
Appendix

A Prompt Retrieval

A.1 Implementation Details

The goal of prompt retrieval is to retrieve annotated data instances that are semantically similar to
the query as in-context learning examples to improve the LLM annotator’s performance without the
need to fine-tune it. Intuitively, the selected instance-annotation pairs would serve as an illustration to
facilitate generating better and more accurate annotations for domain-specific applications.

To operationalize this idea, we follow existing studies to retrieve annotated instances that are close
to the queried instance in some embedding space that captures semantic or lexical similarities. The
design of prompt retrieval is originally described in Section 2.2. Here we provide a more detailed
description of the procedure below. Given the queried instance x, annotated data pool A, sentence
encoder model (Sentence-BERT [34]), and the number of in-context examples k, we execute the
following steps:

1. Compute the embeddings of the queried instance and instances from the annotated pool.

2. We retrieve the nearest k neighbors of the queried instance x, denoted as x1, x2, ..., xk, from
A according to a pre-defined similarity metric (e.g., pair-wise cosine distance) measured in the
embedding space.

3. The selected neighboring annotated instances are sorted from high similarity to low similarity.

4. The k instances are concatenated with their annotations to form the in-context examples, which
are then used to construct the prompt for the queried instance to generate annotation from the
LLM annotator.

A.2 Embedding Models

Our proposed framework is flexible with different embedding models. We choose to use Sentence-
BERT in our implementation because it is a general-purpose sentence encoding model that can
be employed in different tasks from diverse domains without requiring task-specific fine-tuning.
Although encoders fined-tuned on domain-specific tasks would potentially further improve the
performance by making the prompt retrieval more effective, it would require more in-domain
annotated data, which conflicts with our objective of designing a cost-effective adaptation framework.

A.3 Hyperparameters

We have summarized additional hyperparameters related to prompt retrieval in Table 8.

Table 8: Hyperparameters used in prompt retrieval
Hyperparameters Values

Sentence encoder model sentence-transformers/all-mpnet-base-v2
Similarity metric cosine similarity
Pooling Method mean pooling

Dimension of embeddings 768
Number of clusters annotation budget at a specific iteration

Number of neighbors 50
Number of retrieved examples 5

Size of unlabeled data pool 3000
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B Exploration-Exploitation Query Strategy

B.1 Uncertainty Score

For the tasks of natural language generation, the probability of the entire sequence, s, is the product of
the conditional probabilities of new (next) tokens given past tokens, whose resulting log-probability
is log p(s|x) =

P
n

i=1 log p(si|s<i), where si is the i-th output token and s<i denotes the set of
previous tokens. In this work, we define the uncertainty score C by using the geometric mean of the
token-level log-probabilities: C = 1

n

P
n

i=1 log p(si|s<i). Since the target LM is an offline model
with complete white-box access to its token-level log-probability, the uncertainty score can be easily
calculated during model inference.

B.2 Redundancy Reduction

The proposed EEQ strategy aims to reduce both intra-iteration and inter-iteration redundancy. Typi-
cally, uncertainty-based methods acquire similar samples within an iteration, known as intra-iteration
redundancy, while diversity-based approaches acquire similar samples across iterations, known as
inter-iteration redundancy. Existing hybrid methods try to avoid intra- and inter-iteration redundancies
by combining diversity and uncertainty sampling [51]. Still, they may suffer from these redundancies
due to unifying the uncertainty and diversity objectives into a single query function, which tends to
prioritize one objective over the other.

Our EEQ strategy is an independent two-step selection by first executing the diversity sampling and
then the uncertainty sampling. In the first step, we select a subset of an unlabeled data pool consisting
of diverse data points in the embedding space. In the second step, we acquire high-uncertainty data
points (the ones that are predicted with low confidence by the current model) from the subset.

C Additional Experiment Results

C.1 Detailed Main Results

We provide a detailed version of our main results in Figure 4 and Figure 5 (main paper), where the
mean value and standard deviation among the three trials are reported. We also add more comparisons
including 2⇥ human annotations and 4⇥ human annotations in Table 9.

Table 9: Detailed main results about comparisons between our methods on various cases.
Method Number of Annotation Dataset

Human GPT-3.5 FPB Headline PubMedQA MedQA

1⇥ Human 200 0 38.74 ± 2.23 65.76 ± 1.33 65.28 ± 1.51 48.77 ± 2.42
2⇥ Human 400 0 40.23 ± 1.99 69.77 ± 1.16 67.64 ± 1.18 52.53 ± 2.00
3⇥ Human 600 0 43.16 ± 1.31 74.13 ± 0.91 70.15 ± 1.11 58.31 ± 1.98
4⇥ Human 800 0 47.32 ± 1.30 77.59 ± 0.85 72.66 ± 0.83 72.49 ± 1.67
5⇥ Human 1000 0 49.24 ± 1.16 81.92 ± 0.71 75.08 ± 0.97 80.23 ± 1.57
All GPT-3.5 0 1000 39.53 ± 1.21 72.79 ± 0.83 66.87 ± 1.07 48.03 ± 1.90

IMFL (ours) 200 800 47.88 ± 0.98 81.09 ± 0.58 73.76 ± 0.95 67.98 ± 1.45

C.2 Effect of Model Size

Fig. 6 shows performance with varying sizes of language models, i.e., dolly-v2-3b 1, dolly-v2-7b
2 and dolly-v2-12b

3 on FPB, Headline, PubMedQA, and MedQA datasets. In general, the
performance is improved as the model size increases but the range of improvement is not significant.
The performance gap between dolly-v2-3b and dolly-v2-7b is slightly larger than the gap

1https://huggingface.co/databricks/dolly-v2-3b
2https://huggingface.co/databricks/dolly-v2-7b
3https://huggingface.co/databricks/dolly-v2-12b
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between dolly-v2-7b and dolly-v2-12b. The minimum/average/maximum increment from 3b to
12b is 1.66 (PubMedQA), 2.72, and 5.23 (MedQA).

As Databricks claimed, dolly-v2-12b is not a state-of-the-art model but does exhibit surprisingly
high-quality instruction following behavior not characteristic of the foundation model on which it
is based. Our target is to build a cost-effective multi-fidelity learning framework that allows us to
develop smaller and faster domain-specific models for real-world production. As a result, we prefer to
use a smaller version of the based model which shows competitive performance as the larger one but
significantly reduces the computational costs, e.g., fine-tuning, inference, and hardware requirements.

Figure 6: Comparisons of various models (dolly-v2-3b, dolly-v2-7b and dolly-v2-13b) with
our multi-fidelity learning (200 human annotations + 800 GPT-3.5 annotations).

C.3 Effect of annotators (GPT-3 vs GPT-3.5 vs GPT-4)

Our framework is flexible with any LMs for annotations. We have investigated the impact of different
models by comparing GPT-3.5 with GPT-3 (see Table 6), as GPT-4’s API was not available at the
time of writing. Our observation is that GPT-3.5 provides better annotation quality but at the cost of
a (slightly) higher price. Per the reviewer’s request, we have added a comparison of the annotation
quality of GPT-3.5 and GPT-4 and summarized the results in the following tables. GPT-4 annotator
shows better accuracy but the price is much higher than GPT-3.5 and GPT-3. We will add them to the
updated version.

Table 10: A comparison of annotation accuracy by GPT-3, GPT-3.5, and GPT-4 in zero/few-shot
learning.

GPT-3 Annotation GPT-3.5 Annotation GPT-4 Annotation

retrieval 5-shot 0-shot retrieval 5-shot 0-shot retrieval 5-shot 0-shot

Headline 75.59 72.51 70.25 79.40 76.15 73.31 80.13 78.34 77.20
MedQA 51.42 44.89 42.03 59.45 53.57 50.82 82.67 81.38 78.87

C.4 Budget setting

In our experiments, we select a default annotation budget of 1000 based on the following consid-
erations: (1) Computational Costs: Using a larger annotation budget would result in an increasing
amount of annotation and computational costs for both our experiments and practical deployment.
An annotated budget of  1000 is a typical setting used by many prior works [11, 50, 36, 28] that
consider the low-resource setting. (2) Dataset Annotation Constraints: The human annotation budget
for our experiments is also limited by the availability of annotated domain-specific datasets. For
example, PubMedQA only has 1000 expert-annotated QA instances [18]. In general, the authors
believe an annotation budget of 1000 is practically meaningful for NLP tasks in specialized domains
like medicine and finance. Such experimental design choices should not affect the validity of our
findings.
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C.5 Discussions of Trade-off between Quality and Cost

It is essential to determine the desired level of annotation quality for the specific task at hand.
Our results suggest that although more expensive options like GPT-4 often show higher annotation
accuracy, the performance gap between it and other cheaper options, e.g., GPT-3 or GPT-3.5, varies
across different tasks. For instance, on the Headline dataset, GPT-3.5 offers a similar annotation
accuracy as GPT-4 (79.4 vs 80.13) while being 20x cheaper ($0.0015 per 1k tokens vs $0.03 per 1k
tokens), which makes it the better choice on this task. Additionally, the selection of LM annotation
depends on budget constraints. If given a very limited budget, the expensive option may not be a valid
option as it cannot provide a sufficient quantity of annotations. In practice, we recommend running
a small-scale pilot study on the task at hand to compare the trade-offs of different LM annotations
by defining some simple proxy metrics before performing large-scale annotation and fine-tuning.
In general, it is challenging to choose the optimal annotation LM without defining some quantitive
measures of the “value for money”, which, as mentioned in our discussion section, is still an open
research problem since modeling and optimizing such cost in real-world settings involves many
complex factors, e.g., task complexity, desired label quality, and available resources.

D Additional Experiment Details

D.1 Dataset Details

Four datasets from financial and medical domains are introduced below. For each data, we use the
standard train/test split available from the HuggingFace/Github sources. For each dataset, we use
the test data (available publicly) for evaluation (FPB, Headline, and MedQA). Otherwise, we follow
prior work [18] and use the dev./valid data for evaluation (PubMedQA). We evaluate the methods
by (average) F-1 score for financial datasets following the exact setting of BloombergGPT [46] and
accuracy for medical datasets, exactly matching the metrics used in [38, 32].

• FPB (Financial Domain) 4: The Financial Phrasebank Dataset [29] includes a sentiment classi-
fication task on sentences from financial news. Any news that could benefit/hurt an investor is
considered positive/negative and neutral otherwise. We report the F-1 score as the evaluation
metric.

• Headline (Financial Domain) 5: The News Headline Classification [40] is a binary classification
task for predicting whether a news headline in the gold commodity domain includes certain
information. This human-annotated dataset contains English news headlines about “gold”. Each
news article carries a subset of the 9 tags: “price or not”, “price up”, “price down”, “price stable”,
“past price”, “future price”, “past general”, “future general”, “asset comparison”. We report the
average weighted F1 score across all categories.

• MedQA (Medical Domain) 6: The MedQA dataset [17] consists of US Medical License Exam
(USMLE) style questions. These questions are obtained with a choice of 4 or 5 possible answers
from the National Medical Board Examination in the USA, which are used to evaluate human
doctors’ professional knowledge and ability to make clinical decisions. These exams cover various
questions and generally require a deep understanding of related medical concepts learned from
medical textbooks to answer. We consider the 4-option version in our experiment.

• PubMedQA (Medical Domain) 7: PubMedQA [18] is a biomedical QA dataset collected from
PubMed abstracts. The task of PubMedQA is to answer research questions with yes/no/maybe
provided with the corresponding abstracts. PubMedQA has 1k expert-annotated, 61.2k unlabeled,
and 211.3k artificially generated QA instances.

We have summarized the additional statistics in Table 11, with the average, minimum, and maximum
sentence length (in tokens):

4https://huggingface.co/datasets/financial_phrasebank
5https://www.kaggle.com/datasets/daittan/gold-commodity-news-and-dimensions
6https://github.com/jind11/MedQA
7https://huggingface.co/datasets/pubmed_qa
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Table 11: Statistics of datasets: average, minimum, and maximum sentence length.
Sentence length FPB Headline MedQA PubMedQA

Average 28.16 12.98 167.29 20
Minimum 2 2 17 6
Maximum 148 39 551 50

D.2 Experiment Setup Details

Variable batch size According to our budget decay scheme, the total budget (200 human annota-
tions + 800 GPT-3.5 annotations) allocated for human annotation is 100, 50, 25, 13 (rounded up from
12.5), and 12 (rounded up from 6.5 plus 5 in residual), for rounds 1 to 5 respectively. In contrast,
the budget allocated for GPT-3.5 annotation remains constant at 160 for each round. Therefore, the
combined budget for both human and GPT3.5 annotation gradually increases to reach a cumulative
budget of [260, 470, 655, 828, 1000] from round 1 to 5.

Fine-tuning details Our fine-tuning hyperparameters are listed in Table 12. Given the following
hyperparameter settings, LoRA [13] can fine-tune the dolly models on 8 V100 GPUs with 32 GB
RAM using bfloat-16 precision training. For our dolly-v2-3b, one fine-tuning round can be finished
in 10-15 minutes.

Table 12: Details of hyperparameters in fine-tuning process
Hyperparameters Values

learning_rate 2E-5
batch_size 64

micro_batch_size 4
gradient_accumulation_steps batch_size // micro_batch_size

num_epochs 3
weight_decay 0.0

lora_r 4
lora_alpha 16

lora_dropout 0.05
warmup_steps 100
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