
universal model structure across tasks using Population Invariant Structure such as Transformer
[9] or GNN [1]. Since the existence of varying state/observation/action space across tasks, the
Network-design-based methods are the foundation of all other methods. And the Task-embedding-
based methods are knowledge transfer by calculating task similarity using learned task embeddings
that capture task dynamics [2, 5, 14, 23, 19]. For example, MATTAR [19] models the target task
representation as a weighted sum of a series of source task representations and decodes the task
representation to the policy weight that is suitable for the task by utilizing a hypernetwork. And
MATE [23] models task representation by reconstructing the task dynamics, so as to achieve task
differentiation and fast adaptation of policy on tasks.

Previous works focused on multi-agent transfer learning based on network-design or task-embedding,
but lacked of efficient knowledge reuse, leading to limited generalization capability. Our work
(DT2GS) leverages knowledge reuse by ensuring semantic consistency and scalability between
diverse tasks and preventing over-fitting of source tasks, which greatly improves transferability and
even zero-shot generalization capability.

Transfer learning across tasks in other paradigms There are some methods dedicated to transfer
learning across tasks in MARL belonging to other paradigms. For example, ODIS [41], belonging
to the offline RL paradigm, discovers generalizable skills from multi-task offline data to enhance
the model’s generalization capability to unseen tasks. Besides, EPC [15] and DyMA-CL [34] fulfill
knowledge transfer across tasks by way of Curriculum Learning.

Skills/Options/Roles/Subtasks in MARL There are some works in MARL focusing on concepts
like skills/options/roles, which are similar to subtasks studied in our method. LDSA [38] learns
dynamic subtask assignments and constructs different policies for different subtasks, so enabling
agents to possess specific abilities to handle different subtasks. ROMA [31] introduces the role
concept into MARL in the form of Gaussian distribution and assigns certain subtasks to agents with
similar roles. RODE [32] further studies how to efficiently discover the roles set by decomposing
joint action spaces into restricted role action spaces. HSD [37] is proposed to discover complementary
and useful skills for cooperative team play in MARL.

ASN [33] && UPDeT [9] For model generalization in MAS, a generalizable model structure
is necessary for addressing the problem of varying state/observation/action space (S/O/A) across
tasks. Here we define the agents controlled by MARL policy and agents built-in tasks as entities. As
demonstrated in ASN [33], an agent’s observation oi can be constructed as a concatenation of m
entity-observations: oi = [oi,1, oi,2, ..., oi,m], where oi,1 is the observation of agent i on itself and
environment, and the rest are the observations of agent i on other m− 1 entities. Additionally, action
space A can be decomposed into two components: Aself , which consists of actions affecting the
agent itself or the environment, and Ainteractive, which contains actions that directly interact with
other entities. This alignment between entity-observations and actions, which is referred to as action
semantics, forms the foundation for computing the value or probability of an action based on its
aligning entity-observation, leading to a generalizable model structure across tasks.

Thereafter, by combining ASN with Transformer [29], UPDeT [9] develops a type of population-
invariant network (PIN) to further improve the model’s generalization capability. Specifically,
entity-observations are taken as queries, keys, and values to derive an attention output, as shown in
Formula (10) and Formula (11).

Qt
i = WQ[o

t
i,1, o

t
i,2, ..., o

t
i,m], Kt

i = WK [oti,1, o
t
i,2, ..., o

t
i,m], V t

i = WV [o
t
i,1, o

t
i,2, ..., o

t
i,m] (10)

13

φt
i = [φt

i,1, ..., φ
t
i,m] = softmax(

Qt
iK

t
i
T

√
dK

)V t
i (11)

Subsequently, the attention output φt
i,1 and φt

i,j , j = 2, ...,m are utilized to obtain the Q-value
or probability of actions in Aself and Ainteractive, respectively. As shown in ODIS [41], UPDeT
[9] and [1], the pipeline of PIN has been regarded as a foundational framework for the model’s
generalization across tasks in MARL. Therefore, the PIN is also employed in DT2GS.

B Asymptotic Performance on Single-Task problems

Figure 9: Comparison of DT2GS performance with baselines, including UPDeT, ASN, and MAPPO,
on Single-Task Problems.

14

C Consistent yet Scalable semantics of subtask

DT2GS endows subtasks with consistent yet scalable semantics across tasks. For instance, the
semantics of subtask k could involve tempting 2 enemies in the source task while 4 enemies in
the target task. The term "consistency" refers to k tempting enemies in both the source and
target tasks, while "scalability" refers to the changed impact on entities. Figure 10 illustrates the
subtask semantics, which are represented by the subtask’s attention on all entities. We observed that
DT2GS can adapt subtask semantics to different task contexts effectively, reflecting its scalability
on subtask semantics across tasks. In our experiments, agents paid attention solely to allies as they
employed the subtask "disperse" to line up during the t_1 period. During the t_2 period, agents
initially paid attention on both allies and enemies as they utilized the subtask "hit and run" to focus
fire on enemies while monitoring their own health and allies’ position. Later in t_2, agents shifted
their focus to enemies as they employed the subtask "charge" to concentrate their firepower to end
the battle. The last period, t_3, signifies the agents’ demise.

t_1 t_1 t_1

t_1 t_1 t_1

t_2 t_2 t_2

t_2

t_2

t_2

t_3
t_3

t_3

t_3

t_3

allies enemies allies enemies allies enemies

allies enemies allies enemies allies enemies

Figure 10: Visualization of the subtask semantics, which represented by the subtask’s attention on
all entities. We trained a model on the source task 8m and evaluated its performance on 6 different
marine tasks. To visualize the semantics of subtasks assigned to the agent during an episode, we
plotted the subtask attention on all entities over time. The resulting visualization is shown above,
where each cell represents the attention weight of a subtask-entity pair at a specific timestep. The
horizontal axis denotes the entities present in the task, ordered from allies to enemies from left to
right, while the vertical axis represents the chronological order of timesteps in the episode from top
to bottom.

15

D Generalization on MPE

Figure 11: The figure shows a comparison of zero-shot generalization capability between DT2GS,
UPDeT, and ASN_G on the physical deception task (Spread) in the multi-agent particle world envi-
ronments (MPE) [16]. The horizontal axis represents the source task→ the target task. For example,
"3→4" indicates that the source task is set by 3 agents and 3 landmarks, while the target task is set by
4 agents and 4 landmarks. The vertical axis represents the average episode reward when deploying the
source model to the target task without any finetue. The red, green, and purple histograms correspond
to DT2GS, UPDeT, and ASN_G, respectively. As we can see, DT2GS significantly outperforms
UPDeT and ASN_G in terms of zero-shot generalization capability, achieving an average episode
reward surpass of about 17.05 and 44.32, respectively

E Ablation Study

To investigate the effect of the number of subtasks nk on the model’s zero-shot generalization capa-
bility, we conducted an ablation study, as shown in Figure 12. Our results indicate that appropriately
increasing the number of subtasks can improve the model’s zero-shot generalization capability, but
setting nk = 6 leads to degradation due to the limited number of generalizable subtasks across
tasks. Additionally, we found that increasing nk from 4 to 5 does not significantly improve perfor-
mance, particularly in the zero-shot generalization scenario 8m→ 25m. To balance efficiency and
effectiveness, we set nk = 4 for all experiments presented in this paper.

Figure 12: Ablation study on the impact of subtask number nk on the model’s zero-shot generalization
capability.

16

F List of symbol definitions

Table 1: List of symbol definitions

Symbol Definitions
oi the observation of agent i
oi,j the entity-observation of agent i on entity j
{oti,j} all entity-observations of agent at time t

oself the entity-observation of agent on itself and environment
oallyj the entity-observation of agent on its jth ally

oenemyj the entity-observation of agent on its jth enemy
ati the action of agent i at time t
kti the subtask assigned to agent i at time t
ht
i the history latent embedding of agent i at time t

N (µt
i,j , σ

t
i,j)

the embedding Gaussian Distribution of entity-observation
of agent i on entity j at time t

N (µt
i, σ

t
i) the embedding Gaussian Distribution of observation of agent i at time t

eti the observation embedding of agent i at time t
ϕt
i the adaptive semantics of subtask assigned to agent i at time t

φt
i the semantics of all actions for agent i at time t

G Hyperparameters

Table 2: List of Hyperparameters

Hyperparameters Value Algorithms
hidden layer dimension of DT2GS’s Encoder 8 DT2GS

MLP’s hidden layer dimension 64 DT2GS, UPDeT, ASN, ASN_G, MAPPO
attention’s hidden layer dimension 64 DT2GS, UPDeT, ASN_G

attention’s heads 3 DT2GS, UPDeT, ASN_G
number of subtasks 4 DT2GS

optimizer Adam DT2GS, UPDeT, ASN, ASN_G, MAPPO
learning rate of actor and critic 0.0005 DT2GS, UPDeT, ASN, ASN_G, MAPPO

To ensure consistency and comparability across our experiments, we aimed to share hyperparameters
among algorithms wherever possible. We provide a list of the shared hyperparameters in Table 2,
where the "Algorithms" column indicates which algorithms have corresponding hyperparameters in
common.

17

H Pseudocode

Algorithm 1 DT2GS based on MAPPO

Input: The parameters θπEn for Scalable Subtask Encoder of actor π; the parameters θπDe for Adaptive
Action Decoder of actor π; the parameters θV for critic V ; the number nk for subtasks

Output: The Scalable Subtask Encoder πEn and Adaptive Action Decoder πDe for actor π; the
critic V

1: Initialize θπEn, θ
π
De, θ

V , nk

2: Initialize the total timesteps stepmax interaction with environment; the total timesteps T of an
episode; the number of episodes batch_size for each actor/critic update

3: Initialize step← 0
4: while step ≤ stepmax do
5: set data buffer D = {}
6: for idx = 1 to batch_size do
7: τ = [] empty list
8: initialize actor RNN states h0

1,π, ..., h
0
n,π for each agent

9: initialize critic RNN states h0
1,V , ..., h

0
n,V for each agent

10: initialize subtasks k01, ..., k
0
n for each agent ▷ Initialize subtasks with nk-dim zero vector

11: for timestep t = 1 to T do
12: for all agents i do
13: kti , h

t
i,π = πEn(o

t
i, k

t−1
i , ht−1

i,π ; θπEn) ▷ Call for Scalable Subtask Encoder Module 2
14: ati = πDe(o

t
i, k

t
i ; θ

π
De) ▷ Call for Adaptive Action Decoder Module 3

15: vti , h
t
i,V = V (sti, h

t−1
i,V ; θV)

16: end for
17: Execute actions at, observe rt, st+1,ot+1

18: τ+ = [st,ot,ht
π,h

t
V ,kt,at, rt, st+1,ot+1]

19: end for
20: step+ = T
21: Compute advantage estimate Â via GAE on τ

22: Compute reward-to-go R̂ on τ
23: Split trajectory τ into chunks of length L
24: for l=0,1,...,T//L do
25: D = D ∪ (τ [l : l + T], Â[l : l + L], R̂[l : l + L])
26: end for
27: end for
28: for mini-batch k = 1, ...,K do
29: b← random mini-batch from D with all agent data
30: for each data chunk c in the mini-batch b do
31: update RNN hidden states for πEn and V from first hidden state in data chunk
32: end for
33: end for
34: Adam update θπEn, θ

π
De on actor loss with data b

35: Adam update θV on critic loss with data b
36: end while
37: Return πEn, πDe, V

18

Algorithm 2 Scalable Subtask Encoder

Input: The parameters θπEn for Scalable Subtask Encoder of actor π, agent i’s observation oti in
timestep t, agent i’s subtask kt−1

i and actor RNN state ht−1
i,π in timestep t− 1

Output: agent i’s subtask kti and actor RNN state ht
i,π in timestep t

1: Compute entity-embedding (µt
i,j , σ

t
i,j), j = 1, ...,m by Formula (2)

2: Compute observation-embedding eti by Formula (3)
3: Compute actor RNN state ht

i,π by Formula (4)
4: Compute subtask kti with kti ∼ Gumbel-Softmax(ht

i,π)

5: Return kti , h
t
i,π

Algorithm 3 Adaptive Action Decoder

Input: The parameters θπDe for Adaptive Action Decoder of actor π, agent i’s observation oti and
subtask kti in timestep t,

Output: agent i’s action ati in timestep t
1: Compute subtask embedding zti with zti = Embedding(kti)
2: Compute adaptive subtask semantics ϕt

i by Formula (7)
3: Compute action semantics φt

i by Formula (8)
4: Sample action ati from the actions’ probability distribution Prti computed by Formula (9)
5: Return ati

19

	Introduction
	Preliminary
	Background
	Generalizable model structure in MARL

	DT2GS Framework
	Scalable Subtask Encoder
	Adaptive Subtask Semantics

	Experiments
	Experimental Setup
	Zero-Shot Generalization across Tasks
	Analysis of Subtask Semantics
	Transferability across Tasks
	Performance on Multi-task and Single-task

	Conclusion
	Acknowledgements
	Related Work
	Asymptotic Performance on Single-Task problems
	Consistent yet Scalable semantics of subtask
	Generalization on MPE
	Ablation Study
	List of symbol definitions
	Hyperparameters
	Pseudocode

