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Abstract

Monte-Carlo Tree Search (MCTS) methods, such as Upper Confidence Bound ap-
plied to Trees (UCT), are instrumental to automated planning techniques. However,
UCT can be slow to explore an optimal action when it initially appears inferior to
other actions. Maximum ENtropy Tree-Search (MENTS) incorporates the maxi-
mum entropy principle into an MCTS approach, utilising Boltzmann policies to
sample actions, naturally encouraging more exploration. In this paper, we highlight
a major limitation of MENTS: optimal actions for the maximum entropy objective
do not necessarily correspond to optimal actions for the original objective. We
introduce two algorithms, Boltzmann Tree Search (BTS) and Decaying ENtropy
Tree-Search (DENTS), that address these limitations and preserve the benefits of
Boltzmann policies, such as allowing actions to be sampled faster by using the
Alias method. Our empirical analysis shows that our algorithms show consistent
high performance across several benchmark domains, including the game of Go.

1 Introduction

Planning under uncertainty is a core problem in Artificial Intelligence, commonly modelled as a
Markov Decision Process (MDP) or variant thereof. MDPs can be solved using dynamic programming
techniques to obtain an optimal policy [3]. However, computing a full optimal policy does not scale
to large state-spaces, necessitating the use of heuristic solvers [18, 4] and online, sampling-based,
planners based on Monte-Carlo Tree-Search (MCTS), such as the Upper Confidence Bound applied
to Trees (UCT) algorithm [22].

The UCT search policy is designed to minimise cumulative regret, so manages a trade-off between
exploration and exploitation. To exploit, UCT often selects the same action on successive trials,
which can result in it getting stuck in local optima. Conversely, Maximum ENtropy Tree Search
(MENTS) places a greater emphasis on exploration by combining MCTS with techniques from
maximum entropy policy optimisation [38, 16, 17]. MENTS jointly maximises cumulative rewards
and policy entropy, where a temperature parameter controls the weight of the entropy objective.
However, MENTS is sensitive to this temperature parameter, and may not converge to the reward
maximising policy or require a prohibitively low temperature to do so.

In this work, we consider scenarios where MCTS methods are used with a simulator to plan how an
agent should act. We introduce two algorithms for this scenario that address the above limitations.
First, we present Boltzmann Tree Search (BTS) which uses a Boltzmann search policy like MENTS,
but optimises for reward maximisation only. Secondly, we introduce Decaying ENtropy Tree Search
(DENTS), which adds entropy backups to BTS, but is still consistent (i.e. it converges to the reward
maximising policy in the limit).

The main contributions of this paper are: (1) Demonstrating that the maximum entropy objective used
in MENTS can be misaligned with reward maximisation, thus preventing it from converging to the
optimal policy; (2) Introducing two new algorithms, BTS and DENTS, which preserve the benefits
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of using Boltzmann search policies while being as simple to implement as UCT and MENTS, but
converge to the reward maximising policy; (3) Analysing MENTS, BTS and DENTS through the
lens of simple regret to provide theoretical convergence results; (4) Highlighting and demonstrating
that the Alias method [35, 34] can be used with stochastic action selection to improve the asymptotic
complexity of running a fixed number of trials over existing MCTS algorithms; and (5) Demonstrating
the performance improvements of Boltzmann search policies used in BTS and DENTS in benchmark
gridworld environments and the game of Go.

2 Background

2.1 Markov Decision Processes

We define a (finite-horizon) MDP as a tuple M = (S,A, p, R,H), where S is the set of states;
A is the set of actions; p : S × A × S → [0, 1] is the transition function where p(s′|s, a, ) is the
probability of moving to state s′ given that action a was taken in state s; R : S × A → R is the
reward function; and H ∈ N is the finite horizon. Let Succ(s, a) denote the set of successor states of
(s, a), i.e. Succ(s, a) = {s′ ∈ S | p(s′|s, a) > 0}.
A policy π maps a state and timestep to a distribution over actions, and we denote the probability of
executing a at state s and timestep t as π(a|s, t). Let st denote the state after t time-steps and at the
action selected at st, according to π. The expected value V π and expected state-action value Qπ of π
are defined as:

V π(s, t) = Eπ

[
H∑
i=t

R (si, ai)
∣∣∣st = s

]
, (1)

Qπ(s, a, t) = R(s, a) + Es′∼p(·|s,a)[V π(s′, t+ 1)]. (2)
The goal is to find the optimal policy π∗ with the maximum expected reward: π∗ = argmaxπ V

π.
The optimal value functions are then defined as V ∗ = V π

∗
, Q∗ = Qπ

∗
. For an MDP, there always

exists an optimal policy π∗ which is deterministic [24].

2.2 Maximum entropy policy optimization

In planning and reinforcement learning, the agent usually aims to maximise the expected sum of
rewards. In maximum entropy policy optimisation, the objective is augmented with the expected
entropy of the policy [16, 38]. Formally, this is expressed as:

V πsft(s, t) = Eπ

[
H∑
i=t

R (si, ai) + αH (π (·|si, i))
∣∣∣st = s

]
, (3)

where α ≥ 0 is a temperature parameter, andH is the Shannon entropy function. The temperature
determines the relative importance of the entropy against the reward and thus controls the stochasticity
of the optimal policy. The conventional reward maximisation objective can be recovered by setting
α = 0.

An optimal value function for maximum entropy optimization is obtained using the soft Bellman
optimality equations [17]:

Q∗
sft(s, a, t) = R(s, a) + Es′∼p(·|s,a) [V ∗

sft(s
′, t)] , (4)

V ∗
sft(s, t) = α log

∑
a∈A

exp(Q∗
sft(s, a, t)/α), (5)

which corresponds to a standard Bellman backup, with the max replaced by a softmax, shown in
Equation (5). The optimal soft policy π∗

sft = argmaxπ V
π

sft can be computed directly [26] as follows:
π∗

sft(a|s, t) = exp((Q∗
sft(s, a, t)− V ∗

sft(s, t))/α). (6)
Note that the soft policy is always stochastic for any α > 0. Henceforth, we will use soft value to
refer to value functions indexed with ‘sft’, (optimal) soft policy to refer to policies of the form given
in Equation (6), and standard value and (optimal) standard policy for values and policies of the form
given in Section 2.1, unless it is clear from the context.

For the remainder of this paper we will drop the timestep t from policies and value functions to
simplify notation.
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2.3 Monte-Carlo tree search

MCTS methods build a search tree T using Monte-Carlo trials. Each trial is split into two phases:
starting from the root node, actions are chosen according to a search policy and states sampled from
the transition distribution until the first state not in T is reached. A new node is added to T and its
value is initialised using some function V init, often using a rollout policy to select actions until the
time horizon H is reached. In the second phase, the return for the trial is back-propagated up (or
‘backed up’) the tree to update the values of nodes in T . For a reader unfamiliar with MCTS, we refer
to [6] for a review of the MCTS literature, as many variants of MCTS exist and may vary from our
description.

Two critical choices in designing an MCTS algorithm are the search policy (which needs to balance
exploration and exploitation) and the backups (how values are updated). MCTS algorithms are often
designed to achieve consistency (i.e. convergence to the optimal action in the limit), which implies
that running more trials will increase the probability that the optimal action is recommended.

To simplify notation we assume that each node in the search tree corresponds to a unique state, so we
may represent nodes using states. Our algorithms and results do not make use of this assumption, and
generalise to when this assumption does not hold.

UCT UCT [22] applies the upper confidence bound (UCB) in its search policy to balance exploration
and exploitation. The nth trial of UCT operates as follows: let T be the current search tree and let
τ = (s0, a0, ..., ah−1, sh) denote the trajectory of the nth trial, where sh ̸∈ T or h = H . At each
node st the UCT search policy πUCT will select a random action that has not previously been selected,
otherwise, it will select the action with maximum UCB value:

πUCT(s) = max
a∈A

Q̄(s, a) + c

√
logN(s)

N(s, a)
, (7)

where, Q̄(s, a) is the current empirical Q-value estimate, N(s) (and N(s, a)) is how many times s
has been visited (and action a selected) and c is an exploration parameter. Then, sh is added to the
tree: T ← {sh} ∪ T . The backup consists of updating empirical estimates for t = h− 1, ..., 0:

Q̄(st, at)← Q̄(st, at) +
R̄(t)− Q̄(st, at)

N(st, at) + 1
, (8)

where R̄(t) = V init(sh) +
∑h−1
i=t R(si, ai), and V init(sh) =

∑H
i=hR(si, ai) if using a rollout policy.

MENTS MENTS [37] combines maximum entropy policy optimization [16, 38] with MCTS.
Algorithmically, it is similar to UCT. The two differences are: (1) the search policy follows a
stochastic Boltzmann policy, and (2) it uses soft values that are updated with dynamic programming
backups. The MENTS search policy πMENTS is given by:

πMENTS(a|s) = (1− λs)ρMENTS(a|s) +
λs
|A|

, (9)

ρMENTS(a|s) = exp

(
1

α

(
Q̂sft(s, a)− V̂sft(s)

))
(10)

where λs = min(1, ϵ/ log(e + N(s))), ϵ ∈ (0,∞) is an exploration parameter and V̂sft(s) (and
Q̂sft(s, a)) are the current soft (Q-)value estimates. The soft value of the new node is initialised
V̂sft(sh)← V init(sh) and the soft values are updated with backups for t = h− 1, ..., 0:

Q̂sft(st, at)← R(st, at) +
∑

s′∈Succ(s,a)

(
N(s′)

N(st, at)
V̂sft(s

′)

)
, (11)

V̂sft(st)← α log
∑
a∈A

exp

(
1

α
Q̂sft(st, a)

)
. (12)

Each Q̂sft(s, a) is initialised using another function Qinit
sft (s, a) (but is typically zero).
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Figure 1: An illustration of the (modified) D-chain problem, where 1 is the starting state, transitions
are deterministic and values next to states represent rewards for arriving in that state.

2.4 Simple regret

UCB [1] is frequently used in MCTS methods to minimise cumulative regret during the tree search.
Cumulative regret is most appropriate in scenarios where the actions taken during tree search have an
associated real-world cost. However, MCTS methods often use a simulator during the tree search,
where the only significant real-world cost is associated with taking the recommended action after the
tree search. In such scenarios, simple regret [7, 8] is more appropriate for analysing the performance
of algorithms, as it only considers the cost of the actions that are actually executed. Under simple
regret, algorithms are not penalised for under-exploiting during the search, thus can explore more,
which leads to better recommendations by allowing algorithms to confirm that bad actions are indeed
of lower value.

We consider the problem of MDP planning as a sequential decision problem, where for each round n:

1. the forecaster algorithm produces a search policy πn and samples a trajectory τ ∼ πn,
2. the environment returns the rewards R(st, at) for each st, at pair in τ ,
3. the forecaster algorithm produces a recommendation policy ψn,
4. if environment sends stop signal, then end, else return to step 1.

The simple regret of the forecaster on it’s nth round is then:

reg(s, ψn) = V ∗(s)− V ψ
n

(s). (13)

In MENTS the recommendation policy suggested in [37] can be written:

ψMENTS(s) = argmax
a∈A

Q̂sft(s, a). (14)

We can now formally define consistency: an algorithm is consistent if and only if its recommendation
policy ψn converges to an expected simple regret of zero: E[reg(s, ψn)] → 0 as n → ∞. Note
that because we are considering randomised algorithms, there is a distribution over the possible
recommendation policies that could have been produced. If a policy has a simple regret of zero then
it implies it is an optimal policy.

3 Limitations of prior MCTS methods

In this section we use the D-chain problem introduced in [9] (Figure 1) to highlight the limitations of
UCT and MENTS. In the D-chain problem, when an agent chooses action aL, from some state d, it
moves to an absorbing state and receives a reward of (D − d)/D. In state D, action aR corresponds
to an absorbing state with reward Rf = 1. The optimal standard policy always selects action aR.

In the 10-chain problem (D = 10), UCT will recommend action aL from state 1 (Figure 2a). UCT
requires Ω(exp(... exp(1)...)) many trials (D composed exponential functions) to recommend the
optimal policy that reaches the reward of Rf = 1 [9]. This highlights the first limitation mentioned
in Section 1: UCT quickly disregards action aR at the initial state, to exploit the reward of 0.9.

When MENTS is run on the 10-chain problem, with the help of the entropy term it quickly finds
the final reward of Rf = 1 (Figure 2a). However, consider the modified 10-chain with Rf = 1/2
instead. Repeated applications of Equations (4) and (5) for α = 1 gives the optimal soft values of
Q∗

sft(1, aR) = log(exp(1/2) +
∑8
i=0 exp(i/10)) ≈ 2.74 and Q∗

sft(1, aL) = 0.9. So in the modified
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(a) 10-chain. (b) Modified 10-chain.

Figure 2: A comparison of MENTS, DENTS and UCT when run on the (modified) 10-chain.

10-chain problem, we have Q∗
sft(1, aR) > Q∗

sft(1, aL) with α = 1, whereas Q∗(1, aR) < Q∗(1, aL).
Thus, when MENTS converges, it will recommend the wrong action with respect to the standard
objective (Figure 2b), i.e. it is not consistent. The modified 10-chain is an example of Proposition
3.1, which states that MENTS will not always converge to the standard optimal policy.
Proposition 3.1. There exists an MDPM and temperature α such that E[reg(s0, ψnMENTS)] ̸→ 0 as
n→∞. That is, MENTS is not consistent.

Proof. Proof is by example with α = 1 in the modified 10-chain (Figure 1).

We can reduce the value of α to decrease the importance of entropy in the soft objective
E [R (st, at) + αH (π (·|st))]. If α is small enough, then MENTS recommendations can converge to
the optimal standard policy (Theorem 3.2). Hence, MENTS with a low temperature can solve the
modified 10-chain problem (Figure 2b). However, in practice, a low temperature will often cause
MENTS to not sufficiently explore, as demonstrated in the original D-chain (Figure 2a).
Theorem 3.2. For any MDP M, after running n trials of the MENTS algorithm with α ≤
∆M/3H log |A|, there exists constants C, k > 0 such that: E[reg(s0, ψMENTS)] ≤ C exp(−kn),
where ∆M = min{Q∗(s, a)−Q∗(s, a′)|Q∗(s, a) ̸= Q∗(s, a′), s ∈ S, a, a′ ∈ A, t ∈ N}.

Proof outline. We can show Q̂sft(s, a)
p→ Q∗

sft(s, a) (Corollary E.12.1) similarly to Thoerem 4.2.
The bound on α is required to ensure that π∗(s0) = π∗

sft(s0).

In conclusion, similar MDPs can require vastly different temperatures for MENTS to be effective. We
discuss MENTS sensitivity to the temperature parameter further in Appendix D.2, and demonstrate
this parameter sensitivity in the Frozen Lake environment (Section 5.1) in Figure 27 in the appendix.

4 Boltzmann search

We now introduce two algorithms that utilise Boltzmann search policies similar to MENTS and admit
bounded simple regrets that converge to zero without restrictive constraints on parameters. Thus,
they do not suffer from sensitivity to parameter selection that MENTS does. Both algorithms use
action selection and value backups that are easy to implement and use. We designed these algorithms
with consistency in mind, which in practice, means that if we run more trials then we (with high
probability) will recommend a better solution (note that Proposition 3.1 implies that this is not always
the case for MENTS).

4.1 Boltzmann Tree Search

Our first approach, put simply, replaces the use of soft values in MENTS with Bellman values. We
call this algorithm Boltzmann Tree Search (BTS). BTS promotes exploration through the stochastic
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Boltzmann search policy, like MENTS, while using backups that optimise for the standard objective,
like UCT. The search policy πBTS and backups for the nth trial are given by:

πBTS(a|s) = (1− λs)ρBTS(a|s) +
λs
|A|

, (15)

ρBTS(a|s) ∝ exp

(
1

α

(
Q̂(s, a)

))
, (16)

Q̂(st, at)← R(st, at) +
∑

s′∈Succ(st,at)

(
N(s′)

N(st, at)
V̂ (s′)

)
, (17)

V̂ (st)← max
a∈A

Q̂(st, a), (18)

for t = h − 1, ..., 0, where V̂ and Q̂ are the current Bellman (Q-)value estimates, λs =
min(1, ϵ/ log(e + N(s))), ϵ ∈ (0,∞) is an exploration parameter and α is a search temperature
(unrelated to entropy). Each V̂ (s) and Q̂(s, a) are initialised using V init and Qinit functions similarly
to MENTS. The Bellman values are used for recommendations:

ψBTS(s) = argmax
a∈A

Q̂(s, a). (19)

By using Bellman backups, we can guarantee that the BTS recommendation policy converges to the
optimal standard policy for any temperature α, given enough time. In other words, BTS is consistent.
Theorem 4.1. For any MDPM, after running n trials of the BTS algorithm with a root node of
s0, there exists constants C, k > 0 such that for all ε > 0 we have E[reg(s0, ψBTS)] ≤ C exp(−kn),
and also V̂ (s0)

p→ V ∗(s0) as n→∞.

Proof outline. This result is a special case of Theorem 4.2 by setting β(m) = 0.

4.2 Decaying Entropy Tree Search

Secondly, we present Decaying ENtropy Tree Search (DENTS), which can effectively interpolate
between the MENTS and BTS algorithms. DENTS also uses the dynamic programming backups
from equations (17) and (18), but adds an entropy backup. The entropy values are weighted by a
bounded non-negative function β(N(s)) in the DENTS search policy πDENTS:

πDENTS(a|s) = (1− λs)ρDENTS(a|s) +
λs
|A|

, (20)

ρDENTS(a|s) ∝ exp

(
1

α

(
Q̂(s, a) + β(N(s))HQ(s, a)

))
, (21)

HV (st)← H(πDENTS(·|st)) +
∑
a∈A

πDENTS(a|st)HQ(st, a), (22)

HQ(st, at)←
∑

s′∈Succ(st,at)

N(s′)

N(st, at)
HV (s′), (23)

for t = h− 1, ..., 0, where HV (s) and HQ(s, a) are the entropy values of the search policy rooted
at s and (s, a) respectively, and α, λs are the same as for BTS, as described in Section 4.1. Initial
values are the same as Section 4.1, and the entropy values are initialised to zero. In DENTS we
can view Q̂(s, a) + β(N(s))HQ(s, a) as a soft value for (s, a). Hence, by setting β(m) = α, the
DENTS search will mimic the MENTS search (demonstrated in Appendix D.4), and if β(m) = 0
then the algorithm reduces to the BTS algorithm. By using a decaying function for β we amplify
values using entropy as an exploration bonus early in the search while allowing for more exploitation
later. Recommendations still use Bellman values:

ψDENTS(s) = argmax
a∈A

Q̂(s, a). (24)

Because the recommendation policy ψDENTS uses the Bellman values, we can guarantee that it will
converge to the optimal standard policy, and is consistent for any β.
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Theorem 4.2. For any MDPM, after running n trials of the DENTS algorithm with a root node of
s0, if β is a bounded function, then there exists constants C, k > 0 such that for all ε > 0 we have
E[reg(s0, ψDENTS)] ≤ C exp(−kn), and also V̂ (s0)

p→ V ∗(s0) as n→∞.

Proof outline. Let 0 < η < πDENTS(a|s) for all s, a, which exists because exp(·) > 0
and 1/|A| > 0 in Equation 20 (Lemma E.1), which can be used with Hoeffding bounds to
show for appropriate constants and any event E that {Pr(E) ≤ C0 exp(−k0ε2N(st))} iff
{Pr(E) ≤ C1 exp(−k1ε2N(st, at))} iff {Pr(E) ≤ C2 exp(−k2ε2N(st+1))}. We can then
show Pr(|Q̂(s0, a) − Q∗(s0, a)| > ε) < C3 exp

(
−k3ε2n

)
by induction, where the base case

V̂ (sH+1) = V ∗(sH+1) = 0 holds vacuously (Lemmas E.10, E.16 and Theorem E.17). Let
∆M be a small constant (Equation (122)) such that ∀s, a.|Q̂(s0, a) − Q∗(s0, a)| ≤ ∆M/2 =⇒
argmaxa Q̂(s, a) = argmaxaQ

∗(s, a). Setting ε = ∆M/2 gives a bound on Pr(ψDENTS ̸= π∗),
which can then be used in the definition of simple regret to give the result.

4.3 Using the Alias method

The Alias method [35, 34] can be used to sample from a categorical distribution with m categories
in O(1) time, with a preprocessing step of O(m) time. Given any stochastic search policy, we can
sample actions in amortised O(1) time, by computing an alias table every |A| visits to a node, and
then sampling from that table. Note that when using the Alias method we are making a trade off
between using the most up to date policy and the speed of sampling actions.

In Appendix C.1 we discuss this idea in more detail, and give an informal analysis of the complexity
to run n trials. BTS, DENTS and MENTS can run n trials in O(n(H log(|A|) + |A|)) time when
using the Alias method, as opposed to the typical complexity of O(nH|A|).

4.4 Limitations and benefits

The main limitations of BTS and DENTS are as follows: (1) the DENTS decay function β can be non-
trivial to set and tune; (2) the focus on simple regret and exploration means they are not appropriate to
use when actions taken during the tree search/planning phase have a real-world cost; (3) the backups
implemented directly as presented above are computationally more costly than computing the average
returns that UCT uses; (4) when it is desirable for an agent to follow the maximum entropy policy,
then MENTS would be preferable, for example if the agent needs to explore to learn and discover an
unknown environment.

The main benefits of using a stochastic policy for action selection are: (1) they allow the Alias method
(Section 4.3) to be used to speed up trials; (2) they naturally encourage exploration as actions are
sampled randomly, which is useful for discovering sparse or delayed rewards and for confirming that
actions with low values do in fact have a low value; and (3) the entropy of a stochastic policy can
be computed and used as an exploration bonus. In Appendix C.3 we summarise and compare the
differences between the algorithms considered in this work in more detail.

5 Results

This section compares the proposed BTS and DENTS against MENTS and UCT on a set of goal-based
MDPs and in the game of Go. For additional baselines, we also compare with the RENTS and TENTS
algorithms [10], which use relative and Tsalis entropy in place of Shannon entropy respectively, and
the H-MCTS algorithm [20] which combines UCT and Sequential Halving.

5.1 Gridworlds

To evaluate an algorithm with search tree T , we complete the partial recommendation policy ψalg as
follows:

ψ(a|s) =


1 if s ∈ T and a = ψalg(s),

0 if s ∈ T and a ̸= ψalg(s),
1

|A| otherwise.
(25)
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(a) 8x12 Frozen Lake. (b) 6x6 Sailing Problem.

Figure 3: Results for gridworld environments. Further results are given in Appendix D.3.

We sample a number of trajectories from ψ, and take the average return to estimate V ψ. Although
we are evaluating the algorithms in an offline planning setting, it still indicates how the algorithms
perform in an online setting where we interleave planning in simulation with letting the agent act.

5.1.1 Domains

To validate our approach, we use the Frozen Lake environment [5], and the Sailing Problem [28],
commonly used to evaluate tree search algorithms [28, 22, 33, 13]. We chose these environments to
compare our algorithms in a domain with a sparse and dense reward respectively.

The (Deterministic) Frozen Lake is a grid world environment with one goal state. The agent can
move in any cardinal direction at each time step, and walking into a wall leaves the agent in the same
location. Trap states exist where the agent falls into a hole and the trial ends. If the agent arrives at
the goal state after t timesteps, then a reward of 0.99t is received.

The Sailing Problem is a grid world environment with one goal state, at the opposite corner to the
starting location of the agent. The agent has 8 different actions to travel each of the 8 adjacent states.
In each state, the wind is blowing in a given direction and will stochastically change after every
transition. The agent cannot sail directly into the wind. The cost of each action depends on the tack,
the angle between the direction of the agent’s travel and the wind.

5.1.2 Results

We used an 8x12 Frozen Lake environment and a 6x6 Sailing Problem for evaluation, more environ-
ment details are given in Appendix D.1. Parameters were selected using a hyper-parameter search
(Appendix D.3). Each algorithm is run 25 times on each environment and evaluated every 250 trials
using 250 trajectories. A horizon of 100 was used for Frozen Lake and 50 for the Sailing Problem.

In Frozen Lake (Figure 3a), entropy proved to be a useful exploration bonus for the sparse reward.
Values in UCT and BTS remain at zero until a trial successfully reaches the goal. However, entropy
guides agents to avoid trap states, where the entropy is zero. DENTS was able to perform similarly to
MENTS, and BTS was able to improve its policy over time more than UCT.

In the Sailing Problem (Figure 3b) UCT performs well due to the dense reward. BTS and DENTS
also manage to keep up with UCT. MENTS and TENTS appear to be slightly hindered by entropy in
this environment. The relative entropy encourages RENTS to pick the same actions over time, so it
tends to pick a direction and stick with it regardless of cost.

Finally, BTS and DENTS were able to perform well in both domains with a sparse and dense reward
structure, whereas the existing methods performed better on one than the other, hence making BTS
and DENTS good candidates for a general purpose MCTS algorithm.
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5.2 Go

For a more challenging domain we ran a round-robin tournament using the game of Go, which has
widely motivated the development of MCTS methods [14, 30, 32]. In each match, each algorithm
played 50 games as black and 50 as white. Area scoring is used to score the games, with a komi of
7.5. We used an openly available value network Ṽ and policy network π̃ from KataGo [36]. Our
baseline was the PUCT algorithm [2], as described in Alpha Go Zero [32] using prioritised UCB [29]
to utilise the policy neural network. Each algorithm was limited to 5 seconds of compute time per
move, allowed to use 32 search threads per move, and had access to 80 Intel Xeon E5-2698V4 CPUs
clocked at 2.2GHz, and a single Nvidia V100 GPU on a shared compute cluster.

To use Boltzmann search in Go, we adapted the algorithms to account for an opponent that wishes to
minimise the value of a two-player game. This is achieved by appropriately negating values used in
the search policy and backups, which is described precisely in Appendix C.2.

Additionally, we found that adapting the algorithms to use average returns (recall Equation (8))
outperformed using Bellman backups for Go (Appendix D.5.1). The Bellman backups were sensitive
to and propogated noise from the neural network evaluations. We use the prefix ‘AR’ to denote the
algorithms using average returns, such as AR-DENTS. Full details for these algorithms are given in
Appendix B.

5.2.1 Using neural networks with Boltzmann search

This section describes how to use value and policy networks in BTS. Adapting MENTS and DENTS
are similar (Appendix C.2). Values can be initialised with the neural networks as Q̂(s, a) ←
log π̃(a|s) +B and V̂ (s)← Ṽ (s), where B is a constant (adapted from Xiao et al. [37]). With such
an initialisation, the initial BTS policy is ρBTS(a|s) ∝ π̃(a|s)1/α. For these experiments we set a
value of B = −1

|A|
∑
a∈A log π̃(a|s). Additionally, the stochastic search policy naturally lends itself

to mixing in a prior policy, so we can replace BTS search policy πBTS (Equation (15)) with πBTS,mix:

πBTS,mix(a|s) = λπ̃π̃(a|s) + (1− λπ̃)πBTS(a|s) (26)

= λπ̃π̃(a|s) + (1− λπ̃)(1− λs)ρBTS(a|s) +
(1− λπ̃)λs
|A|

, (27)

where λπ̃ = min(1, ϵπ̃/ log(e+N(s))), and ϵπ̃ ∈ (0,∞) controls the weighting for the prior policy.

5.2.2 Results

Results of the round-robin are summarised in Table 1, and we discuss how parameters were selected
in Appendix D.5.1. BTS was able to run the most trials per move and beat all of the other algorithms
other than DENTS which it drew. We used the optimisations outlined in Appendix C.1 which allowed
the Boltzmann search algorithms to run significantly more trials per move than PUCT. BTS and
DENTS were able to beat PUCT with results of 57-43 and 58-42 respectively. Using entropy did not
seem to have much benefit in these experiments, as can be witnessed by MENTS only beating TENTS,
and DENTS drawing 50-50 with BTS. This is likely because the additional exploration provided by
entropy is vastly outweighed by utilising the information contained in the neural networks Ṽ and π̃.
Interestingly RENTS had the best performance out of the prior works, losing 43-57 to PUCT, and the
use of relative entropy appears to take advantage of a heuristic for Go that the RAVE [15] algorithm
used: the value of a move is typically unaffected by other moves on the board.

To validate the strength of our PUCT agent, we also compared it directly with KataGo [36], limiting
each algorithm to 1600 trials per move. Our PUCT agent won 61-39 in 9x9 Go, and lost 35-65 in
19x19 Go, suggesting that our PUCT agent is strong enough to provide a meaningful comparison for
our other general purpose algorithms. Finally, note that we did not fine-tune the neural networks, so
the Boltzmann search algorithms directly used the networks that were trained for use in PUCT.

6 Related work

UCT [22, 23] is a widely used variant of MCTS. Polynomial UCT [2], replaces the logarithmic term
in UCB with a polynomial one (such as a square root), which has been further popularised by its use
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Black \White PUCT AR-M AR-R AR-T AR-B AR-D Trials/move
PUCT - 33-17 27-23 42-8 17-33 15-35 1054
AR-MENTS 12-48 - 13-37 38-12 10-40 12-38 4851
AR-RENTS 20-30 24-26 - 39-11 18-32 14-36 3672
AR-TENTS 8-42 11-39 9-41 - 6-44 10-40 5206
AR-BTS 25-25 35-15 31-19 34-16 - 15-35 5375
AR-DENTS 23-27 36-14 29-21 36-14 15-35 - 4677

Table 1: Results for the Go round-robin tournament. The first column gives the agent playing as
black. The final column gives the average trials run per move across the entire round-robin. In the
top row, we abbreviate the algorithm names for space.

in Alpha Go and Alpha Zero [30, 32, 31]. Coquelin and Munos introduce the Flat-UCB and BAST
algorithms to adapt UCT for the D-chain problem [9]. However, we consider an alternative approach
for search in MCTS rather than adapting UCB.

Maximum entropy policy optimization methods are well-known in the reinforcement learning litera-
ture [16, 17, 38]. MENTS [37] is the first method to combine the principle of maximum entropy and
MCTS. Kozakowski et al. [25] extend MENTS to arrive at Adaptive Entropy Tree Search (ANTS),
adapting parameters throughout the search to match a prescribed entropy value. Dam et al. [10] also
extend MENTS using Relative and Tsallis entropy to arrive at the RENTS and TENTS algorithms.
Our work is closely related to MENTS, however, we focus on reward maximisation and consider how
entropy can be used in MCTS without altering our planning objective.

Bubeck et al. [7, 8] introduce simple regret in the context of multi-armed bandit problems (MABs).
They alternate between pulling arms for exploration and outputting a recommendation. They show
for MABs that a uniform exploration produces an exponential bound on the simple regret of recom-
mendations. We use simple regret, but in the context of sequential decision-making, to analyse the
convergence of MCTS algorithms.

Tolpin and Shimony [33] extend simple regret to MDP settings, showing an O(exp(−
√
n)) bound

on simple regret after n trials by adapting UCT. The subsequent work of Hay et al. [19] extends
[33] to consider a metalevel decision problem, incorporating computation costs into the objective.
Pepels et al. [27] introduce a Hybrid MCTS (H-MCTS) motivated by the notion of simple regret.
H-MCTS uses a mixture of Sequential Halving [20], and UCT. Feldman et al. [13, 11, 12] introduce
the Best Recommendation with Uniform Exploration (BRUE) algorithm. BRUE splits trials up to
explicitly focus on exploration and value estimation one at a time. BRUE achieves an exponential
bound O(exp(−n)) on simple regret after n trials [13]. Prior work that considers simple regret in
MCTS has focused on adaptations to UCT, whereas this work focuses on algorithms that sample
actions from Boltzmann distributions, rather than using UCB for action seclection.

7 Conclusion

We considered the recently introduced MENTS algorithm, compared and contrasted it to UCT, and
discussed the limitations of both. We introduced two new algorithms, BTS and DENTS, that are
consistent, converge to the optimal standard policy, while preserving the benefits that come with using
a stochastic Boltzmann search policy. Finally, we compared our algorithms in gridworld environments
and Go, demonstrating the performance benefits of utilising the Alias method, that entropy can be a
useful exploration bonus with sparse rewards, and more generally, demonstrating the advantage of
prioritising exploration in planning, by using Boltzmann search policies.

An interesting area of future work may include investigating good heuristics for setting parameters in
BTS and DENTS. We noticed that the best value for the search temperature tended to be the same
order of magnitude as the optimal value at the root node V ∗(s0), which suggests a heuristic similar
to [21] may be reasonable.
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