
A Histological Dataset

Table 3: Details of the histological dataset
Histological dataset

Number of whole slide images 41
Image type H&E-stained whole slide images
Whole slide image size „ 100, 000 ˆ 100, 000
Magnification 40x
Image scanner Aperio scanner

Number of annotation categories 40
Annotation distribution 37% Carcinoma, 36% Stroma, 3.5% Necrosis, 23.5% Other
Resolution 0.5 microns per pixel
Number of patches (image training) 4,781 labelled + 255,643 unlabelled
Patch size 512 ˆ 512 px
Train/Test split 90/10 stratified by annotation categories
Number of patches (large mask training) 1, 183
Patch size 2048 ˆ 2048 px

The real-world data used for training the generative model consisted of 41 high-resolution Hema-
toxylin and Eosin (H&E)-stained whole slide images of lung tissue biopsies from different cancer
patients. These images were evenly split between cases diagnosed with adenocarcinoma of the lung
and squamous cell carcinoma, representing the two most common sub-types in lung cancer. The
images were scanned on an Aperio scanner at a resolution of 0.25 microns per pixel (40x). Different
classes used for conditioning were annotated digitally by a pathologist using an apple pencil with the
instruction to clearly demarcate boundaries between tissue regions. The pathologist could choose
from a list of 40 distinct annotation categories, aiming to cover all possible annotation requirements.
37% of the annotations belonged to the Carcinoma category, 36% to Stroma, 3.5% to Necrosis and
the remaining 23.5% to other smaller categories summarized as Other. All data handling was per-
formed in strict accordance with privacy regulations and ethical standards, ensuring the protection of
patient information at all times. For training the diffusion model, we utilized a patch dataset derived
from expert annotations. In total, the dataset contained 4,781 patches of size 512 ˆ 512 px. The
dataset was split into train/ test sets with a ratio of 90/ 10, stratified by annotation categories. This
test split was used for the generative model as well as to evaluate the downstream task. We also tiled
the slides with size 2048 ˆ 2048 from the same annotations, extracting 1,183 patches. These masks
are used for training the mask generative model.

A.1 Downstream task datasets

For the downstream tasks we utilized additional internal and external datasets to assess the predictive
performance of our models.

Table 4: Details of downstream task datasets
Dataset Indication Patch size mpp Number of patches

IH1 lung 512 0.5 3.7 K
IH2 lung 512 0.5 0.7 K
IH3 lung 512 0.5 2.8 K
NCT colorectal 224 0.5 100.0 K
CRC colorectal 224 0.5 7.0 K
PCam lymph nodes 96 0.972 327.0 K
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B Survey

The survey was sent out to 10 pathologists with varying years of experience. Fig.4 shows the setup
of the survey. The presented images were shown in randomized order.

Figure 4: Survey interface for the domain expert assessment of real versus synthetic data.

Figure 5: Results of the survey. Left: Accuracy per pathologist, color-coded by subjective confi-
dence level (A) and years of experience (B). Right: Average accuracy across pathologists for each
image patch, color-coded by path-size (C) and veracity (D).
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C Metrics for Data Assessment

In this section we provide the definitions of the metrics used in Section 5 to assess the fidelity and
degree of memorization of DiffInfinite. Following the notation of Section 4.1, denote by Xr „ Xr

the real data distribution and by Xg “  pŶ q „ Xg the distribution from which the generative
model samples. For the quantitative evaluation of the quality and the coverage of the data generated
by DiffInfinite we use

Improved recall and improved precision [67] A pre-trained classifier5 maps the samples into
a high-dimensional feature space resulting in the feature vectors �r and �g . For � P t�r,�gu

denote by NNkp�1,�q the kth nearest feature vector of �1 from set � and define the binary function

fp�,�q “

"
1, if }� ´ �1

}2 § }�1
´ NNkp�1,�q}2 for at least one �1

P �
0, otherwise

(10)

that identifies whether a given sample � is within the estimated manifold volume of � corresponding
to NNk. To measure the similarity of �g to the estimated manifold of the real images, define
improved precision (IP) by

precisionp�r,�gq “
1

|�g|

ÿ

�gP�g

fp�g,�rq (11)

and to measure the similarity of �r to the estimated manifold of the generated images, define im-
proved recall (IR) by

recallp�r,�gq “
1

|�r|

ÿ

�rP�r

fp�r,�gq. (12)

The rate of DiffInfinite to innovate a new sample is approximated by the

Authenticity score [54] For the definition of the authenticity score A P r0, 1s, assume that the
probability measure Pg corresponding to Xg is a mixture of the probability measures

Pg “ A ¨ P1
g ` p1 ´ Aq ¨ �g,✏, (13)

where P1
g characterizes the generative distribution, excluding synthetic samples that are duplicates

of training samples and �g,✏ “ �g ˚ N p0, ✏2q is the noisy distribution over training data implied by
an unknown discrete probability measure �g placing probability mass on each data point used for
training.

To test DiffInfinite for data-copying we compute the

CT score [80] For a set of training images Dtrain “ tx1, ..., xk|xi „ Xru and y P RKD define the
distance measure dpyq “ minxPDtrain }x ´ y}

2
2. Denote by LpVq the one dimensional distribution

dpV q of any random variable V „ V with the same instance space as Xr. For the test set of the
real data Dtest “ ty1, ..., yn | yi „ Xru, define the fraction Pnp⇡q “

ˇ̌
ty P Dtest | y P ⇡ P ⇧u

ˇ̌
{ n

of test points in cell ⇡ P ⇧, where ⇧ is a partition of RKD resulting from applying the k-means
algorithm on Dtrain. Similar for a set of generated images Dgen “ tx̂1, ..., x̂mu sampled from
Xg , define the fraction Qnp⇡q of generated samples in cell ⇡ P ⇧. Denote by ZU the z-scored
Mann-Whitney U statistic from Section 3.1 of [80] with L⇡pDq “ tdpxq | x P D,⇡ P ⇧u for
D P tDtest,Dgenu and let ⇧⌧ be the set of all cells in ⇧ for which Qmp⇡q • ⌧ holds true. The CT

score is finally defined as the average

CT pPn, Qmq “

∞
⇡P⇧⌧

Pnp⇡qZU

`
L⇡pPnq, L⇡pQmq;T

˘
∞

⇡P⇧⌧
Pnp⇡q

. (14)

across all cells represented by Xg .

5We use the pre-trained VGG-16 classifier from https://github.com/blandocs/
improved-precision-and-recall-metric-pytorch.
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Table 5: Quantitative memorization metrics for the variants of DiffInfinite described in Section 5.1.
For consistency, we consider all methods from Table 1 in our evalution, including the comparison
to DiffCollage. For the methods that output a large image of size 2048 we consider the tiled patches
resulting in 16 patches per large image and the resized image resulting in 200 images of size 512 ˆ

512.
A↑ CT Œ

tiled resized tiled resized

DiffCollage 0.89 0.97 11.02 7.00
DiffInfinite (a) 0.86 - 4.99 -
DiffInfinite (b) 0.86 0.97 3.29 8.11
DiffInfinite (c) 0.86 0.98 9.61 11.56
DiffInfinite (b) & (c) 0.87 0.95 5.31 10.96

D Data Samples

Mask-image pairs In Fig. 6, we show the control on the mask-image generation for 512 ˆ 512
patches. The Unknown class corresponds to pixels which were not annotated due to a sparse annota-
tion strategy. The images show that the cross-attention layer controls mask conditioning effectively.
As a proof of concept, we generated images at different scales (512ˆ512,1024ˆ1024,2048ˆ2048)
with a simple squares mask (see Fig. 7). In Figure 8, we see that for the small masks of size
512 ˆ 512, the frequency of labels in the real masks are reproduced well by the generated masks.
For the large masks of size 2048 ˆ 2048, the labels that occur most frequently in the real masks are
underrepresented in the generated masks, while all other labels are overrepresented in the generated
masks.

Random patch advantages Sampling with the random patch (RP) method leads to several bene-
fits compared to the sliding windows (SW) approach (see Fig. 11). First, the sliding window method
starts from the centre of the image and outpaints in four directions. As a consequence, the model
needs to condition on previously generated areas, leading to blurriness on the farther pixels. With
the random patch method, every area is conditioned only on its neighbour, avoiding error propaga-
tion. Moreover, while SWs have only information on the closest neighbour, RPs consider long-range
correlations. On every diffusion step, we have every possible overlap between near patches, extend-
ing correlation lengths to twice the diffusion model output size. Furthermore, this random overlap
avoids any tiling effect.

Inpainting Using the segmentation images and masks of the test set, we inpainted the annotated
areas with the same corresponding class (see Fig. 9). We show that the model generates new content
respect to the real one. We run the same experiment by inpainting one area with different classes
(see Fig. 10). Keeping the same seed, we show how the generation changes while ! increases. By
increasing !, we enhance the diversity at the cost of losing some conditioning.
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Figure 6: Generated images conditioned on the synthetic segmentation masks.
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Figure 7: Conditioning visualization. All the images are conditioned with the squared mask shown.
Left) 2048 ˆ 2048 image. Top-Right) 1024 ˆ 1024 image. Bottom-Right) 512 ˆ 512 images.
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Figure 8: Fraction of label appearance in the segmentation masks with 5 classes in a,b) and 10 in
c,d). Fractions estimated over a) 4205 real masks of size 512 ˆ 512 and 20719 generated masks,
b) 1183 real masks of size 2048 ˆ 2048 and 22705 generated masks, c) 4205 real masks of size
512ˆ512 and 22604 generated masks, d) 1183 real masks of size 2048ˆ2048 and 22560 generated
masks.
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Figure 9: Inpainting test data with the corresponding label. Top) Inpainting for different labels.
Bottom) Different inpainted synthetic areas for the same mask.
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Figure 10: Proof of concept with inpainting. We inpainted the same base image with different classes
and different strengths of conditioning (small ! corresponding to less diversity). The corresponding
inpainting mask is displayed as an overlay on the top left patch (in yellow).
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Figure 11: Comparison of different methods to generate large images (2048ˆ 2048). Left) DiffCol-
lage image generation using the grid graph [48]. Right) DiffInfinite (ours) image generation using
the proposed random patch sampling.

Figure 12: Large-content synthetic image with a size of 4096x4069 pixels.
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E Training Details

Training on images The core model used in the diffusion process is a U-Net6. Every U-net’s
block is composed of two ResNet blocks, a cross-attention layer and a normalization layer. On each
ResNet block, we feed the output xl of the previous block l, the time t and the label ci. The cross-
attention mask is performed using the mask corresponding to the label ci as query and the input xl

as key and value.

Training on masks We replace the cross-attention with a linear self-attention layer for mask gen-
eration. Here, the model is conditioned with binary labels t0, 1u, where 0 corresponds to adeno-
carcinoma and 1 corresponds to squamous cell carcinoma. The masks of size 512 ˆ 512 is first
downsampled to size 1 ˆ 128 ˆ 128. We stack the downsampled mask to the size p3, 128, 128q to
make it compatible with a pre-trained VAE7. We repeated the same training for the larger masks
2048 ˆ 2048, downsampling them to 128 ˆ 128 as well.

Table 6: Details of the parameters used for training
Model parameters image generation

Image X shape (3,512,512)
Latent Y shape (4,64,64)
VAE stabilityai/stable-diffusion-2-base
Num classes 5 and 10
Loss L2
Diffusion steps 1000
Training steps 250000
Sampling steps 250
Heads 4
Heads channels 32
Attention resolution 32,16,8
Num Resblocks 2
Probability punc 0.5
Batch size 128
Number of workers 32
GPUs Training 4 NVIDIA GeForce RTX 3090, 24Gb each
GPUs Inference 1 NVIDIA GeForce RTX 3090
Training time „ 1 week
Optimizer Adam
Scheduler OneCycleLR(max lr=1e-4)

Model parameters mask generation
Mask M shape (3,128,128)
Latent Y shape (4,16,16)
VAE (repo id) stabilityai/stable-diffusion-2-base
Num classes 2
Loss L2
Diffusion steps 1000
Training steps 100000
Sampling steps 250
Heads 4
Heads channels 32
Attention resolution 32,16,8
Num Resblocks 2
Probability punc 0.5
Batch size 64
Number of workers 1
GPUs Training 2 Ampere A100, 40Gb each
GPUs Inference 1 NVIDIA GeForce RTX 3090
Training time „ 4 hours
Optimizer Adam
Scheduler OneCycleLR(max lr=1e-4)

6Baseline, https://github.com/lucidrains/classifier-free-guidance-pytorch
7https://huggingface.co/stabilityai/stable-diffusion-2
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F Sampling Details

Mask cleaning The diffusion model samples a latent mask in the VAE’s latent space. After map-
ping the latent mask back to the pixel space we average over the channels to have a mask with
one channel and round the pixel values to the integers t0, 1, ..., num valuesu. Since we note some
boundary artifacts between regions of different values we first apply a method from skimage 8 to
find these boundary artifacts and replace it by 0, corresponding to unknown area. Before resizing the
mask to the full size, we apply a minpooling operation to erase labelled regions of small magnitude
and replace it as well with unknowns.

Hann windows decoding After the diffusion model samples Z in the VAE’s latent space, the latent
variable Z needs to be decoded into the pixel space. However, due to computational constraints, it
is not feasible to decode Z all at once. Therefore, we tile it into smaller patches. Decoding smaller
patches would introduce tiling effects. In order to reduce edge artifacts, we used an overlapping
window method using Hann windows as weights [82]. In Fig. 13, we tile the image in four different
configurations such that the edges and corners are overlapping, and then we perform a weighted sum
over the upsampled outputs.

Figure 13: Hann window overlapping illustration.

8https://scikit-image.org/docs/stable/api/skimage.segmentation.html
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