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Abstract

This paper considers contrastive training for cross-modal zero-shot transfer wherein
a pre-trained model in one modality is used for representation learning in another
domain using pairwise data. The learnt models in the latter domain can then be used
for a diverse set of tasks in a zero-shot way, similar to “Contrastive Language-Image
Pre-training (CLIP)” [1] and “Locked-image Tuning (LiT)” [2] that have recently
gained considerable attention. Most existing works for cross-modal representation
alignment (including CLIP and LiT) use the standard contrastive training objective,
which employs sets of positive and negative examples to align similar and repel
dissimilar training data samples. However, similarity amongst training examples
has a more continuous nature, thus calling for a more non-binary treatment. To
address this, we propose a novel loss function called Continuously Weighted
Contrastive Loss (CWCL) that employs a continuous measure of similarity. With
CWCL, we seek to align the embedding space of one modality with another. Owing
to the continuous nature of similarity in the proposed loss function, these models
outperform existing methods for zero-shot transfer across multiple models, datasets
and modalities. Particularly, we consider the modality pairs of image-text and
speech-text and our models achieve 5-8% (absolute) improvement over previous
state-of-the-art methods in 0-shot image classification and 20-30% (absolute)
improvement in 0-shot speech-to-intent classification and keyword classification.

1 Cross-modal alignment and transfer

Learning visual representations using natural language supervision has proven to be a powerful way
to unlock impressive zero-shot performance on a number of downstream tasks [1; 2; 3; 4; 5; 6]. In
this paper, we draw inspiration from these works and study the task of cross-modal alignment for
zero-shot transfer for pairs of modalities. Let U and V denote a pair of modalities. For example,
U may be text modality, and V maybe image modality. We are interested in the following: given a
pre-trained model fθ : V → Q for data in V (where Q denotes the embedding space), how can we
use a paired dataset of the form {u, v}, u ∈ U , v ∈ V , to best learn a model gϕ : U → P (where P
is the embedding space corresponding to U) such that the learnt structure in the embedding space Q
can be aligned with that of P? Once trained, the models gϕ and fθ can be used on a diverse set of
downstream tasks including interfacing with Large Language Models (LLMs) (see [7]) in a zero-shot
way, thus avoiding the need for costly, task-specific, labeled datasets.

Our motivation in studying the above problem lies in the fact that powerful pre-trained models
existing in certain modalities, but are lacking in other modalities. For example, the recent advances
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Figure 1: Comparison of zero-shot transfer performance between baseline CL and proposed CWCL.
(Left): zero-shot image classification accuracy measured across training epochs for the image-text
modality pair. (Right): zero-shot speech-to-intent classification measured across training epochs for
the specch-text modality pair. CWCL consistenly performs better than CL.

in language models have resulted in very powerful models to process text data, while no such models
exist for speech and audio data. Unlike text based models that can now generalize to new tasks
in a zero-shot way, speech and audio models are still trained in a task-specific way (for example,
automatic speech recognition (ASR)). Further, collecting labeled datasets in speech domain offers
its own set of challenges including quality control, noise, removing silence to name a few [8; 9].
Similarly, even when pre-trained models are available for certain modalities such as images, there
might be challenging sub-modalities (or domains) like medical imaging on which pre-trained models
may not be trained on [10]. However, large scale paired datasets maybe available, which connect
the above modalities. For example, large datasets of speech and the associated (possibly noisy)
transcripts are available easily on the internet. Similary, pairs of text and images, pairs of medical and
raw text [10] maybe more easily available. Based on this observation, methods have been proposed
to train image and text encoders by aligning features corresponding to paired image and text data
[1; 3]. Upon training, these models demonstrate impressive zero-shot performance on a number
of downstream tasks such as image classification and image-text retrieval. While in these works
both encoders are trained from scratch, authors in [2] showed that using a frozen pre-trained image
classification model as the image encoder and only training the text encoder significantly boosts
downstream zero-shot performance. We observe that this abstract concept of using a pre-trained
model in one modality to supervise models in another modality using pairwise data can then be
applied to any pair of modalities.

Our main focus in this paper is on how best to train such cross-modal models that leverage pre-
trained models in one modality. We find that standard contrastive loss used in training such models
is inefficient at maximizing the amount of supervision that can be extracted from the pre-trained
models. In particular, to learn the embeddings in the “unfrozen” modality, existing methods only use
the embedding of the corresponding paired data from the other modality for supervision. However,
there maybe many samples from the supervising modality that are similar, and to various degrees of
similarity. To address this inefficiency, we propose a new loss function called continuously weighted
contrastive loss (CWCL) for contrastive training of multi-modal models. The proposed loss function
leads to better supervision and hence better alignment between the two modalities.

We study our proposed loss function using two pairs of modalities, image-text and speech-text. For
image-text pair, we find that the proposed loss function leads to an improvement of 6-8% (absolute)
compared to the best baseline on zero-shot image classification tasks. For speech-text, it leads
to a 20-30% (absolute) improvement on zero-shot speech-to-intent classification and zero-shot
keyword spotting tasks. Further, our models achieve performance comparable to models trained with
supervision using task-specific datasets. As shown in Figure 1, we find that models trained using the
proposed loss function are data and compute-efficient. They achieve higher accuracy with fewer pairs
of data samples during training. Further, embeddings of downstream test datasets generated using our
models show strong alignment among data that belong to the same class, even though the models have
never been exposed to these datasets. We show an example in Figure 2, where embeddings extracted
from speech signals in the SLURP test dataset show significantly improved sense of similarity for
data from the same class, even though no label information was provided to the model.

2 Continuously weighted contrastive loss

2.1 Existing frameworks for contrastive training
Various forms of contrastive learning has been successfully employed in both self-supervised learning
[11; 12; 1; 2; 13; 14] and in supervised learning [15].
Contrastive loss for self-supervised and multi-modal learning: The traditional contrastive loss
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Figure 2: The similarity matrix between embeddings of the two modalities that are aligned via (Left):
baseline CL and (Right): proposed CWCL. The axis labels correspond to the intent of utterances (for
example, “news_query" represents utterances with news-related questions). CWCL results in a more
“block” diagonal pattern than CL, indicating that speech and text samples with the same intent are
more aligned while samples with different intents are more separated. This can be attributed to the
continuous weighting mechanism of CWCL. Note that these embeddings are from a downstream
test dataset which was never exposed to the model during training. The visualization confirms that
CWCL leads to a higher degree of alignment between similar data samples.

function is used in both single-modality self-supervised learning as well as multi-modal alignment.
We explain the formulation used in multi-modal alignment and briefly explain how the same function
is used in the single-modality setting. Let B denote a batch of training data consisting of pairs of
data samples from two modalities of size N : B = {(ui, vi)}i=1,··· ,N . , where ui is from modality U
and vi is from modality V . Let ui and vi be encoded into embeddings denoted as pi, qi respectively.
This can be done by separate, modality-specific encoders or by shared encoder. Then, the traditional
contrastive loss function (CL) (to align U with V) is defined over B as

LCL,U→V =
−1

N

N∑
i=1

log
exp (⟨pi, qi⟩/τ)∑

j∈[N ] exp (⟨pi, qj⟩/τ)
, (1)

where [N ] denotes the set {1, 2, · · · , N}. Note that a similar loss function LCL,V→U maybe defined
and the total loss function is given as LCL,U→V +LCL,V→U . By minimizing (1), the encoders learn
to align pairs of data. Note that in doing so, for each ui, vi is considered as a positive example and
all other samples {vi}j∈[N ],j ̸=i are considered to be negative examples. This is also illustrated in
Figure 4, where the diagonal matrix indicates the set of positive examples chosen (for each row and
column). As an example, in [1; 2], for each image, only the corresponding text is used as a positive
example and all other text samples are used as negative examples (and vice-versa).

Contrastive loss for supervised learning: It is conceivable that in a given training batch, there
is more than one “positive" sample. However the information about which samples are related to
each other may be missing in self-supervised learning. However, this information is available in a
supervised learning setup. Let T denote a batch of training data of size M consisting of samples and
labels: T = {(xi, yi)}. Further, let zi be the embedding generated by the model. Then, it is clear
that the set Pi = {xj , j ̸= i|yj = yi} forms a set of positive examples. This idea was explored in
[15], where the following loss function 1 was proposed to leverage the label information:

Lsupcon =
−1

M

M∑
i=1

1

|P (i)|
∑

j∈P (i)

log
exp (⟨zi, zj⟩/τ)∑

k∈[N ],k ̸=i exp (⟨zi, zk⟩/τ)
. (2)

Note that the above loss function can be interpreted as taking the average of pair-wise LCL over the
positive set. The authors show that a combination of the above loss and the task loss yields better
performance than using the task loss alone. However, this method requires labeled datasets.

1The authors also propose another variant of the supervised constrastive loss function. Although we do not
discuss it here, it is similar in spirit to (2).
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Figure 3: Existing contrastive learning methods treat samples in a batch as either strictly positive or
negative. However, similarity between data samples has a more continuous and non-binary nature. In
this figure, we provide an example of the nature of similarity in the context of paired image-text data.
Note that the ‘weight’ terms in the figure are contrived for illustration purposes. The proposed CWCL
loss function attracts all other data samples to a degree proportional to their similarity. Similarity
itself is measured using intra-modal inner product between samples’ embeddings.

In the above two loss functions and other similar variants studied in the literature, we find two
shortcomings. Firstly, other similar examples that may be present in the training batch are not
considered. In the self-supervised setting, all the other similar samples are considered as negative
examples. In the supervised setting, some classes might be similar to each other (for example, multiple
breeds of dogs), but are considered to be negative examples to each other. Secondly, similarity is
considered to be binary. As a result, all “positive examples" are attracted equally, and all “negative
examples" are repelled equally. However, we observe that samples in a training batch maybe similar
to each other to varying degrees. Some samples might be more similar to each other, a few others
less so many others may be dissimilar. For a more detailed explanation, see Figure 3.

2.2 Can we account for non-binary similarity?

To address the above shortcomings, we propose a novel loss function called Continuously Weighted
Contrastive Loss (CWCL). We use the same setup as that in multi-modal training used to define (1).
The loss function (to align pi with other qj’s) is defined as

LCWCL, U→V =
−1

N

N∑
i=1

1∑
j∈[N ] w

V
ij

∑
j∈[N ]

wV
ij · log

exp(⟨pi, qj⟩/τ)∑
k∈[N ] exp(⟨pi, qk⟩/τ)

, (3)

where wV
ij’s denote the intra-modal similarity weights between vi and vj in modality V . Note that

a similar loss function to align modality V with modality U maybe defined, with the intra-modal
similarity weights computed between ui and uj . We will refer to the intra-modal similarity weights
simply as weights for ease of usage and we will drop the superscript, unless the modality needs to be
specified. Note that the weights are computed pair-wise, within each training batch.

Before we describe how these weights may be computed, we highlight the properties that they need
to have. Firstly, we normalize the weights to be between 0 and 1: wij ∈ [0, 1]. Secondly, “similar"
samples from within a given domain should have higher weights and dissimlar samples should
have lower weights. With these properties, note that LCWCL provides a way to interpolate between
the self-supervised and fully-supervised variants described earlier. When the weights are given as
wij = 1{i}(j) where 1S denotes the indicator function w.r.t set S, it is equivalent to LCL. On the
other hand, in the supervised setting, if wij is defined as wij = 1 for all pairs i, j belonging to the
same class, but 0 otherwise, it is equivalent to Lsupcon. More importantly, LCWCL allows the model
to use a a continuous sense of similarity, by i) computing a softmax function for all pairs in the
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Figure 4: The classical CL-based methods (e.g., CLIP [1], LiT [2], etc) can be interpretes as using a
binary weight matrix for choosing the positive examples. The proposed CWCL utilizes a continuous
weight matrix to account for the non-binary nature of similarity for improved alignment.

training batch (inner summation in Equation. (3)) and ii) weighting these softmax terms by the
similarity weights. Further, note that all pair-wise inner products are already computed even in (1),
(2). Therefore, computing LCWCL is similar in computational complexity to LCL and Lsupcon.

2.3 How can we obtain intra-modal similarity weights?
In the traditional self-supervised setting, no information about similarity between training data points
maybe available. This might also be the case in multi-modal learning such as in[1], where the
modality encoders are initialized randomly. However, authors in [2] explored the idea of using pre-
trained models as initialization in multi-modal models. Further, they find that freezing the pre-trained
model (except maybe for a final linear layer) yields the best performance. This setup offers a natural
way to obtain the similarity weights. We can measure the similarity between the embeddings from
the pre-trained model. We focus on this setup, where we use frozen, pre-trained models for one
modality to train models in another modality. Note that even though the model encoding the first
modality is frozen, follow-up layers maybe added and trained. Let V be the “frozen" modality with
a pre-trained initialization. Then to align modality U with V using (3), wV

ij maybe computed as
wV

ij = ⟨qi, qj⟩/2 + 0.5 in order for wij ∈ [0, 1]. We do not explore other formulations in this paper.
A natural question is about how such weights can be computed for the modality U . If the model in
modality U is also initialized using a pre-trained model, the weights may be computed in a similar
way. However, in this paper, we only focus on the cross-modal transfer, with similarity weights being
computed only in the frozen modality initialized with a pre-trained model. Assuming the modality V
is the frozen one, our loss function is given as

Lcross-modal transfer = LCWCL, U→V + LCL, V→U . (4)

Note that the exact configuration and choice of which modality to freeze will depend on the pairs of
modalities being considered, the quality of pre-trained models and paired datasets available.

3 Related work

CLIP like models: CLIP [1] and ALIGN [3] introduced a set of foundational vision-language
models where the encoders, one for the image, another for the text modality output embeddings
in a shared space. In this set of works the encoders for all the modalities are randomly initialized
and trained from scratch. Other works have looked at extending the concept to other modalities
like image-audio [16], others have explored richer embedding [17], adaptive prompt learning [5],
architectural advancements like Mixture-of-Experts [6]. Some works also considered the problem
setting where embeddings of both image and text are processed together so that specialized text query
relevant image embeddings can be obtained [18; 19]. Another notable work, [4], the authors obtained
impressive performance by improving individual encoders by processing image and text embeddings
together to minimize caption-loss. Additionally, [20] proposed an extension to the cross-modal
contrastive loss that can leverage labeled training data by combining it with SupCon [15]. Recent
works such as [21; 22; 23] consider the alignment between images and text that do not belong to
the same pair, similar to our proposed method. In [21; 23], both encoders are trained from scratch
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by using a self-distillation process. Such a training process requires careful parameter tuning and
generally has lower performance ([21] achieves about 42.4% 0-shot on ImageNet) compared to using
pre-trained models, as demonstrated by the metrics. Another difference between our work and the
above works is that we consider intra-modal similarity to attract image-text pairs. Owing to the
availability of strong pre-trained uni-modal models, intra-modal offers a clear way to identify similar
data samples. In [22], the authors consider using a third, object detection model to obtain similarity
between images. However, their method is specific to image-text modality pair. It may also lead to
performance degradation, as seen in the zero-shot metrics reported.

LiT like models: Alternatively, LiT [2] proposed the idea of leveraging strong pretrained models in
one domain and aligning the embeddings of another domain to the pretrained model’s embedding
space. Works in this line have looked at extending to multiple domains like image-audio-text
[24], music-audio [25], speech-text for speech translation [26]; fine-grained query specific image
embeddings [27] and benefits of cross-modal alignment for regularizing unimodal classifiers [28].
Along with building a model capable of conversation, [29] proposed the use of cross-modal attention
layers to improve image-text cross-modal alignment. However, none of these works consider the
problem of similarity across samples within the same modality that is explored in our work. Further,
all these works are complementary to CWCL and can be improved by it. Handful of works explore
similarity amongst samples [30; 13; 30] propose removing certain samples from the negative set
used to compute contrastive loss (1) if their average similarity to the other samples in the batch is
greater than a certain threshold [30]; [13] propose using a threshold on similarity to decide which
samples are positive pairs and negative pairs and combining it with [15]. However, the above works
still consider similarity as a binary entity, where as CWCL uses a continuous model.

Incorrect negatives in contrastive learning: Contrastive learning incorrectly assumes that for a
given sample, every other sample in the dataset is dissimilar [31]. In the self-supervised learning one
of the remedies proposed is to re-weight the negative part of the contrastive loss’ denominator to
account for the presence of similar (or positive) samples [32]. However, in the case of cross-modal
alignment with pretrained models, the pretrained model is a better indicator of the similarity [30; 13].

4 Experiments
In this section, we provide experimental results that demonstrate that CWCL leads to better zero-shot
transfer performance. We study two pairs of domains, namely image-text and speech-text. For
image-text pair, we demonstrate zero-shot transfer to image classification and image/ text retrieval.
On both tasks, CWCL shows improved performance over existing methods for zero-shot transfer.
Next, we report results for speech-text modality pair, where we consider the tasks of speech-to-intent
classification and keyword spotting. Given the difficulties in collecting task-specific speech datasets,
we expect CWCL-based zero-shot transfer to have a large impact in this domain. Note that our
main goal is to study the effect of using CWCL. We use open source, publicly available and easily
accessible datasets for our study and leave the task of training with larger datasets to future work.

4.1 Cross-modal transfer between image and text modalities
Model architecture: Our model architecture follows that in [2] and has a vision encoder and a
text encoder. For the vision encoder, we use the ViT-L/16 model architecture [33] pre-trained on
ImageNet. We compute the similarity weights using the embeddings from before the final linear layer
that is not frozen during training. For the text encoder, we consider two architectures: transformer
encoder architecture with 12 layers,output dimension 768, and number of heads set to 12 and we also
consider the BERT-large architecture.

Datasets for contrastive training: All our experiments are based on the combination of two publicly
available datasets, CC12M and YFCC15M. The CC12M dataset is a subset of the Conceptual
Captions dataset [34] defined in [35]. We use a set of 10 million images that are still available in the
set of URLs (since the rest of them have been taken down). The YFCC15M dataset is a subset of the
Yahoo Flicker Creative Commons dataset [36] defined by [1] by filtering for high quality English text.
It contains a set of 15 million image-text pairs. Model training details are provided in A.1.

4.1.1 Zero-shot image classification
For zero-shot image classification, we experiment on 5 datasets: ImageNet [37] validation, ImageNet-
V2 [38], ImageNet-R [39; 40], ImageNet-A[41]and ObjNet [42], similar to [2]. We provide our
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experimental results in Tables. 1, 2. The results for SimCon [13], and LiT [2] are obtained from
our own experimentation. For [13], we use their loss function in our set up. For [2], we use their
recommended experimental settings from their paper. Note that the metrics are obtained by using the
same model architecture and dataset for all the methods being compared. CWCL yields a significant
boost over the other methods in zero-shot performance. Further, as shown in Figure1, CWCL achieves
higher accuracy with fewer image-text training pairs. Owing to the CWCL formulation, the text
embeddings generated by our model are designed to be similar to a larger set of similar images than
the baseline methods, hence leading to better generalization.

Table 1: Zero-shot image classification performance using the ViT-L/16 + 12-layer transformer
configuration. CWCL achieves a significant improvement in zero-shot image classification across
multiple datasets, including out-of-domain datasets such as ObjectNet.

Method ImageNet (%) ImageNet-V2(%) ImageNet-R(%) ImageNet-A(%) ObjNet(%)

CLIP 31.3 - - - -
OpenCLIP 34.8 30 - - -

SimCon 67.9 58.57 59.32 37.16 44.9
LiT 66.84 58.82 61.28 37.31 45.08

CWCL (Ours) 74.41 66.25 67.37 45.58 50.5

Table 2: Zero-shot image classification using the ViT-L/16 +BERT-large configuration . CWCL-based
training achieves state-of-the-art (when trained on publicly available datasets) performance on all of
zero-shot experiments.

Method ImageNet (%) ImageNet-V2(%) ImageNet-R(%) ImageNet-A(%) ObjNet(%)

LiT 71.2 62.98 63.8 40.28 48.1
CWCL (Ours) 76.48 67.86 68.7 47.27 52.38

4.1.2 Zero-shot Image-text retrieval

We also examine the zero-shot image-text retrieval capabilities of our proposed method. Note that
our experiments are only towards comparing standard contrastive loss with CWCL. We leave the task
of training with larger datasets [1; 2; 3] and using multi-objective training (which maybe used along
with contrastive tuning to obtain better retrieval performance) [34; 29; 19] for future exploration. In
our experiment, we simply compare the performance of models trained with contrastive loss (as done
in [2]) to that of models trained using CWCL. We use the MS-COCO validation dataset [43] to study
zero-shot retrieval performance of these models. We report our results in Table 3. Retrieval metrics
for the ViT-L/16+12 layer transformer configuration model are provided in Table 6 in the Appendix.
Models trained with CWCL outperform those trained using the standard contrastive loss function.

Table 3: Zero-shot retrieval results on MS-COCO dataset by using ViT-L/16+BERT-large configura-
tion as the image and text encoders respectively.

Method I →T retrieval T→I retrieval

R@1 R@5 R@10 R@1 R@5 R@10

LiT 34.58 59.78 70.68 28.49 54.04 65.87

CWCL (Ours) 40.36 66.62 77.76 30.04 54.84 66.06

4.1.3 Robustness to templates for zero-shot classification

An added benefit of the proposed CWCL formulation is that our model is robust to the templates/
prompts used in zero-shot tasks. In zero-shot image classification, the labels are converted to text
prompts in order to adapt the task of classification to that of alignment. In particular, both [1; 2] use a
set of 80 “template" sentences to convert each label into 80 sentences, extract the text embeddings for
all the sentences and use their mean embedding as the representation of the corresponding class. We
expect that CWCL leads to robustness w.r.t the choice of such templates or prompts. We study this
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Figure 5: Comparison of robustness to templates. (Left): the baseline CL method of LiT [2]. (Right):
the proposed CWCL approach. The number displayed at each bar reflects the decrease in accuracy
due to using only a subset of templates compared to using the full set.

by changing the number of template sentences used to build the classifier embeddings. In particular,
we design simple templates such as "this is a photo of ", and "this is an image of " and experiment
over k = 1, 5, 10 templates. We provide further details on the templates in Section A.1.2. We report
the results for our model and that of [2] in Figure 5. As can be seen, models trained using CWCL
are able to obtain peak performance with fewer number of templates, whereas models trained using
standard contrastive loss require a higher number of templates to build better classifier embeddings.
We believe that robustness to the choice and the number of template sentences/prompts used is crucial
to improve the ease of usage of such models.
4.2 Cross-modal transfer between speech and text modalities
The proposed method can be applied to speech-text cross-modal learning to transfer semantic
knowledge from text embeddings to speech embeddings. Speech models with language understanding
are desired for tasks in the field of spoken language understanding (SLU) [44; 45]. SLU differs
from automatic speech recognition (ASR), which simply generates a transcription, but does not have
language understanding. SLU models, unlike ASR models can then be used on a wide variety of
downstream tasks such as intent classification (in multiple domains) [8], keyword spotting [46].

In general, speech pre-training schemes usually include information about the phonemes or paralin-
guistic information (e.g. speaker, emotion, pathology, etc.), but they do not include semantics in
language. While some works have explored the usage of contrastive learning to train SLU models,
they use the standard contrastive training method [47]. However, similar to the image-text case,
this may not be efficient. For instance, "Turn on the volume", is closer in meaning to "Increase the
sound" than "Set an alarm for 7:00 AM tomorrow morning". In this case, the standard cross-modal
contrastive loss is unable to learn the cross-modal relationship between the text of the first sentence
and the speech of the second sentence since they are considered to be a “negative pair". This is
precisely what is address by CWCL. As we demonstrate later, CWCL achieves a significant boost in
performance on downstream tasks.

We train a speech-text multi-modal model with a dataset where speech and its corresponding transcript
are available. Note that this is a generic dataset that is not specific to any SLU task. We use a pre-
trained, frozen text encoder, owing to the availability of strong pre-trained language models. A
trainable linear layer is added on top of the frozen text encoder to match the dimensionality of the
speech and text embedding. We also use a pre-trained speech encoder that is robust to diverse acoustic
condition and further train it using the proposed loss function.

Model architecture: For the speech model, we used the encoder of the pre-trained Whisper ASR
[48], which is expected to be robust to different acoustic conditions. For the text models, we found
49 publicly available hugging face models by searching with filters as, task: Zero-shot classification,
libraries: Transformers, and languages: English. We manually added one RoBERTa-based model fine-
tuned on MASSIVE [49] data. All 50 models were compared on zero-shot text-to-intent classification
using the SLURP dataset [8] and the top 2 models were selected. The best model (we call it
RoBERTa+S) was the RoBERTa-based model fine-tuned on MASSIVE data since the data includes
SLURP (only the text data) 2. The second model was a BART-based model fine-tuned on Yahoo
Answers topic classification (we call it BART+Y) 3.

2https://huggingface.co/qanastek/XLMRoberta-Alexa-Intents-Classification
3https://huggingface.co/joeddav/bart-large-mnli-yahoo-answers
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Datasets for contrastive training For cross-modal training, we used the Common Voice Corpus 13.0
[50]. This dataset consists of roughly 2400 hours of speech data and the corresponding transcripts
obtained using crowd-sourcing and includes speech from a diverse set of demographics across age
and gender. We use the English subset. Model training details are provided in A.2.

4.2.1 Zero-shot speech-to-intent classification

After the cross-modal embedding alignment stage, we evaluated the models on the zero-shot speech-
to-intent classification task. The task is to classify a given speech sequence into one of the intent
classes. The main difference between the zero-shot and supervised intent classification is the zero-shot
classification can be done without training a classifier.

Class embedding generation: Similar to the image-text case, we compute the embeddings of a
given speech signal and compute its similarity with the text embeddings for all the intent classes.
These class embeddings are obtained as averaged embedding of text sentences’ embeddings of the
corresponding classes. During inference, the class embedding that has the highest similarity score
with the input speech embedding is chosen as the predicted class.

Dataset: We used the SLURP [8] and STOP [51] datasets for evaluation. In the SLURP dataset, we
used all the text sentences in the train subset to generate the class embeddings for 60 intent classes
where intent is defined as the concatenation of scenario and action labels, following ESPnet-SLU [52].
We did not use the train_synthetic subset since more than half of the text sentences overlap with the
devel and test subsets. On average, 191 text sentences were used per class. We compare the systems
by evaluating them on the devel and test subsets. In the STOP dataset, we used the 8 unique domain
labels as intent labels. Although not intents in a strict sense, the domain labels can be considered a
simpler version of the intent labels. Since significantly more sentences are available in STOP, we
randomly extracted 200 sentences per domain from the training set to generate the class embeddings.
The evaluation was done on the validation and test sets.

Results: In previous works, speech-to-intent classification has been done with an ASR-NLU pipeline
system where the speech is first transcribed by ASR (speech-to-text), after which the transcription is
classified into an intent using NLU (text-to-intent) [8]. We refer to the text-to-intent performance
achieved by the pre-trained text encoders as the “reference" performance. This provides an estimate
of the performance that can be expected from the speech encoder on the speech-to-intent task.

The first results of speech-to-intent classification are shown in the SLURP and STOP (without
the superscript #) columns in Table 4. In all cases, multi-modal training with the CWCL loss
outperformed the CL loss. On the SLURP dataset, RoBERTa+S has a higher reference performance
compared to BART+Y because the fine-tuning data for RoBERTa+S included the SLURP text data.
This also leads to a better performance compared to using the BART+Y model as the text encoder.

On the STOP dataet, RoBERTa+S has a lower reference compared to BART+Y, implying that
the RoBERTa+S’ text model overfits the SLURP data. However, the RoBERTa+S-based speech
intent classification was still better than the BART+Y-based one. This implies that the text model
architecture could be another factor that contributes to transferring performance to the speech model.
To be specific, the RoBERTa+S was RoBERTa which consists of only encoder layers while the
BART+Y was the encoder-decoder-based BART model. Another thing to note is that CWCL with
RoBERTa+S outperforms the text-to-intent reference performance on the STOP (87.87 vs. 84.78)
dataset. This is because, during the cross-modal alignment stage using CWCL, the speech tower
might have learned how to utilize acoustic cues in addition to linguistic information from a given
speech utterance, to align its embedding to the semantic embedding from the text tower. However,
this did not happen in the case of SLURP, because the SLURP dataset includes more intent classes
than STOP (60 vs 8 classes), thus being more challenging in transferring knowledge from text to
speech during the cross-modal alignment stage.

Experimenting with different templates to generate text embeddings: So far, each class embed-
ding used in zero-shot intent classification was generated by averaging all the corresponding text
sentences’ embeddings from the class in the training subset. Although collecting the text data with
the intent labels can be less expensive than collecting speech data with the intent labels, the former
may not always be possible. To address this, we manually devised a fixed set of general templates
that were applied to every class. For example, templates are of the form "This audio is about [class]",
and "The utterance is related to [class]", and the text embeddings are averaged to obtain the class
embedding. For the exact templates we used, readers may refer to Appendix A.2.5. The results are
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Table 4: Top-1 accuracy for zero-shot speech-to-intent classification (SLURP and STOP) and keyword
spotting (GSCV2) after thick vertical line. Superscript # is used to indicate use of general templates
for class embedding extraction. Supervised results are provided in gray after the double-horizontal
line: [52] is for speech-to-intent and [53; 54; 55] are for keyword spotting.

Method Text model SLURP SLURP# STOP STOP# GSCV2 GSCV2#

CL RoBERTa+S 40.35 23.68 70.13 50.56 64.74 59.65
(baseline) BART+Y 22.73 8.06 55.67 42.07 56.33 45.54
CWCL RoBERTa+S 63.80 40.75 87.87 67.77 81.02 82.77
(Ours) BART+Y 53.12 30.51 80.99 73.08 88.81 89.43

Text-to-intent RoBERTa+S 88.19 59.86 84.78 69.10 100 98.20
(reference) BART+Y 77.03 45.93 92.93 79.11 100 100
ESPnet [52] - 77.00 - - - - -

Att. RNN [53] - - - - - 93.9 -
Wav2Vec2 [54] - - - - - 96.6 -

M2D [55] - - - - - 98.5 -

shown in the SLURP# and STOP# columns in Table 4. We again observe that the proposed CWCL
loss outperforms the CL loss.

Comparison to supervised training: We also present results of a supervised SLU model on SLURP,
based on ESPnet-SLU [52]. Considering our system is zero-shot, the result is noteworthy. For STOP,
we could not find previous supervised works that evaluated systems the same way.

Due to lack of space, we present the following results in A.2.2. In Table 7, we found that leveraging
pre-trained models was more beneficial than training from scratch for speech-text embedding align-
ment. As seen in Table 8, locking the text encoder and fine-tuning the speech encoder gave the best
performance. We found that batch size is not a critical factor, as shown in Table 9.

4.2.2 Zero-shot keyword spotting (KWS)

We also tested our model for KWS using the Google Speech Command Dataset V2 (GSCV2) [9]
where we classified among the 35 keywords in the Google Speech Command. The result is shown
in the columns after the thick vertical line in Table 4. For the results in the first column (without
#), we used each keyword as is to extract the class embedding from the text model. For the second
column (with #), we used the general template used in the speech-to-intent experiments. The results
show that the proposed method outperforms the baseline. With CWCL, the KWS# outperformed
KWS. This could be because the text models that generate the class embeddings are usually trained
with sentence-level samples, not word-level ones whereas the keywords are words, i.e., the KWS
class embeddings are extracted from words whereas KWS# are extracted from sentences constructed
using templates, thus resulting in better class embedding.

Comparison to supervised training: Interestingly, results achieved with the BART-based text model
are comparable to the supervised learning mechanisms of [53; 54; 55]. Note that the self-supervised
mechanisms use training data to train the final linear classifier [54; 55]. However, our models without
any training data still achieve close to 90% accuracy. This will be useful when defining new keywords
as collecting large datasets for keyword classification becomes difficult [9]. Additional results are
provided in Table 10 and in Table 11, respectively in Appendix A.2.

5 Conclusion
In this paper, we make the observation that existing contrastive learning based methods for cross-
modal alignment using pre-trained models are not efficient in extracting supervision from the pre-
trained embeddings. In particular, many similar examples that do not form pairs in the training data
are ignored. We address this by developing a novel loss function that accounts for the continuous
nature of similarity and uses information from all similar examples in a training batch. We train
models for two pairs of modalities using this loss function, namely image-text and speech-text. In
both cases, we observe a significant increase in zero-shot performance on downstream tasks. We
believe that the proposed loss function will be impactful in leveraging powerful pre-trained models
and transfering the learnt knowledge to other modalities and domains.
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A Appendix A

A.1 Experimental details for aligning image and text modalities

A.1.1 Model training details

We build upon the code repository in [56]. We train our models for a total of 70 epochs, where each
epoch uses a subset of 6 million images. The batch size is set to 16000. Note the number of training
steps in this case is equal to 26,250. We train on 4 A100 GPUs. Note that we experimented with
different sizes for the subset used in each epoch (ranging from 2 million to the full dataset) and we
obtained the best performance when the size was 6 million (for our method and the baseline methods
that we train). We use a learning rate of 0.001, AdamW optimizer with β1 = 0.9, β2 = 0.999 and a
weight decay of 0.0001 [57].

A.1.2 Simple templates to test model robustness

One of the advantages of cross-modal 0-shot transfer is the ability of the trained models to be used
on downstream tasks without any further training. However, the downstream task still needs to
be adapted to the task of modality alignment. We discuss this adaptation in the context of image
classification and provide details about our experiments reported in Section 4.1.3.

In [1; 2], the downstream task of image classification task is solved by first changing the class labels
to sentences. The sentences are then converted to embeddings using the text encoder. Given a test
image, the text embedding that it aligns the most with determines its class. In particular, both works
use a set of 80 “template sentences" to convert each label to 80 sentences. The text embedding
representing a given label is then computed as the average of the embeddings of these 80 sentences.

We observe that the classification accuracy depends on the choice of these template sentences, as also
seen in [5]. To illustrate this, we formulate k = 1, 5, 10 simple template sentences and use them to
generate the classifier embeddings. We list these sentence in Table 5. Note that for k = 1, we use the
first sentence only and for k = 5, we use the first 5 sentences. Our motivation in choosing simple
sentences is to mimic the process of an end user who may not have the resources to carefully design
the template sentences. Our goal is to test our model’s robustenss under such a scenario. As shown in
Figure 5, a model trained using standard contrastive tuning shows poor performance as the number of
template sentences is reduced. This shows that to achieve high accuracy, an end user must design
template sentences that are complex enough. However, a model trained using CWCL maintains its
performance across varying number of template sentences, even when only simple templates are
used. Our hypothesis is that owing to the continuous nature of the similarity used during training, the
model has learnt better cross-modal associations.

Table 5: Simple template sentences that we use to generate classifier embeddings.

a photo of a { }
an image of a { }
a picture of a { }

this is a { }
a snap of { }
a shot of { }

an illustration of { }
an example of { }

a { } is pictured here
In this picture, we can see a { }

A.1.3 Cross-modal retrieval

We also examine the zero-shot image-text retrieval capabilities of our proposed method. Note that
our experiments are only towards comparing standard contrastive loss with CWCL. We leave the
task of training with larger datasets [1; 2; 3] and using multi-objective training (which maybe used
in conjuntion with contrastive tuning to obtain better retrieval performance) [34; 29; 19] for future
exploration.
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Table 6: CWCL improves upon the CL-based alignment method for image-text retrieval.

Method I →T retrieval T→I retrieval

R@1 R@5 R@10 R@1 R@5 R@10

CL 30.42 54.32 65.82 24.17 49.04 61.05

CWCL (Ours) 35.10 61.52 73 25.69 50.04 61.59

In our experiment, we simply compare the performance of models trained with contrastive loss (as
done in [2]) to that of models trained using CWCL. We use the MS-COCO validation dataset [43]
to study zero-shot retrieval performance of these models. We report our results in Table 6. Models
trained with CWCL outperform those trained using the standard contrastive loss function.

A.2 Experimental details for aligning speech and text modalities

In this section, we provide additional details about training the speech-text alignemnt models.

A.2.1 Model training details

We train each model for a total of 20 epochs, where one epoch consumes the whole training data
equal to 1,013,630 samples. We use a batch size of 20 with the 12,500 warmup steps and train on
1 A100 GPU. We use a learning rate of 0.00003, AdamW optimizer with β1 = 0.9, β2 = 0.999, a
weight decay of 0.0001, and gradient clipping norm of 10.

A.2.2 Effects of using pre-trained model weights, locking location, and batch size

Each reported number in this section is Top-1 accuracy (%) on SLURP data for speech intent
classification.

Pre-trained speech encoder vs randomly initialized: In Table 7, we compared starting multi-modal
training from scratch and from pre-trained weights. The performance is significantly boosted by
initializing the speech encoder using weights from the encoder part of the Whisper ASR model [48].
However, regardless of using random weights and pre-trained model weights, training with CWCL
results in a much better downstream performance.

Table 7: Comparison between using randomly initialized weights and pre-trained weights for speech
encoders during training: Top-1 accuracy (%) on SLURP data

Method Random initialization Pre-trained weights

CL 13.80 22.73

CWCL 26.17 53.12

Locking location: We have 4 ways to lock our model during multi-modal training since we have
pre-trained speech and text models. We compared all the locking options and the result is shown in
Table 8. In both baseline and CWCL losses, locking the text model works best. This can be seen as
transferring the knowledge of semantic relationships in text models to speech models.

Table 8: Locking location vs. performance: Top-1 accuracy (%) on SLURP data

Locking location none speech text both

CL 18.77 7.89 24.03 9.82

CWCL 17.50 27.39 53.12 16.70
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Batch size vs. performance: Since the large batch size was shown to improve performance with
contrastive loss in computer vision, we also did a similar experiment to see how the batch size affects
the performance as it gets larger. As the batch size increases, we also increased the learning rate
proportionally, e.g., if bs=20 has lr=1, bs=40 has lr=2. The results are in Table 9.

Table 9: Effective batch size vs. performance: Top-1 accuracy (%) on SLURP data

batch size 20 40 80

CL 24.03 25.20 24.51

CWCL 53.12 53.94 51.80

A.2.3 Further evidence of modality alignment due to CWCL

In Figure 2, we showed the alignment (measured as inner product) between speech features and text
features obtained from models trained using just CL and those trained using CWCL. We use the
speech and text data from the SLURP test dataset. We illustrated that speech and text embeddings
that belong to the same intent class were much more aligned compared to speech and text from
mismatched classes. In this section, we provide more examples that support this observation.

In Figures 6, 7, we show the alignment between the speech and text embeddings where the speech
and text samples belong to classes other than those used in Figure 2. We again see that the alignment
between samples in the same class is much higher than that between samples in different classes. In
general, we observe the same pattern to hold across all the classes in the dataset, thus confirming that
our results are not due to sampling bias.

Figure 6: Cosine-similarity between speech and text embeddings obtained by sampling 6 classes
randomly from the SLURP test dataset. In this case, the sampled classes are different from those
used in Figures 2 and 7.

A.2.4 Additional tables for reference

Table 10 additionally shows the Top-5 accuracy over speech-text experiments. Since most of the
previous works did not report this metric, we only include our own experimental results. Table 11
shows the existing supervised model performances where the models are either trained or fine-tuned
on the labeled Google Speech Command Dataset V2 for performing the keyword spotting (KWS)
task, while our methods did not require any labeled KWS data for performing the task.

A.2.5 General template as a python list

To test the speech-text alignment models, we use a “general" set of templates in addition to the one
obtained by using the text from the training data itself. This general set of templates aims to mimic a
scenario where the no example texts maybe available. We list the set of template sentences used in
the general set here.
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Figure 7: Another example of alignment between speech and text embeddings. The sampled classes
are different from those used in Figures 2 and 6.

Table 10: Top-5 accuracy for zero-shot speech-to-intent classification (SLURP and STOP) and KWS
on Google Speech Command Dataset V2. Superscript # is used to indicate use of general templates.

Method Text model SLURP SLURP# STOP STOP# KWS KWS#

CL RoBERTa+S 69.57 49.86 98.19 94.03 82.22 82.53
CL BART+Y 52.97 24.87 95.27 81.63 84.02 78.14

CWCL (Ours) RoBERTa+S 84.53 68.58 99.38 96.52 91.20 92.42
CWCL (Ours) BART+Y 79.48 57.34 99.48 97.71 93.79 94.30

Text-intent RoBERTa+S 95.66 83.36 98.93 95.20 100 98.20
(upper bound) BART+Y 99.58 73.82 99.45 98.40 100 100

General template sentences: [ it is about { }, it was about { }, it will be about
{ }, this is about { }, this was about { }, this will be about { }, it is
related to { }, it was related to { }, it will be related to { }, this is
related to { }, this was related to { }, this will be related to { }, it
is talking about { }, it was talking about { }, it will be talking about
{ }, this is talking about { } this was talking about { }, this will be
talking about { }, I am talking about { }, I was talking about { }, I will
be talking about { }, You are talking about { }, You were talking about
{ }, You will be talking about { }, They are talking about { }, They were
talking about { }, They will be talking about { }, We are talking about {
}, We were talking about { }, We will be talking about { }, it talks about
{ }, it talked about { }, it will talk about { }, this talks about { },
this talked about { }, this will talk about { }, I talk about { }, I talked
about { }, I will talk about { }, You talk about { }, You talked about { },
You will talk about { }, They talk about { }, They talked about { }, They
will talk about { }, We talk about { }, We talked about { }, We will talk
about { } ]

Table 11: Keyword spotting Top-1 accuracies on GSCV2 from existing supervised models.

Method KWS

Attention RNN [53] 93.9
KWT-2 [46] 97.74

Wav2Vec2 [54] 96.6
M2D [55] 95.4

M2D - Fine tuned [55] 98.5
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