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A Comparisons with large-scale vision foundation models.

Recently, advanced large-scale foundation models [5, 14] have shown exciting performance on
downstream tasks. We use a huge size model Focal-H [15] and follow the trick utilizing the
detection pre-training on Object365 used in [5, 14]. As shown in Table 1, our model achieves
comparable performance with only 0.8B fewer parameters. Notably, our best model achieves
balanced performance for both overall and rare categories. Although the perceptron capability of our
backbone is weaker than other large-scale backbones, our 61.2 APr outperforms EVA’s 55.1 APr

by a large margin. This indicates that our method effectively boosts the detection capability of tail
categories. Moreover, we did not use other training tricks [5, 14], e.g. enlarging the image size to
1.5× when fine-tuning, soft NMS [2] or adopting test-time augmentations (TTA).

Method Detector Ddet Backbone Params Dbackbone AP APr

ViTDet [10] CMask R-CNN [3] None ViT-H-MAE [7] 692M IN-1K 53.4 n/a

EVA [5] CMask R-CNN [3] O365 EVA-H [5] 1.1B merged-30Ma 62.2 55.1

InternImages [14] DINO [16] O365 DCNv3-H [14] 2.2B merged datab 63.2 n/a

Ours DINO [16] O365 Focal-H [15] 747M IN-22k 61.2 61.2

Table 1: Comparison with SoTA on LVIS val 1.0. Ddet indicates the datasets used in detector pre-training.
Dbackbone indicates the datasets used in backbone pre-training. “n/a” indicates the numbers are not available
for us. ‘merged-30Ma’: IN-21K + O365 + COCO + ADE20K + CC15M. ‘merged datab’: Laion-400M +
YFCC-15M + CC12M

B Robustness Analysis

Soft-labels are important for improved balanced object classification (Rich semantics). We use
CLIP to perform zero-shot object classification on LVIS val 1.0. We obtain CLIP object features
according to their ground truth bounding boxes and classify them using the contrast with textual
features of categories. In addition, we use classification accuracy to reflect the quality of semantics
from CLIP. We see from Table 2 that although the Top-1 accuracy is relatively low, the Top-10
accuracy is around 34%, indicating that CLIP can properly rank labels into the top classes rather
than hard classification. Most importantly, it is encouraging to see CLIP has a balanced performance
among rare, common, and frequent categories. In light of the above points, using soft labels for object
semantics from CLIP can provide “good guidance” for the balanced performance.

Soft-labels provide better robustness towards location shifts (Coarse locations). We further
study the robustness towards location shifts by adding noise to ground truth boxes. As shown
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in Figure 1, when the noise scale is relatively small ([0, 0.5]), the top-10 performance only drops
slightly, suggesting that soft labels are robust to the quality of bounding boxes for classification:
when bounding boxes shift slightly, these semantics change slowly. Moreover, when the noise scale is
large (>0.5), the performance drops drastically due to the inaccurate boxes, on which the ground truth
class labels mismatch the semantics of the noised boxes. Similarly, different crops may lead to the
mismatching between cropped semantics and ground truth labels. In contrast, semantics derived from
soft labels can well represent the semantics within the crop, for it is adaptive to locations or crops.

Object classification AP APr APc APf

Top1 class per proposal 16.2 16.7 16.4 15.7
Top5 classes per porposal 29.6 29.9 29.3 29.8
Top10 classes per porposal 33.9 33.1 33.7 34.6

Table 2: CLIP zero-shot object classification on LVIS val v1.0. We use pre-trained CLIP-RN50 [11] to
extract region features according to the ground truth bounding boxes and perform object classification. CLIP
achieves a balanced performance among rare, common and frequent categories.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Noise Scale

15

20

25

30

35

AP

Top-10 acc
Top-5   acc

Figure 1: CLIP zero-shot object classification under different noise scales. We use Top-5 and Top-10 object
classification accuracy to reflect the CLIP semantics robustness towards location shifts.

Semantics learning leads to the robustness of annotations. We also find that our semantics learning
scheme is robust to annotations. To verify this, we randomly drop a part of ground truth annotations
on the target detection dataset while ensuring each category has at least one training sample. We
first show the robustness of the detection dataset. As shown in Figure 2 (a), when trained on LVIS
only, the performance with and without semantics learning is close when all annotations are used.
When the dropping ratio increases, the significance of semantics learning is more clear. We also show
in Figure 2 (b) that with the help of the rich semantics in INet-LVIS, our detector can achieve even
better performance with just 50% annotations.
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Figure 2: Ablation on robustness of partial annotations. We random drop a part of ground truth accoridng to
drop ratio.

2



C Datasets

Detection data. We conduct our experiments on three datasets of long-tailed distribution: LVIS [6],
OpenImages [9], and Visual-Genome [8]. We mainly evaluate our method on LVIS with the official
LVIS evaluator. We evaluate OpenImages and Visual-Genome under a COCO-style evaluator; we
report AP for OpenImages, and AP, AP50 for Visual-Genome, respectively. We only compare our
method with our baseline model on Visual-Genome and OpenImages since the datasets are not
popular long-tail object detection benchmark datasets, which is hard to find the previous method’s
performance for a fair comparison.

Extra data. We experiment on three extra data: Object365 [12], ImageNet-21k [4] and CC3M [13].
Object365 dataset contains around 0.6M images with 365 classes. Each image is densely annotated
by human labelers to ensure quality. ImageNet-21k is for classification, containing 14M images with
21K image-level category labels. CC3M contains 3M image-text pairs from the web. We summarize
the datasets used in our experiments below.

Notation Imgs Annotation Definition

LVIS 0.1M bounding boxes and classes The original LVIS [6]

O365 0.6M bounding boxes and classes The original Object365 [12]

INet-21k 14M image-level class label The original ImageNet-21k [4]

CC3M 3M image-level description The original CC3M [13]

INet-Unl 14M no annotations INet-21k w/o labels

INet-LVIS 1M image-level label INet-21k classes overlapped with LVIS

O365-Box 0.6M bounding boxes O365 w/o class labels

CC-Unl 3M no annotations CC3M w/o labels

Long-tailed Frequency Analysis We visualize the number of instances for each category in LVIS [6],
OpenImages [9], and Visual-Genome [8]. As shown in Figure 3, categories in three datasets all follow
long-tailed distributions, i.e. the number of instances on the head class is ∼103 times than those on
the tail. Moreover, the instance number of rare categories in LVIS is extremely low (less than 10),
which makes training challenging. However, RichSem achieves significant improvements on rare
categories with the help of image classification datasets, suggesting that RichSem can improve the
capability under the low-shot learning setting.
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Figure 3: The number of instances per categories.

D Additional Ablations

D.1 Results on other long-tailed datasets.

We conduct experiments on the other two datasets of long-tail distribution, OpenImages [9] and
Visual-Genome [8]. We use INet-Unl as extra data and train as Eq.7. This allows us to use ImageNet-
21k directly without manual label mapping. We use ResNet50 as backbone and train all models
under 2× schedule. As shown in Table 3, RichSem obtains 0.5 and 2.1 AP gain compared with the
baseline. The exciting performance gains on both Visual-Genome and OpenImages demonstrate that
our proposed method is effective to those dataset of long-tailed distribution.
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RichSem
Visual-Genome OpenImages

AP AP50 AP

% 7.3 11.9 38.9
! 7.8↑0.5 12.3 41.0↑2.1

Table 3: Experiments on Visual-Genome and OpenImages. We use ResNet50 as the backbone for all
experiments;% indicates that the baseline that only trained Visual-Genome and! indicates that the model is
trained with INet-Unl using RichSem.

D.2 Rigorous Comparison with Detic

To further claim the effectiveness of our method compared with Detic, we design the following two
ablation experiments:

Detic → Our baseline: Since we choose DINO as our baseline detector, we reimplement Detic in
our baseline.
Ours → Detic baseline: We also integrate our RCLT into Detic baseline detector [18] (CenterNet2-
CasccadeRCNN).

Besides, we keep the other experiment settings exactly the same. As shown in Table 4, our method
outperforms Detic under both baselines, especially AP of rare categories.

Detector Method AP APr

CenterNet2-CasscadeRCNN [18] baseline 31.5 25.6

CenterNet2-CasscadeRCNN [18] Detic [17] 33.2 29.7

CenterNet2-CasscadeRCNN [18] RichSem (Ours) 33.5 31.0

DINO [16] baseline 32.2 24.1

DINO [16] Detic [17] 33.8 26.9

DINO [16] RichSem (Ours) 35.0 30.4

Table 4: Rigorous Comparison with Detic.

E More Implementation Details

E.1 Semantics Learning

We use a RN50 to extract object semantics for most experiments, unless metioned otherwise. We
freeze all parameters in CLIP. As for the proposed semantic branch, we only use a Linear layer to
project the object feature into the semantics space and perform Contrast with the text features of
categories to obtain the semantics prediction. To achieve a balanced performance, we set the weight
of soft loss λsoft=0.5 for all main results.

E.2 Data augmentations

Following DINO [16], we use a standard training augmentation for all experiments. We randomly
resize an image from the original detection dataset with a shorter edge between 480 and 800 and limit
its longer edge below 1333. For extra data, we random crop and use mosaic [1] to provide coarse
location positions.

F More Visualizations

We further provide more qualitative results in addition to those in the main text. Moreover, we
compare them with those qualitative results predicted by the detector trained without INet-LVIS as
extra data. As shown in Figure 4, RichSem can better detector rare categories, such as the ”leather“
and “gas mask” in the first two columns, which is ignored by the baseline detector.
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Figure 4: Qualitative results of our RichSem. We visualize the prediction of RichSem with INet-LVIS as
extra data and compare them with our baseline model without extra data. We show rare categories in red and
show others in black. RichSem with extra data can learn better on rare categories. Red arrows mean those rare
objects detected by RichSem while not detected in our baseline model.
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