
OCEANBENCH: The Sea Surface Height Edition - Supplementary Material

A Data Challenges

In this section, we highlight some details that were omitted in section 4.4. This includes details about
the simulation type, the data structures, and the training/evaluation periods.

A.1 OSSE NADIR

The reference simulation is the NATL60 simulation based on the NEMO model [5]. This particular
simulation was run over an entire year without any tidal forcing. The simulation provides the outputs
of SSH, SST, sea surface salinity (SSS) and the u,v velocities every 1 hour. For the purposes of this
data challenge, the spatial domain is over the Gulfstream with a spatial domain of [�65�,�55�]
longitude and [33�, 43�] latitude. The resolution of the original simulation is 1/60� resolution with
hourly snapshots, and we consider a daily downsampled trajectory at 1/20� for the data challenge
which results in a 365x200x200 spatio-temporal grid. This simulation resolves finescale dynamical
processes (⇠15km) which makes it a good test bed for creating an OSSE environment for mapping.
The SSH observations include simulations of ocean satellite NADIR tracks. In particular, they are
simulations of Topex-Poseidon, Jason 1, Geosat Follow-On, and Envisat. There is no observation
error considered within the challenge. We use a the entire period from 2012-10-10 until 2013-09-30.
A training period is only from 2013-01-02 to 2013-09-30 where the users can use the reference
simulation as well as all available simulated observations. The evaluation period is from 2012-10-22
to 2012-12-02 (i.e. 41 days) which is considered decorrelated from the training period. During the
evaluation period, the user cannot use the reference NATL60 simulation but they can use all available
simulated observations. There is also a spin-up period allowance from 2012-10-01 where the user
can also use all available simulated observations.

A.2 OSSE SWOT & OSSE SST

For the OSSE SWOT and OSSE SST experiments, the reference simulation, domain, and evaluation
period is the same as the OSSE NADIR experiment. However, the OSSE SWOT includes simulated
observations of the novel KaRIN sensor recently deployed during the SWOT mission, the pseudo-
observations were generated using the SWOT simulator [51]. This OSSE SST experiment allows the
users to utilize the full fields of SST as inputs to help reconstruct the SSH field in conjunction with
the NADIR and SWOT SSH observation. Because the SST comes from the same NATL60 simulation,
the geometry characteristics SST and SSH are exactly the same.

A.3 OSE NADIR

The OSE NADIR experiment only uses real observations aggregated from different altimeters. These
SSH observations include observations from the SARAL/Altika, Jason 2, Jason 3, Sentinel 3A,
Haiyang-2A and Cryosat-2 altimeters. The Cryosat-2 altimeter is used as the independent evaluation
track used to assess the performance of the reconstructed SSH field.

A.4 Results

We use OceanBench to generate maps of relevant quantities from the 4DVarNet method [14, 44].
Figure 4 showcases some demo maps for some key physical variables outlined in section B. We
showcase the 4DVarNet method because it is the SOTA method that was applied to each of the data
challenges. We can see that the addition of more information, i.e. NADIR -> SWOT -> SST, results
in maps look more similar to the NEMO simulation in the OSSE challenges. It also produces sensible
maps for the OSE challenge as well.

OceanBench also generated figure 5 which shows plots of the PSD and PSD scores of SSH for the
different challenges. Again, as we increase the efficacy of the observations via SWOT and allow for
more external factors like the SST, we get an improvement in the isotropic and spacetime PSD scores.
In addition, we see that the PSD plots for the OSE task look very similar to the OSE challenges.

Lastly, we used OceanBench to generate a leaderboard of metrics for a diverse set of algorithms
where the maps were available online. Table 3 displays all of the key metrics outlined in section C
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including the normalized RMSE and various spectral scores which are appropriate for the challenge.
We see that as the complexity of the method increases, the metrics improve. In addition, the methods
that involve end-to-end learning perform the best overall, i.e. 4DVarNet.

Task OSSE Task OSSE Task OSSE Task OSE
Nadir Nadir + SWOT Nadir + SST Nadir

(a) (b) (c) (d)
Figure 4: Reconstructed quantities by the 4dVarNet method for each of the four tasks. Each row
showcases the following physical variables found in appendix B: (a) Sea Surface Height, (b) Kinetic
Energy, (c) Relative Vorticity, and (d) Strain. Each column showcase the reconstructed from the tasks
(a) OSSE using only Nadir tracks: (b) OSSE using Nadir tracks and SWOT swath, (c) Multimodal
using Nadir tracks and sea surface temperature, and (d) Reconstruction using real nadir altimetry
tracks.

A.5 Datasets

In Table 4, we showcase all of the available datasets in our5 for the challenges listed in the above
section. The license for the datasets listed in the registry are under the CCA 4.0 International License.

5Available at: OceanBench Data Registry
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Table 3: This table showcases all of the summary statistics for some methods for each of the data
challenges listed in section 4.4 and A. The summary statistics shown are the normalized RMSE and
the effective resolution in the spectral domain. The spectral metrics for the effective resolution that
were outlined in section C are: i) �a is the spatial score for the alongtrack PSD score, ii) �r is the
spatial score for the isotropic PSD, iii) �x is the spatial score for space-time PSD score, and iv) �t is
the temporal score for the space-time PSD score.

Experiment Algorithm nRMSE Score Effective Resolution
�a [km] �r [km] �x [km] �t [days]

OSSE NADIR OI 0.92 - 123 174 10.8
OSSE NADIR MIOST 0.93 - 100 157 10.1
OSSE NADIR BFNQG 0.93 - 88 139 10.4
OSSE NADIR 4DVarNet 0.94 - 65 117 7.7
OSSE SWOT OI 0.92 - 106 139 11.7
OSSE SWOT MIOST 0.94 - 88 131 10.1
OSSE SWOT BFNQG 0.94 - 64 118 36.5
OSSE SWOT 4DVarNet 0.96 - 47 77 5.6
OSSE SST Musti 0.95 - 46 138 4.1
OSSE SST 4DVarNet 0.96 - 46 87 3.7
OSE NADIR OI 0.88 151 - - -
OSE NADIR MIOST 0.90 135 - - -
OSE NADIR BFNQG 0.88 122 - - -
OSE NADIR ConvLSTM 0.89 113 - - -
OSE NADIR 4DVarNet 0.91 98 - - -
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B Physical Variables

As alluded to in the main body of the paper, we have access to many physical quantities which can
be derived from sea surface height. This gives us a way to analyze how effective and trustworthy
are our reconstructions. Many machine learning methods are unconstrained so they may provide
solutions that are physically inconsistent and visualizing the field is a very easy eye test to assess the
validity. In addition to post analysis, one could include some of these derived quantities maybe useful
as additional inputs to the system and/or constraints to the loss function. Recall the spatiotemporal
coordinates from equation 1, we use the same coordinates for the subsequent physical quantities. Sea
Surface Height is the deviation of the height of the ocean surface from the geoid of the Earth. We
can define it as:

Sea Surface Height [m] : ⌘ = ⌘(x, t) ⌦⇥ T ! R (9)
This quantity is the actual value that is given from the satellite altimeters and is presented in the
products for SSH maps [95]. An example can be seen in the first row of figure 4.

Sea Surface Anomaly is the anomaly wrt to the spatial mean which is defined by
Sea Level Anomaly [m] : ⌘̄ = ⌘(x, t)� ⌘̄(t) ⌦⇥ T ! R (10)

where ⌘̄(t) is the spatial average of the field at each time step. An example can be seen in the first
row of figure 2.

Another important quantity is the geostrophic velocities in the zonal and meridional directions. This
is given by

Zonal Velocity[ms�2] : u = �
g

f0

@⌘

@y
⌦⇥ T ! R (11)

Meridional Velocity[ms�2] : v =
g

f0

@⌘

@x
⌦⇥ T ! R (12)

where g is the gravitational constant and f0 is the mean Coriolis parameter. These quantities are
important as they can be an related to the sea surface current. The geostrophic assumption is a very
strong assumption however it can still be an important indicator variable. The kinetic energy is a
way to summarize the (geostrophic) velocities as the total energy of the system. This is given by

KE =
1

2

�
u2 + v2

�
(13)

An example can be seen in the second row of figure 4.

Another very important quantity is the vorticity which measures the spin and rotation of a fluid. In
geophysical fluid dynamics, we use the relative vorticity which is the vorticity observed within at
rotating frame. This is given by

⇣ =
@v

@x
�

@u

@y
(14)

An example can be seen in the third row of figure 4.

We can also use the Enstrophy to summarize the relative voriticty to measure the total contribution
which is given by

E =
1

2
⇣2 (15)

The Strain is a measure of deformation of a fluid flow.

� =
p
�2
n + �2

s (16)

where �n is the shear strain (aka the shearing deformation) and �s is the normal strain (aka stretching
deformation). An example can be seen in the fourth row of figure 4.

The Okubo-Weiss Parameter is high-order quantity which is a linear combination of the strain and
the relative vorticity.

�ow = �2
n + �2

s � ⇣2 (17)

This quantity is often used as a threshold for determining the location of Eddies in sea surface height
and sea surface current fields [80, 109, 90].
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C Metrics

There are many metrics that are standard within the ML community but unconvincing for many parts
the geoscience community. Specifically, many of these standard scores do not capture the important
optimization criteria in the scientific machine learning tasks. However, there is not consensus within
domain-specific communities about the perfect metric which captures every aspect we are interested.
Therefore, we should have a variety of scores from different perspectives to really assess the pros and
cons of each method we wish to evaluate thoroughly. Below, we outline two sets of scores we use
within this framework: skill scores and spectral scores.

C.1 Skill Scores

We classify one set of metrics as skill scores. These are globally averaged metrics which tend to
operate within the real space. Some examples include the root mean squared error (RMSE), the
normalized root mean squared (nRMSE) error, and the nRMSE score. The RMSE metric can also be
calculated w.r.t. the spatial domain, temporal domain or both. For example, figure 3 showcases the
nRMSE score calculated only on the spatial domain and visualized for each time step.

RMSE : RMSE(⌘, ⌘̂) = ||⌘ � ⌘̂||2 (18)

nRMSE : nRMSE(⌘, ⌘̂) =
RMSE(⌘, ⌘̂)

||⌘||2
(19)

nRMSEscore : nRMSEscore(⌘, ⌘̂) = 1� nRMSE(⌘, ⌘̂) (20)

However, we are not limited to just the standard MSE metrics. We can easily incorporate more
higher-order statistics like the Centered Kernel Alignment (CKA) [65] or information theory metrics
like mutual information (MI) [61, 70]. In addition, we could also utilize the same metrics in the
frequency domain as is done in [96].

C.2 Spectral Scores

Another class of scores that we use in OceanBench are the spectral scores. These scores are
calculated within the spectral space via the wavenumber power spectral density (PSD). This provides
a spatial-scale-dependent metric which is useful for identifying the largest and smallest scales that
were resolved by the reconstruction map. In general, we use these to measure the expected energy at
different spatiotemporal scales and we can also construct custom score functions which gives us a
summary statistic for how well we reconstructed certain scales.

PSD : PSD(⌘) =
kmaxX

kmin

kF(⌘)k2 (21)

PSDscore : PSDscore(⌘, ⌘̂) = 1�
PSD(⌘ � ⌘̂)

PSD(⌘)
(22)

where F is the Fast Fourier Transformation (FFT). In our application, there are various ways to
construct the PSD which depend on the FFT transformation. We denote the space-time PSD as �x

which does the 2D FFT in the longitude and time direction, then takes the average over the latitude.
We denote the space-time PSD as �t which does the 2D FFT in the longitude and latitude direction,
then takes the average over the time. We denote the isotropic PSD as �r which assumes a radial
relationship in the spatial domain and then averages over the temporal domain. Lastly, we denote the
standard PSD score as �a which is the 1D FFT over a prescribed distance along the satellite track;
this is what is done for the OSE NADIR experiment. We recognize that the FFT configurations are
limited due to their global treatment of the spectral domain and we need more specialized metrics
to handle the local scales. This opens the door to new metrics that handle such cases such as the
Wavelet transformation [104].
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Task OSSE Task OSSE Task OSSE Task OSE
Nadir Nadir + SWOT Nadir + SST Nadir

(a) (b) (c) (d)
Figure 5: Power spectrum and associated scores of the 4dVarNet method for each of the four tasks.
The row display in order: (1) the isotropic PSD, (2) the spatial PSD score (using the isotropic PSD for
the first three rows and along track PSD for the last row), (3) the space-time PSD, (4) The spacetime
PSD score available only in OSSE task.
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D Use Case II: Hydra Recipes

This framework has drastically reduced the overhead for the ML researcher while also enhancing
the reprducibility and replicability of the preprocessing steps. In this section we showcase a few
examples for how one can use oceanbench in conjunction with hydra to provide recipes for some
standard processes.

D.1 Task Recipe

In this example, we showcase how we define an interpolation task for the OSE NADIR data challenge.
We need to state the list of datasets available and specify which datasets are to be using for training
and testings. We also specify the spatial region we would like to train on and the train-test period.
There are a few simple changes one could do here to extend this task provided that one has uploaded
standardized data that follows our set conventions. For example, for this interpolation task, the test
period is a complete subset of the train period but one could imagine a forecasting task whereby the
test period is at a completely different time period. Similarly, for this task, the train-test domain is the
same but we could easily change the region of interest to see how the models perform in a completely
different domain.

#@package _global_.task

outputs:
# name of data challenge

name: DC2021 OSE Gulfstream
# list of datasets and locations

data:
train: # train data list

alg: ${....data.outputs.alg}
h2g: ${....data.outputs.h2g}
j2g: ${....data.outputs.j2g}
j2n: ${....data.outputs.j2n}
j3: ${....data.outputs.j3}
s3a: ${....data.outputs.s3a}

test: # test data list

c2: ${....data.outputs.c2}
# spatial region specification

domain: {lat: [33, 43], lon: [-65, -55]}
# temporal period specification

splits: {
test: ['2017-01-01', '2017-12-31'],
train: ['2016-12-01', '2018-01-31']

}

Listing 1: This is a .yaml which showcases how we can communicate with Hydra framework to list a
predefined set of specifications for the spatial region and the temporal period. This is an interpolation
task for the OSE NADIR data challenge listed in section A.3.
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D.2 GeoProcessing Recipe

In this example, we showcase how one can pipe a sequential transformation through the hydra
framework. In this example, we open the dataset, validate the coordinates to comply to our standards,
select the region of interest, subset the data, regrid the alongtrack data to a uniform grid, and save the
data to a netcdf file. See the listing D.2 for more information.

# Target Function to initialize

_target_: "oceanbench._src.dataset.pipe"
# netcdf file to be loaded

inp: "${data_directory}/nadir_tracks.nc"
# sequential transformations to be applied

fns:
# Load Dataset

- {_target_: "xarray.open_dataset", _partial_: True}
# Validate LatLonTime Coordinates

- {_target_: "oceanbench.validate_latlon", _partial_: True}
- {_target_: "oceanbench.validate_time", _partial_: True}
# Select Specific Region (Spatial | Temporal)

- {_target_: "xarray.Dataset.sel", args: ${domain}, _partial_: True}
# Take Subset of Data

- {_target_: "oceanbench.subset", num_samples: 1500, _partial_: True}
# Regridding (AlongTrack -> Uniform Grid)

- {
_target_: "oceanbench.regrid",
target_grid: ${grid.high_res},
_partial_: True

}
# Save Dataset

- {
_target_: "xarray.Dataset.to_netcdf",
save_name: "demo.nc",
_partial_: True

}

Listing 2: This is a .yaml which showcases how we can communicate with Hydra framework to list
a predefined set of transformations to be piped through sequentiall. In this example, we showcase
some standard pre-processing strategies to be saved to another netcdf file.
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D.3 Evaluation Recipe - OSSE

In this example, we showcase how one can use hydra to do the evaluation procedure. This is the same
evaluation procedure that is used to evaluate the effectiveness of the OSSE NADIR experiment. From
code snippet D.2, we see that we choose which target function to initialize and we choose the data
directory where the .netcdf file is located. Then, we pipe some transformations for the .netcdf
file: 1) validate the spatiotemporal coordinates, 2) we select the evaluation region, 3) we regrid it
to the target get, 4) we fill in the nans with a Gauss-Seidel procedure, 5) we rescale the coordinates
to be in meters and days, and 6) we perform the isotropic power spectrum transformation to get the
effective resolution outlined in section C.

# Target Function to initialize

_target_: "oceanbench._src.dataset.pipe"
# netcdf file to be loaded

inp: "${data_directory}/ml_result.nc"
# sequential transformations to be applied

fns:
# Load Dataset

- {_target_: "xarray.open_dataset", _partial_: True}
# Validate LatLonTime Coordinates

- {_target_: "oceanbench.validate_latlon", _partial_: True}
- {_target_: "oceanbench.validate_time", _partial_: True}
# Select Specific Region (Spatial | Temporal)

- {_target_: "xarray.Dataset.sel", args: ${domain}, _partial_: True}
# Regridding (Uniform Grid -> Uniform Grid)

- {_target_: "oceanbench.regrid",
target_grid: ${grid.reference}, _partial_: True}

# Fill NANS (around the corners)

- {_target_: "oceanbench.fill_nans",
method: "gauss_seidel", _partial_: True}

# Coordinate Change (degree -> meters, ns -> days)

- {_target_: "oceanbench.latlon_deg2m", _partial_: True}
- {_target_: "oceanbench.time_rescale",

freq: 1, unit: "days", _partial_: True}
# Calculate Isotropic Power Spectrum

- {_target_: "oceanbench.power_spectrum_isotropic",
reference: ${grid.reference}, _partial_: True}

# Calculate Resolved Spatial Scale

- {_target_: "oceanbench.resolved_scale", _partial_: True}
# Save Dataset

- {_target_: "xarray.Dataset.to_netcdf",
save_name: "ml_result_psd.nc", _partial_: True}

Listing 3: This is a .yaml which showcases how we can communicate with Hydra framework to list
a predefined set of transformations to be piped through sequential. In this example, we showcase
some standard pre-processing strategies to be saved to another netcdf file.
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E Use Case III: XRPatcher

There are many usecases for the XRPatcher. For example, we can do 1D Time chunking, 2D
Spatial-Temporal Patches, or 3D Spatial-Temporal Cubes.

import xarray as xr
import torch
import itertools
from oceanbench import XRPatcher
# Easy Integration with PyTorch Datasets (and DataLoaders)

class XRTorchDataset(torch.utils.data.Dataset):
def __init__(self, batcher: XRPatcher, item_postpro=None):

self.batcher = batcher
self.postpro = item_postpro

def __getitem__(self, idx: int) -> torch.Tensor:
item = self.batcher[idx].load().values
if self.postpro:

item = self.postpro(item)
return item

def reconstruct_from_batches(
self, batches: list(torch.Tensor), **rec_kws

) -> xr.Dataset:
return self.batcher.reconstruct(

[*itertools.chain(*batches)], **rec_kws
)

def __len__(self) -> int:
return len(self.batcher)

# load demo dataset

data = xr.tutorial.load_dataset("eraint_uvz")
# Instantiate the patching logic for training

patches = dict(longitude=30, latitude=30)
train_patcher = XRPatcher(

da=data,
patches=patches,
strides=patches, # No Overlap

check_full_scan=True # check no extra dimensions

)
# Instantiate the patching logic for testing

patches = dict(longitude=30, latitude=30)
strides = dict(longitude=5, latitude=5)
test_patcher = XRPatcher(

da=data,
patches=patches,
strides=strides, # Overlap

check_full_scan=True # check no extra dimensions

)
# instantiate PyTorch DataSet

train_ds = XRTorchDataset(train_patcher, item_postpro=TrainingItem._make)
test_ds = XRTorchDataset(test_patcher, item_postpro=TrainingItem._make)
# instantiate PyTorch DataLoader

train_dl = torch.utils.data.DataLoader(train_ds, batch_size=4, shuffle=False)
test_dl = torch.utils.data.DataLoader(test_ds, batch_size=4, shuffle=False)

Listing 4: This is a snippet showcasing how we can easily integrate PyTorch Datasets within the
XRPatcher framework without much overhead. Here we define a custom PyTorch Dataset to handle
the XRPatcher. We load an arbitrary dataset with xarray, then we instantiate the XRPatcher with
some patching logic, then we instantiate the PyTorch dataset and dataloader as per usual.
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F Additional Tasks

In the main paper, we thoroughly outlined the interpolation task to showcase how OceanBench can
be used to create automated pipelines for processing and evaluation procedures. However, there are
many other additional tasks that can make use of the OceanBench features.

Denoising. A simpler problem for interpolation tasks is the denoising problem [99, 98]. The SSH
and SST measurements we obtain have inherent noise from the sensors. A key problem is to calibrate
the observations by separating the known noise patterns and the true signal. There has already been
a lot of work from the ML side ranging from amortized predictions [100] to end-to-end learning
schemes [46]. Much of this work has been facilitated by the Ocean-Data-Challenge group which
have a few data challenges related to the denoising problem. Just like OceanBench was able to create
reproducible pipelines from the SSH interpolation challenge listed in section 4.4, we also believe that
one could extend the denoising challenge in the same manner.

Forecasting. This is a special form of extrapolation whereby the temporal domain of the state variable
is sufficiently outside of the domain of the observation domain. Many previous benchmarking suites
already look at forecasting for weather [86] and climate [108]. However, in oceanography, it is also
advantageous to do forecasting for problems involving currents [91, 43] and eddies [76, 80, 90]. The
xrpatcher will work out of the box for forecasting problems and contributions can be made to
OceanBench to include some specific metrics for forecasting as were outlined in [86, 108, 10].

Proxy Variables. There are many other control variables that one could use to improve the inter-
polation or extrapolation task. We mentioned SST in section 4.4 because it is the most abundant
observations available. However, there are other important observed variables which could be useful,
e.g. Ocean colour, Bigeochemical parameters, and atmospheric variables. In many other downstream
applications, the oceanography community often uses SSH and SST as proxy variables to predict
important quantities related to the carbon uptake, e.g. SOCAT [11]. It would be straightforward to
include a specific variable (and the associated preprocessing operations) into OceanBench.

Dimension Reduction. We often have very resolution spatiotemporal fields. which poses a very
big challenge for learning due to the high correlations exhibited by spatiotemporal data and high
dimensionality. A workaround for this is to learn a latent representation which retains as much
relevant information as possible for the given task. In the ocean sciences, this is known as Reduced
Order Modeling (ROM) or more generally dimensionality reduction which has been frequently used
for adaptive meshes for physical models [117]. This could be used for pretraining fields to latent
embeddings which could be useful for downstream tasks like anomaly detection [75].

Surrogate Modeling. Physical model simulations are very expensive and ML has played a role in
learning surrogate models to descrease the computational intensity [93, 114]. We have a decently
long spatiotemporal field over a region of interest which could be used to learn a surrogate model to
mimic the dynamics of that region. This is also very useful for hybrid schemes whereby we have
parameterizations to account for processes that are missing from low resolution simulations. [17, 54,
88, 57].
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G Machine Learning Method Ontology

Although this paper does not focus on the explicit methods used for SSH interpolation, we would like
to give a readers a brief overview of some of the most popular methods in the literature.

G.1 Coordinate-Based methods

These methods learn a direct mapping between the coordinate vectors to the scalar or vector values.

yobs = f(x, t;✓) + ✏(x, t) (23)

This is better known as functa [41] which parameterizes the field directly as a model.

Functional. Optimal Interpolation (OI) is the most common method used for many of the operational
methods [95]. It is a non-parametric, functional method which is built upon covariance and precision
matrices. In the machine learning community, these methods are known as Gaussian Process [72]
and in the geostatistics community, this is known as Kriging [113].

Basis Function. This is an easy simplification to the functional by introducing parametric basis
functions. In particular, the MIOST [102] algorithm will be adopted in the new operational products
for SSH interpolation. It is a custom basis function based on Wavelet analysis which is scale-aware
and scalable.

Neural Fields. Neural fields (NerFs) are a very popular set of methods that use neural networks to
effectively learn the basis function through a composition of weights, biases and activations [62].
Furthermore, one can add physics-informed constraints to the loss function which mirror that of a
PDE [63]. In many cases, especially with many auxillary inputs, we don’t have access the PDE so
one fit a NN directly to the observations with a fully connected neural network [11].

G.2 Grid-Based Methods

In practice, we often consider the field at a specific discretized setting like a uniform grid or mesh.
This is because we typically operate on and store these fields as multi-dimensional arrays which
are only defined on a subspace of the entire continuous domain. We denote a discretized spatial
representation as ⌦g ⇢ RNs . We can simplify this notation by including the domain within the
operator. So equation 7 like so:

⌘(⌦obs, t) = H (⌘(⌦g, t), t,µ, ") (24)

In this equation, H is the observation operator that transforms the field from the full discretized
domain, ⌦g , to the observation domain, ⌦obs ⇢ RNobs .

Direct Methods. These methods take the noisy, incomplete observations and directly feed it to a
model that returns the full reconstructed field. They typically involve training a convolutional neural
network or recurrent neural network on pairs of corrupted observations to learn the reconstruction [107,
81, 59]. This has seem some sucess in applications related to SSH interpolation [9, 74, 116].

Traditional Data Assimilation. There are many traditional methods that are rooted in data assimila-
tion [21]. For example, the GLORYS [60] method propagates the physical model forwards in time
and then updates the state based on observations periodically. A simpler approach is to use a nudging
scheme coupled with a simpler physical model [55].

End-to-End Learning. These methods try to solve the problem by learning and end-to-end scheme
to solve the model inversion problem. This is very similar to implicit methods that define a cost
function to minimize instead of a minimizing the parameters of a prior model. Plug-in-Play priors are
a popular class of methods that pre-train priors on auxillary observations and then use the prior in the
inversion scheme [115]. This has seen a lot of success in SSH interpolation [14, 44, 43].
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H Limitations

H.1 Framework Limitations

While we have advertised OceanBench as a unifying framework that provides standardized processing
steps that comply with domain-expert standards, we also highlight some potential limitations that
could hinder its adoption for the wider community.

Data Serving. We provide a few datasets but we omit some of the original simulations. We found
that the original simulations are terabytes/petabytes of data which becomes infeasible for most modest
users (even with adequate CPU resources). This is very big problem and if we want to have a bigger
impact, we may need to do more close collaborations with specified platforms like the Marine Data
Store [36, 33, 34, 31, 37, 32, 35] or the Climate Data Store [25, 23, 22, 24]. Furthermore, there
are many people that will not be able to do a lot of heavy duty research which indirectly favours
institutions with adequate resources and marginalizing others. This is also problematic as those
communities tend to be the ones who need the most support from the products of such frameworks.
We hope that leaving this open-source at least ensure that the knowledge is public.

Framework Dependence. The user has to "buy-into" the hydra framework to really take advantage
of OceanBench. This adds a layer of abstraction and a new tool to learn. However, we designed the
project so that high level usage does not require in-depth knowledge of the framework. In addition,
we hope that, despite the complexity of project, users will appreciate the flexibility and extensibility
of this framework.

Lack of Metrics. We do not provide the most exhaustive list of metrics available with the ocean
community. In fact, we also believe that many of these metrics are often poor and do not effectively
assess the goodness of our reconstructions. However, we do provide a platform that will hopefully
be useful and easy to implement new and improved metrics. Furthermore, having a wide range
of metrics that are trusted across communities may help to improve the overall assessment of the
different model performances [50].

Limited ML Scope. The framework does not support nor promote any machine learning methods
and we lack any indication of comparing ML training and inference performance. However, we
argue that a benchmark framework will allow us to effectively compare whichever ML methods are
demonstratively the best which is a necessary preliminary step which offers users more flexibility in
the long-run.

Broad Oceans Application Scope. We have targeted a broad ocean-application scope of state
estimation. However, there may be more urgent applications such as maritime monitoring, object
tracking, and general ocean health. However, we feel that many downstream applications require
high-quality maps. In addition, those downstream applications tend to be very complicated and are
not always straightforward to apply ML under those instances.

Full Pipeline Transparency. We use a lot of different xarray-specific packages which have different
design principles, assumptions and implementations. This may give the users an illusion of simplicity
and transparency to real-world use. However, there are many underlying assumptions within each
of the packages that may occlude a lot of design decisions. Despite this limitation, we believe that
being transparent about the processing steps and being consistent with the evaluation procedure will
be beneficial for the ML research community.

Scalability. Scaling this to many terabytes or petabytes of data is easily the biggest limitation of the
framework. In addition, we have only showcased demonstrations for 2D+T fields which are much
less expensive than 3D+T fields.

Deployability. MLOPs has many wheels and it is not easy to integrate into existing systems. We offer
no solutions to this. However, we believe that our framework is fully transparent in the assumptions
and use cases which will facilitate some adoption into operational systems where they can further
modify it for their use cases (see the evolution of WeatherBench and ClimateBench).

Visualization Tools. We do not incorporate a high quality visualization tool that allows users to
do pre- and post-analysis at a large scale. We do provide some simple visualization steps that are
ML-relevant (see the GitHub repo) but it is very limited to ML standards. One solution is to interface
our pipeline with the source of many ocean datasets, e.g. Climate Data Store [25] or Marine Data
Store [36], then we can offset this task to them where they can offer better quality visualization tools.
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H.2 Data Challenge Limitations

We have showcased the SSH interpolation edition as a data challenge which could be helpful for
real applications. However, in section 3.3 we alluded to the greater task of general ocean state
estimation which is more pertinent to the ocean sciences yet we don’t address this directly with
our data challenges. Furthermore, we claim that the data challenges presented will help the ocean
community with using ML for SSH interpolation. Below, we outline some limitations which address
these criticisms.

Not the overall objective. We recognized that we are far away from the actual reanalysis and
forecasting goals of full state estimation. However, we argue that that is a rather ambitious challenge
which will require a lot of interdisciplinary work across communities. In the meantime while we work
towards that goal, operational centers could possibly improve their current products from ML-based
techniques would would benefit downstream applications that deal directly with SSH. Furthermore,
SSH is an important variable in describing the full ocean state. So a robust set of techniques that are
able to solve the interpolation tasks could (in principal) be used to solve extra tasks.

Small Region & Period. We only feature a small region and period over the Gulfstream which is
not representative of the different global regimes. This also does not take into account real things like
data drift which will inevitable occur in operational settings. However, this is a dynamical regime
and a well-studied area which does have some importance for specific communities and the results
obtained offer some transferability to other dynamical regimes. In addition, this area will have good
coverage due to the new SWOT mission [51] which will allow for further validation in the future.
Lastly, the area is small enough where the beginning stages for ML researchers is not overwhelmed
with problems involving scale (even though we eventually want to arrive at global schemes). We
hope to extend our challenges to more relevant scenarios [32].

Simulations versus Reanalysis. We use simulations for the OSSE experiments instead of reanalysis.
This is an open research question as it is unclear whether it’s better to pretrain models on simulated
ocean data or reanalysis ocean data. In future updates, we plan to add the reanalysis data to extend
the challenge.

Efficacy of OSSE Experiments. We alluded to the idea that the OSSE experiments may not reflect
the overarching goal of the user yet we provide more OSSE experiments than OSE experiments.
We acknowledged that it often does not coincide exactly with the OSE experiments which may
give users a false sense of accomplishment and immediate transferability. However, we try to
provide a framework where one could thoroughly experiment with the learning problem on OSSE
configurations which can facilitate transfer learning to other domain-specific tasks. We also anticipate
that new real SWOT data [51] will start to become more available which will allow us to design
better, realistic OSE experiments.

Noise Characterization. Real data has noise to content with and we do not account for that within
the SSH interpolation experiments. The true noise we see in operational settings is structured and this
would require more knowledge outside the scope of our teams expertise. A more improved challenge
would take these considerations into account. We leave this as a future challenge for the community
and we hope our platform can help facilitate this.

Uncertainty Quantitification. We prefaced the problem statement with the idea of data assimilation
which is the notion of state/parameter estimation under uncertain conditions and incomplete infor-
mation [21]. However, we have not addressed any notion of uncertainty at all throughout the paper.
Uncertainty is difficult to quantify and we don’t want to impose too many restrictions until we more
sure about the efficacy of ML for easier problems. However, to move the problem setting towards
a more realistic setting, we can start to introduce metrics and additional requirements from future
challenges, e.g. mean and standard deviation estimates or ensemble predictions.

Operational Constraints. The real use case of SSH interpolation will involve global data and/or
high-resolution data. This involves dealing with very high-dimensional spatiotemporal global state-
space. In practice, the necessity for the scalability of the method is of paramount importance.
However, there are also areas within the ML research community who are looking into many ways
we can scale up physical models [56, 85] and machine learn models for geoscience tasks [19]. We
anticipate that once a set of solutions are excepted by a community, the scalability will come later.
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