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A Summary of Results

Table 1: Summary of Results
columns=conditions: Orthogonal UO & erf UO & � satisfying g� assumptions
lines=results:

n = 1 average is the optimal solution n.i.g. yes* yes
n > 1 CA points are critical points n.i.g. yes n.i.g. maybe for odd
n > 1 (n� 1)-C-1-A is the optimal-CA solution n.i.g. yes n.i.g. maybe for some odd
n = 1 w

⇤ is in the span of {v1, ..., vk} yes yes* yes*

In the table above, UO means unit-orthonormal, n.i.g. stands for ‘not in general’ and yes* follows as
a special case from the results with yes on the same row.

B Further Comparison to Literature

In this section, we compare the symmetric solutions found in erf [2] and ReLU networks [5] to
our one-neuron solution (n = 1). The main difference is that both earlier studies constrain the
search space to the symmetric subspace whereas we first prove that the non-trivial critical points are
contained in this subspace in Theorem 5.1 for a broad class of activation functions, including erf and
ReLU. Solving the low-dimensional loss, we recover the same solution for ReLU and erf as in [2, 5]
for unit-orthonormal teachers.
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Symmetric Solution of Saad and Solla [2] for erf activation. The authors focus on the ‘symmetric
subspace’ parameterized as

Qii = r
2
i = Q, Qij = pijrirj = C, Rin = uinri = R. (21)

In this case, the loss is parameterized by three values, that is Q, C, R, hence can be expressed
analytically in terms of these values. Solving the fixed point equations, they find the following
critical/fixed point (their Eq.22)

Q = C =
1

2k � 1
, R =

1p
k(2k � 1)

(22)

which implies ri = 1/
p
2k�1 and ⇢ij = 1 in our parameterization. This selection of parameters forces

all student vectors to be equal therefore reducing the system to a one-neuron network. There are two
main improvements in our analysis

1. We prove that student-teacher correlations uij are equal to each other at a non-trivial critical
point, and give necessary conditions on the activation function (Assumption 3.1) to satisfy
this property. We show in Lemma F.2 that not only erf but a large class of common activation
functions satisfy Assumption 3.1.

2. Our student network has a flexible outgoing weight (shallow neural network) as opposed to
a fixed outgoing weight +1 (soft-committee machine) in Saad and Solla [2]. It is instructive
to compare the generalization errors of the one-neuron network

(soft-committee machine) L
⇤
erf; soft(k) =

k

3
� k

2 2

⇡
arcsin(

1

2k
)

(shallow network) L
⇤
erf(k) = k

2

⇡
arcsin(

1

2
)� k

2 2

⇡
arcsin(

1

2k
) ⇡ k(

1

3
� 1

⇡
),

which are identical since arcsin(0.5) = ⇡/6 (Saad and Solla [2] uses ✏g(k) = 1
2L

⇤
erf; soft(k)

that’s why there is a factor 0.5 difference with respect to their Eq. (23)). However, if
we set teacher outgoing weights to say at, the shallow network adapts and reaches the
generalization error a

2
tL

⇤
erf(k) but the error of the soft-committee machine is

L
⇤
erf; soft(k) = k

2
g(

1p
2k�1

,
1p

2k�1
, 1)� 2k

2
atg(

1p
2k�1

, 1,
1p
k�1

) + a
2
tkg(1, 1, 1)

= O(at) + a
2
tk

1

3
.

which has a worse coefficient 1
3 compared to 1

3 �
1
⇡ as expected.

Symmetric Solution of Tian [5] for ReLU activation. The authors focus on a particular two-
dimensional subspace (x, y) that allows the specialization of student neurons, namely

wi = xvi + y

X

j 6=i

vj . (23)

In particular, they consider the ‘symmetric subspace’ x = y which is the case when all student
neurons collapse to one neuron, and show that the dynamics converge to the following fixed point

x = y =
1

⇡k
(
p

k � 1� arccos(
1p
k

) + ⇡). (24)

Summing over k neurons then produces the following one-neuron due to the positive homogeneity

w
⇤ =

1

⇡
(
p

k � 1� arccos(
1p
k

) + ⇡)
kX

j=1

vj .

Our formula (Corollary G.5) gives the identical result due to

w
⇤
a
⇤ =

k

h(1)
h(

1p
k

)
kX

j=1

1p
k

vj =
1

⇡
(
p

k � 1� arccos(
1p
k

) + ⇡)
kX

j=1

vj .

In this case, there is no difference between the optimal solution of the soft-committee machine and
the shallow network since ReLU is positive-homogeneous as expected.
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A B C

Figure 5: Structure of the optimal solution of the one-neuron network for various activation functions.
We trained 20 seeds of one-neuron students learning from the unit-orthonormal teacher networks
with k = 2, ..., 10 neurons. All students converge to the same optimal solution up to symmetries (that
is, positive-scaling symmetry for ReLU and sign symmetry for odd activation functions such as tanh
and erf). A For ReLU, the magnitude kw⇤ka⇤ exactly matches with the result of Corollary G.5. For
softplus, the magnitude is very close to

p
k; for sigmoid, tanh, and erf, it is below

p
k. B The norm

of the incoming vector is smaller than 1/
p

k for softplus, sigmoid, tanh, and erf. C The outgoing
weight is larger than k for softplus and tanh, and it is virtually k for sigmoid and erf.

C Further Experiments

All experiments in this paper are implemented using the gradient flow package implemented by
Brea et al. [16] which is particularly suited to studying gradient flow on the population loss. For
activation functions for which there is an analytic formula, it is already implemented in the package;
for the others, we used the approximator option for a speed-up compared to the numerical integration
option. This method uses a neural network in the background fitted to approximate Gaussian integrals.
We trained for 105 ode iterations for erf and relu experiments; 103 ode iterations for softplus, tanh,
and sigmoid. For erf experiments, all seeds converged to configurations with gradient norm below
5 · 10�8. For ReLU experiments, a fraction of seeds failed to converge (large gradient norm at the
end of training). In Appendix C.3, we report among the seeds that succeeded in converging. Weights
initialized as Gaussians with zero mean and standard deviation 0.1 or with Glorot initialization [43].
This is in contrast with Saad and Solla [2], Tian [5] where (order) parameters are initialized with
positive values (as opposed to the rotationally symmetric initializations done in practice). For each
(n, k) pair, we implemented 10 or 20 seeds of random initializations.

C.1 One-Neuron Network

Empirically, gradient flow converges to the point where all student-teacher correlations are 1
k

4.

We know from Theorem 5.1 that at the non-trivial critical point all correlations are equal at correlation
1/

p
k and there is possibly another critical point at correlation �1/

p
k. Depending on the activation

function, the point where correlations are �1/
p
k might be

• either an equivalent of the optimum solution (for odd activation functions),
• or a saddle (for ReLU),
• or does not exist (for softplus).

The details can be found in the proofs for individual cases.

C.2 Erf Experiments

In this section, we first numerically investigate whether the CA-optimal critical point is a saddle or
minimum in Figure 6. Surprisingly, we find that the point turns from a saddle point to a minimum

4For odd activation functions, there are two solutions that are sign-symmetric: the first one where all
correlations are 1p

k
and its equivalent where all correlations are � 1p

k
. The first solution is plotted in Fig. 5 for a

fine comparison on the positive scale.
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Figure 6: The minimum eigenvalue of the Hessian at an optimal-CA point. We numerically investigate
whether a CA-optimal critical point is a strict saddle (min. eig. of the Hessian is negative) or a
minimum (min. eig. of the Hessian is non-negative). Interestingly, the minimum eigenvalue turns
from positive to negative as n grows for k = n + h for fixed h = 1, 2, 3 (left panel). Therefore in this
regime, the CA-optimal cannot be the optimal solution of the non-convex problem for large n. For
k � n, for example for k = n, 2n, 3n (right panel), the min. eigenvalue is positive and it approaches
zero as n increases.

Figure 7: Evolution of order parameters during convergence to a (n� 1)-C-1-A solution: top n = 2,
middle n = 4, bottom n = 8; and k = 64; representative seeds. We can distinguish 3 phases: before
iteration 20, after iteration 20, and beyond iteration 40. We observe that in the first phase of training
(less than 5 iterations), the student neurons do not specialize into teacher neurons but approach the
one-neuron solution. For n = 2 (top row), in the second phase, we observe that the first neuron
implements an average of teacher neurons and the second neuron implements a copy of the remaining
teacher neuron. In the second phase, in general, n� 1 neurons specialize to match one teacher neuron
each (or its negative equivalent) and the n-th neuron splits its correlations into two groups: those that
correspond to the teacher neurons being matched become negative and the others collapse on each
other. Finally, in the third phase, the negative correlations converge to zero correlation, decoupling
the student neurons from each other. All student neuron correlation signs can be flipped as long as
the corresponding outgoing weight signs are flipped since the erf activation is odd. These examples
illustrate the green regime (see Fig. 4 in the main text).

point in some regimes of (n, k), despite that the configuration has the same structure of copying n� 1
teacher neurons and taking an average of the remaining teacher neurons. When k � n is fixed, and
for large n, Figure 6 explains why gradient flow does not converge to the CA-optimal point.
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Figure 8: Evolution of order parameters; P-n-C solution: for n = 8 and k = 9. We observe that all
student neurons match one teacher neuron in this case, however not perfectly at the end of training.
This is an example of the red regime (see Fig. 4 in the main text), where the students converge to a
perturbation of the n-copy configuration.
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C3

Figure 9: Optimal configuration found by gradient flow for ReLU activation function for n = 2 (top);
n = 4 (middle); n = 12 (bottom). The last row of the correlation matrices represents 1 � kuik
which is zero for all student neurons in all cases. Top row, n = 2; the optimal point is composed of a
copy and an average neuron: the copy neuron is very close to one of the teacher neurons, and the
average neuron is close to the average of the remaining teacher neurons while negatively correlating
with the copied teacher neuron. The negative correlation increases in magnitude as k increases.
Middle row, n = 4; for k = 5, the optimal point is a perturbation of the all-copy configuration;
for k = 8, 16, it is close to the (n � 1)-copy-1-average configuration. Bottom row, n = 12; for
k = 16, 24, the optimal point is a perturbation of the all-copy configuration; for k = 32, it is close
to the (n� 1)-copy-1-average configuration. In all regimes, the norms and outgoing weights of all
student neurons are close to each other (for the bottom row only the first four neurons are shown).

We show some representative trajectories of gradient flow, in the regime when the CA-optimal critical
point is a minimum in Figure 7 and in the regime when it is a saddle point in Figure 8.

C.3 ReLU Experiments

In this subsection, we will present the structure of the minimum loss configuration found by gradient
flow. In the regime n⌧ k, the minimum loss configuration is qualitatively similar to the optimal-CA
solution but without perfect decoupling. For k that is slightly bigger than n, the gradient flow finds
an "all-copy" configuration for n = 4, 12. The overall trend of the minimum loss configuration is
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similar to the case of erf activation; however, as we do not have the analytic formula of correlations, a
theoretical prediction for the optimal solution is left for future work.

D Constrained Optimization Formulation

Expressing the loss function in terms of the order parameters yields the ‘projected’ loss function

L
n,k
proj =

nX

i=1

a
2
i g�(ri, ri, 1)| {z }

student magnitude term

+2
X

i 6=i0

aiai0g�(ri, ri0 , ⇢ii0)| {z }
student-student interaction

�2
nX

i=1

kX

j=1

aibjg�(ri, kvjk, uij)| {z }
student-teacher interaction

+C

(25)

where the constant term C = Ex⇠D[f⇤(x)2]. Lproj has n(k + 2) +
�n
2

�
parameters, that is n output

weights and n(k + 1) +
�n
2

�
order parameters, instead of n(d + 1) parameters of the original loss

function. For d� k + 1 + n�1
2 , Lproj has significantly less number of parameters.

In the special case d = k, the incoming vectors can be expressed as a linear combination of the
teacher’s incoming vectors, hence the correlations between them are not free (see Appendix D.1).

Each normalized incoming vector can be expressed as a sum of its projection on the span of the
teacher’s incoming vectors and an orthogonal component

wi

ri
=

kX

j=1

uijvj + v
?
i ,

kX

j=1

u
2
ij  1, (26)

and the inequality constraint pops up since kuik2 = 1� kv?i k2 where ui = (ui1, . . . , uik). For the
correlations between the incoming vectors, we get

⇢ii0 = ui · ui0 + v
?
i · v?i0 , (27)

which yields the second set of constraints on the optimization problem
����⇢ii0 � ui · ui0

���� 
p

1� kuik2
p

1� kui0k2 8i0 6= i 2 [n], (28)

since we have |v?i · v?i0 |  kv?i kkv?i0 k due to the Cauchy-Schwarz inequality.

We note if all incoming vectors are in the span of the teacher’s incoming vectors, we have that
kuik = 1. As a result, the second set of inequalities in Eq. 28 collapse onto equalities, hence the
secondary constraints are in fact equality constraints (see Appendix Eq. 34). We show that this is
indeed the case for the non-trivial critical points of the one-neuron network in Section G.

In general, the constrained optimization formulation is possible for non-orthogonal teacher networks.

Remark D.1. (Non-orthogonal teacher network) We can relax the assumption of orthogonality
between v1, . . . , vk to linear independence. Let us collect the incoming vectors into a matrix
V = [v1, . . . , vk] 2 Rd⇥k. The expansion in Eq. 26 can be rewritten as

wi

ri
=

kX

j=1

�ijvj + v
?
i = V �i + v

?
i (29)

where �i = (�i1, . . . , �ik) 2 Rk and v
?
i · vj = 0 for all j 2 [k]. The normalized vector has a unit

norm, hence we have

kV �i + v
?
i k2 = �T

i V
T
V �i + kv?i k2 = 1. (30)

The correlation vector can be written as ui = V
T
V �i 2 Rk which yields the following constraint

u
T
i (V T

V )�1
ui  1. (31)
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D.1 Equality Constraints in the Case d = k

In this case, the teacher incoming vectors v1, . . . , vk span the input domain Rd. Each incoming vector
(of the student) can be expressed as a linear combination of the teacher’s incoming vectors

wi

ri
=

kX

j=1

uijvj ,

kX

j=1

u
2
ij = 1, (32)

and the equality constraint pops up since the normalized vector has a unit `2 norm. The correlations
between the incoming vectors are then expressed in terms of the student-teacher correlations

⇢ii0 = ui · ui0 . (33)

Therefore the optimization problem is equivalent to

min
nX

i=1

a
2
i g�(ri, ri, 1) + 2

X

i 6=i0

aiai0g�(ri, ri0 ,
kX

j=1

uijui0j)� 2
nX

i=1

kX

j=1

aibjg�(ri, kvjk, uij)

subject to
kX

j=1

u
2
ij = 1, ri � 0, for all i 2 [n]. (34)

Since
�n
2

�
student-student correlations terms are not free, the problem has only n(k + 2) free

parameters and k equality constraints, yielding n(k + 1) effective parameters, which is the same
number as the number of parameters of the original problem in the weight-space.

D.2 Binary-Equality Constraints in the Case d = k + 1

In this case, there is only one direction orthogonal to the span of the teacher’s incoming vectors (i.e.
v
?
i k v

?
i0 ). Therefore the general inequality constraint on ⇢ii0 reduces to

⇢ii0 = ui · ui0 ±
p

1� kuik2
p

1� kui0k2. (35)

D.3 Three-Neuron Network

We present a case for the three-neuron network where the optimal solution of the constrained
optimization problem may not be projected back to the weight space. In particular, let us consider a
positive and monotonic activation function, i.e. �(x) > 0. This implies that g� > 0 and that g� is
increasing in correlation. It is natural to expect that all outgoing weights are positive since this would
bring the network function closer to the target function. If the network is overparameterized, some
outgoing weights may be zero or even negative (balanced by a positive outgoing weight corresponding
to the same incoming vector). Let us pick three positive outgoing weights a1, a2, a3 > 0 and three
corresponding student-student interaction terms

minimize a1a2g�(r1, r2, ⇢12) + a1a3g�(r1, r3, ⇢13) + a2a3g�(r2, r3, ⇢23) + ...,

subject to |⇢ii0 � ui · ui0 | 
p

1� kuik2
p

1� kui0k2. (36)

Note that each ⇢ii0 is decoupled from each other. Since g� is increasing in correlation, the minimum
of each term above is achieved when

⇢ii0 = ui · ui0 �
p

1� kuik2
p

1� kui0k2. (37)

This implies that the inequality is tight and therefore v
?
i k v

?
i0 moreover,

v
?
i =

p
1� kuik2v? and v

?
i0 = �

p
1� kui0k2v? (38)

up to a sign flip. However, it is not possible that the three vectors all have pairwise flipped directions to
each other as we would have (�) · (�) = (+). If the optimal solution of the constrained optimization
problem verifies kuik2 < 1, then we conclude that it cannot be mapped back to the weight space; in
this case, the optimal Lproj would only give a lower bound on the optimal loss of the weight-space.
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E Copy-Average Critical Points

Theorem E.1. Assume that � is the erf activation function. We pick a copy-average parameter vector

✓
⇤ = (w⇤

1 , a
⇤
1)� ...� (w⇤

n, a
⇤
n) (39)

where (w⇤
i , a

⇤
i ) is a non-trivial critical point when learning from a unit-orthonormal teacher f

⇤
i with

the incoming vectors vsi�1+1, ..., vsi shown in Eq. 11. Then ✓
⇤ is a critical point of the loss function

L
n,k where the target function is f

⇤(x) =
Pk

j=1 �(vj · x).

Proof. Let us write down the partial derivatives with respect to the outgoing weights and incoming
vectors

d

dai
L
n,k(✓⇤) = 2Ex⇠D[�(w⇤

i · x)(
nX

j=1

a
⇤
j�(w⇤

j · x)� f
⇤(x))],

d

dwi
L
n,k(✓⇤) = 2a⇤

iEx⇠D[�0(w⇤
i · x)x(

nX

j=1

a
⇤
j�(w⇤

j · x)� f
⇤(x))]. (40)

We will show that they are equivalent to the following

d

dai
L
n,k(✓⇤) = 2Ex⇠D[�(w⇤

i · x)(a⇤
i �(w⇤

i · x)� f
⇤
i (x))],

d

dwi
L
n,k(✓⇤) = 2a

⇤
iEx⇠D[�0(w⇤

i · x)x(a⇤
i �(w⇤

i · x)� f
⇤
i (x))], (41)

which implies that the partial derivatives are zero, since (w⇤
i , a

⇤
i ) is a critical point of the loss

L
1,`i = Ex⇠D[(a�(w · x)� f

⇤
i (x))2]. (42)

Since (w⇤
i , a

⇤
i ) is the optimal solution of the teacher network generated by vsi�1+1, ..., vsi , from

Theorem 5.1, we have that w
⇤
i is in the span of vsi�1+1, ..., vsi . We have that

w
⇤
i · w⇤

i0 = 0 and w
⇤
i · vj = 0 for j 2 [k] \ [si�1 + 1, si] (43)

since the two incoming vectors are in the span of two orthogonal subspaces respectively and w
⇤
i is

orthogonal to all other teacher incoming vectors that are outside of the span of vsi�1+1, ..., vsi . For
two orthogonal vectors say w

⇤
i and v, we have that

Ex⇠D[�1(w
⇤
i · x)�2(v · x)] = Ex⇠D[�1(w

⇤
i · x)]Ex⇠D[�2(v · x)] (44)

which is zero if at least one of �1 and �2 is odd. This implies the first equation in 41 for the partial
derivatives with respect to the outgoing weights. In order to show the second equation for the partial
derivatives with respect to the incoming vectors, let us define Sj = [sj�1 + 1, sj ],

Wi,j = Ex⇠D[�0(w⇤
i · x)x(a⇤

j�(w⇤
j · x)�

X

k2Sj

�(vk · x))], (45)

and note that it suffices to show that Wi,j = 0 for all i 6= j. This is true if and only if Wi,j · v̄` = 0
where {v̄1, ..., v̄d} form an orthogonal basis of Rd. Let us choose v̄1 = v1, ..., v̄k = vk and that
v̄k+1, ..., v̄d completes the basis if d > k. One can observe that Wi,j · v̄` = 0 for k +1  `  d since
x · v̄` is an independent Gaussian from the others. Hence, the expectation, i.e. Wi,j · v̄`, factorizes
with a factor of E[x · v̄`] which is zero.

It remains to check Wi,j · vl = 0 for all vl’s. We split the analysis into two cases. If vl /2 Sj , then
x · vl is independent from x · w⇤

j and from x · vk for k 2 Sj . Hence Wi,j splits into

Wi,j · vl = Ex⇠D[�0(w⇤
i · x)x · vl]Ex⇠D[(a⇤

j�(w⇤
j · x)�

X

k2Sj

�(vk · x))] = 0, (46)
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where the second term in the product is zero because w
⇤
j · x and vk · x are centered Gaussian and � is

odd. For the second case, where vl 2 Sj , using the fact that x · vl is independent from w
⇤
i · x and

from x · vk for l 6= k, we have

Wi,j · vl = Ex⇠D[�0(w⇤
i · x)]Ex⇠D[x · vl(a⇤

j�(w⇤
j · x)�

X

k2Sj

�(vk · x))] (47)

= Ex⇠D[�0(w⇤
i · x)]Ex⇠D[x · vl(a⇤

j�(w⇤
j · x)� �(vl · x))] (48)

= Ex⇠D[�0(w⇤
i · x)]

⇣
Ex⇠D[a⇤

j�(w⇤
j · x)x · vl]� Ex⇠D[�(vl · x)x · vl]

⌘
. (49)

Applying Stein’s Lemma to both terms on the right we have

Wi,j · vl = Ex⇠D[�0(w⇤
i · x)]

⇣
E[a⇤

jr
⇤
ju

⇤
�
0(r⇤jZ)]� E[�0(Z)]

⌘
, (50)

where Z is standard Gaussian and r
⇤
j =

q
1

2k�1 , u
⇤ =

q
1
k , a

⇤
j = k (parameters of erf). Hence we

want to show that

a
⇤
jr

⇤
ju

⇤E[�0(r⇤jZ)] = E[�0(Z)]. (51)

To show this, we use the following relation [2, 3]

gerf(r, r, u) = E[�(rx)�(ry)] =
2

⇡
arcsin

✓
r
2
u

r2 + 1

◆
. (52)

Differentiating with respect to the correlation u we have

d

du
gerf(r, r, u) = r

2E[�0(rx)�0(ry)] =
2

⇡

1r
1� u2

⇣
r2

r2+1

⌘2
r
2

(r2 + 1)
. (53)

In particular, at correlation zero, we get

E[�0(rx)] =

s
2

⇡

1

(r2 + 1)
(54)

Therefore, we have

E[�0(r⇤jx)] =

s
2

⇡

✓
2k � 1

2k

◆
, E[�0(x)] =

r
1

⇡
, (55)

which implies 51 and the proof is complete.

For general activation functions, using the substitution in Eq.41, the first partial derivatives in Eq. 40
reduce to

d

dai
L
n,k(✓⇤) = 2

X

i 6=i0

a
⇤
i0g�(kw⇤

i k, kw⇤
i0k, 0)� 2(k � `i)g�(kw⇤

i k, 1, 0) (56)

which is in general non-zero if � is not odd.
Lemma E.2. Assume `2 > `1 � 1. We have that

L
⇤
erf(`2 + 1)� L

⇤
erf(`2) < L

⇤
erf(`1 + 1)� L

⇤
erf(`1). (57)

Proof. We first show that the function x
2 arcsin( 1

2x ) is increasing for x � 1 and convex for x > 0.
Using the Taylor expansion of arcsin, we have that

f(x) = x
2 arcsin

� 1

2x

�
=

x

2
+

1

2 · 3
1

23x
+

1 · 3
2 · 4 · 5

1

25x3
+ ... (58)

where the higher-order terms all have positive coefficients. The first derivative is

f
0(x) =

1

2
� 1

2 · 3
1

23x2
� 1 · 3 · 3

2 · 4 · 5
1

25x4
+ ... (59)
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which is positive for x � 1 since we have

1

2 · 3
1

23x2
+

1 · 3 · 3
2 · 4 · 5

1

25x4
+ ... <

1

22x2
+

1

24x4
+ ...  1

4
+

1

42
+

1

43
+ ... =

1

3
. (60)

The second derivative is

f
00(x) = 2

1

2 · 3
1

23x3
+ 4

1 · 3 · 3
2 · 4 · 5

1

25x3
+ ... (61)

which is positive for positive x.

First, let us show that Eq. 18 holds. Plugging in the analytic expressions for L
⇤
erf(0, ·) and L

⇤
erf(·), it is

equivalent to

`0
2

⇡
arcsin

�1
2

�
> `0

2

⇡
arcsin

�1
2

�
� 2

⇡

⇣
(`1+`0)

2 arcsin
� 1

2(`1+`0)

�
� `

2
1 arcsin

� 1

2`1

�⌘
. (62)

Since f(x) is increasing for x � 1, the second term inside the parenthesis is positive, hence the
inequality holds.

We will now prove the statement of the Lemma. It suffices to show the following for all ` = `2 � 2

L
⇤
erf(` + 1)� L

⇤
erf(`) < L

⇤
erf(`)� L

⇤
erf(`� 1) (63)

since then we can continue to decrease ` by one, i.e. ` � 1, ` � 2, ..., until we reach `1. Eq. 63 is
equivalent to

L
⇤
erf(` + 1)� 2L

⇤
erf(`) + L

⇤
erf(`� 1) < 0, (64)

that is the second-order finite difference, similar to the second-derivative of a continuous function.
The proof is completed by observing that L

⇤
erf(·) is a discrete-concave function since its continuous

interpolation

L
⇤
erf(x) = x arcsin(

1

2
)� x

2 arcsin(
1

2x
) (65)

is concave for x > 0 since it can be written as L
⇤
erf(x) = ↵x�f(x) where f is convex for x > 0.

Lemma E.2 tells us that if we add one neuron to the teacher, then it is better to approximate it by the
student neuron that already approximates many teacher neurons. Applying Lemma E.2 iteratively,
we get

L
⇤
erf(k�1) + L

⇤
erf(1) < L

⇤
erf(k�2) + L

⇤
erf(2) < ... < L

⇤
erf(`2+1) + L

⇤
erf(`1) < L

⇤
erf(`2) + L

⇤
erf(`1+1)

where `2= k
2 , `1= k

2 � 1 if k is even and `2= k+1
2 , `1= k�3

2 if k is odd.

Theorem E.3. Consider a unit-orthonormal teacher network f
⇤(x) =

Pk
j=1 �(vj · x) and the erf

activation function. For an under-parameterized student network with n neurons, the minimum-loss
copy-average configuration up to permutations (of the student and teacher neurons) is

✓ = (✏1v1, ✏1)� ...� (✏n�1vn�1, ✏n�1)� (✏nw
⇤
n, ✏na

⇤
n) (66)

where ✏i 2 {±1} and (w⇤
n, a

⇤
n) is given by Corollary 5.2 after substituting k with k�n+1.

Proof. We will conclude with a simple argument that the minimum-loss CA configuration for a
multi-neuron network with n neurons is (n�1)-C-1-A. In particular, if there are two averaging
neurons inside the student network, we can redistribute the teacher neurons shared between these
two to a lower-loss CA configuration by ensuring that one student neuron copies and the other
student neuron averages (see Lemma E.2). The minimum-loss CA point is then achieved among CA
configurations where at least n�1 neurons each copy a single teacher neuron (of the k possible ones).
The remaining student neuron can be treated as a single-neuron network learning from a teacher with
k�n+1 neurons – for which we know the optimal solution is to average (Theorem 5.1).
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E.1 Number of CA Critical Points

There is a combinatorial number of (`1, ..., `n)-CAC critical points, that is

c(`1, ..., `n)

✓
k

`1

◆
...

✓
k � (`1 + ... + `n)

`n

◆
(67)

where cn := c(`1, ..., `n) counts distinguishable permutations between the neurons of the student
network, and the binomial coefficients stand for grouping teacher neurons into n non-empty buckets.

If `1 = ... = `n, permutation between the student neurons is already counted when distributing the
teacher neurons, hence cn = 1. If all `1, ..., `n are distinct from each other, we have that cn = n!
since we swap all pairs of student neurons after assigning groups of teacher neurons. In general, let
ci denote the number of i’s among `1, ..., `n for all i = 1, .., k; the formula for the permutation-factor
is given by

c(`1, ..., `n) =
n!

c1!...ck!
. (68)

F General Properties of the Interaction Function

In this Section, we introduce some general properties of the interactions. We use these only for the
one-neuron network in this paper (see Section G), however, these properties are likely to play a role
in studying the networks with two or more neurons.

We first present the partial derivative of a general interaction function, i.e. two activation functions
may be different, for example, if the student activation function does not match the teacher, with
respect to the correlation in a simple expression in Lemma F.1. In the second part, we present a
property of the activation function sufficient for Assumption 3.1 (ii), and show that the differentiable
activation functions studied in this paper satisfy this property in Lemma F.2.
Lemma F.1. Assume that functions �1 and �2 are differentiable. The partial derivative of the
following Gaussian integral term E[�1(r1x)�2(r2y)] with respect to the correlation E[xy] = u is

d

du
E[�1(r1x)�2(r2y)] = r1r2E[�0

1(r1x)�0
2(r2y)]. (69)

We apply the Lemma for �1 = �2 = � in the main text in Eq. 9.

Proof. We compute the derivative of E[�1(r1x)�2(r2y)] by making the correlation u explicit. Denote
u
0 =
p

1� u2 and y = ux + u
0
z. After the computation, we use Stein’s lemma to reach the desired

formula.

@uE[�1(r1x)�2(r2y)] = r2E[�1(r1x)�0
2(r2y)x]� r2u

u0 E[�1(r1x)�0
2(r2y)z] (70)

where x and z are independent standard Gaussians. Here is a reminder for Stein’s Lemma for a
standard Gaussian z

E[v(z)z] = E[v0(z)]. (71)
To remove x in the first term, we apply Stein’s formula for v(x) = �1(r1x)�0

2(r2(ux+u
0
z)) yielding

r1r2E[�0
1(r1x)�0

2(r2y)] + r
2
2uE[�1(r1x)�00

2 (r2y)]. (72)
To remove z in the second term, we apply Stein’s formula for v(z) = �

0
2(r2(ux+u

0
z)) by considering

fixed x which yields
�r

2
2uE[�1(r1x)�00

2 (r2y)]. (73)
Summing up the two terms completes the proof.

For softplus that is increasing and convex, using Lemma F.1 for �1=�2=� twice, we infer that the
interaction g is also increasing and convex in u. Hence, for u < 0, Assumption 3.1 (ii) holds for
softplus. However, for the other activation functions, using second-order derivatives does not suffice
to show the assumption. We will propose a new property of the activation function that implies that
the interaction satisfies Assumption 3.1 (ii) and prove that softplus with �  2, sigmoid, tanh, and erf
satisfy this property.
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Lemma F.2. If the activation function � is thrice-differentiable and it satisfies

�
0(x)� x�

00(x) + �
000(x) > 0, (74)

then its interaction satisfies Assumption 3.1 (ii) for all u 2 (�1, 1). Softplus with � 2 (0, 2], sigmoid,
tanh, and erf activation functions satisfy the above inequality.

Proof. Let us first write out Assumption 3.1 (ii) explicitly using Lemma F.1

r1uE[�̄0(r1x)�̄0(y)] < E[�̄(r1x)�̄(y)]. (75)

where �̄(x) = �
0(x). Using Stein’s Lemma for v(x) = �̄(r1x)�̄0(y), we get

E[�̄(r1x)�̄0(y)x] = E[�̄0(r1x)�̄0(y)]r1 + E[�̄(r1x)�̄00(y)]u. (76)

The desired inequality is equivalent to

E[�̄(r1x)(�̄(y)� �̄
0(y)xu + �̄

00(y)u2)] > 0. (77)

Let us introduce f(x) = �̄(x)� x�̄
0(x) + �̄

00(x). For y = ux + u
0
z where u

0 =
p

1� u2, we have
the conditional average of y fixing x (we drop conditioning on the right-hand terms for convenience)

E[f(y)|x] = E[�̄(y)]� E[y�̄
0(y)] + E[�̄00(y)]

= E[�̄(y)]� uxE[�̄0(y)]� E[u0
z�̄

0(y)] + E[�̄00(y)]

= E[�̄(y)]� uxE[�̄0(y)]� (u0)2E[�̄00(y)] + E[�̄00(y)]

= E[�̄(y)]� uxE[�̄0(y)] + u
2E[�̄00(y)], (78)

where second last equality comes from Stein’s Lemma for v(z) = �̄
0(ux + u

0
z). Hence the desired

inequality is equivalent to

E[�̄(r1x)f(y)] > 0. (79)

By straightforward calculus, we will show that f(x) > 0, or that f(x) � 0 and f(x) = 0 if and only
if x = 0. In the latter case, the expectation in Eq. 79 is positive since f(y) > 0 for some y values of
the integrand. First, for the sigmoid and tanh activation functions, for which we have

�̄(x) =
e
x

(ex + 1)2
, �̄

0(x) =
e
x(1� e

x)

(ex + 1)3
, �̄

00(x) =
e
x(e2x � 4e

x + 1)

(ex + 1)4
. (80)

Hence, we can explicitly write f as

f(x) =
e
x

(ex + 1)2
� x

e
x(1� e

x)

(ex + 1)3
+

e
x(e2x � 4e

x + 1)

(ex + 1)4
(81)

=
e
x

(ex + 1)4
((ex + 1)2 � x(1� e

x)(ex + 1) + (e2x � 4e
x + 1)). (82)

Therefore showing f(x) > 0 is equivalent to showing that the factor on the right, that is,

2e
x(ex � 1) + 2� x(1� e

2x) (83)

is positive. For x < 0, we have e
x

< 1 which implies �x(1� e
2x) > 0 and (1� e

x)ex  1/4 due
to the inequality of arithmetic and geometric means hence the first term is upper bounded by �1/2
and since we have +2, the whole term is positive. For x � 0, we have e

x � 1, hence we can rewrite
the inequality as a sum of non-negative terms

2e
x(ex � 1) + 2 + x(e2x � 1) > 0. (84)

Let us now handle the case of erf. Its first three derivatives are given by

�̄(x) =
2p
⇡

e
�x2/2

, �̄
0(x) = � 2p

⇡
xe

�x2/2
, �̄

00(x) =
2p
⇡

(x2
e
�x2/2 � e

�x2/2) (85)

Hence, we can explicitly write f as

f(x) =
2p
⇡

e
�x2/2(1 + xx + x

2 � 1) =
4p
⇡

e
�x2/2

x
2 (86)
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that is non-negative for all x and zero iff x = 0.

Finally, for the softplus activation function with � 2 (0, 2], we have the following derivatives

�̄(x) =
e
�x

(e�x + 1)
, �̄

0(x) =
�e

�x

(e�x + 1)2
, �̄

00(x) =
�
2
e
�x(1� e

�x)

(e�x + 1)3
. (87)

Plugging in the function f , we get

f(x) =
e
�x

(e�x + 1)
� x

�e
�x

(e�x + 1)2
+

�
2
e
�x(1� e

�x)

(e�x + 1)3
(88)

=
e
�x

(e�x + 1)3
((e�x + 1)2 � x�(e�x + 1) + �

2(1� e
�x)) (89)

Therefore showing f(x) > 0 is equivalent to showing that the factor on the right, that is,

e
2�x + e

�x(2� x� � �
2) + 1� x� + �

2 (90)

is positive. For x  0, we have that �x� > 0 and 2� �
2 � �2 since �  2, hence it is sufficient to

show that the following is positive

e
2�x � 2e

�x + 1 + �
2 = (e�x � 1)2 + �

2 (91)

which is a sum of squares. For x > 0, in the rest of the proof we will show that

e
�x(e�x + 2� x� � �

2) + 1� x� + �
2

> 0, (92)

for � 2 (0, 2]. Using e
�x � (�x)2/2 + �x + 1, it suffices to show that

e
�x((�x)2/2 + 3� �

2) + 1� x� + �
2

> 0. (93)

If (�x)2/2 + 3� �
2 � 1, then the first term is bigger than �x + 1 hence the above term is positive.

The remaining possibility is that we have

x
2

2
< 1� 2

�2
. (94)

�  2 implies x < 1 and x
2

> 0 implies � >
p

2. Hence we have �x� + �
2

> 0 since � > x.
Therefore, if we have (�x)2/2 + 3� �

2 � 0, Eq. 92 is positive. Assuming the opposite, we get

x
2

2
< 1� 3

�2
, (95)

�  2 implies x<1/
p

2 and x
2

> 0 implies �>
p

3.

Going back to Eq. 92, what remains to show is that it is positive in the domain x<1/
p

2, � 2 (
p

3, 2].
It suffices to show that e

�x + 2� x� � �
2

> 0. Assuming the contrary implies e
�x

< x� + 2 since
�  2. We can then deduce that x� < c = 1.2 since otherwise we would have

e
�x = 1 + �x +

(�x)2

2!
+

(�x)3

3!
+ ... (96)

� 1 + �x +
c
2

2!
+

c
3

3!
+ ... = 1 + �x + (ec � c� 1) > 1 + �x + 1 (97)

which implies a contradiction. c can be chosen smaller but this will be enough for our purposes.

Assuming e
�x + 2� x� � �

2  0, let us expand Eq. 92

e
�x(e�x + 2� x� � �

2) + 1� x� + �
2 � (using e

�x
< �x + 2) (98)

(x� + 2)e�x + (x� + 2)(2� x� � �
2) + 1� x� + �

2 = (99)

(x� + 2)e�x � (x�)2 � (1 + �
2)x� + 5� �

2
> (using e

�x
> �x + 1) (100)

7� �
2 + (2� �

2)x� � 3� 2x� > 0 (101)

where in the last inequality we used x� < 1.2. We note that this inequality holds for slightly larger �

using the same technique, however, for significantly larger �, the property breaks down.
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G The One-Neuron Network

We study the critical points of the following loss function

L
1,k(w, a) = Ex⇠D[a�(w · x)�

kX

j=1

bj�(vj · x)], (102)

in particular, the optimal solution. For n = 1, all configurations of order parameters are realizable in
the weight space, therefore, the optimal solution of the following loss (repeating Eq. 14)

L
1,k
proj = a

2
g�(r, r, 1)� 2a

kX

j=1

bjg�(r, kvjk, uj) + const, subject to
kX

j=1

u
2
j  1, r � 0, (103)

is equivalent to the optimal solution in the weight space. Let us denote the unit ball by B =
{(u1, ..., uk) | u2

1 + ... + u
2
k  1}. Its interior is denoted by int B and its boundary is denoted by @B.

We will present the results for the one-neuron network in five parts

1. In Subsection G.1, we give a proof of Proposition 4.1: any non-trivial critical point (w, a) of
L
1,k satisfies that w is in the span of the teacher’s incoming vectors if the activation function

satisfies Assumption 3.1 (i). Moreover, we show in Lemma G.2 that the corresponding order
parameters should satisfy a Lagrangian condition (Eq. 105).

2. In Subsection G.2, we characterize the topology of the loss landscape in terms of its critical
points for the activation functions studied in this paper and for the unit-orthonormal teacher.
Our results for the one-neuron network are strong in the sense that it gives all possible
critical points of the loss landscape.
(a) In Subsection G.2.1, we give a proof of Theorem 5.1: for general activation functions

satisfying Assumption 3.1, any non-trivial critical point of the one-neuron network
attains equal correlations that are either 1/

p
k or �1/

p
k.

(b) In Subsection G.2.2, we study the two-dimensional loss obtained after applying Theo-
rem 5.1. From its derivative constraints, we get a fixed point equation (Eq. 120) that
needs to be satisfied by the incoming vector norm r at any non-trivial critical point with
equal correlations u. Numerically, we show that there is a unique solution of the fixed
point equation for u > 0 for differentiable activation functions studied in this paper
(Fig. 10). Finally, we give some sufficient conditions in Eq. 121 to prove uniqueness
based on log-concavity; numerically, these are shown to be satisfied by softplus and
sigmoid activation functions.

3. In Subsection G.3, we give a proof of Corollary 5.2 by solving the two-dimensional loss for
the erf activation function. Moreover, from the proof, we conclude that there are exactly two
non-trivial critical points identical up to the mirror symmetry of erf (since it is odd); and
these are the optimal solutions for the loss landscape.

4. In Subsection G.4, we present and prove Corollary G.5 by solving the two-dimensional loss
for the ReLU activation function. We find that there are two non-trivial critical points of the
loss function: a saddle ‘point’ at correlation �1/

p
k and the optimal ‘solution’ at correlation

1/
p
k. Due to the positive homogeneity of ReLU, these are not two points but two equal-loss

hyperbolas in the loss landscape.
5. In Subsection G.5, we study the two-dimensional loss for the softplus activation function

and give a proof of Theorem 5.3. Absence of analytical expression for the Gaussian integral
terms make the problem challenging; we use several non-trivial steps in the proof. The
proof shows that there is no critical point at correlation �1/

p
k; and a non-trivial critical

point (w⇤
, a

⇤) at correlation 1/
p
k satisfies the following bounds: a

⇤ � k and kw⇤k  1/
p
k.

Numerically, we find that these bounds hold for other activation functions studied in this
paper (tanh and sigmoid; Fig. 5).

G.1 Any Non-Trivial Critical Point Satisfies the Lagrangian Condition

We add a reminder here for the definition of the non-trivial critical point ✓ = (w, a): it is a critical
point of the loss function that satisfies a 6= 0 and kwk 6= 0.
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Proposition G.1. Assume that f
⇤ is an orthogonal teacher network of width k. If the activation

function satisfies Assumption 3.1 (i), any non-trivial critical point ✓
⇤ = (w⇤

, a
⇤), i.e. rL

1,k(✓⇤) = 0,
satisfies that w

⇤ is in the span of the teacher’s incoming vectors.

Proof. We will prove by contradiction. Let us assume that w is outside of the span of the teacher’s
incoming vectors. We will show that (w, a) is not a critical point for any a 6= 0. Mapping (w, a)
to the order parameter space, we get that (r, u, a) where u = (u1, ..., uk) 2 int B which implies
uj 2 (�1, 1). Since u 2 int B and r > 0, we have that (r, u, a) is a critical point of L

1,k
proj since the

boundaries are not seen near the neighborhood of this point. Therefore the partial derivatives of L
1,k
proj

are all zero including

bj
d

duj
g�(r, kvjk, uj) = 0. (104)

From Assumption 3.1 (i), we have that @ug�(r1, r2, u) > 0 for u 2 (�1, 1) which yields a contradic-
tion. Thus, each critical point of the projected loss is on the boundary, i.e. u 2 @B, which implies
that the incoming vector is in the span of the teacher’s incoming vectors.

We will next show that any non-trivial critical point satisfies a Lagrangian condition since it is on the
boundary of a constrained optimization problem.
Lemma G.2. Let ✓ = (w, a) be a non-trivial critical point of L

1,k. Then the corresponding order
parameters p = (r, u, a) satisfy the following Lagrangian condition

bj@ug�(r, kvjk, uj) = �uj for all j 2 [k]. (105)

Proof. We will first show that for any differentiable path (r, �(t), a) on the boundary such that
�(t) 2 @B for t 2 (�✏, ✏) for some ✏ > 0 and �(0) = u, the following holds

d

dt
L
1,k
proj(�(t))

��
t=0

= ruL
1,k
proj(p) · �0(0) = 0. (106)

Let us assume the contrary. We construct the corresponding following path in the weight space

✓(t) =

0

@r

0

@
kX

j=1

uj(t)vj + v?

1

A , a

1

A . (107)

Thanks to the equivalence of the losses along the path, we have that
d

dt
L
1,k(✓(t))

��
t=0

=
d

dt
L
1,k
proj(�(t))

��
t=0

= 0, (108)

since ✓(0) = ✓ is a critical point in the weight space. Therefore, Eq. 106 holds for any differentiable
path on the boundary and implies thatruL(p) is orthogonal to all �

0(0). The vector that is orthogonal
to all �

0(0) is the gradient of the surface, that is 2(u1, ..., uk). Hence we get ruL(p) k u which is
written explicitly as the Lagrangian condition in Eq. 105. This is equivalent to setting the partial
derivatives of the Lagrangian loss with respect to uj to zero where the Lagrangian loss is given by

L(p, �) = �2a

kX

j=1

bjg�(r, kvjk, uj) + �
0(

kX

j=1

u
2
j � 1). (109)

We set � = �0
/a in Eq. 105.

G.2 General Activation Functions

Before we present our results, let us take a detour to check the applicability of the convex optimization
framework. For a convex and twice-differentiable activation function such as softplus, applying
Lemma F.1 twice implies that the interaction g�(r1, r2, ·) is a convex function of the correlation
u 2 (�1, 1) for r1, r2>0. Let us consider a fixed a<0 and r>0 and consider the loss parameterized
by uj’s. It is convex since its Hessian is a diagonal matrix with entries

d
2

du2
j

L = �2a
d
2

du2
j

g�(r, kvjk, uj) > 0. (110)
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Since the constraint on the correlations (Eq. 14) is also convex, we get a convex optimization problem
that has a unique global minimum (see Boyd et al. [44], Section 4.2). Swapping a pair of uj does
not change the loss, thus it is permutation symmetric. If any two uj were distinct from each other at
the minimum, then its permutation would also be a minimum which would violate the unicity. We
conclude that at the unique minimum point, the correlations are equal to each other. However, for the
case a > 0, and for other activation functions, the objective is not convex.

We instead use Lagrange multipliers for proving Theorem 5.1.

G.2.1 Proof of Theorem 5.1

Theorem G.3. Assume that the activation function satisfies Assumption 3.1. At any non-trivial
critical point (w⇤

, a
⇤) of the loss L

1,k for the unit-orthonormal teacher network, the incoming vector
satisfies

w
⇤

kw⇤k = u

kX

j=1

vj (111)

where u is either 1/
p
k or �1/

p
k.

Proof. From Proposition 4.1 and Lemma G.2, we get that any non-trivial critical point should satisfy
the Lagrangian condition in Eq. 105. In particular for unit-orthonormal teacher, setting kvjk = 1 and
bj = 1, we get the following Lagrangian condition

@ug�(r, 1, uj) = �uj 8j 2 [k],
kX

j=1

u
2
j = 1. (112)

If uj = 0, we get @ug�(r, 1, 0) = 0 which is not possible since g�(r, 1, u) is increasing due to
Assumption 3.1 (i). Hence we have

@ug�(r, 1, uj)

uj
= �. (113)

Let us observe that @ug�(r, 1, u)/u is decreasing for u 2 (�1, 1) \ {0} if and only if

d

du

✓
1

u

d

du
g�(r, 1, u)

◆
=

1

u

d
2

du2
g�(r, 1, u)� 1

u2

d

du
g�(r, 1, u) < 0, (114)

which is equivalent to Assumption 3.1 (ii) for u 2 (�1, 1)\{0} (we included u = 0 in Assumption 3.1
(ii) for a simpler statement which is already implied from Assumption 3.1 (i) at u = 0).

Taken together, we conclude that @ug�(r, 1, u)/u is one-to-one in u 2 (�1, 1) \ {0}. We need to
consider the remaining case ui2{�1, 1}. For k � 2, necessarily, we have uj = 0 for j 6= i, which is
not possible as we have shown. For k = 1, ui 2 {�1, 1} is the only option that satisfies the boundary
condition. For k � 2, Eq. 113 implies that all correlations are equal. Combining it with the boundary
condition, we get u1 = ... = uk = u with ku

2 = 1, which completes the proof.

G.2.2 Two-Dimensional Loss, The Derivative Constraints, Uniqueness

At any non-trivial critical point, we proved in Theorem 5.1 that all correlations are equal and denoted
by u that is either 1/

p
k or �1/

p
k. The projected loss at a critical point reduces to

L = a
2
g�(r, r, 1)� 2kag�(r, 1, u) + C. (115)

Moreover, at a critical point, the partial derivatives with respect to the outgoing weight and norm
should also be zero which gives the following two constraints

@aL = 2ag�(r, r, 1)� 2kg�(r, 1, u) = 0,

@rL = a
2
@rg�(r, r, 1)� 2ka@rg�(r, 1, u) = 0, (116)
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Figure 10: The graph of f(r, u) = d
dr

�
1
2 log g�(r, r, 1)� log g�(r, 1, u)

�
for activation functions

erf, softplus with � = 1, sigmoid, tanh, and gelu, respectively. Zero crossings of f are shown in
red. For softplus and sigmoid, we observe that f is negative for r = 0, u 2 (0, 1), positive for
r = 1, u 2 (0, 1), and increasing in r 2 [0, 1] for any fixed u, thus satisfying the sufficient conditions
in Eq. 121. However, for tanh and erf, f shows non-monotonic behavior in r when u is close to 1.
For the GeLU activation function �(x) = x�(x), which is non-monotonic, we observe that f does
not cross zero for any (r, u) pair in the plotted domain. It approaches zero from below when r !1
thus showing a very different behavior from the other activation functions.

which can be rearranged into the following (assuming g�(r, r, 1) 6= 0 and @rg�(r, r, 1) 6= 0)

a

k
=

g�(r, 1, u)

g�(r, r, 1)
=

2@rg�(r, 1, u)

@rg�(r, r, 1)
. (117)

The second equality between the two ratios of Gaussian integral terms gives a fixed point equation on
the norm r. Writing the interactions in Eq. 117 explicitly and rearranging the ratios, we get

f(r, u) =
E[�0(rx)�(rx)x]

E[�(rx)2]
� E[�0(rx)�(y)x]

E[�(rx)�(y)]
= 0, (118)

where x and y are standard Gaussians with correlation E[xy] = u. Let us define the following helper
functions

G(r) =
E[�0(rx)�(rx)x]

E[�(rx)2]
=

1

2

d

dr
log(E[�(rx)2]),

G̃(u, r) =
E[�0(rx)�(y)x]

E[�(rx)�(y)]
=

d

dr
log(E[�(rx)�(y)]), (119)

which yields

f(r, u) = G(r)� G̃(u, r) =
d

dr
log

 
E[�(rx)2]

1
2

E[�(rx)�(y)]

!
= 0. (120)

Let us consider the case u > 0. We want to show that for any given u 2 (0, 1] there is a unique
r 2 (0, 1] such that f(r, u) = 0. Under the assumption �(0) 6= 0, if the following three conditions
are satisfied for all u 2 (0, 1],

(i)
�
0(0)

�(0)

E[�(y)x]

E[�(y)]
> 0,

(ii)
E[�0(x)�(x)x]

E[�(x)2]
>

E[�0(x)�(y)x]

E[�(x)�(y)]
,

(iii)
d
2

dr2
log

 
E[�(rx)2]

1
2

E[�(rx)�(y)]

!
> 0, (121)

then we have a unique r solving Eq. 120 as we explain next. Note that the first two conditions are
equivalent to f(0, u) < 0 and f(1, u) > 0, respectively. The tricky part is the third condition which
is equivalent to showing that

E[�(rx)�(y)]

E[�(rx)2]
1
2

(122)
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is log-concave in r. We note that marginalization properties of log-concave functions may be helpful
here. In this paper, we were not able to prove the sufficient conditions listed above for general
activation functions that do not admit an analytic formula of the interaction, even for softplus which
we studied in detail (see Subsection G.5). Instead, we present the numerical integration results, which
show that for any given u 2 (0, 1], there is a unique r 2 (0, 1] such that f = 0 (see Fig. 10). Once r

is shown to be unique, then the matching outgoing weight a follows from Eq. 117.

G.3 Closed-Form Solution for Erf Activation

Corollary G.4. Assume that the activation function is �erf. The optimal solution (w⇤
, a

⇤) is given by

kw⇤k =

r
1

2k � 1
, a

⇤ = k,
w

⇤

kw⇤k =
1p
k

kX

i=1

vi,

or, equivalently, by (�w
⇤
,�a

⇤). The optimal loss is given by

L
⇤
erf(k) =

2

⇡

⇣
k arcsin

�1
2

�
� k

2 arcsin
� 1

2k

�⌘
. (123)

Proof. Since erf is an odd activation function, it suffices to find parameters of the non-trivial critical
points satisfying u � 0. For any such critical point (w⇤

, a
⇤), its mirror symmetry (�w

⇤
,�a

⇤) is an
equivalent critical point due to Eq. 41.

For u = 0, we have that gerf(r, 1, u) = 0 which implies gerf(r, r, 1) = E[�(rx)2] = 0 due to the first
derivative constraint in Eq. 116 which holds if and only if r = 0. This gives a possible trivial critical
point yielding the zero predictor function.

For a given u = 1p
k

> 0, from Fig. 10, we observe that there is a unique r 2 (0, 1] satisfying the
fixed point equation in Eq. 120. For uniqueness, we rely on numerical integration. We will find one
solution to the derivative constraints given below

agerf(r, r, 1) = kgerf(r, 1, u), a@rgerf(r, r, 1)� 2k@rgerf(r, 1, u) = 0, (124)

for a given k, and equivalently u = 1p
k

> 0; and due to uniqueness, conclude that it is the only
non-trivial critical point up to symmetries.

In particular, we will use the analytic formula for the interaction function [2, 3]

gerf(r1, r2, u) =
2

⇡
arcsin

⇣
r1r2up

r21 + 1
p

r22 + 1

⌘
. (125)

Let us find r where we have
gerf(r, 1, u) = gerf(r, r, 1)

that is satisfied if we have that the arguments of arcsin match, which happens at

rup
r2 + 1

p
2

=
r
2

r2 + 1
) r =

r
u2

2� u2
=

1p
2k � 1

. (126)

Interestingly, at this value of r, we also have
2@rgerf(r, 1, u) = @rgerf(r, r, 1)

which can be seen by inserting the guessed values in the following equation

2@r

⇣
rup

r2 + 1
p

2

⌘
arcsin0� rup

r2 + 1
p

2

�
= @r

⇣
r
2

r2 + 1

⌘
arcsin0� r

2

r2 + 1

�
.

Setting a = k in Eq. 124 completes the order parameters of the non-trivial critical point. Finally, let
us compute the loss at r = 1/

p
2k�1, u = 1/

p
k, a = k;

L
⇤
erf(k) := a

2
gerf(r, r, 1)� 2akgerf(r, 1, u) + kgerf(1, 1, 1),

= �k
2
gerf(r, r, 1) + kgerf(1, 1, 1),

=
2

⇡

⇣
k arcsin

�1
2

�
� k

2 arcsin
� 1

2k

�⌘
. (127)
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G.4 Closed-Form Solution for ReLU Activation

Corollary G.5. Assume that the activation function is �relu. Any optimal solution (w⇤
, a

⇤) satisfies

kw⇤ka⇤ =
k

h(1)
h
� 1p

k

�
,

w
⇤

kw⇤k =
1p
k

kX

i=1

vi, (128)

forming an equal-loss hyperbola. The optimal loss is given by

L
⇤
relu(k) = k

2
⇣
h(0)� 1

h(1)
h
� 1p

k

�2⌘
+ k(h(1)� h(0)). (129)

We will first show that the interaction of ReLU satisfies

(i) h
0(u)>0 for u2(�1, 1),

(ii) h
00(u)u<h

0(u) for u2(�1, u0],

(iii)
h
0(u0)

u0
>

h
0(u)

u
for u2(u0, 1); (130)

where u0 = 1/
p

2. Note that property (i) is equivalent to Assumption 3.1 (i), and property (ii) is
almost equivalent to Assumption 3.1 (ii) except that it holds in the interval (�1, u0]; property (iii)
covers up for the missing piece of the interval in the property (ii).

ReLU interaction satisfies Properties 130; Proof. Let us write the first two derivatives of h:

h
0(u) =

⇡ � arccos(u)

2⇡
, h

00(u) =
1

2⇡
p

1� u2
. (131)

Property (i) easily comes from noting that the derivative of h is positive for u 2 (�1, 1). Property
(ii) holds for u 2 (�1, 0] since both the first and second derivatives are positive. Let us show that
Property (ii) holds for u 2 (0, u0], that is equivalent to

up
1� u2

< ⇡ � arccos(u) =
⇡

2
+ arcsin(u). (132)

Let us note that the left-hand side is smaller than 1 since
u
2

1� u2
 1.

Note that arcsin(u) > 0 for u > 0; and ⇡/2 > 1. This completes the proof of Property (ii).

For Property (iii), we first show that h
0(u)/u is convex in u 2 (0, 1). The first two derivatives are

d

du

✓
h
0(u)

u

◆
=

h
00(u)

u
� h

0(u)

u2
,

d
2

du2

✓
h
0(u)

u

◆
=

h
000(u)

u
� 2h

00(u)

u2
+

2h
0(u)

u3
.

Thus, it is equivalent to showing

h
000(u)u� 2h

00(u) +
2h

0(u)

u
=

u
2

(1� u2)3/2
� 2

(1� u2)1/2
+

⇡ + 2 arcsin(u)

u
> 0.

Using the Taylor series of arcsin and u > 0, we have that arcsin(u) > u. Hence, it suffices to show
1

(1� u2)1/2
�
�3 +

1

1� u2
+ 2(1� u

2)1/2
�
� 0; (133)

where we dropped the positive term ⇡
u which holds due to the inequality of arithmetic and geometric

means
1

1� u2
+ (1� u

2)1/2 + (1� u
2)1/2 � 3.

Let us assume the contrary of Property (iii), that there exists u 2 (u0, 1) such that

h
0(u0)

u0
 h

0(u)

u
. (134)
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Note that h
0(u0)/u0 > h

0(1) because ⇡(1 � u0) � arccos(u0) > 0 holds at u0 = 1/
p

2. Since
h
0(u)/u is left-continuous at u = 1, there exists ✏ > 0 such that

h
0(u0)

u0
>

h
0(1� ✏)

1� ✏
. (135)

Finally, there exists ↵ 2 (0, 1) such that u = ↵(1� ✏) + (1� ↵)u0 which gives due to the convexity
of h

0(u)/u the following

↵
h
0(1� ✏)

1� ✏
+ (1� ↵)

h
0(u0)

u0
� h

0(u)

u
. (136)

This yields a contradiction since the left-hand side is strictly smaller than h
0(u0)/u0 hence the proof

of Property (iii) is complete. ReLU interaction satisfies Properties 130; End of Proof.

Proof. First, we replicate the proof steps of Theorem 5.1 to show that any non-trivial critical point
must be on the boundary and attain equal correlations. From Property 130 (i), we get that there is no
non-trivial critical point in int B. For k = 1, this implies that u1 = �1 or u1 = 1.

For general k, let us recall that we get the Lagrangian condition for non-trivial critical points

rh
0(uj) = �uj 8j 2 [k],

kX

j=1

u
2
j = 1. (137)

which is equivalent to Eq. 112 for ReLU activation function. uj = 0 is not possible since we have
h
0(0) 6= 0. Hence, we get

h
0(uj)

uj
=

�

r
, 8j 2 [k]. (138)

Property 130 (ii) implies that f(u) = h
0(u)/u is decreasing for u 2 (�1, u0)\{0}. Moreover, f is

negative for u < 0 and positive for u > 0.

1. If �/r < 0, we get that all uj are equal and negative, hence they are equal to �1/
p

k due to
the boundary condition.

2. If �/r = 0, we get uj = �1 for all j which implies that k = 1 which is already covered
above.

3. If �/r > 0, Property 130 (iii) gives that f(u0) > f(u) for u2(u0, 1). Since f is decreasing
we have also f(u) > f(u0) for u 2 (0, u0); hence f(uj) are equal only when all uj < u0 or
uj > u0; however, the latter case is not possible for k � 2 since it breaks the ball constraint,
i.e. u

2
1 + u

2
2 > 1.

Hence, we get that uj 2 (0, u0] and are equal since f is decreasing in this interval. This completes
the proof of replica of Theorem 5.1 for the ReLU activation function.

For the ReLU activation function, there is at least one non-differentiable critical point at a = 0 or
r = 0. The careful analysis of this critical point is beyond the scope of this work. For any such
’trivial’ point, the error of zero-function is equivalent to

E[(
kX

j=1

�(vj · x))2] = kh(1) + k(k � 1)h(0). (139)

We will next show that (�1/
p

k)kj=1 and (1/
p

k)kj=1 are the global minimum and the global maxi-
mum of the following loss function

kX

j=1

h(uj), subject to
kX

j=1

u
2
j  1. (140)

33



Due to the Lagrange condition, there is no other critical point, hence these are the only two critical
points of the constrained objective in Eq. 140. The objective then reduces to kh(u) which is minimized
at u = �1/

p
k and maximized at u = 1/

p
k.

Next, we will give the closed-form solution of the remaining order parameters. Plugging in the
correlation in the loss and using the factorization of the interaction in Eq. 14, we get

L = a
2
r
2 · h(1)� 2kar · h(u) + C.

Let us set ã = ar. The loss is a second-order polynomial in ã

L = h(1)

✓
ã
2 � 2ãk

h(u)

h(1)
+ k + k(k � 1)

h(0)

h(1)

◆

where we made the constant explicit. Since the coefficient of the leading term is positive, there is a
minimizer and it is the only critical point. Taking the derivative, the minimum is attained at

ã⇤ = k
h(u)

h(1)
(141)

Finally, plugging in ã⇤, we get

L(u) = �k
2h(u)2

h(1)
+ kh(1) + k(k � 1)h(0). (142)

For u = 1/
p

k and u = �1/
p

k, h(u) is non-zero; hence l(u) is smaller than the loss of the zero
function (trivial critical points). The smallest loss is attained at u = 1/

p
k which is, therefore, the

optimal solution. We conclude that the critical point at u = �1/
p
k is a saddle point since it is a

maximum in u and a minimum in ã.

G.5 Bounds on Incoming Vector Norm and Outgoing Weight for Softplus

Unlike ReLU and erf, the interaction function does not have a known analytic expression for softplus,
hence the proof involves some techniques to compare ratios of Gaussian integral terms.

FKG Inequality. We will use a special case of the FKG inequality repeatedly, that is,

E[f(x)g(x)] > E[f(x)]E[g(x)] (143)

if both f, g are increasing (or decreasing) implying that f and g are positively correlated. The
inequality changes direction if f is increasing and g is decreasing (or vice versa) implying that f and
g are negatively correlated.

We will rely on some specific properties of the softplus family that are developed in Section G.5.4.
Unfortunately, some of these properties do not apply to other activation functions. As a first example
of managing interactions that do not have an analytic formula, the proof may inspire generalizations
to other activation functions. Below we present the proof sketch for Theorem 5.3. In the following
Subsections G.5.1, G.5.2, G.5.3, and G.5.4, the components of the proof are presented in detail.

Proof Sketch. We want to characterize the zero(s) of f introduced in Section G.2.2 that is

f(r, u) = G(r)� G̃(u, r) =
E[�0(rx)�(rx)x]

E[�(rx)2]
� E[�0(rx)�(y)x]

E[�(rx)�(y)]
. (144)

For r 2 [0, 1], there is a unique correlation u 2 [0, 1] such that f(r, u) = 0. Denoting this correlation
by h(r), we have a map h : [0, 1] ! [0, 1] with boundary conditions h(0) = 0 and h(1) = 1. For
r > 1, there is no solution of f . As a consequence, no r � 0 solves f(r, u) = 0 for negative u, hence
there is no non-trivial critical point at u = �1/

p
k.

In Section G.5.2, we prove the inequality h(r) � r, which gives us the upper bound on the norm
since we have that the correlation at a non-trivial critical point is h(r) = 1/

p
k. Using this inequality

and Stein’s Lemma, we give a lower bound on the outgoing weight, that is a � k, in Section G.5.3.
In summary, any non-trivial critical point of the loss has equal correlations that are u = 1/

p
k, the

norm satisfies r  u, and the lower bound on the outgoing weight follows. End of Proof Sketch.
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G.5.1 Constraining the Zeros of f

In this subsection, we will describe all zero-crossings of f : [0,1)⇥ [�1, 1]! R. We need to check
four cases (i) r = 0, (ii) r = 1, (iii) r > 1, and (iv) r 2 (0, 1).

(i) r = 0: Note that G(0) = G̃(0, 0) = 0. Since G̃ is increasing in correlation for u 2 [0, 1] and
G̃(u, 0) < G̃(0, 0) for u < 0 (Lemma G.6), the only solution is u = 0.

(ii) r = 1: Note that G(1) = G̃(1, 1) since y = x due to correlation one in Eq. 119. Since G̃ is
increasing in correlation for u 2 [0, 1] and G̃(u, 1) < G̃(0, 1) for u < 0 (Lemma G.6), the only
solution is u = 1.

(iii) r > 1: We will show that there is no zero in this case. Let us first show that G(r) > G̃(1, r) for
r > 1, which is equivalent to

E[�0(rx)�(rx)x]E[�(rx)�(x)] > E[�0(rx)�(x)x]E[�(rx)2]. (145)

Changing the measure of x from the standard Gaussian p(x) to p̃(x) = p(x)�(rx)2/E[�(rx)2], we
get the following equivalent inequality

Ex⇠p̃


�
0(rx)x

�(rx)

�
Ex⇠p̃


�(x)

�(rx)

�
> Ex⇠p̃


�
0(rx)x

�(rx)

�(x)

�(rx)

�
. (146)

From the property (iv) of Lemma G.8, we have that �
0(rx)x/�(rx) is increasing after a substitution

x rx. We need to show �(x)/�(rx) is decreasing in x for r > 1. We take the derivative

d

dx

�(x)

�(rx)
=

�
0(x)�(rx)� �(x)�0(rx)r

�(rx)2
. (147)

Since �
0(x)x/�(x) is increasing 8x 2 R, we have

�
0(x)x

�(x)
<

�
0(rx)rx

�(rx)
for x > 0, and

�
0(x)x

�(x)
>

�
0(rx)rx

�(rx)
for x < 0

which yields �
0(x)�(rx) < �(x)�0(rx)r, hence we conclude that �(x)/�(rx) is decreasing. Thanks

to the FKG inequality, �
0(rx)x/�(rx) and �(x)/�(rx) are negatively correlated which completes

the argument. Since from Lemma G.6, G̃ is increasing in correlation and G̃(0, r) > G̃(u, r) for
u < 0, we have G̃(1, r) > G̃(u, r) for all u 2 [�1, 1), therefore there is no solution of f .

(iv) r 2 (0, 1): We want to show that 8r 2 (0, 1), there is a unique u 2 (0, 1) such that f(r, u) = 0.
It suffices to show

G̃(0, r) < G(r) < G̃(1, r),

since G̃ is continuous and increasing in correlation for u 2 [0, 1] (Lemma G.6), it then crosses G(r)
at a unique u 2 (0, 1).

First inequality; G̃(0, r) < G(r). In this case, x and y are Gaussians with zero correlation, hence
independent. We can expand G̃(0, r) by factorizing the integrals

G̃(0, r) =
E [�0(rx)x]E [�(y)]

E [�(rx)]E [�(y)]
=

E [�0(rx)x]

E [�(rx)]
.

We want to show

E [�0(rx)x]E
⇥
�(rx)2

⇤
< E [�0(rx)�(rx)x]E [�(rx)] (148)

which is equivalent to the following inequality after changing the measure from standard Gaussian
p(x) to p̃(x) = p(x)�(rx)/E[�(rx)]

Ex⇠p̃


�
0(rx)x

�(rx)

�
Ex⇠p̃[�(rx)] < Ex⇠p̃


�
0(rx)x

�(rx)
�(rx)

�
. (149)

This follows from the FKG inequality since we have that both �
0(x)x/�(x) and �(x) are increasing

from the properties (iv) and (i) of softplus (Lemma G.8).

35



Second inequality; G(r) < G̃(1, r). This is equivalent to the Ineq. 145, but the direction is reversed
since in this case r < 1. We showed that �(x)/�(r0x) is decreasing in x for all r

0
> 1, therefore its

reciprocal �(r0x)/�(x) is increasing in x. Substituting x  rx where r = 1/r
0
< 1, we get that

�(x)/�(rx) is increasing in x for r < 1. This yields a positive correlation between �
0(rx)x/�(rx)

and �(x)/�(rx) from the FKG inequality and completes the argument.

Overall, we showed that there are no zeros of f for r > 1. For r 2 [0, 1], there is a unique correlation
u, that we will denote by h(r), such that f(r, h(r)) = 0. Furthermore, h : [0, 1]! [0, 1] satisfies the
following

i. h(0) = 0 and h(1) = 1,
ii. for r 2 (0, 1), we have h(r) 2 (0, 1).

G.5.2 Bound on the Norm

In this subsection, we will show that h(r) � r for all r 2 (0, 1). Let us assume the contrary, which
implies

G̃(h(r), r) < G̃(r, r)

due to Lemma G.6. It suffices to show that for all r 2 (0, 1), we have

G̃(r, r)  G(r), (150)

which yields a contradiction since G(r) = G̃(h(r), r). Showing this is equivalent to

E [�0(rx)�(rx + r
0
z)x]E

⇥
�(rx)2

⇤
 E [�0(rx)�(rx)x]E [�(rx)�(rx + r

0
z)] (151)

where r
0 =
p

1� r2. After a change of measure from standard Gaussian p(x) to

p̃(x) = p(x)
E[�(rx + r

0
z)|x]�(rx)

E [�(rx + r0z)�(rx)]
,

this is equivalent to the following inequality

Ex⇠p̃


�
0(rx)x

�(rx)

�
Ex⇠p̃


�(rx)

E[�(rx + r0z)|x]

�
 Ex⇠p̃


�
0(rx)x

�(rx)

�(rx)

E[�(rx + r0z)|x]

�
. (152)

What remains to show is that
E[�(rx + r

0
z)|x]

�(rx)

is non-increasing in x since then we can conclude by the FKG inequality. Since r > 0 we can drop it
up to a change in the standard deviation of x. We want to show that its derivative is non-positive:

�(x)E[�0(x + r
0
z)|x]  �

0(x)E[�(x + r
0
z)|x] , �(x)

�0(x)
 E[�(x + r

0
z)|x]

E[�0(x + r0z)|x]
. (153)

From the property (iii) of softplus (Lemma G.8), we have that R(x) = �(x)/�
0(x) is convex.

Applying Jensen, we get

�(x)

�0(x)
 E


�(x + r

0
z)

�0(x + r0z)

���x
�

.

What remains to show is that

E


�(x + r
0
z)

�0(x + r0z)

���x
�
E [�0(x + r

0
z)|x]  E [�(x + r

0
z)|x] . (154)

Note that E[�0(x + r
0
z)|x] is increasing in x since �

0 is increasing. Moreover, the function

E


�(x + r
0
z)

�0(x + r0z)

���x
�

is increasing in x since its integrand R is increasing from the property (ii) of softplus (Lemma G.8).
Then we conclude by the FKG inequality that Eq. 154 holds. Therefore, for a solution (r, u) of the
fixed point Eq. 117, we have ru = 1

k .
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G.5.3 Bounding the Outgoing Weight

To get a bound on a, let us analyze the ratio of interactions in Eq. 117

g�(r, 1, u)

g�(r, r, 1)
=

a

k
. (155)

Using the convexity of softplus (property (i) of Lemma G.8), we get

E[�(rx)�(ux + u
0
z)]

E[�(rx)2]
� E[�(rx)�(rx)] + E[�(rx)((u� r)x + u

0
z)�0(rx)]

E[�(rx)2]

= 1 + (u� r)
E[�0(rx)�(rx)x]

E[�(rx)2]
. (156)

We can transform the numerator using Stein’s lemma with v(x) = �(rx)�0(rx)

E[�(rx)�0(rx)x] = rE[�0(rx)2 + �(rx)�00(rx)] (157)

which is positive since softplus is positive, increasing, and convex. Combining it with u � r, we get
that the ratio is bounded below by 1 which yields a � k.

G.5.4 Helper Lemmas

In this subsection, we provide helper lemmas used in the proof of Theorem 5.3. We present
Lemma G.6 which shows that G̃ is increasing in correlation and Lemma G.7 used in the proof of
the former. Finally, we present several properties of the softplus family in Lemma G.8 that are used
throughout the proof.
Lemma G.6. The following function is increasing in u 2 [0, 1]

G̃(u, r) =
E[�0(rx)�(y)x]

E[�(rx)�(y)]
(158)

for any r � 0, where x and y are standard Gaussians with correlation E[xy] = u. Moreover,
G̃(u, r) < G̃(0, r) for u < 0.

Proof. Let us assume 0  u1 < u2  1. For the first part of the statement, we want to show

E[�0(rx)�(y1)x]

E[�(rx)�(y1)]
<

E[�0(rx)�(y2)x]

E[�(rx)�(y2)]
(159)

where E[xy1] = u1 and E[xy2] = u2. Changing the measure from the standard Gaussian p(x) to

p̃(x) = p(x)
�(rx)E[�(y2)|x]

E[�(rx)�(y2)]
,

we get the following equivalent inequality

E

�
0(rx)x

�(rx)

E[�(y1)|x]

E[�(y2)|x]

�
< E


�
0(rx)x

�(rx)

�
E

E[�(y1)|x]

E[�(y2)|x]

�
. (160)

Thanks to the property (iv) of softplus (Lemma G.8), we have that �
0(rx)x/�(rx) is increasing in

x after a substitution x  rx for r > 0. For r = 0, the function reduces to �x with some � > 0,
hence increasing. We will next show that (all integrations are w.r.t z hereafter, hence we drop the
conditioning on x)

E[�(y1)]

E[�(y2)]
(161)

is decreasing in x. Computing the derivative w.r.t x, we want to show that it is negative

E[�0(y1)]u1

E[�(y2)]
� E[�(y1)]E[�0(y2)]u2

E[�(y2)]2
< 0 , E[�0(y1)]u1

E[�(y1)]
<

E[�0(y2)]u2

E[�(y2)]
. (162)
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Note that this is equivalent to showing

d

du

E[�0(y)]u

E[�(y)]
=

d
2

dudx
log(E[�(y)]) > 0

for all u 2 [0, 1) and x 2 R. Changing the order of derivatives, it is sufficient to show

d

dx

✓
E[�0(y)]x

E[�(y)]
�
� u

1� u2

�E[u0
z�

0(y)]

E[�(y)]

◆
> 0. (163)

The first function

s1(x) =
E[�0(y)]x

E[�(y)]
(164)

is shown to be increasing in x in Lemma G.7 where we need to substitute x! xu1 for u1 > 0, and
for u1 = 0, we have s1(x) = �x for some � > 0 hence it is increasing. The remaining part is to
show that the second function

s2(x) =
E[u0

z�
0(y)]

E[�(y)]
(165)

is decreasing. We will consider z  u
0
z and x ux in what follows. We have

d

dx

E[z�
0(x + z)]

E[�(x + z)]
< 0 , d

dx

E[�(x + z)]

E[�00(x + z)]
> 0

due to first applying Stein’s Lemma to the numerator and then inverting the ratio. Using the chain
rule, it is sufficient to show that

f1(x) =
E[�(x + z)]

E[�0(x + z)]
, and f2(x) =

E[�0(x + z)]

E[�00(x + z)]
(166)

are increasing, since both functions are positive.

Interestingly, f1 is increasing in x if � is a log-concave function. Because its derivative is positive

d

dx
f1(x) = 1� E[�(x + z)]E[�00(x + z)]

E[�0(x + z)]2
> 0

if E[�(x + z)] is log-concave. This is the case since a centered Gaussian distribution p(z) is log-
concave, therefore �(x + z)p(z) is jointly log-concave, and marginalization preserves log-concavity.

Similarly, f2 is increasing since �
0 is also log-concave due to property (v) of softplus (Lemma G.8).

Hence we showed that

r(u) =
E[�0(y)]x

E[�(y)]
(167)

is increasing for u 2 [0, 1). The derivative of r explodes at 1, however, we can conclude by
contradiction that r(1) > r(u) for u < 1: if r(u) � r(1) for some 0  u < 1, then there exists
u0 2 (u, 1) where the function is decreasing. Therefore, r is increasing for u 2 [0, 1]. We can
conclude the first part of the proof by the FKG inequality �0(rx)x/�(rx) and E[�(y1)]/E[�(y2)] are
negatively correlated.

For the second part of the statement, we need to show

E[�0(rx)�(ux + u
0
z)x]E[�(rx)] < E[�0(rx)x]E[�(rx)�(ux + u

0
z)] (168)

for u < 0. Changing the measure from standard Gaussian p(x) to

p̃(x) = p(x)
�(rx)

E[�(rx)]
, (169)

the above inequality is equivalent to

Ex⇠p̃


�
0(rx)x

�(rx)
�(ux + u

0
z)

�
< Ex⇠p̃


�
0(rx)x

�(rx)

�
Ex⇠p̃[�(ux + u

0
z)]. (170)

This holds since �
0(rx)x/�(rx) is increasing in x, however, �(ux + u

0
z) is decreasing in x since u

is negative which implies a negative correlation due to the FKG inequality.
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Lemma G.7. The following function

E[�0(x + z)|x]x

E[�(x + z)|x]

is increasing in x where the integrations are w.r.t a centered Gaussian z.

Proof. Since all integrals are w.r.t z, we drop the conditioning with respect to x in the proof. Taking
the derivative w.r.t x, and arranging the terms, it suffices to show

✓
E[�00(x + z)]x

E[�0(x + z)]
+ 1

◆
E[�(x + z)] > E[�0(x + z)]x (171)

which is equivalent to the following due to the property �
00(z) = ��

0(z)(1� �
0(z))

✓
�x

✓
1� E[�0(x + z)2]

E[�0(x + z)]

◆
+ 1

◆
E[�(x + z)] > E[�0(x + z)]x. (172)

In the case x � 0, the LHS is bigger than E[�(x + z)] since �
0(·) is upper bounded by 1. Moreover,

since �(x) > x and from the convexity of softplus, we get E[�(x + z)] > x. This yields the above
inequality by again noting that E[�0(x + z)] is upper bounded by 1.

In the case x < 0, we need another strategy. We have thanks to Cauchy-Schwartz

E[�0(x + z)2]

E[�0(x + z)]
� E[�0(x + z)], (173)

thus it suffices to show

(�x� �xE[�0(x + z)] + 1)E[�(x + z)] > E[�0(x + z)]x. (174)

We will now show the following

E[�0(x + z)] � �
0(x) (175)

for which it suffices to show that v(z) := �
0(x+ z)+�

0(x� z) � 2�
0(x) for all z since the centered

Gaussian measure p(z) is even and the integration can be done over the integrand v(z). We have

v
0(z) = �

00(x + z)� �
00(x� z) (176)

that is zero iff either x + z = x� z or x + z = �x + z where the latter is not possible since x < 0.
Hence we get that a critical point of v(z) at z = 0 which is a minimizer since v

00(0) = 2�
000(x) > 0

for x < 0. Hence v(z) � v(0) = 2�
0(x) for all z which completes the argument.

Finally, it remains to show
✓

�x

e�x + 1
+ 1

◆
E[�(x + z)] > E[�0(x + z)]x. (177)

From the proof of Lemma G.8, we have that ��(x) > �
0(x), which in combination with the following

trivial observation for all x < 0 (note that +1 is not needed for the following to hold)

�x

e�x + 1
+ 1 > �x (178)

shows that Eq. 177 holds, hence the proof is complete.

Lemma G.8. The softplus family has the following properties

i. �(x) is increasing and convex,

ii. �(x) is log-concave (equivalently, �(x)/�
0(x) is increasing),

iii. �(x)/�
0(x) is convex,

iv. �
0(x)x/�(x) is increasing,

v. �
0(x) is log-concave.
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Proof. For the property (i), see the formulas of �
0 and �

00 in the proof of Lemma F.2. We next prove
each one of the properties one after the other. Let us start with property (ii). First note that �(x) is
log-concave if and only if �(x)/�

0(x) is increasing since

d

dx

�(x)

�0(x)
= 1� �(x)�00(x)

�0(x)2
> 0 , �

0(x)2 > �(x)�00(x) (179)

where the second inequality is a characterization of log-concavity. We will prove that R(x) :=
�(x)/�

0(x) is increasing.

Let us write out the ratio explicitly

R(x) =
1

�

✓
log(e�x + 1) +

log(e�x + 1)

e�x

◆
. (180)

The first derivative of R is given by

R
0(x) = �

0(x) +
�
0(x)� ��(x)

e�x
=

e
�x � ��(x)

e�x
. (181)

Since log is concave, expanding it around 1 we get log(y + 1) < y for all y > 0. Substituting
y = e

�x, we get that the numerator of R
0 is positive, thus R is increasing. This completes the proof

of property (ii). Computing the second derivative of R, we get

R
00(x) =

�
00(x)(e�x + 1)� 2��

0(x) + �
2
�(x)

e�x
= �

✓
��

0(x) + ��(x)

e�x

◆
. (182)

What remains to show is that ��(x) > �
0(x). Using the fundamental theorem of calculus, we get

log(y + 1)

y
=

1

y

Z y

0

1

t + 1
dt >

1

y + 1
(183)

since 1/(y + 1) is a lower bound of the integrand which completes the proof of the property (iii). Let
us prove the property (iv) by taking the derivative of the function of interest

d

dx

�
0(x)x

�(x)
=

(�00(x)x + �
0(x))�(x)� �

0(x)2x

�(x)2
(184)

Using �
00(x) = ��

0(x)(1 � �
0(x)) and dropping the positive term �

0(x), the numerator of the
derivative is

((1� �
0(x))�x + 1)�(x)� �

0(x)x =

✓
�x

e�x + 1
+ 1

◆
�(x)� e

�x

e�x + 1
x (185)

=
e
�x

e�x + 1

✓
1

e�x
(�x + e

�x + 1)�(x)� x

◆
(186)

For the case x � 0, we have �(x) > x and (�x + 1)/e
�x

> 0, hence the derivative is positive. For
the case x < 0, we want to show

�
e
�x + �x + 1

� log(e�x + 1)

e�x
> �x. (187)

If e
�x + �x + 1 > 0, it is done since the LHS is positive. If e

�x + �x + 1  0, we have

�
e
�x + �x + 1

� log(e�x + 1)

e�x
�
�
e
�x + �x + 1

�
sup

log(e�x + 1)

e�x
(188)

since log(e�x +1)/e
�x is positive. We will next show that log(e�x +1)/e

�x is a decreasing function
therefore its supremum is achieved at x!�1. From the integral expression in Eq. 183, we deduce
that log(y + 1)/y is a decreasing function since adding smaller terms in the average decreases it.
Thus the following limit gives us the supremum using L’Hôpital’s rule

lim
y!0

log(y + 1)

y
= lim

y!0

1

y + 1
= 1. (189)
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Combining it with the Eq. 188 after the substitution y = e
�x, we get the desired Ineq. 187 which

implies that the derivative is positive in this case too. This completes the proof of property (iv).

For the property (v), we first give a formula for the third derivative of softplus

�
000(x) = ��

00(x)(1� 2�
0(x)). (190)

�
0 is log-concave if and only if we have

�
000(x)�(x) < �

00(x)�0(x),
��

00(x)(1� 2�
0(x))�(x) < �

00(x)�0(x) (191)

which is equivalent to

(1� e
�x) log(e�x + 1) < e

�x
. (192)

This is equivalent to (1� y) log(y + 1) < log(y + 1) < y where y = e
�x

> 0; the second inequality
holds due to y + 1 < e

y .
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