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Abstract

HTTP/3 is a new application layer protocol supported by most browsers. It uses
QUIC as an underlying transport protocol. QUIC provides multiple benefits,
like faster connection establishment, reduced latency, and improved connection
migration. Hence, popular browsers like Chrome/Chromium, Microsoft Edge,
Apple Safari, and Mozilla Firefox have started supporting it. This paper presents
an HTTP/3-supported browser dataset collection tool named H3B. It collects
the application and network-level logs during YouTube streaming. We consider
YouTube one of the most popular video streaming applications supporting QUIC.
Using this tool, we collected a dataset of over 5936 YouTube sessions covering
5464 hours of streaming over 5 different geographical locations and 5 different
bandwidth patterns. We believe our tool and as well as the dataset 1 could be
used in multiple applications such as a better configuration of application/transport
protocols based on the network conditions, intelligent integration of network and
application, predicting YouTube’s QoE, etc. We analyze the dataset and observe
that during an HTTP/3 streaming, not all requests are served by HTTP/3. Instead,
whenever the network condition is unfavorable, the browser chooses to fallback,
and the application requests are transmitted using HTTP/2 over the old-standing
transport protocol TCP. We observe that such switching of protocols impacts the
performance of video streaming applications.

1 Introduction

HTTP/3 is the latest variant of the popular Hypertext Transfer Protocol (HTTP), which has recently
been widely adopted by major Internet giants such as Google, Facebook, Cloudflare, Akamai, Apple,
and many others. Unlike its predecessors, HTTP/3 uses QUIC [20, 14] as the underlying transport
protocol. QUIC is expected to provide reduced latency and better application QoE (Quality of
Experience) compared to TCP, the widely used transport protocol for the Internet, for the past three
decades. The QUIC developers [23] and several other works [21, 37, 11, 39, 44] have shown the
superiority of QUIC compared to TCP in terms of supporting better QoE with less stall for video
streaming.

In this paper, we present a large-scale dataset containing network-application information for 5464 of
YouTube streaming sessions over popular browsers supporting both HTTP/3 and the legacy HTTP/2.
Notably, YouTube is one of the most popular streaming media services on the Internet today. To

1https://github.com/NKShukla/H3B (Access:December 19, 2023)

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.
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collect this large-scale dataset, we develop H3B, an emulation-based toolbox that captures the
application performance statistics for YouTube video streaming coupled with the underlying network
traffic traces. For this purpose, we explored a feature in the YouTube browser application, named
stats for nerds, which shows the played video statistics in terms of the frames dropped, the current
resolution, Internet connectivity in the device, and the YouTube playback buffer heath. However, it
misses critical information like bitrate, variation in bitrate, and stalling/rebuffering used to compute
the end user’s QoE. Notably, the network bandwidth directly impacts YouTube adaptive bitrate (ABR)
decisions [29], where the YouTube client dynamically decides the best playback bitrate depending on
the underlying network conditions. Therefore, to analyze the application performance, one needs to
see the network behavior as well to perform root cause analysis as and when application QoE suffers.
Hence, we develop H3B that collects application and network layer logs simultaneously while
streaming videos over YouTube. We collected the data over two web browsers – Chrome/Chromium
and Firefox. The tool takes (1) video ID and (2) the network bandwidth pattern as the input and
generates the application and network logs with annotated QoE information. H3B emulates that
network behavior using a benchmark network emulation tool called Mahimahi [32].

We use H3B to launch a measurement campaign for YouTube across 5 different geographical
locations and 5 different bandwidth patterns. Out of them, 2 are traces collected under mobility in
WiFi and cellular networks. Specifically, we focus on the poor network bandwidth patterns as there
is minimal data on video streaming applications’ performance for poor networks [17, 42]. Further,
several existing studies [28, 26, 2, 46] suggest that poor or fluctuating network conditions provide
the opportunity to use intelligent learning-driven algorithms for optimizing the streaming media
performance. Notably, the Internet speed is still deficient in significant parts of the globe, particularly
the developing world [1, 8, 27, 34]. We have collected 5464 of streaming hours across 5936 streaming
sessions of data through H3B. To benchmark the performance of YouTube streaming sessions over
HTTP/3 browsers compared to the legacy HTTP/2, we have also collected the logs and traffic data
over the HTTP/2 setup under similar network configurations.

While analyzing the impact of the HTTP/3 protocol on YouTube performance, we have a few
interesting observations from the dataset collected above. We observe that during HTTP/3 streaming,
even though it is assumed that it will use QUIC underneath, we observe that often the data is sent over
TCP. Such a phenomenon is called fallback [23, 18] where QUIC uses the help of TCP on a network
path where UDP (QUIC) is blocked. However, there was no such blocking in our setup, yet the
browser chooses to fall back to TCP whenever the application suffers over QUIC. We next compute the
QoE obtained by both HTTP/3 and legacy HTTP/2 streaming and perform hypothesis testing on QoE
obtained for both. We observe that QoE obtained over HTTP/3 streaming is not a winner, contradicting
the observations made by prior work and QUIC developers themselves [23, 35, 3, 40, 36, 19, 25]. We
expect that the browser implementation of the legacy support for HTTP/3 might be a cause for the
same. To further validate whether indeed this protocol fallback was the cause for poor application
QoE, we modified the Chromium browser source code to stop such protocol switching forcibly. Then,
using our tool H3B, we further launch a measurement campaign over this modified browser. We
observe that forcibly stopping the protocol switching often improves the application QoE compared
to the original one.

To the best of our knowledge, this is the first large-scale YouTube streaming dataset over an HTTP/3
browser. We have also collected the benchmarked HTTP/2 traffic (legacy traffic by disabling QUIC
on the browser) for all the equivalent scenarios, which can be used to explore the pros and cons of
various network configurations and protocol design choices over an HTTP/3 browser. Overall, our
dataset has the following attributes:

• Multi-bandwidths: The dataset contains the application and network logs under different band-
width patterns, i.e., high, low, very low, and under mobility (over WiFi and cellular network). This
can be used to study how different network bandwidth patterns impact YouTube’s QoE.

• Multi-locations: The dataset was collected for 5 different geographical locations, i.e., Delhi,
Bangalore, New York, Germany, and Singapore. This can be used to study whether location plays
any role in YouTube’s QoE.

• Multi-protocol: The dataset contains both HTTP/3 and legacy HTTP/2. This can be used to
analyze benefits/issues with HTTP/3.

• Multi-video: The dataset was collected for 46 videos of different genres: News, Entertainment,
and Education. This can be used to study the impact of video type on YouTube QoE.
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• Time interval: This data collection happened for 18 months. This allows a time variance study of
the QoE during the course of browser updates.

Such a dataset can be used to develop intelligent models for network-application integration over
an HTTP/3 browser while considering the backward compatibility with HTTP/2. In general, such a
dataset can be used for the following problems:

• Dynamic tuning of protocol design choices/configurations based on the network conditions: This
will allow learning the network environment to tune the parameters of, say, transport protocol
congestion control, ABR (Adaptive BitRate) streaming parameters, etc.

• Intelligent network-application integration for better application QoE: Simultaneous logs of the
network and application layer will facilitate designing network-aware applications.

• Prediction & Optimization of YouTube QoE: Further, given the diversity of our dataset, the same
can be used to develop a prediction model for predicting QoE. Further, our poor network dataset
provides an opportunity to use intelligent learning-driven algorithms for optimizing QoE.

2 Related Work

We divide the related work into three dataset categories: YouTube, DASH, and QoE datasets.
YouTube Dataset: Gutterman et al. [17] works on the prediction of video QoE such as buffer
state, quality of a video, stalling to be experienced. They collected data for 425 video sessions
over YouTube for WiFi and LTE networks under static and mobility scenarios. Karagkioules et
al. [22] collected a dataset of around 374 hours of YouTube videos on a mobile device using their
tool Wrapper-app. The authors have collected the data from the network and application layer and
extracted the application logs via stats for nerds and DNS queries. They have experimented at different
bandwidth levels: 500kbit/s, 1024kbit/s, 3000kbit/s, and 100kbit/s. Wassermann et al. [42] used
an app called YoMoApp [41] for collecting datasets of YouTube streaming over a cellular network.
They collected a dataset of over 360 different mobile users, over 70 cellular network operators, and
a total of 3000 video sessions. The author replicated the design and functionalities of the YouTube
application for data collection. Though the prior work has focused on data collection of YouTube;
there needs to be a specific focus on the poor or variable network bandwidth observed in developing
countries. Further, we found that the existing dataset misses critical QoE information such as [22]
misses stalling information and [42] uses the resolution not the birates which provides a more detailed
assessment of quality. Moreover, some dataset does not use the production endpoint of YouTube [41].

DASH Dataset: Taraghi et al. [38] released a dataset containing different video codecs and bitrates
with a maximum resolution of 8K. Feuvre et al. [24] release a dataset of HEVC, which was ranging
from HD to UHD bitrates. Such MPEG-DASH packaged content dataset allows (1) efficient usage
of these codecs, as not all devices support all the available codecs, (2) experimenting with different
DASH adaptation techniques which support several codecs. DASH dataset is complementary to our
dataset as in the comparison between HTTP/3 and legacy, the DASH algo and the codec used for the
streamed video remain the same. Our dataset can boost DASH algorithms during poor network and
protocol switchings.

QoE dataset: These datasets can be used for improving the rate adaptation of DASH algorithms and
are collected using two traditional video quality assessment techniques. (1) Subjective assessment:
Such assessment typically uses a MOS score that represents video quality perceived by the end user.
The prior work typically creates a dataset of high-quality videos along with their distorted videos
where they incorporate quality change/degradation and/or stalling events. Chen et al. [10] designed a
model to predict the time-varying subjective quality (TVSQ value). Duanmu et al. [13] proposed
a streaming QoE index, which accounts for the instantaneous degradation of quality and the initial
rebuffering and stalling perceived by the end user. Bampis et al. [6] have created a database of
Netflix videos and prepared distorted videos by imposing different playout patterns such as imposing
different compression rates, rebuffering rates. This dataset simulates the real network by using
different bandwidth patterns. They compute the MOS score from the subjective evaluation with
respect to the frame index for all the distorted videos. (2) Objective assessment: such assessment
computes quality scores such as PSNR and SSIM. Bampis et al. [5] have created a database of 420
distorted videos. They compute continuous and retrospective prediction scores such as MOS, PSNR,
and SSIM. The dataset also includes the number of rebuffering events and different playback bitrates.
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QoE datasets differ from ours (1) we have not artificially created distorted video dataset; rather,
we use realistic bandwidth patterns that causes quality drop and stalling instances while streaming
videos over YouTube. Different QoE datasets either have no stalling [10] or fixed stalling events at
fixed durations [13], or fixed stalling patterns [15] (2) Length of a video is at max 300 sec, whereas
each of our video duration is about 3000 sec (3) None of the datasets have network logs in addition
to application logs. We have time-synchronized application and network logs that can be used to
better characterize the impact of the network on application QoE (4) All datasets are of HAS (HTTP
Adaptive Streaming) with only one version of HTTP, we provide with two HTTP protocols and two
web browsers, different locations (5) The datasets contain QoE information in an aggregated fashion
that lacks temporal patterns such as [5] provides only one rebuffering duration for the entire video.

3 H3B Tool

In this section, we present the design of our tool H3B. The tool takes video id and network bandwidth
pattern as input and provides application layer logs regarding application QoE. Network layer logs in
terms of packet exchanges with protocol as output. Details follow:

3.1 Input to H3B

YouTube video selection: We first create a list of 46 YouTube videos, each lasting 40 minutes
to 1 hour as shown in Table 1. The genres of videos are News, Entertainment, Education, Indian
talk shows, Comedy, Stanford online lectures, and British TV series. The minimum and maximum
video quality of all the videos were 144p and 1080p. We use the YouTube developer’s API to fetch
necessary information about a particular video using its unique identifier. We made HTTP GET
request 2 with the video’s unique identifier. It is important to note that this endpoint is no longer
available, maybe due to changes in YouTube’s policies. We obtain a mapping between itag, bitrate,
and the video quality corresponding to a particular video using the YouTube developers API. Table 2
shows the mapping of itag to the corresponding bitrate and the quality label of a video. Multiple
quality labels include 144p, 240p, 360p, 480p, 720p, and 1080p. YouTube supports both constant
bitrate (CBR) and variable bitrate (VBR) encoding; thus, a same quality label can have multiple
bitrates and hence multiple itags. For example, Table 2 shows three different bitrates for each quality
label and corresponding itags.

Table 1: Details of the selected videos
Number of Videos 46
Video duration 40 minutes - 1 hour
Types of Videos News, Entertainment and Education videos
Minimum Video Quality 144p
Maximum Video Quality 1080p

Table 2: Video-Info Table of two sample videos
Video ID —> -SI0HKTfHN4
Itag 137 22 135 134 133 160 18 136 242 136 398 244 397 243 396 278 394
Bitrate 4466585 743210 930845 654628 301679 121826 576066 2029085 244471 2029085 1497188 849429 737405 492803 399554 112110 94436
Quality 1080p 720p 480p 360p 240p 144p 360p 720p 240p 720p 720p 480p 480p 360p 360p 144p 144p
Video ID —> 4QcHHal-pt4
Itag 248 247 244 243 242 278 18 22 137 136 135 397 134 396 133 395 278
Bitrate 2680531 1503593 756822 412207 224867 98699 512759 649740 4466452 1804135 1019629 706715 603781 387958 303545 185179 98699
Quality 1080p 720p 480p 360p 240p 144p 360p 720p 1080p 720p 480p 480p 360p 360p 240p 240p 144p

Network emulation: The purpose of such an H3B tool is to replay a given network behavior and
stream YouTube videos on that network. While it is not possible to replay bandwidth patterns over an
"in-the-wild" setup, a large number of recent studies [28, 12, 31, 45, 4, 9] have relied on benchmark
network emulator frameworks like Mahimahi [33] to analyze the protocol performance in a realistic
setup. Accordingly, to emulate a specific network bandwidth over the test setup, we use Mahimahi
Link Shell (mm-link) emulation, which emulates network links using user-specified packet delivery
trace files. Mahimahi maintains two queues – one for the uplink traffic and the second for the

2https : //www.youtube.com/get_video_info?video_id = %s&el = embedded&ps =
default&eurl = &gl = US&hl = en&html5 = 1&c = TV HTML5&cver = 6.20180913”% −
SI0HKTfHN4
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downlink traffic. Whenever packets arrive from the Mahimahi’s mm-link or Internet, it is placed
directly into one of two packet queues depending upon whether it is uplink or downlink. Then it
releases the packets based on the input packet-delivery trace file. So, each line in a packet-delivery
trace file represents the time at which the packet of size MTU can be delivered. Also, mm-link
wraps to the beginning of the input packet-delivery trace file on reaching its end. We write a Python
script to generate such packet-delivery trace file to support the corresponding network bandwidth.
Other than emulating bandwidth patterns, we support emulating any natural network packet trace
collected using a packet capture tool such as Wireshark or tcpdump. We converted the packet traces
to packet-delivery trace files using the mechanism used in [28].

V1, V2, V3,.......V46

trace_file_gen.py

mahimahi_trace.com-

LinkShell uplink 
downlink
queue 

Mahimahi

New user
created

Saves user
directory
location

H3B Tool

--enable-quic

network.http.http3.enable,
network.http.http3.enable_0rtt,
network.http.http3.priority,
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tcpdump initiated

 Log
Extension

loaded
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Raw Application Log
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Figure 1: H3B architecture

3.2 H3B tool

H3B first creates a new user profile and then saves the location of the user data directory, where
application logs are to be stored. It allows enabling and disabling QUIC while streaming the
videos. In Chrome/Chromium, the –enable-quic flag is employed, while in Firefox, a set of pref-
erences including network.http.http3.enable, network.http.http3.enable_0rtt,
network.http.http3.priority, network.http.http3.support_version1, and
network.http.http3.enabled are adjusted accordingly. Notably, when we disable QUIC, the
browser setup uses the legacy HTTP/2 instead of HTTP/3. In order to embed the YouTube video
inside the browser, we created our I-Frame and appended the YouTube video id at the end of
“https://www.youtube.com/embed”, which is called an I-Frame source URL [43]. The autoplay
was also set inside the I-frame to play the video once the player was loaded automatically. We collect
the application logs by creating a log extension and then integrate it into the browser. Loading this
log extension was easier in Chromium, but in the case of Firefox, it was a difficult task. Therefore,
for Firefox, we use the command-line tool web-ext to run this extension with the -verbose flag to
print the logs in the terminal. We have used console.log API inside the log extension to collect the
logs. It logs all the HTTP requests and responses between the client and the server. Inside the logs,
we observe two types of requests (1) the video playback request, which contains the video segment
information, and (2) the QoE request. In addition to the application level logs, we collect the network
level logs. We use the packet capture tool tcpdump to collect the network packet captures (pcap).
On the completion of video streaming, the application and network logs are stored in the local file
directory, terminating the tcpdump process along with the user profile.

3.3 Output of H3B

H3B generates an application log and the corresponding network log at its output.
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"52": {
"type": "videoplayback",
"request_ts": 6.583864990234375,
"complete_ts": 13.9705791015625,
"total_time": 7.386714111328125,
"total_bytes": 174508,
"complete_range": [

0,
174508

],
"complete_itag": 397,
"complete_rbuf_sec": 0.0,
"complete_rbuf": 0,
"complete_rn": 1,
"complete_clen": 150413396,
"complete_dur": 2624.64,
"kbytes/second": 23070.876465714333

},

"58": {
"type": "streamingstats",
"request_ts": 10.362389892578125,
"itag": 397,
"buffer_health": "10.027:0.00",
"cmt": "10.027:0.000",
"bwe": "10.027:130000",
"vps": "10.027:B"

},

Application log structure: The application logs provide two types of information. (1) Video-related
information while streaming a YouTube video: The timestamp of the requested segment, total bytes of
the segment, the itag value (tells the audio and video quality), the duration of the requested segment,
and the protocol (TCP or QUIC) it uses for the segment request. (2) Statistics about video streaming:
Information like the amount of video data that has been rendered and has been played, the quality
of the segment stored in the buffer, buffer health (tell at any time t how much amount of video is
buffered in the buffer), and the playback duration in terms of how much video has been played. The
sample application log description is shown above, and the details of important parameters in Table 3.

Table 3: Application log description
Application log parameter Description
request_ts the request timestamp of the requested segment
complete_ts the complete timestamp of the requested segment
total_time the total timestamp from segment request to segment request gets complete
total_bytes the total bytes of the segment
range bytes of the segment data to be downloaded
itag the requested video segment quality
rbuf the receiver buffer in seconds
clen the maximum possible length of the requested segment
dur duration of the downloaded segment
buffer_health at real-time t for how much duration the video has been buffered
cmt at real-time t how much duration of the video has been played

We convert the raw application log into a JSON file by only extracting the required features. We
compute QoE using the application logs and video_info file shown in Table 2 that provides itag to
bitrate mapping. Thus, we obtain QoE.csv that contains the average bitrate, average bitrate variation,
average stall, and QoE. We use the formula-based QoE (Quality of Experience) metric used in
Pensieve [28]; QoE = Avg. Bitrate − Avg. Bitrate Variation − 4.3× Avg. Stall

Various QoE formulas used in previous literature are mentioned in [7]. The prior work either provides
more preference to bitrate, bitrate variation, or to rebuffering. We calculate QoE at the chunk level
not providing more preference to any one factor. [7] discusses the influencing factors such as quality
switching frequency, quality switching magnitude, quality switching direction, duration of rebuffering,
frequency of rebuffering, bitrate, initial delay, and user engagement. Our QoE metric considers most
of them, including initial delay which is nothing but the initial stall duration. Since we are computing
the average bitrate, variation, and stall the impact of factors like quality switching direction, and
frequency of rebuffering also gets included.

Network log structure: The network logs are packet captures (pcap) obtained using tcpdump. Packet
captures contain detailed information about a packet such as timestamp, source, and destination
IP address, port number, application protocol (HTTP), transport protocol (TCP or QUIC or UDP),
fields specific to TCP (SYN, FIN, RST, etc.), packet length, sequence number, acknowledgment
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number (for TCP, for QUIC one has to decrypt the packet header), packet type (TCP data/ACK, QUIC
handshake/initial/payload, etc.), whether retransmitted, etc. Since we are interested in correlating the
number of bytes transferred over two transport protocols TCP and QUIC with application layer QoE,
we extract five fields and convert them into a csv format. The structure of the network.csv is shown
below:

Timestamp, Source IP, Destination IP, protocol, length
03:04:42, 192.168.29.48, 142.251.12.188, QUIC, 559

4 Dataset Description

We launched a measurement campaign using H3B over 5 different geographical locations. The
locations are: Delhi, Bangalore, New York, Germany, and Singapore. Such a measurement was
conducted using two different web browsers Chrome/Chromium and Firefox. We stream once over
HTTP/3 and once over legacy HTTP/2. One of the testbeds is set up inside our campus premises, and
the rest are set up using Digital Ocean machines. We emulate 5 different bandwidth patterns namely
Dynamic High (DH): a good bandwidth, Dynamic Low (DL): a poor bandwidth and Dynamic Very
Low (DVL): a very poor bandwidth, Real: real packet captures under mobility over WiFi and over
cellular network.

Bandwidth patterns: To emulate DH, DL, and DVL bandwidth patterns, we created user-specified
packet delivery trace files. Table 4 shows the bandwidth patterns where each pattern has the starting
bandwidth, last bandwidth, and the Jump required to move from the starting bandwidth to the last
bandwidth. After each jump, that bandwidth stays at that bandwidth for the Jump duration. This
pattern from start to last bandwidth and then back from last to start bandwidth repeats in a cyclic
fashion. Note that to emulate these bandwidth patterns, we use the Mahimahi network emulation
tool. We also replay real packet captures. The real packet captures are of two categories, over WiFi
and cellular network. Since we focus on a poor network, we utilize 105 mobility traces collected
while watching YouTube videos over WiFi [16]. For cellular networks, we collected “in-the-wild"
traces from 10 Android smartphone users watching YouTube videos of their choice using the cellular
network. The volunteers are from 4 developing countries namely Kenya, Saudi Arabia, Pakistan,
and India. The data was collected from 14 cities. Note that we focus on low and middle-income
developing countries for collecting the data. The volunteers were instructed to collect network traces
(pcap) using a pcapDroid application on their smartphones while watching the YouTube videos. The
data was collected while the volunteers were traveling to/from their workspace to home. The phones
used by volunteers had android versions 9-12

Table 4: Bandwidth Patterns
Bandwidth Pattern Starting Last Jump Jump

Bandwidth Bandwidth (Kbps) Duration
Dynamic High (DH) 1152Kbps 896Kbps -256 240 sec
Dynamic Low (DL) 640Kbps 128Kbps -256 240 sec
Dynamic Very Low (DVL) 64Kbps 256Kbps +64 60 sec

Real Mobility Traces from [16]
and "in-the-wild" volunteer traces

Dataset structure: As part of the campaign, we obtain application and network level dataset of 5936
sessions (Firefox: 100 over HTTP/3 + 100 over HTTP/2, Chromium: 1864 over HTTP/3 + 1864 over
HTTP/2, Original browser: 1004 over HTTP/3 + modified browser: 1004 over HTTP/3) for a total du-
ration of 5464 hours. Fig. 2 (a) shows the hierarchy of the dataset collected. FS1, FS2..., andFS100
are the streaming session pairs over the Firefox browser. S1, S2, S3...., andS1864 are the streaming
session pairs over Chromium browser. Each streaming session pair consists of streaming once over
HTTP/3 and once over HTTP/2. Fig 2(b) shows the hierarchy of the dataset collected for original and
modified chromium browser over HTTP/3. S1865, S1866, ...., andS2868 are the streaming session
pairs over the original & modified chromium browser. Table 5 shows the duration of the collected
dataset over different browsers, locations, and network conditions.
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Figure 2: Dataset Hierarchy of (a) 1864 video session pairs over chromium and 100 video
session pairs over Firefox browser on DH, DL, DVL and Real bandwidth patterns across Delhi,
Bangalore, Singapore, Germany, and New York. (b) 1004 video session pairs over modified
and original HTTP/3 enabled chromium-browser in Delhi on DVL bandwidth pattern.

Table 5: Dataset Details
Configuration Duration Configuration Duration
Chromium Delhi duration 3941 hours Firefox DVL duration 142 hours
Chromium Bangalore duration 490 hours Chromium Total DH duration 278 hours
Chromium Singapore duration 253 hours Chromium Total DL duration 1712 hours
Chromium Germany duration 459 hours Chromium Total DVL duration 157 hours
Chromium New York duration 218 hours Chromium Total Real duration 894 hours
Chromium Total OB duration 738 hours Chromium Total MB duration 715 hours

(a) (b) (c)

Figure 3: Hypothesis testing results over 1964 streaming session pairs on QoE over (a) Chromium
and Firefox Browser, (b) different bandwidth patterns, and (c) TCP Fallback over Chrome/Chromium:
Percentage of bytes transferred over TCP across all HTTP/3 streaming sessions for various bandwidth
patterns. DH: Dynamic High, DL: Dynamic Low, DVL: Dynamic Very Low, and Real.

5 Dataset Analysis

We now use our dataset for analyzing the performance of HTTP/3. For the same, we compare the
performance of HTTP/3 with legacy HTTP/2.

QoE of HTTP/3 vs legacy HTTP/2: To compare the QoE obtained over HTTP/3 and HTTP/2
statistically, we perform hypothesis testing over all 1964 streaming session pairs. We find out in
what percentage of sessions HTTP/3 provides (a) better, (b) statistically similar, and (c) worse QoE
compared to HTTP/2. Case (b) is considered the null hypothesis and vice versa as an alternative
hypothesis. If the null hypothesis gets rejected, then we perform the two-tail test [30] to check
whether the HTTP/3-enabled browser performs better. Fig. 3(a) shows the hypothesis-testing results
on computed QoE values over Chromium and Firefox browsers. In the case of Chromium, we observe
that for 81.5% of the cases, the two browsers behave differently. For 41% of the cases, we found
the legacy HTTP/2 browser outperforms HTTP/3 one. In the case of Firefox, we have a similar
observation that HTTP/3 is not always a winner. When we look into the network logs for these 41%
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cases where HTTP/3 underperforms legacy HTTP/2: there were several instances of QUIC to TCP
and TCP to QUIC protocol switching. From Fig. 3(b), we observe that for the scenarios under DL and
DVL, HTTP/2 performs better than HTTP/3 for more than 40% of the video session pairs. Fig. 3(c)
shows the CDF graph of the percentage of TCP bytes experienced at various bandwidth patterns. We
observe that for DH, there is the almost negligible presence of TCP traffic for 80% times. Indeed,
it is expected that QUIC does not face many connection failures for high bandwidth. For DL, DVL
and Real, the presence of TCP traffic is 32%, 52%, and 98% respectively for 70% times. Fig. 4(a)
indicates that HTTP/3 outperformed legacy for more than 40% cases in Bangalore and Germany.
However, across all five geographical regions, there are more than 30% cases when legacy yielded
better application QoE compared to HTTP/3. Again, correlating this TCP fallback in Fig. 4(b), we
observe that Delhi has more instances of TCP traffic within HTTP/3 enabled streaming, compared
to other locations; Fig 4(a) shows that HTTP/2 provides better QoE for these two cities (Delhi and
Singapore) compared to HTTP/3. Thus, we observe that protocol switching impacts video streaming
performance.

(a) (b)
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Figure 4: (a) Hypothesis testing results over different geographical locations. (b) TCP Fallback over
Chrome/Chromium across locations. D: Delhi, B: Bangalore, N: New York, G: Germany and S:
Singapore and (c) Hypothesis testing results over 1004 streaming session pairs on QoE of Original
Chromium Browser (OB) and Modified Chromium Browser (MB)

QoE of HTTP/3 supported original vs modified browser: We observe that such a protocol
switching occurs due to faulty implementation of fallback at the browser. Hence, an HTTP/3 browser
tends to fall back to TCP at a low-bandwidth network. We, therefore, modify the Chromium source
code by disabling the fallback completely. We then launch another campaign using H3B. We obtain
1004 YouTube session pairs over original and modified browser. We then perform hypothesis testing
and observe that HTTP/3 modified browser outperforms original browser for 60% of cases. Thus, we
conclude that fallback to TCP hinders achieving the benefits of HTTP/3.

6 Discussion

We now discuss the limitations of our dataset, ethical considerations, and how the dataset can be
utilized for future research.

6.1 Data Limitations

(1) More diversity in networking conditions: Though our dataset comprises various bandwidth
patterns with a specific focus on poor bandwidth, there can be more diversity by including high
bandwidth network types and other poor network bandwidth types. We allow replaying real packet
traces; collected under mobility for both WiFi and cellular. This can be extended further with diverse
traces collected under various mobility/poor bandwidth scenarios. (2) More diversity in locations:
We have collected data for 5 locations. There can be much more diversity in locations focusing on
locations from developing countries. (3) Diversity in platform: Our data collection was performed
from a desktop platform; it can also be extended to include mobile platforms.

6.2 Ethical Considerations

This paper does not directly interact with human subjects or use any network services beyond their
usage restrictions. All the network services used in this work (Digital Ocean machines) have been
paid as per the usage.

9



6.3 Research Topics

Dynamic tuning of protocol configurations based on learning the network environment: Given
the diversity of our dataset in terms of different network conditions, this can help better configure the
protocol hyper-parameters used for video streaming. For example, to provide better application QoE,
one can analyze the network conditions to tune hyperparameters like deciding the optimal transport
protocol i.e., QUIC or TCP, tuning the transport protocol’s congestion control or tuning the ABR
(Adaptive Bitrate Streaming) parameters, and so on.

Intelligent network-application integration: We believe our dataset can allow intelligent network
and application integration. To provide better application QoE, the applications should adapt them-
selves to network conditions. Since our dataset has both types of logs, this can enable better design
of applications that will possibly look for signatures in the network behavior and adapt accordingly.

Predicting and optimizing YouTube’s QoE: Our dataset provides the QoE of YouTube applications
under different network bandwidth patterns. Utilizing such data, one can develop a learning model to
predict YouTube’s QoE. Further, our dataset for poor or variable networks provides an opportunity to
use intelligent learning techniques for optimizing YouTube QoE.

Predicting QoE of HTTP/3 based video streaming application: Our dataset contains the network
packet exchanges and the corresponding QoE. We believe our dataset will be valuable in training a
learning model by observing the network packet exchanges and QoE. Such a model can predict the
QoE of other video streaming applications that use similar packet exchanges like YouTube.

7 Conclusion

In this paper, we presented H3B, a toolbox to collect application and network layer logs for YouTube
video streaming. Such a tool can emulate any given network pattern, which is one of its major features.
We utilized this tool to launch a measurement campaign for 5 different geographical locations and 5
different bandwidth patterns. We obtained a dataset of 5464 streaming hours over 5936 sessions of
YouTube video streaming. We further analyzed the dataset and observed that HTTP/3 is not always a
winner compared to legacy HTTP/2. We believe our dataset will be valuable to the community for
developing various solutions to provide better application QoE on top of the HTTP/3 browsers.
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