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Abstract

We consider the problem of inferring latent stochastic differential equations (SDEs)
with a time and memory cost that scales independently with the amount of data,
the total length of the time series, and the stiffness of the approximate differential
equations. This is in stark contrast to typical methods for inferring latent differen-
tial equations which, despite their constant memory cost, have a time complexity
that is heavily dependent on the stiffness of the approximate differential equation.
We achieve this computational advancement by removing the need to solve differ-
ential equations when approximating gradients using a novel amortization strategy
coupled with a recently derived reparametrization of expectations under linear
SDEs. We show that, in practice, this allows us to achieve similar performance to
methods based on adjoint sensitivities with more than an order of magnitude fewer
evaluations of the model in training.

1 Introduction

Recent years have seen the rise of continuous time models for dynamical system modeling [1]. As
compared to traditional autoregressive style models [2], continuous time models are useful because
they can deal with non-evenly spaced observations, they enable multilevel/hierarchical and adaptive
prediction schemes, and because physics is (mostly) done in continuous time. For example, recent
developments in inferring continuous time differential equations from data has been met by a flurry
of work in endowing models with physics informed priors [3, 4, 5].

Despite their advantages, continuous time models remain significantly more computationally chal-
lenging to train than their autoregressive counterparts due to their reliance on adjoint methods for
estimating gradients. Adjoint methods introduce a significant computational burden in training
because they require solving a pair of initial value problems to estimate gradients. Solving such initial
value problems as a part of an iterative optimization procedure is computationally demanding for the
following reasons:

(i) Gradient based updates to models of differential equations can cause them to become extremely
stiff. This will have the effect of causing the cost per iteration to explode mid-optimization.

(ii) With the exception of parareal methods [6], differential equation solvers are fundamentally
iterative sequential methods. This makes them poorly suited to being parallelized on modern
parallel computing hardware.

In accordance with such challenges a number of methods have been introduced to speed up training
of continuous time models including regularizing dynamics [7, 8] and replacing ordinary differential
equation (ODE) solvers with integration methods where possible [9]. Despite the computational
advancements brought about by such innovations, continuous time models remain expensive to train
in comparison to discrete time models.
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In addition to these computational challenges, it is well-known that adjoint methods suffer from
stability issues when approximating gradients of time averaged quantities over long time intervals for
chaotic systems [10].

In the current work, we present a memory and time efficient method for inferring nonlinear, latent
stochastic differential equations (SDEs) from high-dimensional time-series datasets. In contrast to
standard approaches for inferring latent differential equations that rely on adjoint sensitivities [1, 11,
12], our approach removes the requirement of solving differential equations entirely. We accomplish
this advancement by coupling a novel amortization strategy with a recently derived reparametrization
for expectations under Markov Gaussian processes [13]. We show that our approach can be used
to approximate gradients of the evidence lower bound used to train latent SDEs with a time and
memory cost that is independent of the amount of data, the length of the time series, and the stiffness
of the approximate differential equations. The asymptotic complexity for our approach is compared
to well-known methods from the literature in Table 1. We note that our method has a constant cost
that is chosen by the user. Moreover, we will show that our method is embarrassingly parallel (i.e.
all evaluations of the model can be performed in parallel over each iteration) whereas, we reiterate,
differential equation solvers are iterative sequential methods.

Method Time Memory
Deterministic adjoints (Neural ODE) [1] O(J) O(1)
Stochastic adjoints [12] O(J log J) O(1)
Backprop through solver [14] O(J) O(J)
Amortized reparametrization (ours) O(R) O(R)

Table 1: Asymptotic complexity comparison for approximating gradients. Units are given by the
number of evaluations of the differential equation (gradient field for ODEs or drift and diffusion
function for SDEs). Here J is the number of sequential evaluations and R is the number of parallel
evaluations. J is adaptively chosen by the differential equation solver and is a function of the stiffness
of the differential equation meaning it can change (and possibly explode) while optimizing. In
contrast, R is a fixed constant used to control the variance of gradient approximations. While we
could choose R = 1 and would still arrive with unbiased approximations for gradients, in practice we
found choosing R ≈ 102 worked well for the problems we considered.

The applications of our method span various standard generative modeling tasks, such as auto-
encoding, denoising, inpainting, and super-resolution [15], particularly tailored for high-dimensional
time-series. Crucially, the computational efficiency of our approach not only enables the allocation
of more computational resources towards hyperparameter tuning but also democratizes access to
state-of-the-art methods by making them feasible to train on lower performance hardware.

In the next section we provide a description of the theory underpinning our work with the main result
of a stochastic, unbiased estimate for gradients appearing in Lemma 1. In Section 4 we provide a
number of numerical studies including learning latent neural SDEs from video and performance
benchmarking on a motion capture dataset. Notably we show that we are able to achieve comparable
performance to methods based on adjoints with more than one order of magnitude fewer evaluations
of the model in training (Section 4.1). We also demonstrate that our approach does not suffer from
the numerical instabilities that plague adjoint methods for long time-series with chaotic systems
(Section 4.2). Finally, we close with a discussion of the limitations of our approach as well as some
suggestions for future work. All code is available at github.com/coursekevin/arlatentsde.

2 Method

2.1 Problem description

Consider a time-series dataset D = {(xi, ti)}Ni=1, where ti ∈ R is the time stamp associated with the
observation, xi ∈ RD. For example xi may be an indirect observation of some underlying dynamical
system, a video-frame, or a snapshot of a spatio-temporal field. We assume that each observation
was generated via the following process: first a latent trajectory, z(t), is sampled from a general,
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nonlinear SDE with time-dependent diffusion,

dz = fθ(t, z)dt+ Lθ(t)dβ, (1)

with initial condition pθ(z0) and then each xi is generated from the conditional distribution pθ(x |
z(ti)) where z(ti) is the realization of the latent trajectory at time stamp ti. Here fθ : R× Rd → Rd

is called the drift function, Lθ : R → Rd×d is called the dispersion matrix, and β denotes Brownian
motion with diffusion matrix Σ. We will model both the drift function of the SDE and the conditional
distribution using neural networks in this work. This combination of SDE and conditional distribution
define the generative model that we wish to infer.

Like in the standard generative modeling setting, the “true” parameters defining the latent SDE and
the conditional likelihood, as well as the specific realization of the latent state, remain unknown.
In addition, the posterior over the latent state at a point in time, pθ(z(t) | D), is intractable. Our
objectives are two-fold, we wish to: (i) infer a likely setting for the parameters, θ, that is well-
aligned with the observed data and (ii) infer a parametric model for the posterior over the latent
state at a particular point in time as a function of a small window of the observations, for example
qϕ(z(t) | xi, xi+1, . . . , xi+M ) ≈ pθ(z(t) | D) for t ∈ [ti, ti+M ] and 1 ≤ M << N . This latent
variable model is depicted in Figure 1. In this work we will tackle this problem statement using the
machinery of stochastic variational inference [16].

xi

z(t) θϕ

N

Figure 1: The solid lines indicate the data generating process that depends on the parameters, θ. The
dashed lines indicate the approximate variational posterior that depends on the parameters, ϕ.

Before proceeding with an explanation of our approach, it is worthwhile taking a moment to consider
why assuming the latent state is a realization of a SDE, as opposed to an ordinary differential equation
(ODE) with random initial conditions [1, 11, 17], merits the additional mathematical machinery. First,
there is a long history in using SDEs in the physical sciences to model systems (even deterministic
systems) that lack predictability due to super-sensitivity to parameters and or initial conditions [18].
One reason for the preference towards this modeling paradigm is that deterministic ODEs with
random initial conditions only permit uncertainty to enter in their initial condition. This means that
we are assuming that all randomness which may affect the latent trajectory at all future points in
time are precisely encoded in the uncertainty in the initial condition. In contrast, SDEs make the less
restrictive assumption that uncertainty accumulates over time.

2.2 Evidence lower bound

As is the case with standard latent variable models, training proceeds by specifying approximate
posteriors over latent variables (in this case the latent state, z(t)) and then minimizing the Kullback-
Leibler (KL) divergence between the approximate and true posterior. An added complication in
our specific case comes from the fact that the latent state is defined by a stochastic process rather
than a random-vector as is more typical. While it is possible to choose more general approximate
posteriors [12], in this work we make the choice to approximate the posterior over the latent state as
a Markov Gaussian Process (MGP) defined by the linear SDE,

dz = (−Aϕ(t)z + bϕ(t))dt+ Lθ(t)dβ, (2)

with Gaussian initial condition, z(t0) ∼ N (m0, S0) where m0 ∈ Rd and S0 ∈ Rd×d is a symmetric
positive definite. Here Aϕ : R → Rd×d and bϕ : R → Rd are symmetric matrix and vector-valued
functions of time, respectively. Before proceeding, it is worth emphasizing that this choice of
approximate posterior is not as restrictive as it may appear since it is only used to approximate the
posterior (i.e. the latent state given the observations p(z(t) | D) for t ∈ [t1, tN ]). When forecasting
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beyond the data window, we will use the nonlinear SDE in (1). In this way, the approximate posterior
primarily serves as a useful intermediary in training the generative model rather than the end-product.

For our purposes, MGPs are useful because the marginal distribution qϕ(z(t)) = N (mϕ(t), Sϕ(t))
(i.e. the distribution of the latent state at time t) is a Gaussian whose mean and covariance are given
by the solution to the following set of ODEs [19],

ṁϕ(t) = −Aϕ(t)mϕ(t) + bϕ(t),

Ṡϕ(t) = −Aϕ(t)Sϕ(t)− Sϕ(t)Aϕ(t)
T + Lθ(t)ΣLθ(t)

T ,
(3)

where m(0) = m0 and S(0) = S0.

Using the reparametrization trick from [13], the evidence lower bound (ELBO) can be written as,

L(θ, ϕ) =
N∑
i=1

Ez(ti)∼qϕ(z(t)) [log pθ(xi | z(ti))]

− 1

2

∫ T

0

Ez(t)∼qϕ(z(t))

[
||rθ,ϕ(z(t), t)||2Cθ(t)

]
dt,

(4)

where

rθ,ϕ(z(t), t) =B(t)(mϕ(t)− z(t)) + ṁϕ(t)− fθ(z(t), t), (5)

Cθ(t) = (Lθ(t)ΣLθ(t)
T )−1, B(t) = vec−1

(
(Sϕ(t)⊕ Sϕ(t))

−1vec(Cθ(t)
−1 − Ṡϕ(t))

)
, ⊕ indi-

cates the Kronecker sum, vec : Rd×d → Rd2

maps a matrix into a vector by stacking columns, and
vec−1 : Rd2 → Rd×d converts a vector into a matrix such that vec−1(vec(B)) = B ∀B ∈ Rd×d.
See Appendices A and B for a detailed derivation. We note that computing the residual, rθ,ϕ, scales
linearly in the dimension of the state so long as Sϕ(t) and Cθ(t) are diagonal. To ensure our approach
remains scalable, we will make this assumption throughout the remainder of this work. In this case,
we have

B(t) =
1

2
Sϕ(t)

−1(Cθ(t)
−1 − Ṡϕ(t)). (6)

Often we may wish to place additional priors onto a subset of the generative model parameters,
θ, and infer their posterior using stochastic variational inference as well. In this case we add the
KL-divergence between the approximate posterior and prior onto the ELBO, KL(qϕ(θ) || p(θ)) and
rewrite all expectations with respect to qϕ(z(t)) and qϕ(θ); details are provided in Appendix C.

Remark 1: Despite having defined the approximate posterior in terms of an SDE with parameters
Aϕ and bϕ, the ELBO only depends on the mean and covariance of the process at a particular point in
time, mϕ and Sϕ. For this reason we can parametrize mϕ and Sϕ directly while implicitly optimizing
with respect to Aϕ and bϕ. In addition, we can efficiently compute ṁϕ and Ṡϕ using automatic
differentiation.

Remark 2: Despite the fact that the prior and approximate posterior are SDEs, all expectations
in the ELBO are taken with respect to normal distributions. Moreover, in contrast to the approach
in [20, 21] there are no differential equality constraints – instead we have been left with an integral
over the window of observations.

Taken together, these observations allow us to infer the parameters of the generative model (a
nonlinear, latent SDE with additive diffusion (1)), without the use of a forward solver.

2.3 Amortization strategy

The implicit assumption in the ELBO in (4) is that the state mean and covariance will be approximated
over the entire window of observations. This can pose a serious computational bottleneck with long
or complicated time-series. In this section we propose a novel amortization strategy that will allow
us to effectively eliminate this cost by requiring that we only approximate the posterior over short
partitions of total the data time-window at once.

4



Rather than attempting to compute and store the posterior over the entire latent trajectory, we will
instead construct an approximation to the posterior over a small window of observations as a function
of those observations. Consider a reindexing of the dataset by splitting it into N/M non-overlapping
partitions where 1 ≤ M << N ,

original indexing: [t1, t2, . . . ,tM , tM+1, . . . ,tN ]

reindexed dataset: [t
(1)
1 ,t

(1)
2 , . . . ,t

(1)
M ,t

(2)
1 , . . . , t

(N/M)
M ]

In the case that N is not evenly divisible by M we allow the final split to contain less elements.
We approximate the latent state over each partition using only the M observations in each partition,
qϕ(z(t) | x(j)

1 , x
(j)
2 , . . . , x

(j)
M ) ≈ p(z(t) | D) for t ∈ [t

(j)
1 , t

(j+1)
1 ]. This can be interpreted as a

probabilistic encoder over the time interval of the partition of observations. Letting t
N/M+1
1 ≡ t

N/M
M ,

the ELBO can be compactly rewritten as, L(θ, ϕ) =
∑N/M

j=1 L(j)(θ, ϕ), where

L(j)(θ, ϕ) =

M∑
i=1

E
qϕ(z(t

(j)
i )|x(j)

1 ,...,x
(j)
M )

[
log pθ(x

(j)
i | z(t(j)i ))

]
− 1

2

∫ t
(j+1)
1

t
(j)
1

E
qϕ(z(t)|x(j)

1 ,...,x
(j)
M )

[
||rθ,ϕ(z, t)||2Cθ(t)

]
dt.

(7)

An additional advantage of this amortization strategy is that it allows our approach to scale to multiple
trajectories without an increase to the overall computational cost. If there are multiple trajectories,
we can reindex each trajectory independently and subsequently sum all sub loss functions.

To reiterate, the probabilistic encoder is a function which takes in M observations from a particular
partition along with a time stamp, t, and outputs a mean vector and covariance matrix as an estimate
for the latent state at that particular time. In principle, any function which can transform a batch
of snapshots and a time stamp into a mean and covariance could be used as an encoder in our
work. In our implementation, we use deep neural networks to encode each x

(j)
i using i ∈ I where

I ⊂ [x
(j)
1 , x

(j)
2 , . . . , x

(j)
M ] contains some temporal neighbours of xi into a single latent vector. This

approach yields a set of latent vectors associated with each observation in the partition hi for i =
1, 2, . . . ,M . We then interpolate between each latent vector using a deep kernel based architecture
to construct the posterior approximation for any time stamp in the partition; see Appendix D for
details. We emphasize this is one choice of encoding architecture that we found convenient, it is
straightforward to incorporate an autoregressive or transformer based encoder in our methodology [22]

An important consideration is the selection of the partition parameter, M . In practice, M should be
large enough so that the assumption of a linear SDE for the approximate posterior is appropriate (i.e.
we have enough observations in a partition so that the assumption of a Gaussian process over the
latent state is reasonable). For example, as we will see in an upcoming numerical study, in the context
of inferring latent SDEs from videos, we will need to choose M to be large enough so that we can
reasonably infer both the position and velocity of the object in the video.

2.4 Reparametrization trick

While the previous sections have demonstrated how to eliminate the need for a differential equa-
tion solver by replacing the initial value problem with an integral, in this section we show how
the reparametrization trick can be combined with the previously described amortization strategy
to construct unbiased gradient approximations for the ELBO with a time and memory cost that
scales independently with the amount of data, the length of the time series, and the stiffness of the
approximation to the differential equations. Consider a reparametrization to the latent state of the
form z(t) = T (t, ϵ, ϕ) where ϵ ∼ p(ϵ) so that z(t) ∼ qϕ(z(t) | x(j)

1 , x
(j)
2 , . . . , x

(j)
M ). We can rewrite

the second term in the evidence lower bound as,∫ t
(j+1)
1

t
(j)
1

Eqϕ(z(t))

[
||rθ,ϕ(z(t), t)||2Cθ(t)

]
dt =

∫ t
(j+1)
1

t
(j)
1

Ep(ϵ)

[
||rθ,ϕ(T (t, ϵ, ϕ), t)||2Cθ(t)

]
dt

= (t
(j+1)
1 − t

(j)
1 )Ep(ϵ)p(t)

[
||rθ,ϕ(T (t, ϵ, ϕ), t)||2Cθ(t)

]
(8)
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where p(t) is a uniform distribution, U(t(j)1 , t
(j+1)
1 ) and p(ϵ) ∼ N (0, I) is a Gaussian. With this

rearrangement, we can derive the main result of this work.
Lemma 1. An unbiased approximation of the gradient of the evidence lower bound, denoted as
∇θ,ϕL(θ, ϕ), with an O(R) time and memory cost can be formulated as follows:

∇θ,ϕL(θ, ϕ) ≈
N

R

M∑
i=1

R∑
k=1

∇θ,ϕ log pθ(x
(j)
i | T (t(j)i , ϵ(k), ϕ))

− (t
(j+1)
1 − t

(j)
1 )

N

2R

R∑
k=1

∇θ,ϕ||rθ,ϕ(T (t(k), ϵ(k), ϕ), t(k))||2Cθ(t(k)).

(9)

where each t(k) ∼ U(t(j)1 , t
(j+1)
1 ) and each ϵ(k) ∼ N (0, I).

The proof follows by applying the standard reparametrization trick [15] to estimating gradients of the
amortized objective in (7).

Remark 1: In practice we found choosing R ∼ 100 worked well for the problems we considered.
Note that in terms of elapsed time, 100 evaluations of this objective, which can be computed in
parallel, is far cheaper than 100 evaluations of the SDE forward model evaluated as a part of an
iterative sequential SDE solver. Moreover we found that adaptive stepping schemes required far more
evaluations of the SDE forward model than our stochastic approach (see Section 4.1).

Remark 2: In the case that evaluations of the SDE drift term were relatively cheap compared to
decoder evaluations (for example in the case the dimension of the latent state is much smaller than
the dimension of the data), we found it useful to increase the number of samples used to approximate
the integral over time without increasing the number of samples from the variational posterior. To do
so, we made use of a nested Monte Carlo scheme to approximate the second term in the ELBO,

(t
(j+1)
1 − t

(j)
1 )Ep(ϵ)p(t)

[
||rθ,ϕ(T (t, ϵ, ϕ), t)||2Cθ(t)

]
≈

t
(j+1)
1 − t

(j)
1

RS

R∑
k=1

S∑
l=1

||rθ,ϕ(T (t(k,l), ϵ(k), ϕ), t(k,l))||2Cθ(t(k,l)), (10)

where, again, each ϵ(k) ∼ N (0, I) and each t(k,1), t(k,2), . . . , t(k,S) ∼ U(t(j)1 , t
(j+1)
1 ). In addi-

tion, because the integral over time is one-dimensional we used stratified sampling to draw from
U(t(j)1 , t

(j+1)
1 ) in order to further reduce the variance in the integral over time. In this case we often

found we could choose R ∼ 10 and S ∼ 10. To be clear, (10) is simply a method for variance
reduction that we found to be useful; it is not a necessary component for our approach.

3 Limitations & Related Work

Summary of assumptions. In the previous sections we introduced an ELBO which, when maxi-
mized, leaves us with a generative model in the form of a nonlinear, latent SDE with time-dependent
diffusion and an approximation to the latent state over the time-window of observations in the form of
a Gaussian process. To reiterate, we only assume that the approximating posterior, i.e. the distribution
over the latent state given a batch of observations, is a Gaussian process; this is an assumption that is
commonly made in the context of nonlinear state estimation, for example [23, 24]. When making
predictions, we sample from the nonlinear SDE which characterizes the generative model (1).

Stochastic adjoint sensitivities. Li et al. [12] proposed the stochastic adjoint sensitivity method,
enabling the inference of latent SDEs using a wide range of approximate posteriors over the latent
state. In our work we choose to approximate the posterior over the latent state using a MGP which
enables us to eliminate the requirement of solving any differential equations entirely; as we have
discussed extensively this choice enables dramatic computational savings. A limitation of our
approach as compared to the stochastic adjoint sensitivities method is that our method should only be
used to approximate the posterior over the latent state when it is approximately a MGP. Intuitively,
this limitation is akin to the limitations of mean-field stochastic variational inference as compared
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to stochastic variational inference with an expressive approximate posterior such as normalizing
flows [25]. From our practical experience working on a range of test cases, this has not been a
limiting factor. It is worth reiterating that this limitation applies only to the approximate posterior
over the time window of observations; the predictive posterior can be a complex distribution defined
by a nonlinear SDE with a Gausian initial condition.

In addition, the stochastic adjoint sensitivity method allows for state dependent diffusion processes
whereas our approach only allows for a time dependent diffusion process. In cases where a state
dependent diffusion process is deemed necessary, our approach could be used to provide a good
initial guess for the parameters of the drift function. It remains a topic of future work to determine
if this limitation is mitigated by the fact that we are learning latent SDEs rather than SDEs in the
original data space. Across the range of test cases we considered, we have not encountered a problem
for which the assumption of a time-dependent diffusion matrix was limiting.

Latent neural ODEs. Chen et al. [1], Rubanova et al. [11], and Toth et al. [17] presented latent
ordinary differential equations (ODEs) as generative models for high-dimensional temporal data.
These approaches have two main limitations: (i) they encode all uncertainty in the ODE’s initial
condition and (ii) they rely on adjoint sensitivities, necessitating the solution of a sequence of initial
value problems during optimization. As was discussed previously, SDEs provide a more natural
modeling paradigm for estimating uncertainty, naturally capturing our intuition that uncertainty
should accumulate over time [18]. Moreover, to reiterate, our work avoids solving differential
equations entirely by relying on unbiased approximations of a one-dimensional integral instead; as
we will show, this can result in a dramatic decrease in the number of required function evaluations
in training as compared to methods based on adjoints. Moreover, we will show that our approach
avoids the numerical instabilities of adjoint methods when they are used to approximate gradients of
time averaged quantities over long time intervals for chaotic systems. It is worth mentioning that
gradients computed by backpropagation of a forward solver are not consistent with the adjoint ODE
in general [26] so we do not consider comparisons to such approaches here.

Weak form methods. Methods for inferring continuous time models of dynamical systems using
the weak form of the differential equations were introduced in the context of learning ODEs with
linear dependence on the parameters [27, 28]. More recently these methods were adapted for training
neural ODEs more quickly than adjoint methods for time-series prediction problems [5]. These
methods share some similarities to the present approach in how they achieve a computational speed-up
– both methods transform the problem of solving differential equations into a problem of integration.
In contrast to the present approach, these methods only allow for one to learn an ODE in the data
coordinates (i.e. they do not allow for one to infer an autoencoder and a set of differential equations
simultaneously). Moreover, these methods rely on a biased estimate for the weak form residual
which will fail when observations become too widely spaced. In contrast, in the present approach, we
rely on unbiased approximations to the evidence lower bound. Finally, these methods require the
specification of a carefully designed test-space [29] – a consideration not required by our approach.

4 Numerical Studies

In this section we provide a number of numerical studies to demonstrate the utility of our approach.
In the first study, we show that our approach can be used to train neural SDEs using far fewer
evaluations of the model than adjoint methods. In the second study, we consider the problem of
parameter tuning for a chaotic system over long time intervals. We show that our approach does
not suffer from the numerical instabilities which are known to cause issues with adjoint methods
on problems such as these. Finally we close this section with two practical test cases: the first
demonstrating competitive performance on a motion capture benchmark and the second showing
how our approach can be applied to learn neural SDEs from video. An additional numerical study
exploring the effect of the nested Monte Carlo parameter, S, is provided in Appendix H. Details on
computing resources are provided Appendix F. All code required to reproduce results and figures is
provided at github.com/coursekevin/arlatentsde.
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Figure 2: Lotka-Volterra benchmarking result. In the left figure we see our method (ARCTA)
requires more than one order of magnitude fewer evaluations of the model (NFE) than the standard
neural ODE (NODE) to achieve a similar validation accuracy. In the right figure we have plotted a
probabilistic prediction on the test set along with three samples from the predictive distribution.

4.1 Orders of magnitude fewer function evaluations in training

In this numerical study we consider the task of building a predictive model from noisy observations
of a predator-prey system. We simulated the Lotka-Volterra equations for 50 seconds collecting data
at a frequency of 10Hz. Observations were corrupted by Gaussian noise with a standard deviation
of 0.01. Validation data was collected over the time inverval [50, 65] seconds. We then attempt to
build a predictive model from the data using a neural ODE (NODE) and our method, amortized
reparametrization for continuous time auto-encoding (ARCTA), with the same model for the ODE
and drift function respectively. To make comparisons with the NODE fair, we set the decoder to be
the identity function. We assume the diffusion matrix is constant and place a log-normal prior on its
diagonal elements. We approximate the posterior over these elements using a log-normal variational
posterior. Details on the architecture and hyperparameters are provided in Appendix G.1. For this
experiment, as well as subsequent experiments, we made use of the Adam optimizer [30].

We considered three different tolerances on the NODE adaptive stepping scheme. We trained our
model as well as the NODEs using 10 different random seeds while recording the validation RMSE
and the number of evaluations of the model. Looking to Figure 2, we see that our approach required
more than an order of magnitude fewer evaluations of the model to achieve a similar RMSE on the
validation set. This remains true even when the tolerance of the ODE solver is reduced such that the
validation RMSE is substantially higher than our approach.

4.2 Numerical instabilities of adjoints

It is well-known that adjoint based methods produce prohibitively large gradients for long time
averaged quantities of chaotic systems [10] and accordingly methods, such as least squares shadow-
ing [31], have been introduced to address such concerns. In this section we reproduce this phenomena
on a simple parameter tuning problem and show that our approach does not suffer these same issues.

Given the parametric form of the chaotic Lorenz equations,

ẋ = σ(y − x) (11)
ẏ = x(ρ− z)− y (12)
ż = xy − βz (13)

along with an initial guess for the parameters, σ0, ρ0, and β0, our goal is to tune the value of
parameters such that they align with the observed data.
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Figure 3: Stability of gradients in chaotic systems.
The log-scale on vertical axis shows our approach
remains stable for longer time series, while adjoint-
based gradients become unusable at 50 and 100
seconds.

For this experiment we collect data at a fre-
quency of 200Hz and corrupt observations by
Gaussian noise with a covariance of 1. We gen-
erate five independent datasets over the time
intervals [0, 1], [0, 10], [0, 50], and [0, 100]. For
each dataset we generated an initial guess for
the parameters by sampling from a Gaussian
whose mean is the true value of the parameters
and standard deviation is 20% of the mean. For
the adjoint methods we report the ℓ2-norm of
the gradient with respect to the parameters at
the initial guess. For our method (ARCTA) we
optimize for 2000 iterations (which tended to
be enough iterations to successfully converge
to a reasonable solution) and report the average
gradient across all iterations. Details on hyper-
parameters and our architecture design are pro-
vided in Appendix G.2. Results are summarized
in Figure 3. While adjoints expectedly provide
prohibitively large gradients as the length of the
time series is increased, our approach remains
numerically stable.

4.3 Motion capture benchmark

Method Test RMSE
DTSBN-S [32] 5.90± 0.002†

npODE [33] 4.79†

NeuralODE [1] 4.74± 0.093†

ODE2VAE [34] 3.17± 0.221†

ODE2VAE-KL [34] 2.84± 0.343†

Latent ODE [11] 2.45± 0.057∗

Latent SDE [12] 2.01± 0.050∗

ARCTA (ours) 2.76± 0.168
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25

x
2

Figure 4: MOCAP benchmarking results, † from [34] and ∗ from [12]. Our score is computed by
training 10 models with different seeds and averaging on the test set. Looking to the table, we see
that our method performs similarly to other state-of-the-art methods. The plot shows the predictive
posterior on the test set for some select outputs. Other benchmark results were compiled in [34, 12].
RMSE was computed from MSE by taking the square root of the mean and transforming the error via
a first-order Taylor-series approximation.

In this experiment we consider the motion capture dataset from [32]. The dataset consists of 16
training, 3 validation, and 4 independent test sequences of a subject walking. Each sequence consists
of 300 time-series observations with a dimension of 50. We made use of the preprocessed data
from [34]. Like previous approaches tackling this dataset, we chose a latent dimension of 6. We
assume a Gaussian observation likelihood. We place a log-normal prior on the diagonal elements of
the diffusion matrix and the noise on the observations. We approximate the posterior of the diffusion
matrix and observation noise covariance using a log-normal approximate posterior. Details on our
architecture design and hyperparameter selection are provided in Appendix G.3.

For our approach, we train 10 models and report their average performance on the test set due to the
extremely limited number (4) of independent test sequences. Looking to Figure 4, we see that our
approach provided competitive performance on this challenging dataset. This result, in combination
with those presented previously demonstrating we require fewer function evaluations for similar
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forecasting accuracy and improved gradient stability for chaotic systems, make clear the utility of
the present work. It is possible to achieve state-of-the-art performance at a significantly reduced
computational cost as compared to adjoint based methods.

4.4 Neural SDEs from video

0 5 10 15 20 25 30

t(s)

−2

0

2

z
(t

)

Figure 5: Neural SDEs from video. Here we used five frames to estimate the intial state and then
forecast in the latent space for 30 seconds. The bottom plot shows the latent SDE. The top row shows
10 samples from the predictive posterior overlaid on the data.

In this experiment we attempt to learn a latent SDE from video. We generated 32 × 32 black and
white frames of a nonlinear pendulum as it evolves for 30 seconds collecting data at a frequency
of 15Hz. We transform the 1024 dimensional state down to two dimensions using a convolutional
architecture. Details on the hyperparameters and architecture are provided in Appendix G.4. This
problem is similar to the problem considered in [3] except the dynamical system we consider is
nonlinear. In this prior work, the authors were forced to regularize the latent space so that one set of
coordinates resembles a generalized velocity. In the present work, no such regularization is required.

We assume a Bernoulli likelihood on the pixels. Like in previous numerical studies we place a log-
normal prior on the diagonals of the diffusion term and approximate the posterior using a log-normal
variational distribution. After training we generate a forecast that is visualized in Figure 5. We
see that we were successfully able to build a generative model for this simple video. This result
demonstrates the broad applicability of the present approach to standard generative modeling tasks.

5 Conclusions

Here we have presented a method for constructing unbiased approximations to gradients of the
evidence lower bound used to train latent stochastic differential equations with a time and memory
cost that scales independently with the amount of data, the length of the time-series, and the stiffness
of the model for the latent differential equations. We achieve this result by trading off the numerical
precision of adaptive differential equation solvers with Monte-Carlo approximations to expectations
using a novel amortization strategy and a recently derived change of variables for expectations under
Markov Gaussian processes [13].

We have demonstrated the efficacy of our approach in learning latent SDEs across a range of test
problems. In particular we showed that our approach can reduce the number of function evaluations
as compared to adjoint methods by more than one order of magnitude in training while avoiding the
numerical instabilities of adjoint methods for long time series generated from chaotic systems. In
addition, we showed that our approach can be used for generative modeling of a simple video.

In the immediate future, there is significant room for future work in applying variance reduction
schemes to the expectation over time to further reduce the total number of required function evalu-
ations. There are also opportunities to explore the utility of the proposed approach for generative
modeling on more realistic problems. Finally, there are opportunities to apply our work in the context
of implicit densities [35].
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Appendices

Amortized Reparametrization: Efficient and Scalable Variational
Inference for Latent SDEs

A Expectations under linear SDEs

In this section we re-derive a result from [13] regarding how to rewrite expectations under linear
stochastic differential equations. As we will explain in greater detail in Appendix B, it is this result
that allowed [13] to rewrite the ELBO entirely in terms of quantities that do not require differential
equation solvers.

Theorem 1. Consider the density, q(z(t)), of the solution to a linear SDE dz = (−A(t)z+ b(t))dt+
L(t)dβ with initial condition z0 ∼ N (m0, S0), where A : R → Rd×d is symmetric, b : R → Rd,
L : R → Rd×d, and β indicates Brownian motion with diffusion matrix Σ. Then the expected value
of a bounded functional, f , satisfies

Ez(t)∼q(z(t)) [f(A(t), b(t), z(t))] = Ez(t)∼N (m(t),S(t)) [f(B(t), ṁ(t) +B(t)m(t), z(t))] , (14)

where B(t) = vec−1((S(t) ⊕ S(t))−1vec(L(t)ΣL(t)T − Ṡ(t))) and m(t) and S(t) indicate the
mean and covariance, respectively, of the SDE solution at time t.

Proof. The solution of a linear SDE defines a Markov Gaussian process with marginal statistics,
q(z(t)) ∼ N (m(t), S(t)), given by the solution to the ODEs,

ṁ(t) = (−A(t)m(t) + b(t)), (15)

Ṡ(t) = −A(t)S(t)− S(t)A(t)T + L(t)ΣL(t)T , (16)

with initial condition m(0) = m0, S(0) = S0 [19]. Noticing that equation (16) defines a set of matrix
Lyapunov equations in terms of A(t) allows us to express A(t) as a function of S(t) as follows,

A(t) = vec−1
(
(S(t)⊕ S(t))−1vec(L(t)ΣL(t)T − Ṡ(t))

)
, (17)

where ⊕ is called the Kronecker sum and is defined as S ⊕ S = I ⊗ S + S ⊗ I and ⊗ indicates
the standard Kronecker product. Letting B(t) = A(t) be the expression for A(t) written in terms of
S(t), we can rearrange Equation (15) to solve for b(t) as,

b(t) = ṁ(t) +B(t)m(t). (18)

Substituting the expressions for A(t) and b(t) into Equation (14) yields the desired result.

Remark In the case that S(t) and L(t)ΣL(t)T are diagonal as we assume throughout this work,
Equation 17 simplifies to,

A(t) =
1

2
S(t)−1(L(t)ΣL(t)T − Ṡ(t)). (19)

B Evidence lower bound derivation

Given a dataset of observations, D = {(xi, ti)}Ni=1, a generative likelihood, pθ(x | z(ti)) a prior
SDE, dz = fθ(z(t), t)dt + Lθ(t)dβ, and an approximation to the posterior of the latent state,
dz = (−Aϕ(t)z(t) + bϕ(t))dt+ Lθ(t)dβ, it is possible to derive the ELBO [20, 12],

L(θ, ϕ) =
N∑
i=1

Ez(ti)∼qϕ(z(t)) [log pθ(xi | z(ti))]

− 1

2

∫ T

0

Ez(t)∼qϕ(z(t))

[
||−Aϕ(t)z(t) + b(t)− fθ(z(t), t)||2Cθ(t)

]
dt,

(20)
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where Cθ(t) = (Lθ(t)ΣL
T
θ (t))

−1. The second term in (20) contains an integral over time of terms of
the form which matches that of the expectation in (14). From this observation, Course and Nair [13]
applied the identity in (14) to derive the reparametrized ELBO,

L(θ, ϕ) =
N∑
i=1

Ez(ti)∼qϕ(z(t)) [log pθ(xi | z(ti))]

− 1

2

∫ T

0

Ez(t)∼qϕ(z(t))

[
||rθ,ϕ(z(t), t)||2Cθ(t)

]
dt,

(21)

where,

Cθ(t) =(Lθ(t)ΣLθ(t)
T )−1

rθ,ϕ(z(t), t) =B(t)(mϕ(t)− z(t)) + ṁϕ(t)− fθ(z(t), t)

B(t) =vec−1
(
(Sϕ(t)⊕ Sϕ(t))

−1vec(Lθ(t)ΣLθ(t)
T − Ṡϕ(t))

)
.

(22)

To reiterate what was mentioned in the main body of the present work, the advantage of this
reparametrized ELBO is that all expectations are now taken with respect to normal distributions –
this has effectively eliminated the requirement of a differential equation solver. Unfortunately this
approach requires storing the entire estimate for the latent state – making it scale poorly for long time
series with complex dynamics. After amortizing as is suggested in the main body of the present work
we arrive at the final ELBO,

L(θ, ϕ) =
N/M∑
j=1

M∑
i=1

E
qϕ(z(t

(j)
i )|x(j)

1 ,...,x
(j)
M )

[
log pθ(x

(j)
i | z(t(j)i ))

]

− 1

2

∫ t
(j+1)
1

t
(j)
1

E
qϕ(z(t)|x(j)

1 ,...,x
(j)
M )

[
||rθ,ϕ(z, t)||2Cθ(t)

]
dt.

(23)

Again, as is discussed at length in the main body of the present work, the advantage of such an
amortization strategy is that it is possible to construct an unbiased approximation to the gradients of
this ELBO that scales independently with the amount of the data, the length of the time series, and
the stiffness of the underlying differential equations.

C Evidence lower bound with priors on generative parameters

In many circumstances, it will be advantageous to place priors on a subset of the parameters, θ.
Using the tools of stochastic variational inference, we can infer the posterior on these variables with
only a marginal increase to the overall computational cost and with no impact to the asymptotic
computational complexity.

For example, in all numerical studies we placed a log-normal prior on the diagonal of the diffusion
process term C−1

θ (t) and approximated the posterior using a log-normal approximate posterior, see
Appendix E for details. While not necessary, we found that doing so helped to stabilize training in
the examples we considered. The particular choice of prior-posterior pair was made to ensure that the
Kullback-Leibler (KL) divergence between the approximate posterior and the prior could be written
in closed form; see Appendix E. Given a particular choice of prior, p(θ), along with an approximate
posterior, qϕ(θ), we can amend the previously derived ELBO as,

L(ϕ) =
N/M∑
j=1

M∑
i=1

E
qϕ(θ)qϕ(z(t

(j)
i )|x(j)

1 ,...,x
(j)
M )

[
log pθ(x

(j)
i | z(t(j)i ))

]

− 1

2

∫ t
(j+1)
1

t
(j)
1

E
qϕ(θ)qϕ(z(t)|x(j)

1 ,...,x
(j)
M )

[
||rθ,ϕ(z, t)||2Cθ(t)

]
dt−DKL(qϕ(θ) || p(θ)),

(24)

where DKL(q || p) indicates the KL divergence between q and p.

Consider a reparametrization to the latent state as z(t) = T (t, ϵ, ϕ) where ϵ ∼ p(ϵ) =⇒ z(t) ∼
qϕ(z(t) | x(j)

1 , x
(j)
2 , . . . , x

(j)
M ). Also consider a reparametrization to the approximate posterior for the
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generative variables, θ = V (ν, ϕ) where ν ∼ p(ν) =⇒ θ ∼ qϕ(θ). Then, building on Lemma 1,
we can arrive at an unbiased estimate for the gradient of the modified ELBO which inherits all the
properties discussed with the original approximation:

∇ϕL(ϕ) ≈
N

R

M∑
i=1

R∑
k=1

∇ϕ log pV (ν(k),ϕ)(x
(j)
i | T (t(j)i , ϵ(k), ϕ))

− (t
(j+1)
1 − t

(j)
1 )

N

2R

R∑
k=1

∇ϕ||rV (ν(k),ϕ),ϕ(T (t
(k), ϵ(k), ϕ), t(k))||2C

V (ν(k),ϕ)
(t)

−DKL(qϕ(θ) || p(θ)).

(25)

where each t(k) ∼ U(t(j)1 , t
(j+1)
1 ), each ϵ(k) ∼ N (0, I), and each ν(k) ∼ p(ν).

D Detailed description of recognition network

This section details the deep kernel based encoder we used in all numerical studies. We found this
particular encoding architecture to be useful for our purposes because it is interpretable and stable in
training. With this being said, any encoder which can transform a batch of observations down to a
reduced dimension latent state can be used in combination with Lemma 1 to arrive at an unbiased
estimate for the gradient of the ELBO which retains all the properties discussed in the main body of
this work.

Given a dataset, D = {(ti, xi)}Ni=1, recall that the first step in our amortization strategy is to split the
dataset into N/M non-overlapping partitions,

original indexing: [t1, t2, . . . ,tM , tM+1, . . . ,tN ]

reindexed dataset: [t
(1)
1 ,t

(1)
2 , . . . ,t

(1)
M ,t

(2)
1 , . . . , t

(N/M)
M ]

Recall that we would like to approximate the latent state over each partition using only the M

observations in each partition, qϕ(z(t) | x(j)
1 , x

(j)
2 , . . . , x

(j)
M ) ≈ p(z(t) | D) for t ∈ [t

(j)
1 , t

(j+1)
1 ].

Going forward we will drop writing the superscript as we will be only working on a single partition,
(t1, x1), (t2, x2), . . . (tM , xM ). The user first selects how many snapshots into the future they would
like to use to estimate the latent state at the present time, K; in our own studies we found choosing
K ∈ [1, 5] worked well for the problems we considered.

Given some encoding network, ENCϕ, we compute:

hi = ENCϕ(xi, xi+1, . . . , xi+K). (26)

where hi ∈ R2d with d < D. We will describe the particular architecture design for ENCϕ in the
context of each numerical study in Appendix G. We note that for our approach, it is often important
to use at least a small number of neighbours (i.e. K > 0) when estimating the latent state because we
are limited to approximating MGPs over the latent state.

To explain this point more clearly, let us consider the example of inferring a latent SDE using video
of a pendulum as we did in Section 4.4. If we choose a single frame near the center, we have no way
of knowing from that frame alone if the pendulum is currently swinging left or right. In other words,
if we were to build an encoder which takes in one single frame, the encoder should predict that the
posterior given that single frame is multimodal. As our approach only allows for one to approximate
the latent state using MGPs, this is not an option. Allowing the encoder to take in a few frames at a
time remedies this issue. We also note that previous works for inferring latent differential equations
made this same choice [1, 11, 12, 17].

Recall that we need to approximate the latent state at any time over the window of observations in the
partition, t ∈ [t

(j)
1 , t

(j+1)
1 ]. To accomplish this we effectively interpolate between encodings using a

deep kernel [36]. Letting,

H =


hT
1

hT
2
...

hT
M

 , (27)
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where H ∈ RM×2d and tnode = [ti, t1, . . . , tM ], we construct the encoder for the mean and diagonal
of the covariance over the latent state as,[

mϕ(t)
T logSϕ(t)

T
]
= kϕ(t, tnode)

T (kϕ(tnode, tnode)
−1 + σ2

nI)
−1H. (28)

Here we note that the right hand side of (28) is a row vector of length 2d. We use the notation[
mϕ(t)

T logSϕ(t)
T
]

to indicate that mϕ(t) is given by the first d elements of this vector and
logSϕ(t) is given by the next d elements. Here kϕ is a so-called deep kernel and kϕ(t, tnode) ∈ RM

and kϕ(tnode, tnode) ∈ RM×M . In addition σn ∈ R+ is tuned as a part of the optimization procedure.
While many options for the base kernel are possible, we made use of a squared exponential kernel,

kϕ(t, t∗) = σf exp

(
−||DKϕ(t)− DKϕ(t∗)||2

2ℓ2

)
, (29)

where σf , ℓ ∈ R+ are positive constants tuned as a part of the optimization procedure and DKϕ

is a neural network whose architecture we will describe in the context of the numerical studies.
While the base kernel is stationary, the neural networks allow for the encoder to infer non-stationary
relationships [36]. It is worth noting that without this deep-kernel our approach struggled to achieve
good validation accuracy on the datasets we considered.

Advantages of this encoder design are that it can easily take in varying amounts of data, it is
interpretable because [mϕ(ti)

T logSϕ(ti)
T ] ≈ hT

i , and it is cheap to compute so long as M is
relatively small because evaluations of ENCϕ can be performed in parallel. Particular choices for
ENCϕ and DKϕ are described in context in Appendix G.

E Approximate posterior on diffusion term

This section summarizes the log-normal parameterization we used to approximate the posterior over
the diagonal drift function terms in the main body of the paper. First, we note that in the loss function
we only require access to the product, Cθ(t)

−1 = Lθ(t)ΣLθ(t)
T so, rather than parametrizing Lθ on

its own, we parametrize C−1
θ .

Specifically we parametrize Cθ(t)
−1 = diag(θ), where θ ∈ Rd. The prior is defined as,

p(θ) =

d∏
i=1

LN (θi | µ̃i, σ̃
2
i ). (30)

We parametrize the approximate posterior as,

qϕ(θ) =

d∏
i=1

LN (θi | µi, σ
2
i ), (31)

where µi and σi are the variational parameters. The KL divergence between the posterior and prior is
given by,

DKL(qϕ(θ) || p(θ)) =
d∑

i=1

(log σ̃i − log σi)−
1

2

(
d−

d∑
i=1

σ2
i − (µi − µ̃i)

2

σ̃2
i

)
. (32)

F Computing resources

Experiments were performed on an Ubuntu server with a dual E5-2680 v3 with a total of 24 cores,
128GB of RAM, and an NVIDIA GeForce RTX 4090 GPU. The majority of our code is written
in PyTorch [37]. For benchmarking we made use of torchdiffeq [1], torchsde [12, 35], and
pytorch_lightning. All code is available at github.com/coursekevin/arlatentsde.

G Details on numerical studies

This section contains more details on the numerical studies including the specific architecture design
and hyperparameter selection for each experiment. For each experiment we design an encoder
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consisting of two neural networks, ENCϕ(xi, . . . , xi+K) and DKϕ(t) (see Appendix D), a decoder
DECθ(z(t)), and a model for the SDE consisting of a drift, fθ(t, z), and dispersion matrix, Lθ(t).
For all numerical studies we place a log-normal prior on the dispersion matrix and assume that the
approximate posterior is constant in time, see Appendix E. For all experiments we gradually increased
the value of the KL-divergence (both the KL-divergence due to the SDE prior and the KL-divergence
on the dispersion matrix parameters) from 0 to 1 using a linear schedule.

G.1 Orders of magnitude fewer function evaluations

In this section we provide a more detailed description of the numerical study in Section 4.1. As a
reminder, we tasked a neural ODE (NODE) and our approach with building a predictive model for
the Lotka-Volterra system given a dataset of time-series observations. The Lotka-Volterra equations
are a system of nonlinear ODEs usually written as,

ẋ = αx− βxy,

ẏ = δxy − γy.
(33)

In our experiment we chose α = 2/3, β = 4/3, and δ = γ = 1. We also assumed that there was
some small amount of Brownian noise given by Σ = diag(10−3, 10−3). Using the initial condition
x = 0.9 and y = 0.2, we draw a sample from the system using the default adaptive stepping scheme
in torchsde from time 0 to 65 with an initial step size of 0.1 and an absolute and relative tolerance
of 10−5. We then evaluate the solution at a frequency of 50Hz and added Gaussian noise with a
standard deviation of 0.01. We use the first 50 seconds for training and reserve the remaining 15
seconds for validation.

Both the NODE and our approach use the same model for the gradient field and drift function
respectively, see Figure 6a. The encoder and deep kernel architecture are provided in Figures 6b
and 6c respectively. As mentioned in the main body of the paper, we set the decoder to be the identity
function so as to force our model to learn the dynamics in the original coordinates. We selected a
Gaussian likelihood with a constant standard deviation of 0.01.

In terms of hyperparameters we set the schedule on the KL-divergence to increase from 0 to 1 over
1000 iterations. We choose a learning rate of 10−3 with exponential learning rate decay where the
learning rate was decayed lr = γlr every iteration with γ = exp(log(0.9)/1000) (i.e. the effective
rate of learning rate decay is lr = 0.9lr every 1000 iterations.). We used the nested Monte-Carlo
approximation described in Equation (10) with R = 1, S = 10, and M = 256. In terms of kernel
parameters, we initialized ℓ = 10−2, σf = 1, and σn = 10−5. In terms of the diffusion term, set
µi = σi = 10−5 and µ̃i = σ̃i = 1.

G.2 Adjoint instabilities experiment

In this section, we provide some additional details of the numerical study described in Section 4.2.
Recall the parametric model for the Lorenz system in equations (11–13). As a reminder, given
time-series dataset of observations, our goal was to infer the value of the parameters, σ, β, ρ, which
were likely to have generated the data starting from an initial guess: θ0 = [σ0, β0, ρ0]. The true value
of the parameters was chosen as θ∗ = [10, 8/3, 28]. For all experiments we used the initial condition
[8,−2, 36.05] as was suggested in [10]. We generated data by solving the differential equation using
scipy’s RK4(5) initial value problem solver with a relative and absolute tolerance of 10−6 and 10−8

respectively. We generated data at a frequency of 200Hz over the time intervals [0, 1], [0, 10], [0, 50],
and [0, 100]. For each time interval we generated 5 datasets by adding independent Gaussian noise
with a variance of 1 to the data.

To arrive at an initial guess we sample from the distribution θ0 ∼ N (θ∗, (0.2θ∗)
2). For each time

series length we tasked our approach with inferring the true value of the parameters given 5 different
guesses for the initial condition (i.e. one guess / dataset). The reported gradients for our approach are
given by the average ℓ2-norm of the gradient of the ELBO with respect to the parameters σ, β, and ρ
after optimizing for 2000 iterations. For the adjoint method, we report the gradient of the function:

L(θ) = 1

3N

N∑
i=1

(xi − xθ(ti))
2 + (yi − yθ(ti))

2 + (zi − zθ(ti))
2, (34)
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Figure 6: Architecture diagrams for the drift, deep kernel, and encoder used in the Lotka-Volterra
problem are provided in Figures (a), (b), and (c) respectively. Note that we have used the shorthand
m(ti), logS(ti) to show how we have split the columns of hi in two. The value of [m(ti), logS(ti)]
only ≈ hi unless σn = 0, see Appendix D. Note the arrow from xi to m(ti) indicates a residual
connection (which was useful in this case because we are learning a SDE in the original data
coordinates).
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Figure 7: Architecture diagrams for the deep kernel and encoder used in the Lorenz system parameter
tuning problem are provided in Figures (a) and (b) respectively. Note that we have used the shorthand
m(ti), logS(ti) to show how we have split the columns of hi in two. The value of [m(ti), logS(ti)]
only ≈ hi unless σn = 0, see Appendix D. Note the arrow from xi to m(ti) indicates a residual
connection (which was useful in this case because we are learning a SDE in the original data
coordinates).
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at the starting iteration. Note we cannot provide average gradients over the entire optimization
procedure for the adjoint based method because the initial gradients are too large when the time
interval was [0, 50] or [0, 100]. The error bars are given by one standard deviation from the mean.

A description of the encoder architecture is provided in Figure 7. As was the case in the previous
experiment, we set the decoder to be the identity function and placed a log-normal prior on the
diffusion term.

In terms of hyperparameters, we choose M = 128, R = 10, and S = 100. We selected a learning
rate of 0.1 and decayed the learning rate lr = γlr every iteration with γ = exp(log(0.9)/1000). We
linearly increased the value of the KL-divergence from 0 to 1 over the course of 100 iterations. In
terms of kernel parameters we initialized σf = 1, ℓ = 10−2, and σn = 10−5. For the diffusion term,
we set µi = σi = 10−5 and µ̃i = σ̃i = 10−5.

G.3 MOCAP experiment

For this experiment we use the preprocessed dataset provided by [34].

Like in previous examples, we place a log-normal prior on the diffusion term. Like previous works
making use of the benchmark, we assume a Gaussian likelihood. We place a log-normal prior on the
variance of the likelihood. A description of the architecture is provided in Figure 8. Note that the
architecture we chose is very similar to the architecture used by [34, 12].

In terms of hyperparameters, we chose a batch size of 512. We used a linear schedule to update the
weighting on the KL-divergence from 0 and 1 over the course of 200 iterations. We make use of
the nested Monte-Carlo scheme in equation (10) with R = 10 and S = 10. We chose a learning
rate of 0.01 and decayed the learning rate each iteration according to the schedule lr = γlr with
γ = exp(log(0.9)/1000). In terms of kernel parameters, we initialize σn = 10−5, ℓ = 10−2, and
σf = 1. In terms of the prior on the diffusion term we initialize µi = σi = 10−5 and set µ̃i = σ̃i = 1.
In terms of the prior on the variance of the observations, we initialize µi = σi = 10−2 and set
µ̃i = σ̃i = 1. We considered both Softplus [12] and tanh [34] nonlinearities and found that tanh
nonlinearities provided improved validation performance. We train for 100 epochs testing validation
accuracy every 10 epochs. We report the average test accuracy after training 10 models from different
random seeds.

Previous studies tended to report mean-squared-error as, MSE ± ERROR. We report RMSE ±
NEW ERROR so that error units are consistent with the units of the original dataset. To convert MSE
to RMSE we used a first-order Taylor-series approximation,

RMSE =
√

MSE

NEW ERROR =
1

2
ERROR/RMSE

(35)

G.4 Neural SDE from video

In this section, we provide a more detailed description on the numerical study described in Section 4.4.
We generated data by simulating a nonlinear pendulum with the equations,

ẋ = p

ṗ = − sin(x),
(36)

for 30 seconds while sampling the state at a frequency of 15Hz. The architecture we used for this
experiment is provided in Figure 9.

In terms of hyperparameters, we chose a batch size of 128. We gradually increased the weighting
of the KL-divergence term using a linear schedule over the course of 1000 iterations. We used the
nested Monte-Carlo method suggested in Equation 10 and set R = 20 and S = 10. We chose a
learning rate of 0.001 and decayed the learning rate each iteration according to the schedule lr = γlr
with γ = exp(log(0.9)/1000). In terms of kernel parameters, we initialized σf = 1, σn = 10−5,
and ℓ = 10−2. We placed a log-normal prior on the diffusion term and approximated the posterior
using log-normal variational distribution. With regards to the prior on the diffusion term we initialize
µi = σi = 0.1 and set µ̃i = σ̃i = 10−5.
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Figure 8: Architecture diagrams for the encoder, decoder, deep kernel and drift function used in the
MOCAP benchmark. We used very similar architectures to [34, 12]. Here µ(t) indicates the mean of
the likelihood, pθ(x | z(t)).
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Figure 9: Architecture diagrams for the encoder, decoder, deep kernel and drift function used in the
Neural SDE from video example.
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H Numerical study on the effect of Monte-Carlo parameters

In this study we investigate the effect of varying the number of nested Monte Carlo samples on the
rate of validation RMSE convergence. To do so, we consider the problem of building a predictive
model for a four-dimensional predator-prey system. The system consists of two predators and two
prey where there is a competitive dynamic between the predators. The equations governing the
dynamics of the system are,

ẋ1 = x1 (α1 − β1y1 − γ1y2)

(
1− x1

k1

)
, (37)

ẋ2 = x2 (α2 − β2y1 − γ2y2)

(
1− x2

k2

)
, (38)

ẏ1 = y1 (−δ1 + ϵ1x1 + ξ1x2 − ν1y2) , (39)
ẏ2 = y2 (−δ2 + ϵ2x1 + ξ2x2 + ν2y1) , (40)

where αi is the grow rate of the prey xi, βi is the rate that predator y1 is consuming prey xi, γi is the
rate that predator y2 is consuming prey xi, ki is the carrying capacity for prey xi, δi is the death rate
of predator yi, ϵi is the conversion rate for predator yi from x1, ξi is the conversion rate for predator
yi from prey x2, and νi represents the competitive effects on yi caused by the other predator.

We simulated the system for 300 units of time collecting data at a frequency of 10Hz. We assume
a Gaussian noise with a standard deviation of 10−2. For all experiments we used the following
hyperparameters: a batch size of 256, 1000 warmup iterations, and a learning rate of 10−3. In terms
of kernel parameters, we initialized σf = 1, ℓ = 10−2, and σn = 10−5. For the diffusion term we
set µi = σi = 10−5 and µ̃i = σ̃i = 1. The architecture description for the neural networks used in
this example are provided in Figure 11.

Results are summarized in Figure 10 below. On this problem we find we are able to achieve a
reasonable validation accuracy for S = 10, S = 50, and S = 100; however, it is challenging to
know beforehand what gradient variance will be acceptable for a particular data set. We see that
increasing S increases the total number of function evaluations. Note that the total number of parallel
evaluations of the forward model in all cases remains constant.
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Figure 10: Validation RMSE versus iteration (L) and number of function evaluations (R).
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Figure 11: Architecture diagrams for the encoder, deep kernel and drift function used in the Monte-
Carlo parameters study.
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