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Abstract

Any continuous function f∗ can be approximated arbitrarily well by a neural net-
work with sufficiently many neurons k. We consider the case when f∗ itself is a
neural network with one hidden layer and k neurons. Approximating f∗ with a neu-
ral network with n < k neurons can thus be seen as fitting an under-parameterized
“student” network with n neurons to a “teacher” network with k neurons. As the
student has fewer neurons than the teacher, it is unclear, whether each of the n
student neurons should copy one of the teacher neurons or rather average a group
of teacher neurons. For shallow neural networks with erf activation function and
for the standard Gaussian input distribution, we prove that “copy-average” configu-
rations are critical points if the teacher’s incoming vectors are orthonormal and its
outgoing weights are unitary. Moreover, the optimum among such configurations
is reached when n− 1 student neurons each copy one teacher neuron and the n-th
student neuron averages the remaining k − n+ 1 teacher neurons. For the student
network with n = 1 neuron, we provide additionally a closed-form solution of the
non-trivial critical point(s) for commonly used activation functions through solving
an equivalent constrained optimization problem. Empirically, we find for the erf
activation function that gradient flow converges either to the optimal copy-average
critical point or to another point where each student neuron approximately copies a
different teacher neuron. Finally, we find similar results for the ReLU activation
function, suggesting that the optimal solution of underparameterized networks has
a universal structure.

1 Introduction

A shallow neural network with a single hidden layer of a large number k of neurons can approximate
any continuous function f∗ arbitrarily well on a compact subset of the input space [1]. We consider a
related problem, where the function f∗ itself is a neural network with a large number k of neurons,
and its approximation is a smaller network with n < k neurons. In other words, we fit an under-
parameterized “student” network with n neurons to a “teacher” network with k neurons. As the
student has fewer neurons than the teacher, it cannot perfectly match the teacher. In the configuration
with the lowest loss, where the approximation error is smallest, one may expect that the incoming
and outgoing weights of a student neuron are either identical to those of a teacher neuron or that
they are aligned with the weights of a group of teacher neurons, but it is unclear what the optimal
configuration is.
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To answer the question of whether student neurons should “copy” or “average” teacher neurons,
and more generally to shed light on the loss landscape of under-parameterized neural networks, we
study the theoretically tractable setup with standard Gaussian input data and teacher networks with
orthogonal incoming vectors. First, we re-parameterize the loss in terms of interactions between pairs
of neurons, similar to [2, 3], and we re-formulate the original optimization problem as a constrained
optimization problem. The interactions between neurons can be written as a function expressed
in terms of the standard deviation and correlation of two Gaussian random variables, with explicit
formulas for the erf and ReLU activation functions [2–4]. Next, we prove several properties of the
most extremely under-parameterized student network with a single neuron n = 1, extending thus the
important work of [5–7]. For many commonly used activation functions, we prove for the network
with a single hidden neuron that the optimal solution is the only non-trivial critical point of the loss
function up to symmetries and is achieved when the incoming vector of the one-neuron student
reaches a configuration that can be interpreted as a damped average of all incoming teacher weights.

The proof relies on identifying the critical points of the constrained optimization problem and showing
that the common activation functions satisfy the assumptions. We rely in particular on the derivative
rule of the interaction function which comes as a pleasant consequence of Stein’s Lemma [8] instead
of the Hermite basis expansion which is a commonly used technique [9–14]. For the erf and ReLU
activation functions we derive additionally a closed-form solution of the optimization problem for
n = 1. Next, we investigate “copy-average” configurations of students with n > 1 neurons, where
some student neurons copy teacher neurons and other student neurons average sub-groups of teacher
neurons, in the sense that they are at the optimal one-neuron solution for the given sub-group of
teacher neurons. Our particular contributions are:

• We propose a constrained optimization formulation of the standard minimization problem in
the weight-space in terms of the interaction function (Section 3). The interaction function is
a natural generalization of the dual activation [15].

• Applying the constrained optimization formulation for n = 1, we prove that the incoming
vector of the student lies in the span of the incoming vectors of an orthogonal teacher
network (Proposition 4.1). For a broad class of activation functions, we prove that the
incoming vector aligns with the average of the teacher’s incoming vectors for the "unit-
orthonormal" teacher network (Theorem 5.1). Using the derivative rule of the interaction
function (Lemma F.1), we show that common activation functions such as erf, softplus, tanh,
and ReLU satisfy this property (Lemma F.2 and Corollary G.5).

• Assuming a unit-orthonormal teacher network and erf activation function, we prove that the
concatenation of critical points of single neurons (of the student network) each approximating
a teacher subnetwork is a copy-average critical point (Theorem 4.2).

• Assuming a unit-orthonormal teacher network and erf activation function, we prove that the
optimal copy-average (CA) configuration is such that n− 1 student neurons each copy a
teacher neuron and the n-th student neuron approximates optimally the sum of the remaining
teacher neurons (Theorem 5.5; see also Fig. 1, top row). Empirically, we find that the
gradient flow converges to an optimal-CA point for all seeds when n < γ1k with a fixed γ1
near 0.46 (Figure 4).

• Surprisingly, we find empirically three regimes of training via gradient flow (GF)2for under-
parameterized networks (Figure 4): (i) for n < γ1k, GF converges to an optimal-CA point
for all seeds, (ii) for n > γ2k with a fixed γ2 near 0.6, GF converges to a point that we call
perturbed-n-copy for all seeds, (iii) for γ1k < n < γ2k, GF converges to either an optimal-
CA point or a perturbed-n-copy point. Therefore, as the under-parameterized network grows
larger, the solution found with gradient flow where the weights are initialized randomly with
a fixed standard deviation changes qualitatively. The code to reproduce these findings is
available on GitHub, and we refer to Appendix C for details.

1.1 Related Work

The teacher-student setup has been extensively used in the literature to study the evolution of gradient
flow trajectories and of the generalization error [2, 3, 17–20]. This series of work gives insight into

2We use a numerical ODE solver for multi-layer networks [16] to simulate the gradient flow in this paper.
All "solutions", which are the points at which gradient flow converges, have a gradient norm of at most 5 · 10−8.
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Figure 1: The gradient flow converges to the copy-average optimum point for erf activation (top), or
nearby for ReLU activation (bottom): the first n−1 neurons copy one teacher neuron each; the n-th
neuron takes an average of the remaining teacher neurons. The teacher network is unit-orthonormal,
i.e. f∗(x)=

∑k
j=1σ(vj ·x) where vj ∈Rd’s are orthonormal, and d=k+1. A1 The gradient flow

trajectory is shown in the weight space for n=2, k=3: the positions of the circles (red and green)
represent incoming vector wi projected down to the span of v1, v2, v3 and the sizes of the circles
represent outgoing weights ai. The blue circle represents the one-neuron solution (the position shows
w∗, the size shows a∗). A2 Same setting, the weight-space parameters at convergence are mapped
to the order-parameter space; ui = (ui1, ..., uik) where uij represents the normalized dot product
between wi and vj and ri = ∥wi∥. B Order parameters shown at convergence for n=4, k=8. For
erf (top) the point at convergence is exactly an (n− 1)-copy-1-average point, whereas for ReLU, it is
perturbed away from this configuration. Neurons are reordered for clarity.

the solution found at convergence, however, they rely on numerically integrating the equations of
dynamics. Tian [5] gives convergence guarantees for ReLU activation function, however, their method
only works for one student and one teacher neuron. Xu and Du [21] recently gave the convergence
rates for multiple student neurons for the case of one teacher neuron as a prototypical setup for
overparameterization. These convergence guarantees were extended to broad input distributions
[7, 22] and finite training data [6, 23]. We give the analytical formula of the optimal solution and
its generalization error for one student neuron and unit-orthonormal teacher network with multiple
neurons for erf and ReLU activation functions and a partial characterization for a broader class of
activation functions without relying on the analytic formula of the loss.

The studies cited above showed positive results for a single-neuron teacher or a unit-orthonormal
teacher. However, even for settings where the teacher has only a few neurons, hard teachers can be
constructed in the sense that the student fails to find a zero-loss solution for a certain fraction of
random initializations [24–26]. Moreover, for medium-scale problems, gradient flow often converges
to ‘non-zero loss’ solutions [27–29]. Arjevani and Field [30] characterized some families of local
minima using symmetries, for the ReLU activation function and unit-orthonormal teacher network. In
this paper, we similarly characterize, for the case that the student has a smaller size than the teacher, a
large family of ‘copy-average’ critical points, but for the erf activation function. Our approach focuses
on the important regime of under-parameterized networks which is relevant for the superposition of
features [31] and for the distillation of large networks into smaller ones [32, 33].

There is a large history of approximation theory of neural networks that give universal guarantees on
the approximation error, e.g. [1, 34–36]. However, these works focus on rates of convergence and
provide neither a formula nor an approximation for the error. In this paper, we make a conjecture
for the exact formula of the approximation error of under-parameterized student networks which we
support both theoretically and numerically.
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2 Setup

Neural network: Consider a two-layer (student) network function f : Rd → R with n neurons

f(x) =

n∑
i=1

aiσ (wi · x) (1)

where wi ∈ Rd is the incoming vector, ai ∈ R is the outgoing weight of neuron i, and the activation
function σ is twice differentiable unless it is specified to be ReLU, i.e. σrelu(x) = max(0, x), and the
dot marks the scalar product. P =n(d+ 1) is the number of parameters.

Parameter vector: The parameter vector is represented as

θ = (w1, a1)⊕ ...⊕ (wn, an) ∈ RP (2)

where ⊕ denotes the concatenation of two vectors into one vector. We use the notation ⊕, since the
network function can be seen as a sum of its hidden neurons. Sometimes θ is written explicitly in the
network function f(x|θ)=f(x).

Loss function: We assume that the input distribution is a standard d-dimensional Gaussian D =
N (0, Id). The target function is denoted by f∗ : Rd → R. Using the square cost, the loss function
L : RP → R (also known as the risk or the generalization error) is defined as

L(θ) = Ex∼D
[
(f(x|θ)− f∗(x))2

]
. (3)

Orthogonal teacher network: We assume that the target function is a neural network (also known
as the teacher network or a multi-index model)

f∗(x) =

k∑
j=1

bjσ(vj · x) (4)

where its outgoing weights are non-zero and its incoming vectors v1, . . . , vk ∈ Rd are orthogonal
to each other, that is, vi · vj = 0 for i ̸= j. This implies that the input dimension satisfies d≥ k.
Following [27, 30, 37], we particularly focus on the unit-orthonormal teacher network where the
outgoing weights are all one, that is bj = 1, and the incoming vectors have unit norm, i.e. vi ·vj = δij .

Optimal loss: We study the optimal solution(s) of the following non-convex optimization problem

Ln,k(⊕n
i=1(ai, wi)) = Ex∼D

( n∑
i=1

aiσ(wi · x)−
k∑

j=1

bjσ(vj · x)
)2 . (5)

for under-parameterized (student) networks, i.e. n < k, and orthogonal teachers. For n ≥ k neurons,
the network can copy all teacher neurons and set the outgoing weights of the remaining neurons to
zero, therefore the optimal loss is trivially zero. If the teacher is unit-orthonormal, then all of its
neurons contribute equally; hence the optimal loss is determined by n and k only and denoted by
L∗(n, k). If the student neural network has one neuron we use the notation L∗(k) := L∗(1, k).

3 Foundations & Constrained Optimization Formulation

In this section, we introduce a constrained optimization problem that is a reformulation of the min-
imization problem in Eq. 5. This formulation allows us to show that the incoming vector of any
non-trivial critical point of the one-neuron network is in the span of the teacher’s k orthogonal (or po-
tentially even non-orthogonal, see Appendix Remark D.1) incoming vectors (see Proposition 4.1). We
give the exact solution in the case of a unit-orthonormal teacher (see Corollary 5.2 and Corollary G.5).

Using the linearity of expectation, the loss function in Eq. 5 can be expanded as a weighted sum of
the following Gaussian integral terms

Ex∼D[σ(V1 · x)σ(V2 · x)]
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where V1 and V2 represent two arbitrary vectors of student and teacher networks such as (wi, wj) or
(wi, vj). As both V1 · x and V2 · x are centered Gaussian random variables, the above expectation can
be expressed in terms of the covariance of the two-dimensional Gaussian

Ex∼D

[
(V1 · x)2 (V1 · x)(V2 · x)

(V1 · x)(V2 · x) (V2 · x)2
]
=

[
r21 r1r2u

r1r2u r22

]
where ri := ∥Vi∥ for i = 1, 2 is the ℓ2-norm and, assuming ri > 0, u := V1 · V2/(r1r2) is the
correlation. The covariance entries Qii = r2i , Q12 = r1r2u have been used to study the gradient
flow trajectories [2, 3, 24]. We prefer the parametrization with ri and u as it enables us to make the
positive definiteness constraint explicit, i.e.

|u| = |V1 · V2|
r1r2

≤ 1, (6)

due to the Cauchy-Schwarz inequality. We introduce the interaction function gσ : R2
≥0× [−1, 1]→ R

gσ(r1, r2, u) = E(x1,x2)∼N (0,Σ)[σ(r1x1)σ(r2x2)] with Σ =

[
1 u
u 1

]
, r1, r2 > 0, (7)

to express the Gaussian integral terms. Note that u is not well-defined if one of the norms is zero.
Extending the formula above, for the case w.l.o.g. r2 = 0, we define

gσ(r1, 0, u) := Ex∼N (0,1)[σ(r1x)]σ(0)

for all u ∈ [−1, 1]. In this paper, we consider the activation functions satisfying the following.
Assumption 3.1. For all r1, r2 > 0 and u ∈ (−1, 1), we assume that the interaction function gσ
satisfies either the first or both of the following properties

(i)
d

du
gσ(r1, r2, u) > 0, (ii)

d2

du2
gσ(r1, 1, u)u <

d

du
gσ(r1, 1, u). (8)

To check whether a specific activation function satisfies the above properties, we mainly rely on
Lemma F.1 which gives us the rule for the partial derivative of gσ with respect to the correlation

d

du
gσ(r1, r2, u) = r1r2E[σ′(r1x)σ

′(r2y)]. (9)

Hence, if σ is monotonic (increasing or decreasing)3, the integrand on the right-hand side is positive;
satisfying Assumption 3.1 (i). The ReLU activation function σrelu(x)=max(0, x) also satisfies it
because of the known analytical expression of the interaction [4, 27]

grelu(r1, r2, u) = r1r2h(u) where h(u) =
1

2π

(√
1− u2 + (π − arccos(u))u

)
.

Checking Assumption 3.1 (ii) for a given activation function is delicate. We rely on it in Section 5.

Using the interaction function, the loss function can be expressed in terms of the order parameters:

• norms of the incoming vectors of the student ri = ∥wi∥,
• correlations between the incoming vectors of the student and teacher uij = wi ·vj/(ri∥vj∥),
• correlations between the incoming vectors of the student ρii′ = wi · wi′/(riri′);

where we assumed ri > 0 for all i ∈ [n]. The constrained optimization formulation is possible
for general non-orthogonal teacher networks (see Remark D.1 in the Appendix). For the sake of
simplicity, we formulate here the constrained optimization problem for the case of orthogonal teachers
and reformulate the objective in Eq. 5 as

minimize
n∑

i=1

a2i gσ(ri, ri, 1) + 2
∑
i̸=i′

aiai′gσ(ri, ri′ , ρii′)− 2

n∑
i=1

k∑
j=1

aibjgσ(ri, ∥vj∥, uij) + C

subject to ∥ui∥ ≤ 1, ri ≥ 0, for all i ∈ [n],∣∣∣∣ρii′ − ui · ui′

∣∣∣∣ ≤√1− ∥ui∥2
√

1− ∥ui′∥2, for all i ̸= i′ ∈ [n]; (10)

3Increasing (or decreasing) mean strictly increasing (or decreasing) everywhere in this paper.
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A Weight-space B1 Primary domain of the order parameters B2 Secondary domain
Figure 2: Cartoon representation of the mapping of a student with three neurons from the weight
space A Rnd to order parameter space B1-B2. The mapping between the outgoing weights is an
identity mapping hence not shown. A Each axis shows the direction of weights vi of one teacher
neuron (k ≥ 3). B1 Each incoming vector wi ∈ Rd is first transformed into (ri, wi/ri) and then
wi/ri is projected onto the span of the teacher’s incoming vectors, yielding the student-teacher
correlation vector ui = (ui1, ..., uik). B2 The student-student correlations ρii′ are in general free
parameters bounded in between ui · ui′ ±

√
1− ∥ui∥2

√
1− ∥ui′∥2 hence the box constraint. An

activated constraint, w.l.o.g. u1 ∈ Sk−1, gives a vanishing ± term for the interval of correlation
ρ1i for all i ̸= 1, hence they are no longer free (shown in red). In the case d = k, all ui are on the
hypersphere due to the problem geometry, hence the correlations ρii′ are fixed and not free (see
Appendix D.1).

where ui = (ui1, ..., uik) and C = Ex∼D[f
∗(x)2]. The constraints in Eq. 10 give tighter bounds

than simply bounding correlations with the help of Eq. 6. See Appendix D for the derivation of the
constraints and Fig. 2 for a schematic.

The objective above is exact for n = 1, 2, in the sense that its optimal solution is equivalent to the
optimal solution in the weight space, since the mapping from the weight-space to the order space is
invertible. However, it is a relaxation for n ≥ 3, since there are order-parameter configurations in the
domain (see Figure 2) that do not correspond to any weight-space configuration (see Appendix D.3
for a construction). It seems possible to overcome this gap by considering the geometry of the angles
between n ≥ 3 incoming vectors to tighten the constraints between student-student correlations.

4 Copy-Average Critical Points

In this section, we identify a new family of critical points by ‘combining’ critical points of one-neuron
networks for the unit-orthonormal teacher and the erf activation function. We first show that in a
network with n = 1 student neuron, for any “non-trivial” critical point, that is w∗ ̸= 0 and a∗ ̸= 0,
the incoming vector w∗ is in the span of the teacher’s incoming vectors (Proposition 4.1). Applying
this proposition to the special case of the erf activation function, we show that the concatenation of
such critical points is also a critical point for multi-neuron networks (Theorem 4.2).
Proposition 4.1. Assume that f∗ is an orthogonal teacher network (Eq. 4) of width k. If the activation
function satisfies Assumption 3.1 (i), any non-trivial critical point θ∗ = (w∗, a∗), i.e. ∇L1,k(θ∗) = 0,
∥w∗∥ ≠ 0, a∗ ̸= 0, satisfies that w∗ is in the span of the teacher’s incoming vectors.

The proof uses the constrained optimization formulation for n = 1 (see Appendix G.1). In short, a
critical point mapped to the order parameter space satisfies either ∥u1∥ = 1 or ∂ugσ(r, ∥vj∥, u1j) = 0
for all j ∈ [k]. Under the Assumption 3.1 (i) these partial derivatives are non-zero, hence ∥u1∥ = 1.
In a recent work [38], the incoming vectors of the student network are also shown to converge to the
span of the vectors of the multi-index model using weight-decay.

Finding the optimal solution for the multi-neuron network is challenging. Natural candidates are
concatenation of student neurons where each one of them is a critical point of the loss function L1,ℓi

where ℓi is the number of the subgroup of teacher neurons. More precisely, let us pick a partition
ℓ1 + ...+ ℓn ≤ k such that ℓi ≥ 1, and define sm =

∑m
i=1 ℓi for m ≤ n and s0 = 0. We denote a

one-neuron critical point by θ∗i = (w∗
i , a

∗
i ), when learning from a part of the teacher network

f∗
i (x) =

si∑
j=si−1+1

σ(vj · x). (11)

Since f∗
i is a unit-orthonormal teacher, w∗

i is in the span of vsi−1+1, ..., vsi due to Proposition 4.1.
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We use the term copy-average (CA) point or configuration to refer to the concatenation of such
one-neuron critical points in the student network with n neurons: if ℓi = 1, the student neuron copies
one of the teacher neurons (vj , 1); if ℓi > 1, it averages a group of teacher neurons in the sense of
approximating their sum with one neuron. For odd activation functions, the one-neuron network
problems decouple from each other, as the cross-terms E[σ(w1 · x)σ(w2 · x)] vanish for w1 ⊥ w2.
For the specific case of erf, we prove that all the copy-average configurations are critical points.

Theorem 4.2. Assume that σ(x) = σerf(x) =
2√
π

∫ x√
2

0
e−t2dt. We pick a copy-average parameter

θ∗ = (w∗
1 , a

∗
1)⊕ ...⊕ (w∗

n, a
∗
n) (12)

where (w∗
i , a

∗
i ) is a non-trivial critical point when learning from a unit-orthonormal teacher f∗

i with
the incoming vectors vsi−1+1, ..., vsi shown in Eq. 11. Then θ∗ is a critical point of the loss function
Ln,k where the target function is f∗(x) =

∑k
j=1 σ(vj · x).

In particular, all neurons are equivalent to each other in a unit-orthonormal teacher network. Therefore,
the copy-average configurations where n− 1 student neurons each copy a distinct teacher neuron
and the n-th student neuron takes an average are also equivalent and called (n−1)-copy-1-average,
or (n−1)-C-1-A in short. Another interesting configuration is where n student neurons each copy a
distinct teacher neuron, which is called n-copy, or n-C in short.

For general activation functions the copy-average parameter vectors are not critical points (see Eq. 56).
Nevertheless, we numerically find that the gradient flow converges to similar configurations for the
ReLU activation function (see Figure 1, see Appendix C.3 for more experiments).

5 Approximation Error of Underparameterized Networks

The target function is assumed to be a unit-orthonormal teacher network in this section. In Subsec-
tion 5.1, we show for the one-neuron network that there is a unique non-trivial critical point up to
symmetries, which is necessarily the global minimum (Theorem 5.1). Furthermore, we give the ana-
lytic expression of the optimal solution and its loss for erf (Corollary 5.2) and ReLU (Corollary G.5)
activation functions. In Subsection 5.2, we provide for the under-parameterized student with n > 1
neurons the exact loss of copy-average critical points for the erf activation function and show that
the (n−1)-copy-1-average configurations reach the lowest loss among CA-critical points (see also
Appendix E.1 for the combinatorial number of the equivalent copy-average configurations related to
the landscape complexity calculations [39]).

5.1 One-Neuron Network

Using the constrained optimization formulation in 10, we first prove that at any non-trivial critical
point of the one-neuron network, the incoming vector aligns equally with all teacher’s incoming
vectors for unit-orthonormal teachers for activation functions satisfying Assumption 3.1 (see Theo-
rem 5.1). This is related to the symmetric solution visited during the learning plateaus studied in Saad
and Solla [2] for erf activation and in Tian [5] for ReLU activation (see Appendix B for a detailed
comparison). Our proof works for a broad class of activation functions and does not use the analytic
expression of the interaction function.
Theorem 5.1. Assume that the activation function satisfies Assumptions 3.1 (i) and (ii). At any
non-trivial critical point (w∗, a∗) of the loss L1,k for the unit-orthonormal teacher network, the
incoming vector satisfies

w∗

∥w∗∥
= u∗

k∑
j=1

vj (13)

where u∗ is either 1√
k

or − 1√
k

.

Proof Sketch. There is no student-student interaction term since we have a single neuron; therefore
we write uj instead of u1j and the constrained optimization problem in 10 simplifies to

minimize a2gσ(r, r, 1)− 2a

k∑
j=1

gσ(r, 1, uj) + const, subject to ∥u∥ ≤ 1, r ≥ 0. (14)
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Figure 3: One-neuron network solutions. A Network output (color coded) as a function of input in
d = 2 for (left) a unit-orthonormal network with k = 2 neurons (incoming vectors v1 and v2 are
shown as black dots) and (right) the student network function generated by the optimal solution
(incoming vector shown in red) for the erf activation function. B Same for the softplus activation
function. C Approximation error of a student with n = 1 neurons as a function of the number
of k teacher neurons. For large k, the approximation error for n = 1 grows near-linearly for the
differentiable activation functions studied in this paper (erf, sigmoid, tanh, and softplus with β = 1);
however the growth is quadratic for ReLU (see Appendix Corollary G.5).

From Proposition 4.1, we have that ∥u∥ = 1 for any non-trivial critical point. Therefore, the constraint
of 14 on the correlations u = (u1, ..., uk) is satisfied. The mapping of any non-trivial critical point
to the order-parameter space is a critical point of the Lagrangian loss (see Appendix Lemma G.2).
Hence every uj satisfies

−2a d

duj
gσ(r, 1, uj) + 2λuj = 0 (15)

for fixed (r, a). Assumption 3.1-(ii) implies that 1
u∂ugσ(r, 1, u) is one-to-one hence all uj are equal.

End of Proof Sketch.

We show in Lemma F.2 that the interactions of the common activation functions such as erf, tanh,
sigmoid, and softplus (respectively)

σerf(x) =
2√
π

∫ x√
2

0

e−t2dt, σtanh(x) =
1− e−x

1 + e−x
, σsig(x) =

1

1 + e−x
, σβ

soft(x) =
1

β
log(eβx + 1),

with β ∈ (0, 2] satisfy Assumption 3.1-(ii). The interaction of the ReLU activation function, i.e.
σrelu(x) = max(0, x) also satisfies Assumptions 3.1 (with a slight modification in the domain for (ii);
see the proof of Corollary G.5).

Thanks to Theorem 5.1, the loss in Eq. 14 can be reduced to a two-dimensional loss in a and r, which
can be solved explicitly for ReLU (Corollary G.5) and erf.
Corollary 5.2. Assume that the activation function is σerf. The optimal solution (w∗, a∗) is given by

∥w∗∥ =
√

1

2k − 1
, a∗ = k,

w∗

∥w∗∥
=

1√
k

k∑
i=1

vi,

or, equivalently, by (−w∗,−a∗). The optimal loss is then given by

L∗
erf(k) =

2

π

(
k arcsin

(1
2

)
− k2 arcsin

( 1

2k

))
. (16)

The proof of Corollary 5.2 is presented in Section G.3. For general activation functions, the two-
dimensional loss does not admit an analytical expression. For this case, from the partial derivatives,
we obtain a fixed-point equation in r which we solve numerically for the activation functions listed
above (see Appendix Section G.2.2). For softplus, specifically, we prove in addition the following

Theorem 5.3. Assume that the activation function is σβ
soft(x) with β ≤ 2. The optimal solution

(w∗, a∗) satisfies ∥w∗∥ ≤ 1/
√
k and a∗ ≥ k.

We use the FKG inequality to prove Theorem 5.3 (see Appendix G.5). Although the proof requires
specific properties of softplus, we show that the above bounds hold also for tanh and sigmoid by
numerically solving the fixed point equation (Figure 10, also Figure 5). Note that the incoming vector
norm is bounded above by 1/

√
k, hence w∗ is a damped average of the teacher incoming vectors.
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Figure 4: Under-parameterized student networks of width n with erf activation function learning (via
gradient flow) from a unit-orthonormal teacher network of width k. A Each dot is the mean error
at convergence for 20 seeds of random initializations; black-dashed lines are the theory predictions
L∗

erf(k−n+1), see Eq. 20. Standard deviations do not show on the figure as they are too small. We
identify four regimes indicated by colors (green-gray-blue-red) depending on the type of solution
found by gradient flow (GF). In the green regime, GF converges to an optimal (n− 1)-C-1-A solution
for all 20 initializations (Fig. 4-B1). In the gray regime, GF converges either to (n − 1)-C-1-A
solution or to a "Perturbation of the all-copy solution" that we call P-n-C (Fig. 4-B2). In the blue and
red regimes, for n > γ2k where n = 8, 12, 16 the gradient flow converges to a P-n-C solution from
all seeds (Fig. 4-B3). Moreover, in the red regime, for n > γ3k where n = 8, 12, 16 and γ3 is near
0.75, the P-n-C solutions achieve lower loss than the (n− 1)-C-1-A solutions (Fig. 4-B4). B1-B4
Examples of loss at convergence (vertical axis) for all 20 different initialization seeds (horizontal
axis); theory is shown by the red-dashed horizontal line. Insets show examples of correlation matrices
uij (k lines, n columns) between student and teacher incoming vectors at convergence after reordering
neurons. In the gray regime (for ex. B2) the gradient flow converges to either one of the two types of
minima with correlations shown in the inset; in the other regimes, it consistently converges to the
same minimum up to permutations.

Remark 5.4. We do not impose either of the two reductions that are common in literature: (i)
incoming vector w is constrained to be on the unit sphere [9, 11, 14, 40], (ii) the outgoing weight a
is constrained to be one [7, 18, 20]. An important step in our analysis is related to the norm r of the
incoming vector which we discuss in Appendix Section G.2.2.

5.2 Multi-Neuron Network

In this subsection, we assume that the activation function is erf such that CA-configurations are
critical points (see Theorem 4.2). For a student network with n = 2 and a partition (ℓ1, ℓ2) we can
decompose the loss of a CA critical point as

L∗
erf(ℓ1) + L∗

erf(ℓ2) + L∗
erf(0, k − (ℓ1 + ℓ2)) (17)

where L∗
erf(0, ℓ0) := Ex∼D[f

∗
ℓ0
(x)2] is the error made by a student with vanishing output when

representing a reduced unit-orthonormal teacher network with ℓ0 neurons. This decomposition is
possible because the cross-terms between orthogonal vectors are zero for odd activation functions.
Furthermore, for the erf activation function, we show that

L∗
erf(ℓ1) + L∗

erf(0, ℓ0) > L∗
erf(ℓ1+ℓ0) (18)

(see the proof of Lemma E.2). Therefore, we should search for the minimum loss configuration
among the partitions with ℓ1+ℓ2 = k. Among such partitions, Lemma E.2 shows that the optimum
CA-point has the partition (1, k − 1). In words, the optimum is a 1-copy-1-average point.

For general n, using Lemma E.2 and a small trick, we prove the following.

Theorem 5.5. Consider a unit-orthonormal teacher network f∗(x) =
∑k

j=1 σ(vj · x) and the erf
activation function. For an under-parameterized student network with n neurons, the minimum-loss
copy-average configuration up to permutations (of the student and teacher neurons) is

θ = (ϵ1v1, ϵ1)⊕ ...⊕ (ϵn−1vn−1, ϵn−1)⊕ (ϵnw
∗
n, ϵna

∗
n) (19)

where ϵi ∈ {±1} and (w∗
n, a

∗
n) is given by Corollary 5.2 after substituting k with k−n+1.

9



See Appendix E.3 for the proof. Because copy-average critical points are not necessarily the only
critical points of the loss function for students with n > 1, we investigate in simulations, if they are
found by gradient flow where the weights are initialized as Gaussian with a fixed standard deviation
(see Fig. 4).

Interestingly, gradient flow converges to the CA-optimal solution for all random seeds in a broad
regime of under-parameterization (green in Fig. 4). Only when n > γ1k for n = 8, 12, 16 and
γ1 ∼ 0.46, gradient flow converged in some seeds to points close to the n-copy critical point. We
call these newly found points “perturbed n-copy” (P-n-C) points. In gray-blue regimes, the P-n-C
points have higher loss than the optimal CA critical point (Fig. 4).

However, this is not always the case: when the student width is close to the teacher width (low
compression regime), the P-n-C point has a slightly lower loss the lowest amongst the CA critical
points (red in Fig. 4). When k − n is fixed, we found that the (n− 1)-C-1-A solution turns from a
minimum for small n to a saddle for large n (see App. Fig. 6); which explains why the gradient flow
escapes it in this regime and converges to another minimum at a lower loss.

Finally, based on our theory and experiments, we conjecture that there exists a γ0 ∈ (0, γ3) such that
when n < γ0k and when the activation function is erf, the global optimum of the non-convex loss in
Eq. 5 is a (n−1)-C-1-A configuration. Therefore, if our conjecture holds, the exact approximation
error, i.e. the optimal loss, is identical to that of a one-neuron network approximating a teacher with
k−n+1 neurons and is given by

L∗
erf(n, k) = L∗

erf(k−n+1). (20)

6 Conclusion & Future Directions

We studied the learning of under-parameterized student networks from orthogonal teacher networks
for standard Gaussian input data and vanishing thresholds. For erf activation function, we introduced
a new family of critical points that arise from the decoupling of the problem into one-neuron networks
that can be solved separately. Moreover, the exact parameters of copy-average (CA) critical points
are given which can be used to study escape behavior near saddles and to determine convergence of
first and second-order optimization algorithms [16, 41].

Furthermore, we showed that the optimal CA point is that n− 1 neurons copy teacher neurons and
the n-th neuron averages the remaining k − n+ 1 neurons. In simulations, gradient flow converges
to a CA-optimal solution for n < γ1k where γ1 is near 0.46. However, for n > γ2k where γ2 is
near 0.6, we observe another phase where the gradient flow finds a perturbed copy solution. For
the ReLU activation function and the onset of under-parameterization, gradient flow converges to
qualitatively similar solutions; however, at the crossing point from under-parameterization to over-
parameterization (i.e. n = k), gradient flow is known to get stuck in spurious local minima [27].
On another note, determining the CA-optimal solution of the two-neuron network plays a critical
role in our analysis. Still, there is only little literature on two-neuron networks [5, 42] compared to
the well-studied one-neuron case [5–7, 22, 23]. The two-neuron network is possibly the simplest
model with interactions between neurons, hence it is important to understand the global minimum
and gradient flow dynamics of this challenging problem.

On the practical side, our analysis of under-parameterized networks gives a recipe for how to warm-
start smaller neural networks for distilling unit-orthonormal teacher networks. If one desires low
compression (n > γ3k), then we recommend initializing the student network in a configuration where
each neuron copies a different teacher neuron, to be close to a P-n-C point. However, for higher
compression, we recommend initializing the student network in a configuration where n− 1 neurons
are each copied and the n-th neuron is initialized as an average neuron to be close to a (n− 1)-copy-
1-average point. It remains an open question whether this recipe applies to non-idealized scenarios
such as non-isotropic input distribution, teacher networks with non-orthogonal incoming vectors, or
non-unit outgoing weights. More generally, it is natural to expect that the optimal distillation strategy
changes from low compression levels to high compression levels. How exactly and where this change
happens is a very intriguing question of theory and practice.

10



Acknowledgements

The authors thank Lenka Zdeborová for the discussions and encouragement at the beginning of this
project and Clément Hongler for many discussions and valuable feedback. This work was supported
by the Swiss National Science Foundation (no. 200020_207426).

References
[1] Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural networks.

Neural networks, 2(3):183–192, 1989.

[2] David Saad and Sara A Solla. On-line learning in soft committee machines. Physical Review E,
52(4):4225, 1995.

[3] Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová.
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student
setup. Advances in neural information processing systems, 32, 2019.

[4] Youngmin Cho and Lawrence Saul. Kernel methods for deep learning. Advances in neural
information processing systems, 22, 2009.

[5] Yuandong Tian. An analytical formula of population gradient for two-layered relu network
and its applications in convergence and critical point analysis. In International conference on
machine learning, pages 3404–3413. PMLR, 2017.

[6] Song Mei, Yu Bai, and Andrea Montanari. The landscape of empirical risk for nonconvex losses.
The Annals of Statistics, 46(6A):2747–2774, 2018.

[7] Gilad Yehudai and Shamir Ohad. Learning a single neuron with gradient methods. In Conference
on Learning Theory, pages 3756–3786. PMLR, 2020.

[8] Charles M Stein. Estimation of the mean of a multivariate normal distribution. The annals of
Statistics, pages 1135–1151, 1981.

[9] Rishabh Dudeja and Daniel Hsu. Learning single-index models in gaussian space. In Conference
On Learning Theory, pages 1887–1930. PMLR, 2018.

[10] Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic gradient descent
on non-convex losses from high-dimensional inference. The Journal of Machine Learning
Research, 22(1):4788–4838, 2021.

[11] Alberto Bietti, Joan Bruna, Clayton Sanford, and Min Jae Song. Learning single-index models
with shallow neural networks. Advances in Neural Information Processing Systems, 35:9768–
9783, 2022.

[12] Raphaël Berthier, Andrea Montanari, and Kangjie Zhou. Learning time-scales in two-layers
neural networks. arXiv preprint arXiv:2303.00055, 2023.

[13] Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. Learning
two-layer neural networks, one (giant) step at a time. arXiv preprint arXiv:2305.18270, 2023.

[14] Alex Damian, Eshaan Nichani, Rong Ge, and Jason D Lee. Smoothing the landscape boosts the
signal for sgd: Optimal sample complexity for learning single index models. arXiv preprint
arXiv:2305.10633, 2023.

[15] Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. Advances in neural information
processing systems, 29, 2016.
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A Summary of Results

Table 1: Summary of Results
columns=conditions: Orthogonal UO & erf UO & σ satisfying gσ assumptions
lines=results:

n = 1 average is the optimal solution n.i.g. yes* yes
n > 1 CA points are critical points n.i.g. yes n.i.g. maybe for odd
n > 1 (n− 1)-C-1-A is the optimal-CA solution n.i.g. yes n.i.g. maybe for some odd
n = 1 w∗ is in the span of {v1, ..., vk} yes yes* yes*

In the table above, UO means unit-orthonormal, n.i.g. stands for ‘not in general’ and yes* follows as
a special case from the results with yes on the same row.

B Further Comparison to Literature

In this section, we compare the symmetric solutions found in erf [2] and ReLU networks [5] to
our one-neuron solution (n = 1). The main difference is that both earlier studies constrain the
search space to the symmetric subspace whereas we first prove that the non-trivial critical points are
contained in this subspace in Theorem 5.1 for a broad class of activation functions, including erf and
ReLU. Solving the low-dimensional loss, we recover the same solution for ReLU and erf as in [2, 5]
for unit-orthonormal teachers.
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Symmetric Solution of Saad and Solla [2] for erf activation. The authors focus on the ‘symmetric
subspace’ parameterized as

Qii = r2i = Q, Qij = pijrirj = C, Rin = uinri = R. (21)

In this case, the loss is parameterized by three values, that is Q,C,R, hence can be expressed
analytically in terms of these values. Solving the fixed point equations, they find the following
critical/fixed point (their Eq.22)

Q = C =
1

2k − 1
, R =

1√
k(2k − 1)

(22)

which implies ri = 1/
√
2k−1 and ρij = 1 in our parameterization. This selection of parameters forces

all student vectors to be equal therefore reducing the system to a one-neuron network. There are two
main improvements in our analysis

1. We prove that student-teacher correlations uij are equal to each other at a non-trivial critical
point, and give necessary conditions on the activation function (Assumption 3.1) to satisfy
this property. We show in Lemma F.2 that not only erf but a large class of common activation
functions satisfy Assumption 3.1.

2. Our student network has a flexible outgoing weight (shallow neural network) as opposed to
a fixed outgoing weight +1 (soft-committee machine) in Saad and Solla [2]. It is instructive
to compare the generalization errors of the one-neuron network

(soft-committee machine) L∗
erf; soft(k) =

k

3
− k2

2

π
arcsin(

1

2k
)

(shallow network) L∗
erf(k) = k

2

π
arcsin(

1

2
)− k2

2

π
arcsin(

1

2k
) ≈ k(

1

3
− 1

π
),

which are identical since arcsin(0.5) = π/6 (Saad and Solla [2] uses ϵg(k) = 1
2L

∗
erf; soft(k)

that’s why there is a factor 0.5 difference with respect to their Eq. (23)). However, if
we set teacher outgoing weights to say at, the shallow network adapts and reaches the
generalization error a2tL

∗
erf(k) but the error of the soft-committee machine is

L∗
erf; soft(k) = k2g(

1√
2k−1

,
1√

2k−1
, 1)− 2k2atg(

1√
2k−1

, 1,
1√
k−1

) + a2tkg(1, 1, 1)

= O(at) + a2tk
1

3
.

which has a worse coefficient 1
3 compared to 1

3 −
1
π as expected.

Symmetric Solution of Tian [5] for ReLU activation. The authors focus on a particular two-
dimensional subspace (x, y) that allows the specialization of student neurons, namely

wi = xvi + y
∑
j ̸=i

vj . (23)

In particular, they consider the ‘symmetric subspace’ x = y which is the case when all student
neurons collapse to one neuron, and show that the dynamics converge to the following fixed point

x = y =
1

πk
(
√
k − 1− arccos(

1√
k
) + π). (24)

Summing over k neurons then produces the following one-neuron due to the positive homogeneity

w∗ =
1

π
(
√
k − 1− arccos(

1√
k
) + π)

k∑
j=1

vj .

Our formula (Corollary G.5) gives the identical result due to

w∗a∗ =
k

h(1)
h(

1√
k
)

k∑
j=1

1√
k
vj =

1

π
(
√
k − 1− arccos(

1√
k
) + π)

k∑
j=1

vj .

In this case, there is no difference between the optimal solution of the soft-committee machine and
the shallow network since ReLU is positive-homogeneous as expected.
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A B C

Figure 5: Structure of the optimal solution of the one-neuron network for various activation functions.
We trained 20 seeds of one-neuron students learning from the unit-orthonormal teacher networks
with k = 2, ..., 10 neurons. All students converge to the same optimal solution up to symmetries (that
is, positive-scaling symmetry for ReLU and sign symmetry for odd activation functions such as tanh
and erf). A For ReLU, the magnitude ∥w∗∥a∗ exactly matches with the result of Corollary G.5. For
softplus, the magnitude is very close to

√
k; for sigmoid, tanh, and erf, it is below

√
k. B The norm

of the incoming vector is smaller than 1/
√
k for softplus, sigmoid, tanh, and erf. C The outgoing

weight is larger than k for softplus and tanh, and it is virtually k for sigmoid and erf.

C Further Experiments

All experiments in this paper are implemented using the gradient flow package implemented by
Brea et al. [16] which is particularly suited to studying gradient flow on the population loss. For
activation functions for which there is an analytic formula, it is already implemented in the package;
for the others, we used the approximator option for a speed-up compared to the numerical integration
option. This method uses a neural network in the background fitted to approximate Gaussian integrals.
We trained for 105 ode iterations for erf and relu experiments; 103 ode iterations for softplus, tanh,
and sigmoid. For erf experiments, all seeds converged to configurations with gradient norm below
5 · 10−8. For ReLU experiments, a fraction of seeds failed to converge (large gradient norm at the
end of training). In Appendix C.3, we report among the seeds that succeeded in converging. Weights
initialized as Gaussians with zero mean and standard deviation 0.1 or with Glorot initialization [43].
This is in contrast with Saad and Solla [2], Tian [5] where (order) parameters are initialized with
positive values (as opposed to the rotationally symmetric initializations done in practice). For each
(n, k) pair, we implemented 10 or 20 seeds of random initializations.

C.1 One-Neuron Network

Empirically, gradient flow converges to the point where all student-teacher correlations are 1
k

4.

We know from Theorem 5.1 that at the non-trivial critical point all correlations are equal at correlation
1/

√
k and there is possibly another critical point at correlation −1/

√
k. Depending on the activation

function, the point where correlations are −1/
√
k might be

• either an equivalent of the optimum solution (for odd activation functions),

• or a saddle (for ReLU),

• or does not exist (for softplus).

The details can be found in the proofs for individual cases.

C.2 Erf Experiments

In this section, we first numerically investigate whether the CA-optimal critical point is a saddle or
minimum in Figure 6. Surprisingly, we find that the point turns from a saddle point to a minimum

4For odd activation functions, there are two solutions that are sign-symmetric: the first one where all
correlations are 1√

k
and its equivalent where all correlations are − 1√

k
. The first solution is plotted in Fig. 5 for a

fine comparison on the positive scale.
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Figure 6: The minimum eigenvalue of the Hessian at an optimal-CA point. We numerically investigate
whether a CA-optimal critical point is a strict saddle (min. eig. of the Hessian is negative) or a
minimum (min. eig. of the Hessian is non-negative). Interestingly, the minimum eigenvalue turns
from positive to negative as n grows for k = n+ h for fixed h = 1, 2, 3 (left panel). Therefore in this
regime, the CA-optimal cannot be the optimal solution of the non-convex problem for large n. For
k ≫ n, for example for k = n, 2n, 3n (right panel), the min. eigenvalue is positive and it approaches
zero as n increases.
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Figure 7: Evolution of order parameters during convergence to a (n− 1)-C-1-A solution: top n = 2,
middle n = 4, bottom n = 8; and k = 64; representative seeds. We can distinguish 3 phases: before
iteration 20, after iteration 20, and beyond iteration 40. We observe that in the first phase of training
(less than 5 iterations), the student neurons do not specialize into teacher neurons but approach the
one-neuron solution. For n = 2 (top row), in the second phase, we observe that the first neuron
implements an average of teacher neurons and the second neuron implements a copy of the remaining
teacher neuron. In the second phase, in general, n− 1 neurons specialize to match one teacher neuron
each (or its negative equivalent) and the n-th neuron splits its correlations into two groups: those that
correspond to the teacher neurons being matched become negative and the others collapse on each
other. Finally, in the third phase, the negative correlations converge to zero correlation, decoupling
the student neurons from each other. All student neuron correlation signs can be flipped as long as
the corresponding outgoing weight signs are flipped since the erf activation is odd. These examples
illustrate the green regime (see Fig. 4 in the main text).

point in some regimes of (n, k), despite that the configuration has the same structure of copying n− 1
teacher neurons and taking an average of the remaining teacher neurons. When k − n is fixed, and
for large n, Figure 6 explains why gradient flow does not converge to the CA-optimal point.
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Figure 8: Evolution of order parameters; P-n-C solution: for n = 8 and k = 9. We observe that all
student neurons match one teacher neuron in this case, however not perfectly at the end of training.
This is an example of the red regime (see Fig. 4 in the main text), where the students converge to a
perturbation of the n-copy configuration.
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C3

Figure 9: Optimal configuration found by gradient flow for ReLU activation function for n = 2 (top);
n = 4 (middle); n = 12 (bottom). The last row of the correlation matrices represents 1 − ∥ui∥
which is zero for all student neurons in all cases. Top row, n = 2; the optimal point is composed of a
copy and an average neuron: the copy neuron is very close to one of the teacher neurons, and the
average neuron is close to the average of the remaining teacher neurons while negatively correlating
with the copied teacher neuron. The negative correlation increases in magnitude as k increases.
Middle row, n = 4; for k = 5, the optimal point is a perturbation of the all-copy configuration;
for k = 8, 16, it is close to the (n − 1)-copy-1-average configuration. Bottom row, n = 12; for
k = 16, 24, the optimal point is a perturbation of the all-copy configuration; for k = 32, it is close
to the (n− 1)-copy-1-average configuration. In all regimes, the norms and outgoing weights of all
student neurons are close to each other (for the bottom row only the first four neurons are shown).

We show some representative trajectories of gradient flow, in the regime when the CA-optimal critical
point is a minimum in Figure 7 and in the regime when it is a saddle point in Figure 8.

C.3 ReLU Experiments

In this subsection, we will present the structure of the minimum loss configuration found by gradient
flow. In the regime n≪ k, the minimum loss configuration is qualitatively similar to the optimal-CA
solution but without perfect decoupling. For k that is slightly bigger than n, the gradient flow finds
an "all-copy" configuration for n = 4, 12. The overall trend of the minimum loss configuration is
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similar to the case of erf activation; however, as we do not have the analytic formula of correlations, a
theoretical prediction for the optimal solution is left for future work.

D Constrained Optimization Formulation

Expressing the loss function in terms of the order parameters yields the ‘projected’ loss function

Ln,k
proj =

n∑
i=1

a2i gσ(ri, ri, 1)︸ ︷︷ ︸
student magnitude term

+2
∑
i̸=i′

aiai′gσ(ri, ri′ , ρii′)︸ ︷︷ ︸
student-student interaction

−2
n∑

i=1

k∑
j=1

aibjgσ(ri, ∥vj∥, uij)︸ ︷︷ ︸
student-teacher interaction

+C

(25)

where the constant term C = Ex∼D[f
∗(x)2]. Lproj has n(k + 2) +

(
n
2

)
parameters, that is n output

weights and n(k + 1) +
(
n
2

)
order parameters, instead of n(d + 1) parameters of the original loss

function. For d≫ k + 1 + n−1
2 , Lproj has significantly less number of parameters.

In the special case d = k, the incoming vectors can be expressed as a linear combination of the
teacher’s incoming vectors, hence the correlations between them are not free (see Appendix D.1).

Each normalized incoming vector can be expressed as a sum of its projection on the span of the
teacher’s incoming vectors and an orthogonal component

wi

ri
=

k∑
j=1

uijvj + v⊥i ,

k∑
j=1

u2
ij ≤ 1, (26)

and the inequality constraint pops up since ∥ui∥2 = 1− ∥v⊥i ∥2 where ui = (ui1, . . . , uik). For the
correlations between the incoming vectors, we get

ρii′ = ui · ui′ + v⊥i · v⊥i′ , (27)

which yields the second set of constraints on the optimization problem∣∣∣∣ρii′ − ui · ui′

∣∣∣∣ ≤√1− ∥ui∥2
√

1− ∥ui′∥2 ∀i′ ̸= i ∈ [n], (28)

since we have |v⊥i · v⊥i′ | ≤ ∥v⊥i ∥∥v⊥i′ ∥ due to the Cauchy-Schwarz inequality.

We note if all incoming vectors are in the span of the teacher’s incoming vectors, we have that
∥ui∥ = 1. As a result, the second set of inequalities in Eq. 28 collapse onto equalities, hence the
secondary constraints are in fact equality constraints (see Appendix Eq. 34). We show that this is
indeed the case for the non-trivial critical points of the one-neuron network in Section G.

In general, the constrained optimization formulation is possible for non-orthogonal teacher networks.

Remark D.1. (Non-orthogonal teacher network) We can relax the assumption of orthogonality
between v1, . . . , vk to linear independence. Let us collect the incoming vectors into a matrix
V = [v1, . . . , vk] ∈ Rd×k. The expansion in Eq. 26 can be rewritten as

wi

ri
=

k∑
j=1

γijvj + v⊥i = V Γi + v⊥i (29)

where Γi = (γi1, . . . , γik) ∈ Rk and v⊥i · vj = 0 for all j ∈ [k]. The normalized vector has a unit
norm, hence we have

∥V Γi + v⊥i ∥2 = ΓT
i V

TV Γi + ∥v⊥i ∥2 = 1. (30)

The correlation vector can be written as ui = V TV Γi ∈ Rk which yields the following constraint

uT
i (V

TV )−1ui ≤ 1. (31)
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D.1 Equality Constraints in the Case d = k

In this case, the teacher incoming vectors v1, . . . , vk span the input domain Rd. Each incoming vector
(of the student) can be expressed as a linear combination of the teacher’s incoming vectors

wi

ri
=

k∑
j=1

uijvj ,

k∑
j=1

u2
ij = 1, (32)

and the equality constraint pops up since the normalized vector has a unit ℓ2 norm. The correlations
between the incoming vectors are then expressed in terms of the student-teacher correlations

ρii′ = ui · ui′ . (33)

Therefore the optimization problem is equivalent to

min

n∑
i=1

a2i gσ(ri, ri, 1) + 2
∑
i ̸=i′

aiai′gσ(ri, ri′ ,

k∑
j=1

uijui′j)− 2

n∑
i=1

k∑
j=1

aibjgσ(ri, ∥vj∥, uij)

subject to
k∑

j=1

u2
ij = 1, ri ≥ 0, for all i ∈ [n]. (34)

Since
(
n
2

)
student-student correlations terms are not free, the problem has only n(k + 2) free

parameters and k equality constraints, yielding n(k + 1) effective parameters, which is the same
number as the number of parameters of the original problem in the weight-space.

D.2 Binary-Equality Constraints in the Case d = k + 1

In this case, there is only one direction orthogonal to the span of the teacher’s incoming vectors (i.e.
v⊥i ∥ v⊥i′ ). Therefore the general inequality constraint on ρii′ reduces to

ρii′ = ui · ui′ ±
√

1− ∥ui∥2
√

1− ∥ui′∥2. (35)

D.3 Three-Neuron Network

We present a case for the three-neuron network where the optimal solution of the constrained
optimization problem may not be projected back to the weight space. In particular, let us consider a
positive and monotonic activation function, i.e. σ(x) > 0. This implies that gσ > 0 and that gσ is
increasing in correlation. It is natural to expect that all outgoing weights are positive since this would
bring the network function closer to the target function. If the network is overparameterized, some
outgoing weights may be zero or even negative (balanced by a positive outgoing weight corresponding
to the same incoming vector). Let us pick three positive outgoing weights a1, a2, a3 > 0 and three
corresponding student-student interaction terms

minimize a1a2gσ(r1, r2, ρ12) + a1a3gσ(r1, r3, ρ13) + a2a3gσ(r2, r3, ρ23) + ...,

subject to |ρii′ − ui · ui′ | ≤
√

1− ∥ui∥2
√
1− ∥ui′∥2. (36)

Note that each ρii′ is decoupled from each other. Since gσ is increasing in correlation, the minimum
of each term above is achieved when

ρii′ = ui · ui′ −
√
1− ∥ui∥2

√
1− ∥ui′∥2. (37)

This implies that the inequality is tight and therefore v⊥i ∥ v⊥i′ moreover,

v⊥i =
√
1− ∥ui∥2v⊥ and v⊥i′ = −

√
1− ∥ui′∥2v⊥ (38)

up to a sign flip. However, it is not possible that the three vectors all have pairwise flipped directions to
each other as we would have (−) · (−) = (+). If the optimal solution of the constrained optimization
problem verifies ∥ui∥2 < 1, then we conclude that it cannot be mapped back to the weight space; in
this case, the optimal Lproj would only give a lower bound on the optimal loss of the weight-space.
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E Copy-Average Critical Points

Theorem E.1. Assume that σ is the erf activation function. We pick a copy-average parameter vector

θ∗ = (w∗
1 , a

∗
1)⊕ ...⊕ (w∗

n, a
∗
n) (39)

where (w∗
i , a

∗
i ) is a non-trivial critical point when learning from a unit-orthonormal teacher f∗

i with
the incoming vectors vsi−1+1, ..., vsi shown in Eq. 11. Then θ∗ is a critical point of the loss function
Ln,k where the target function is f∗(x) =

∑k
j=1 σ(vj · x).

Proof. Let us write down the partial derivatives with respect to the outgoing weights and incoming
vectors

d

dai
Ln,k(θ∗) = 2Ex∼D[σ(w

∗
i · x)(

n∑
j=1

a∗jσ(w
∗
j · x)− f∗(x))],

d

dwi
Ln,k(θ∗) = 2a∗iEx∼D[σ

′(w∗
i · x)x(

n∑
j=1

a∗jσ(w
∗
j · x)− f∗(x))]. (40)

We will show that they are equivalent to the following

d

dai
Ln,k(θ∗) = 2Ex∼D[σ(w

∗
i · x)(a∗i σ(w∗

i · x)− f∗
i (x))],

d

dwi
Ln,k(θ∗) = 2a∗iEx∼D[σ

′(w∗
i · x)x(a∗i σ(w∗

i · x)− f∗
i (x))], (41)

which implies that the partial derivatives are zero, since (w∗
i , a

∗
i ) is a critical point of the loss

L1,ℓi = Ex∼D[(aσ(w · x)− f∗
i (x))

2]. (42)

Since (w∗
i , a

∗
i ) is the optimal solution of the teacher network generated by vsi−1+1, ..., vsi , from

Theorem 5.1, we have that w∗
i is in the span of vsi−1+1, ..., vsi . We have that

w∗
i · w∗

i′ = 0 and w∗
i · vj = 0 for j ∈ [k] \ [si−1 + 1, si] (43)

since the two incoming vectors are in the span of two orthogonal subspaces respectively and w∗
i is

orthogonal to all other teacher incoming vectors that are outside of the span of vsi−1+1, ..., vsi . For
two orthogonal vectors say w∗

i and v, we have that

Ex∼D[σ1(w
∗
i · x)σ2(v · x)] = Ex∼D[σ1(w

∗
i · x)]Ex∼D[σ2(v · x)] (44)

which is zero if at least one of σ1 and σ2 is odd. This implies the first equation in 41 for the partial
derivatives with respect to the outgoing weights. In order to show the second equation for the partial
derivatives with respect to the incoming vectors, let us define Sj = [sj−1 + 1, sj ],

Wi,j = Ex∼D[σ
′(w∗

i · x)x(a∗jσ(w∗
j · x)−

∑
k∈Sj

σ(vk · x))], (45)

and note that it suffices to show that Wi,j = 0 for all i ̸= j. This is true if and only if Wi,j · v̄ℓ = 0
where {v̄1, ..., v̄d} form an orthogonal basis of Rd. Let us choose v̄1 = v1, ..., v̄k = vk and that
v̄k+1, ..., v̄d completes the basis if d > k. One can observe that Wi,j · v̄ℓ = 0 for k+1 ≤ ℓ ≤ d since
x · v̄ℓ is an independent Gaussian from the others. Hence, the expectation, i.e. Wi,j · v̄ℓ, factorizes
with a factor of E[x · v̄ℓ] which is zero.

It remains to check Wi,j · vl = 0 for all vl’s. We split the analysis into two cases. If vl /∈ Sj , then
x · vl is independent from x · w∗

j and from x · vk for k ∈ Sj . Hence Wi,j splits into

Wi,j · vl = Ex∼D[σ
′(w∗

i · x)x · vl]Ex∼D[(a
∗
jσ(w

∗
j · x)−

∑
k∈Sj

σ(vk · x))] = 0, (46)
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where the second term in the product is zero because w∗
j · x and vk · x are centered Gaussian and σ is

odd. For the second case, where vl ∈ Sj , using the fact that x · vl is independent from w∗
i · x and

from x · vk for l ̸= k, we have

Wi,j · vl = Ex∼D[σ
′(w∗

i · x)]Ex∼D[x · vl(a∗jσ(w∗
j · x)−

∑
k∈Sj

σ(vk · x))] (47)

= Ex∼D[σ
′(w∗

i · x)]Ex∼D[x · vl(a∗jσ(w∗
j · x)− σ(vl · x))] (48)

= Ex∼D[σ
′(w∗

i · x)]
(
Ex∼D[a

∗
jσ(w

∗
j · x)x · vl]− Ex∼D[σ(vl · x)x · vl]

)
. (49)

Applying Stein’s Lemma to both terms on the right we have

Wi,j · vl = Ex∼D[σ
′(w∗

i · x)]
(
E[a∗jr∗ju∗σ′(r∗jZ)]− E[σ′(Z)]

)
, (50)

where Z is standard Gaussian and r∗j =
√

1
2k−1 , u∗ =

√
1
k , a∗j = k (parameters of erf). Hence we

want to show that

a∗jr
∗
ju

∗E[σ′(r∗jZ)] = E[σ′(Z)]. (51)

To show this, we use the following relation [2, 3]

gerf(r, r, u) = E[σ(rx)σ(ry)] =
2

π
arcsin

(
r2u

r2 + 1

)
. (52)

Differentiating with respect to the correlation u we have

d

du
gerf(r, r, u) = r2E[σ′(rx)σ′(ry)] =

2

π

1√
1− u2

(
r2

r2+1

)2 r2

(r2 + 1)
. (53)

In particular, at correlation zero, we get

E[σ′(rx)] =

√
2

π

1

(r2 + 1)
(54)

Therefore, we have

E[σ′(r∗jx)] =

√
2

π

(
2k − 1

2k

)
, E[σ′(x)] =

√
1

π
, (55)

which implies 51 and the proof is complete.

For general activation functions, using the substitution in Eq.41, the first partial derivatives in Eq. 40
reduce to

d

dai
Ln,k(θ∗) = 2

∑
i ̸=i′

a∗i′gσ(∥w∗
i ∥, ∥w∗

i′∥, 0)− 2(k − ℓi)gσ(∥w∗
i ∥, 1, 0) (56)

which is in general non-zero if σ is not odd.
Lemma E.2. Assume ℓ2 > ℓ1 ≥ 1. We have that

L∗
erf(ℓ2 + 1)− L∗

erf(ℓ2) < L∗
erf(ℓ1 + 1)− L∗

erf(ℓ1). (57)

Proof. We first show that the function x2 arcsin( 1
2x ) is increasing for x ≥ 1 and convex for x > 0.

Using the Taylor expansion of arcsin, we have that

f(x) = x2 arcsin
( 1

2x

)
=

x

2
+

1

2 · 3
1

23x
+

1 · 3
2 · 4 · 5

1

25x3
+ ... (58)

where the higher-order terms all have positive coefficients. The first derivative is

f ′(x) =
1

2
− 1

2 · 3
1

23x2
− 1 · 3 · 3

2 · 4 · 5
1

25x4
+ ... (59)
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which is positive for x ≥ 1 since we have

1

2 · 3
1

23x2
+

1 · 3 · 3
2 · 4 · 5

1

25x4
+ ... <

1

22x2
+

1

24x4
+ ... ≤ 1

4
+

1

42
+

1

43
+ ... =

1

3
. (60)

The second derivative is

f ′′(x) = 2
1

2 · 3
1

23x3
+ 4

1 · 3 · 3
2 · 4 · 5

1

25x3
+ ... (61)

which is positive for positive x.

First, let us show that Eq. 18 holds. Plugging in the analytic expressions for L∗
erf(0, ·) and L∗

erf(·), it is
equivalent to

ℓ0
2

π
arcsin

(1
2

)
> ℓ0

2

π
arcsin

(1
2

)
− 2

π

(
(ℓ1+ℓ0)

2 arcsin
( 1

2(ℓ1+ℓ0)

)
− ℓ21 arcsin

( 1

2ℓ1

))
. (62)

Since f(x) is increasing for x ≥ 1, the second term inside the parenthesis is positive, hence the
inequality holds.

We will now prove the statement of the Lemma. It suffices to show the following for all ℓ = ℓ2 ≥ 2

L∗
erf(ℓ+ 1)− L∗

erf(ℓ) < L∗
erf(ℓ)− L∗

erf(ℓ− 1) (63)

since then we can continue to decrease ℓ by one, i.e. ℓ − 1, ℓ − 2, ..., until we reach ℓ1. Eq. 63 is
equivalent to

L∗
erf(ℓ+ 1)− 2L∗

erf(ℓ) + L∗
erf(ℓ− 1) < 0, (64)

that is the second-order finite difference, similar to the second-derivative of a continuous function.
The proof is completed by observing that L∗

erf(·) is a discrete-concave function since its continuous
interpolation

L∗
erf(x) = x arcsin(

1

2
)− x2 arcsin(

1

2x
) (65)

is concave for x > 0 since it can be written as L∗
erf(x) = αx−f(x) where f is convex for x > 0.

Lemma E.2 tells us that if we add one neuron to the teacher, then it is better to approximate it by the
student neuron that already approximates many teacher neurons. Applying Lemma E.2 iteratively,
we get

L∗
erf(k−1) + L∗

erf(1) < L∗
erf(k−2) + L∗

erf(2) < ... < L∗
erf(ℓ2+1) + L∗

erf(ℓ1) < L∗
erf(ℓ2) + L∗

erf(ℓ1+1)

where ℓ2=
k
2 , ℓ1=

k
2 − 1 if k is even and ℓ2=

k+1
2 , ℓ1=

k−3
2 if k is odd.

Theorem E.3. Consider a unit-orthonormal teacher network f∗(x) =
∑k

j=1 σ(vj · x) and the erf
activation function. For an under-parameterized student network with n neurons, the minimum-loss
copy-average configuration up to permutations (of the student and teacher neurons) is

θ = (ϵ1v1, ϵ1)⊕ ...⊕ (ϵn−1vn−1, ϵn−1)⊕ (ϵnw
∗
n, ϵna

∗
n) (66)

where ϵi ∈ {±1} and (w∗
n, a

∗
n) is given by Corollary 5.2 after substituting k with k−n+1.

Proof. We will conclude with a simple argument that the minimum-loss CA configuration for a
multi-neuron network with n neurons is (n−1)-C-1-A. In particular, if there are two averaging
neurons inside the student network, we can redistribute the teacher neurons shared between these
two to a lower-loss CA configuration by ensuring that one student neuron copies and the other
student neuron averages (see Lemma E.2). The minimum-loss CA point is then achieved among CA
configurations where at least n−1 neurons each copy a single teacher neuron (of the k possible ones).
The remaining student neuron can be treated as a single-neuron network learning from a teacher with
k−n+1 neurons – for which we know the optimal solution is to average (Theorem 5.1).
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E.1 Number of CA Critical Points

There is a combinatorial number of (ℓ1, ..., ℓn)-CAC critical points, that is

c(ℓ1, ..., ℓn)

(
k

ℓ1

)
...

(
k − (ℓ1 + ...+ ℓn)

ℓn

)
(67)

where cn := c(ℓ1, ..., ℓn) counts distinguishable permutations between the neurons of the student
network, and the binomial coefficients stand for grouping teacher neurons into n non-empty buckets.

If ℓ1 = ... = ℓn, permutation between the student neurons is already counted when distributing the
teacher neurons, hence cn = 1. If all ℓ1, ..., ℓn are distinct from each other, we have that cn = n!
since we swap all pairs of student neurons after assigning groups of teacher neurons. In general, let
ci denote the number of i’s among ℓ1, ..., ℓn for all i = 1, .., k; the formula for the permutation-factor
is given by

c(ℓ1, ..., ℓn) =
n!

c1!...ck!
. (68)

F General Properties of the Interaction Function

In this Section, we introduce some general properties of the interactions. We use these only for the
one-neuron network in this paper (see Section G), however, these properties are likely to play a role
in studying the networks with two or more neurons.

We first present the partial derivative of a general interaction function, i.e. two activation functions
may be different, for example, if the student activation function does not match the teacher, with
respect to the correlation in a simple expression in Lemma F.1. In the second part, we present a
property of the activation function sufficient for Assumption 3.1 (ii), and show that the differentiable
activation functions studied in this paper satisfy this property in Lemma F.2.
Lemma F.1. Assume that functions σ1 and σ2 are differentiable. The partial derivative of the
following Gaussian integral term E[σ1(r1x)σ2(r2y)] with respect to the correlation E[xy] = u is

d

du
E[σ1(r1x)σ2(r2y)] = r1r2E[σ′

1(r1x)σ
′
2(r2y)]. (69)

We apply the Lemma for σ1 = σ2 = σ in the main text in Eq. 9.

Proof. We compute the derivative of E[σ1(r1x)σ2(r2y)] by making the correlation u explicit. Denote
u′ =

√
1− u2 and y = ux+ u′z. After the computation, we use Stein’s lemma to reach the desired

formula.

∂uE[σ1(r1x)σ2(r2y)] = r2E[σ1(r1x)σ
′
2(r2y)x]−

r2u

u′ E[σ1(r1x)σ
′
2(r2y)z] (70)

where x and z are independent standard Gaussians. Here is a reminder for Stein’s Lemma for a
standard Gaussian z

E[v(z)z] = E[v′(z)]. (71)

To remove x in the first term, we apply Stein’s formula for v(x) = σ1(r1x)σ
′
2(r2(ux+u′z)) yielding

r1r2E[σ′
1(r1x)σ

′
2(r2y)] + r22uE[σ1(r1x)σ

′′
2 (r2y)]. (72)

To remove z in the second term, we apply Stein’s formula for v(z) = σ′
2(r2(ux+u′z)) by considering

fixed x which yields

−r22uE[σ1(r1x)σ
′′
2 (r2y)]. (73)

Summing up the two terms completes the proof.

For softplus that is increasing and convex, using Lemma F.1 for σ1=σ2=σ twice, we infer that the
interaction g is also increasing and convex in u. Hence, for u < 0, Assumption 3.1 (ii) holds for
softplus. However, for the other activation functions, using second-order derivatives does not suffice
to show the assumption. We will propose a new property of the activation function that implies that
the interaction satisfies Assumption 3.1 (ii) and prove that softplus with β ≤ 2, sigmoid, tanh, and erf
satisfy this property.
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Lemma F.2. If the activation function σ is thrice-differentiable and it satisfies

σ′(x)− xσ′′(x) + σ′′′(x) > 0, (74)

then its interaction satisfies Assumption 3.1 (ii) for all u ∈ (−1, 1). Softplus with β ∈ (0, 2], sigmoid,
tanh, and erf activation functions satisfy the above inequality.

Proof. Let us first write out Assumption 3.1 (ii) explicitly using Lemma F.1

r1uE[σ̄′(r1x)σ̄
′(y)] < E[σ̄(r1x)σ̄(y)]. (75)

where σ̄(x) = σ′(x). Using Stein’s Lemma for v(x) = σ̄(r1x)σ̄
′(y), we get

E[σ̄(r1x)σ̄′(y)x] = E[σ̄′(r1x)σ̄
′(y)]r1 + E[σ̄(r1x)σ̄′′(y)]u. (76)

The desired inequality is equivalent to

E[σ̄(r1x)(σ̄(y)− σ̄′(y)xu+ σ̄′′(y)u2)] > 0. (77)

Let us introduce f(x) = σ̄(x)− xσ̄′(x) + σ̄′′(x). For y = ux+ u′z where u′ =
√
1− u2, we have

the conditional average of y fixing x (we drop conditioning on the right-hand terms for convenience)

E[f(y)|x] = E[σ̄(y)]− E[yσ̄′(y)] + E[σ̄′′(y)]

= E[σ̄(y)]− uxE[σ̄′(y)]− E[u′zσ̄′(y)] + E[σ̄′′(y)]

= E[σ̄(y)]− uxE[σ̄′(y)]− (u′)2E[σ̄′′(y)] + E[σ̄′′(y)]

= E[σ̄(y)]− uxE[σ̄′(y)] + u2E[σ̄′′(y)], (78)

where second last equality comes from Stein’s Lemma for v(z) = σ̄′(ux+ u′z). Hence the desired
inequality is equivalent to

E[σ̄(r1x)f(y)] > 0. (79)

By straightforward calculus, we will show that f(x) > 0, or that f(x) ≥ 0 and f(x) = 0 if and only
if x = 0. In the latter case, the expectation in Eq. 79 is positive since f(y) > 0 for some y values of
the integrand. First, for the sigmoid and tanh activation functions, for which we have

σ̄(x) =
ex

(ex + 1)2
, σ̄′(x) =

ex(1− ex)

(ex + 1)3
, σ̄′′(x) =

ex(e2x − 4ex + 1)

(ex + 1)4
. (80)

Hence, we can explicitly write f as

f(x) =
ex

(ex + 1)2
− x

ex(1− ex)

(ex + 1)3
+

ex(e2x − 4ex + 1)

(ex + 1)4
(81)

=
ex

(ex + 1)4
((ex + 1)2 − x(1− ex)(ex + 1) + (e2x − 4ex + 1)). (82)

Therefore showing f(x) > 0 is equivalent to showing that the factor on the right, that is,

2ex(ex − 1) + 2− x(1− e2x) (83)

is positive. For x < 0, we have ex < 1 which implies −x(1− e2x) > 0 and (1− ex)ex ≤ 1/4 due
to the inequality of arithmetic and geometric means hence the first term is upper bounded by −1/2
and since we have +2, the whole term is positive. For x ≥ 0, we have ex ≥ 1, hence we can rewrite
the inequality as a sum of non-negative terms

2ex(ex − 1) + 2 + x(e2x − 1) > 0. (84)

Let us now handle the case of erf. Its first three derivatives are given by

σ̄(x) =
2√
π
e−x2/2, σ̄′(x) = − 2√

π
xe−x2/2, σ̄′′(x) =

2√
π
(x2e−x2/2 − e−x2/2) (85)

Hence, we can explicitly write f as

f(x) =
2√
π
e−x2/2(1 + xx+ x2 − 1) =

4√
π
e−x2/2x2 (86)
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that is non-negative for all x and zero iff x = 0.

Finally, for the softplus activation function with β ∈ (0, 2], we have the following derivatives

σ̄(x) =
eβx

(eβx + 1)
, σ̄′(x) =

βeβx

(eβx + 1)2
, σ̄′′(x) =

β2eβx(1− eβx)

(eβx + 1)3
. (87)

Plugging in the function f , we get

f(x) =
eβx

(eβx + 1)
− x

βeβx

(eβx + 1)2
+

β2eβx(1− eβx)

(eβx + 1)3
(88)

=
eβx

(eβx + 1)3
((eβx + 1)2 − xβ(eβx + 1) + β2(1− eβx)) (89)

Therefore showing f(x) > 0 is equivalent to showing that the factor on the right, that is,

e2βx + eβx(2− xβ − β2) + 1− xβ + β2 (90)

is positive. For x ≤ 0, we have that −xβ > 0 and 2− β2 ≥ −2 since β ≤ 2, hence it is sufficient to
show that the following is positive

e2βx − 2eβx + 1 + β2 = (eβx − 1)2 + β2 (91)

which is a sum of squares. For x > 0, in the rest of the proof we will show that

eβx(eβx + 2− xβ − β2) + 1− xβ + β2 > 0, (92)

for β ∈ (0, 2]. Using eβx ≥ (βx)2/2 + βx+ 1, it suffices to show that

eβx((βx)2/2 + 3− β2) + 1− xβ + β2 > 0. (93)

If (βx)2/2 + 3− β2 ≥ 1, then the first term is bigger than βx+ 1 hence the above term is positive.
The remaining possibility is that we have

x2

2
< 1− 2

β2
. (94)

β ≤ 2 implies x < 1 and x2 > 0 implies β >
√
2. Hence we have −xβ + β2 > 0 since β > x.

Therefore, if we have (βx)2/2 + 3− β2 ≥ 0, Eq. 92 is positive. Assuming the opposite, we get

x2

2
< 1− 3

β2
, (95)

β ≤ 2 implies x<1/
√
2 and x2 > 0 implies β>

√
3.

Going back to Eq. 92, what remains to show is that it is positive in the domain x<1/
√
2, β ∈ (

√
3, 2].

It suffices to show that eβx + 2− xβ − β2 > 0. Assuming the contrary implies eβx < xβ + 2 since
β ≤ 2. We can then deduce that xβ < c = 1.2 since otherwise we would have

eβx = 1 + βx+
(βx)2

2!
+

(βx)3

3!
+ ... (96)

≥ 1 + βx+
c2

2!
+

c3

3!
+ ... = 1 + βx+ (ec − c− 1) > 1 + βx+ 1 (97)

which implies a contradiction. c can be chosen smaller but this will be enough for our purposes.

Assuming eβx + 2− xβ − β2 ≤ 0, let us expand Eq. 92

eβx(eβx + 2− xβ − β2) + 1− xβ + β2 ≥ (using eβx < βx+ 2) (98)

(xβ + 2)eβx + (xβ + 2)(2− xβ − β2) + 1− xβ + β2 = (99)

(xβ + 2)eβx − (xβ)2 − (1 + β2)xβ + 5− β2 > (using eβx > βx+ 1) (100)

7− β2 + (2− β2)xβ ≥ 3− 2xβ > 0 (101)

where in the last inequality we used xβ < 1.2. We note that this inequality holds for slightly larger β
using the same technique, however, for significantly larger β, the property breaks down.
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G The One-Neuron Network

We study the critical points of the following loss function

L1,k(w, a) = Ex∼D[aσ(w · x)−
k∑

j=1

bjσ(vj · x)], (102)

in particular, the optimal solution. For n = 1, all configurations of order parameters are realizable in
the weight space, therefore, the optimal solution of the following loss (repeating Eq. 14)

L1,k
proj = a2gσ(r, r, 1)− 2a

k∑
j=1

bjgσ(r, ∥vj∥, uj) + const, subject to
k∑

j=1

u2
j ≤ 1, r ≥ 0, (103)

is equivalent to the optimal solution in the weight space. Let us denote the unit ball by B =
{(u1, ..., uk) | u2

1 + ...+ u2
k ≤ 1}. Its interior is denoted by intB and its boundary is denoted by ∂B.

We will present the results for the one-neuron network in five parts

1. In Subsection G.1, we give a proof of Proposition 4.1: any non-trivial critical point (w, a) of
L1,k satisfies that w is in the span of the teacher’s incoming vectors if the activation function
satisfies Assumption 3.1 (i). Moreover, we show in Lemma G.2 that the corresponding order
parameters should satisfy a Lagrangian condition (Eq. 105).

2. In Subsection G.2, we characterize the topology of the loss landscape in terms of its critical
points for the activation functions studied in this paper and for the unit-orthonormal teacher.
Our results for the one-neuron network are strong in the sense that it gives all possible
critical points of the loss landscape.
(a) In Subsection G.2.1, we give a proof of Theorem 5.1: for general activation functions

satisfying Assumption 3.1, any non-trivial critical point of the one-neuron network
attains equal correlations that are either 1/

√
k or −1/

√
k.

(b) In Subsection G.2.2, we study the two-dimensional loss obtained after applying Theo-
rem 5.1. From its derivative constraints, we get a fixed point equation (Eq. 120) that
needs to be satisfied by the incoming vector norm r at any non-trivial critical point with
equal correlations u. Numerically, we show that there is a unique solution of the fixed
point equation for u > 0 for differentiable activation functions studied in this paper
(Fig. 10). Finally, we give some sufficient conditions in Eq. 121 to prove uniqueness
based on log-concavity; numerically, these are shown to be satisfied by softplus and
sigmoid activation functions.

3. In Subsection G.3, we give a proof of Corollary 5.2 by solving the two-dimensional loss for
the erf activation function. Moreover, from the proof, we conclude that there are exactly two
non-trivial critical points identical up to the mirror symmetry of erf (since it is odd); and
these are the optimal solutions for the loss landscape.

4. In Subsection G.4, we present and prove Corollary G.5 by solving the two-dimensional loss
for the ReLU activation function. We find that there are two non-trivial critical points of the
loss function: a saddle ‘point’ at correlation −1/

√
k and the optimal ‘solution’ at correlation

1/
√
k. Due to the positive homogeneity of ReLU, these are not two points but two equal-loss

hyperbolas in the loss landscape.
5. In Subsection G.5, we study the two-dimensional loss for the softplus activation function

and give a proof of Theorem 5.3. Absence of analytical expression for the Gaussian integral
terms make the problem challenging; we use several non-trivial steps in the proof. The
proof shows that there is no critical point at correlation −1/

√
k; and a non-trivial critical

point (w∗, a∗) at correlation 1/
√
k satisfies the following bounds: a∗ ≥ k and ∥w∗∥ ≤ 1/

√
k.

Numerically, we find that these bounds hold for other activation functions studied in this
paper (tanh and sigmoid; Fig. 5).

G.1 Any Non-Trivial Critical Point Satisfies the Lagrangian Condition

We add a reminder here for the definition of the non-trivial critical point θ = (w, a): it is a critical
point of the loss function that satisfies a ̸= 0 and ∥w∥ ≠ 0.
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Proposition G.1. Assume that f∗ is an orthogonal teacher network of width k. If the activation
function satisfies Assumption 3.1 (i), any non-trivial critical point θ∗ = (w∗, a∗), i.e. ∇L1,k(θ∗) = 0,
satisfies that w∗ is in the span of the teacher’s incoming vectors.

Proof. We will prove by contradiction. Let us assume that w is outside of the span of the teacher’s
incoming vectors. We will show that (w, a) is not a critical point for any a ̸= 0. Mapping (w, a)
to the order parameter space, we get that (r, u, a) where u = (u1, ..., uk) ∈ intB which implies
uj ∈ (−1, 1). Since u ∈ intB and r > 0, we have that (r, u, a) is a critical point of L1,k

proj since the

boundaries are not seen near the neighborhood of this point. Therefore the partial derivatives of L1,k
proj

are all zero including

bj
d

duj
gσ(r, ∥vj∥, uj) = 0. (104)

From Assumption 3.1 (i), we have that ∂ugσ(r1, r2, u) > 0 for u ∈ (−1, 1) which yields a contradic-
tion. Thus, each critical point of the projected loss is on the boundary, i.e. u ∈ ∂B, which implies
that the incoming vector is in the span of the teacher’s incoming vectors.

We will next show that any non-trivial critical point satisfies a Lagrangian condition since it is on the
boundary of a constrained optimization problem.
Lemma G.2. Let θ = (w, a) be a non-trivial critical point of L1,k. Then the corresponding order
parameters p = (r, u, a) satisfy the following Lagrangian condition

bj∂ugσ(r, ∥vj∥, uj) = λuj for all j ∈ [k]. (105)

Proof. We will first show that for any differentiable path (r, γ(t), a) on the boundary such that
γ(t) ∈ ∂B for t ∈ (−ϵ, ϵ) for some ϵ > 0 and γ(0) = u, the following holds

d

dt
L1,k

proj(γ(t))
∣∣
t=0

= ∇uL
1,k
proj(p) · γ

′(0) = 0. (106)

Let us assume the contrary. We construct the corresponding following path in the weight space

θ(t) =

r

 k∑
j=1

uj(t)vj + v⊥

 , a

 . (107)

Thanks to the equivalence of the losses along the path, we have that
d

dt
L1,k(θ(t))

∣∣
t=0

=
d

dt
L1,k

proj(γ(t))
∣∣
t=0

= 0, (108)

since θ(0) = θ is a critical point in the weight space. Therefore, Eq. 106 holds for any differentiable
path on the boundary and implies that∇uL(p) is orthogonal to all γ′(0). The vector that is orthogonal
to all γ′(0) is the gradient of the surface, that is 2(u1, ..., uk). Hence we get ∇uL(p) ∥ u which is
written explicitly as the Lagrangian condition in Eq. 105. This is equivalent to setting the partial
derivatives of the Lagrangian loss with respect to uj to zero where the Lagrangian loss is given by

L(p, λ) = −2a
k∑

j=1

bjgσ(r, ∥vj∥, uj) + λ′(

k∑
j=1

u2
j − 1). (109)

We set λ = λ′
/a in Eq. 105.

G.2 General Activation Functions

Before we present our results, let us take a detour to check the applicability of the convex optimization
framework. For a convex and twice-differentiable activation function such as softplus, applying
Lemma F.1 twice implies that the interaction gσ(r1, r2, ·) is a convex function of the correlation
u ∈ (−1, 1) for r1, r2>0. Let us consider a fixed a<0 and r>0 and consider the loss parameterized
by uj’s. It is convex since its Hessian is a diagonal matrix with entries

d2

du2
j

L = −2a d2

du2
j

gσ(r, ∥vj∥, uj) > 0. (110)
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Since the constraint on the correlations (Eq. 14) is also convex, we get a convex optimization problem
that has a unique global minimum (see Boyd et al. [44], Section 4.2). Swapping a pair of uj does
not change the loss, thus it is permutation symmetric. If any two uj were distinct from each other at
the minimum, then its permutation would also be a minimum which would violate the unicity. We
conclude that at the unique minimum point, the correlations are equal to each other. However, for the
case a > 0, and for other activation functions, the objective is not convex.

We instead use Lagrange multipliers for proving Theorem 5.1.

G.2.1 Proof of Theorem 5.1

Theorem G.3. Assume that the activation function satisfies Assumption 3.1. At any non-trivial
critical point (w∗, a∗) of the loss L1,k for the unit-orthonormal teacher network, the incoming vector
satisfies

w∗

∥w∗∥
= u

k∑
j=1

vj (111)

where u is either 1/
√
k or −1/

√
k.

Proof. From Proposition 4.1 and Lemma G.2, we get that any non-trivial critical point should satisfy
the Lagrangian condition in Eq. 105. In particular for unit-orthonormal teacher, setting ∥vj∥ = 1 and
bj = 1, we get the following Lagrangian condition

∂ugσ(r, 1, uj) = λuj ∀j ∈ [k],

k∑
j=1

u2
j = 1. (112)

If uj = 0, we get ∂ugσ(r, 1, 0) = 0 which is not possible since gσ(r, 1, u) is increasing due to
Assumption 3.1 (i). Hence we have

∂ugσ(r, 1, uj)

uj
= λ. (113)

Let us observe that ∂ugσ(r, 1, u)/u is decreasing for u ∈ (−1, 1) \ {0} if and only if

d

du

(
1

u

d

du
gσ(r, 1, u)

)
=

1

u

d2

du2
gσ(r, 1, u)−

1

u2

d

du
gσ(r, 1, u) < 0, (114)

which is equivalent to Assumption 3.1 (ii) for u ∈ (−1, 1)\{0} (we included u = 0 in Assumption 3.1
(ii) for a simpler statement which is already implied from Assumption 3.1 (i) at u = 0).

Taken together, we conclude that ∂ugσ(r, 1, u)/u is one-to-one in u ∈ (−1, 1) \ {0}. We need to
consider the remaining case ui∈{−1, 1}. For k ≥ 2, necessarily, we have uj = 0 for j ̸= i, which is
not possible as we have shown. For k = 1, ui ∈ {−1, 1} is the only option that satisfies the boundary
condition. For k ≥ 2, Eq. 113 implies that all correlations are equal. Combining it with the boundary
condition, we get u1 = ... = uk = u with ku2 = 1, which completes the proof.

G.2.2 Two-Dimensional Loss, The Derivative Constraints, Uniqueness

At any non-trivial critical point, we proved in Theorem 5.1 that all correlations are equal and denoted
by u that is either 1/

√
k or −1/

√
k. The projected loss at a critical point reduces to

L = a2gσ(r, r, 1)− 2kagσ(r, 1, u) + C. (115)

Moreover, at a critical point, the partial derivatives with respect to the outgoing weight and norm
should also be zero which gives the following two constraints

∂aL = 2agσ(r, r, 1)− 2kgσ(r, 1, u) = 0,

∂rL = a2∂rgσ(r, r, 1)− 2ka∂rgσ(r, 1, u) = 0, (116)
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Figure 10: The graph of f(r, u) = d
dr

(
1
2 log gσ(r, r, 1)− log gσ(r, 1, u)

)
for activation functions

erf, softplus with β = 1, sigmoid, tanh, and gelu, respectively. Zero crossings of f are shown in
red. For softplus and sigmoid, we observe that f is negative for r = 0, u ∈ (0, 1), positive for
r = 1, u ∈ (0, 1), and increasing in r ∈ [0, 1] for any fixed u, thus satisfying the sufficient conditions
in Eq. 121. However, for tanh and erf, f shows non-monotonic behavior in r when u is close to 1.
For the GeLU activation function σ(x) = xΦ(x), which is non-monotonic, we observe that f does
not cross zero for any (r, u) pair in the plotted domain. It approaches zero from below when r →∞
thus showing a very different behavior from the other activation functions.

which can be rearranged into the following (assuming gσ(r, r, 1) ̸= 0 and ∂rgσ(r, r, 1) ̸= 0)

a

k
=

gσ(r, 1, u)

gσ(r, r, 1)
=

2∂rgσ(r, 1, u)

∂rgσ(r, r, 1)
. (117)

The second equality between the two ratios of Gaussian integral terms gives a fixed point equation on
the norm r. Writing the interactions in Eq. 117 explicitly and rearranging the ratios, we get

f(r, u) =
E[σ′(rx)σ(rx)x]

E[σ(rx)2]
− E[σ′(rx)σ(y)x]

E[σ(rx)σ(y)]
= 0, (118)

where x and y are standard Gaussians with correlation E[xy] = u. Let us define the following helper
functions

G(r) =
E[σ′(rx)σ(rx)x]

E[σ(rx)2]
=

1

2

d

dr
log(E[σ(rx)2]),

G̃(u, r) =
E[σ′(rx)σ(y)x]

E[σ(rx)σ(y)]
=

d

dr
log(E[σ(rx)σ(y)]), (119)

which yields

f(r, u) = G(r)− G̃(u, r) =
d

dr
log

(
E[σ(rx)2] 12
E[σ(rx)σ(y)]

)
= 0. (120)

Let us consider the case u > 0. We want to show that for any given u ∈ (0, 1] there is a unique
r ∈ (0, 1] such that f(r, u) = 0. Under the assumption σ(0) ̸= 0, if the following three conditions
are satisfied for all u ∈ (0, 1],

(i)
σ′(0)

σ(0)

E[σ(y)x]
E[σ(y)]

> 0,

(ii)
E[σ′(x)σ(x)x]

E[σ(x)2]
>

E[σ′(x)σ(y)x]

E[σ(x)σ(y)]
,

(iii)
d2

dr2
log

(
E[σ(rx)2] 12
E[σ(rx)σ(y)]

)
> 0, (121)

then we have a unique r solving Eq. 120 as we explain next. Note that the first two conditions are
equivalent to f(0, u) < 0 and f(1, u) > 0, respectively. The tricky part is the third condition which
is equivalent to showing that

E[σ(rx)σ(y)]
E[σ(rx)2] 12

(122)
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is log-concave in r. We note that marginalization properties of log-concave functions may be helpful
here. In this paper, we were not able to prove the sufficient conditions listed above for general
activation functions that do not admit an analytic formula of the interaction, even for softplus which
we studied in detail (see Subsection G.5). Instead, we present the numerical integration results, which
show that for any given u ∈ (0, 1], there is a unique r ∈ (0, 1] such that f = 0 (see Fig. 10). Once r
is shown to be unique, then the matching outgoing weight a follows from Eq. 117.

G.3 Closed-Form Solution for Erf Activation

Corollary G.4. Assume that the activation function is σerf. The optimal solution (w∗, a∗) is given by

∥w∗∥ =
√

1

2k − 1
, a∗ = k,

w∗

∥w∗∥
=

1√
k

k∑
i=1

vi,

or, equivalently, by (−w∗,−a∗). The optimal loss is given by

L∗
erf(k) =

2

π

(
k arcsin

(1
2

)
− k2 arcsin

( 1

2k

))
. (123)

Proof. Since erf is an odd activation function, it suffices to find parameters of the non-trivial critical
points satisfying u ≥ 0. For any such critical point (w∗, a∗), its mirror symmetry (−w∗,−a∗) is an
equivalent critical point due to Eq. 41.

For u = 0, we have that gerf(r, 1, u) = 0 which implies gerf(r, r, 1) = E[σ(rx)2] = 0 due to the first
derivative constraint in Eq. 116 which holds if and only if r = 0. This gives a possible trivial critical
point yielding the zero predictor function.

For a given u = 1√
k
> 0, from Fig. 10, we observe that there is a unique r ∈ (0, 1] satisfying the

fixed point equation in Eq. 120. For uniqueness, we rely on numerical integration. We will find one
solution to the derivative constraints given below

agerf(r, r, 1) = kgerf(r, 1, u), a∂rgerf(r, r, 1)− 2k∂rgerf(r, 1, u) = 0, (124)

for a given k, and equivalently u = 1√
k
> 0; and due to uniqueness, conclude that it is the only

non-trivial critical point up to symmetries.

In particular, we will use the analytic formula for the interaction function [2, 3]

gerf(r1, r2, u) =
2

π
arcsin

( r1r2u√
r21 + 1

√
r22 + 1

)
. (125)

Let us find r where we have

gerf(r, 1, u) = gerf(r, r, 1)

that is satisfied if we have that the arguments of arcsin match, which happens at

ru√
r2 + 1

√
2
=

r2

r2 + 1
⇒ r =

√
u2

2− u2
=

1√
2k − 1

. (126)

Interestingly, at this value of r, we also have

2∂rgerf(r, 1, u) = ∂rgerf(r, r, 1)

which can be seen by inserting the guessed values in the following equation

2∂r

( ru√
r2 + 1

√
2

)
arcsin′

( ru√
r2 + 1

√
2

)
= ∂r

( r2

r2 + 1

)
arcsin′

( r2

r2 + 1

)
.

Setting a = k in Eq. 124 completes the order parameters of the non-trivial critical point. Finally, let
us compute the loss at r = 1/

√
2k−1, u = 1/

√
k, a = k;

L∗
erf(k) := a2gerf(r, r, 1)− 2akgerf(r, 1, u) + kgerf(1, 1, 1),

= −k2gerf(r, r, 1) + kgerf(1, 1, 1),

=
2

π

(
k arcsin

(1
2

)
− k2 arcsin

( 1

2k

))
. (127)
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G.4 Closed-Form Solution for ReLU Activation

Corollary G.5. Assume that the activation function is σrelu. Any optimal solution (w∗, a∗) satisfies

∥w∗∥a∗ =
k

h(1)
h
( 1√

k

)
,

w∗

∥w∗∥
=

1√
k

k∑
i=1

vi, (128)

forming an equal-loss hyperbola. The optimal loss is given by

L∗
relu(k) = k2

(
h(0)− 1

h(1)
h
( 1√

k

)2)
+ k(h(1)− h(0)). (129)

We will first show that the interaction of ReLU satisfies

(i) h′(u)>0 for u∈(−1, 1),
(ii) h′′(u)u<h′(u) for u∈(−1, u0],

(iii)
h′(u0)

u0
>

h′(u)

u
for u∈(u0, 1); (130)

where u0 = 1/
√
2. Note that property (i) is equivalent to Assumption 3.1 (i), and property (ii) is

almost equivalent to Assumption 3.1 (ii) except that it holds in the interval (−1, u0]; property (iii)
covers up for the missing piece of the interval in the property (ii).

ReLU interaction satisfies Properties 130; Proof. Let us write the first two derivatives of h:

h′(u) =
π − arccos(u)

2π
, h′′(u) =

1

2π
√
1− u2

. (131)

Property (i) easily comes from noting that the derivative of h is positive for u ∈ (−1, 1). Property
(ii) holds for u ∈ (−1, 0] since both the first and second derivatives are positive. Let us show that
Property (ii) holds for u ∈ (0, u0], that is equivalent to

u√
1− u2

< π − arccos(u) =
π

2
+ arcsin(u). (132)

Let us note that the left-hand side is smaller than 1 since
u2

1− u2
≤ 1.

Note that arcsin(u) > 0 for u > 0; and π/2 > 1. This completes the proof of Property (ii).

For Property (iii), we first show that h′(u)/u is convex in u ∈ (0, 1). The first two derivatives are

d

du

(
h′(u)

u

)
=

h′′(u)

u
− h′(u)

u2
,

d2

du2

(
h′(u)

u

)
=

h′′′(u)

u
− 2h′′(u)

u2
+

2h′(u)

u3
.

Thus, it is equivalent to showing

h′′′(u)u− 2h′′(u) +
2h′(u)

u
=

u2

(1− u2)3/2
− 2

(1− u2)1/2
+

π + 2arcsin(u)

u
> 0.

Using the Taylor series of arcsin and u > 0, we have that arcsin(u) > u. Hence, it suffices to show

1

(1− u2)1/2
(
−3 + 1

1− u2
+ 2(1− u2)1/2

)
≥ 0; (133)

where we dropped the positive term π
u which holds due to the inequality of arithmetic and geometric

means
1

1− u2
+ (1− u2)1/2 + (1− u2)1/2 ≥ 3.

Let us assume the contrary of Property (iii), that there exists u ∈ (u0, 1) such that

h′(u0)

u0
≤ h′(u)

u
. (134)
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Note that h′(u0)/u0 > h′(1) because π(1 − u0) − arccos(u0) > 0 holds at u0 = 1/
√
2. Since

h′(u)/u is left-continuous at u = 1, there exists ϵ > 0 such that

h′(u0)

u0
>

h′(1− ϵ)

1− ϵ
. (135)

Finally, there exists α ∈ (0, 1) such that u = α(1− ϵ) + (1− α)u0 which gives due to the convexity
of h′(u)/u the following

α
h′(1− ϵ)

1− ϵ
+ (1− α)

h′(u0)

u0
≥ h′(u)

u
. (136)

This yields a contradiction since the left-hand side is strictly smaller than h′(u0)/u0 hence the proof
of Property (iii) is complete. ReLU interaction satisfies Properties 130; End of Proof.

Proof. First, we replicate the proof steps of Theorem 5.1 to show that any non-trivial critical point
must be on the boundary and attain equal correlations. From Property 130 (i), we get that there is no
non-trivial critical point in intB. For k = 1, this implies that u1 = −1 or u1 = 1.

For general k, let us recall that we get the Lagrangian condition for non-trivial critical points

rh′(uj) = λuj ∀j ∈ [k],

k∑
j=1

u2
j = 1. (137)

which is equivalent to Eq. 112 for ReLU activation function. uj = 0 is not possible since we have
h′(0) ̸= 0. Hence, we get

h′(uj)

uj
=

λ

r
, ∀j ∈ [k]. (138)

Property 130 (ii) implies that f(u) = h′(u)/u is decreasing for u ∈ (−1, u0)\{0}. Moreover, f is
negative for u < 0 and positive for u > 0.

1. If λ/r < 0, we get that all uj are equal and negative, hence they are equal to −1/
√
k due to

the boundary condition.

2. If λ/r = 0, we get uj = −1 for all j which implies that k = 1 which is already covered
above.

3. If λ/r > 0, Property 130 (iii) gives that f(u0) > f(u) for u∈(u0, 1). Since f is decreasing
we have also f(u) > f(u0) for u ∈ (0, u0); hence f(uj) are equal only when all uj < u0 or
uj > u0; however, the latter case is not possible for k ≥ 2 since it breaks the ball constraint,
i.e. u2

1 + u2
2 > 1.

Hence, we get that uj ∈ (0, u0] and are equal since f is decreasing in this interval. This completes
the proof of replica of Theorem 5.1 for the ReLU activation function.

For the ReLU activation function, there is at least one non-differentiable critical point at a = 0 or
r = 0. The careful analysis of this critical point is beyond the scope of this work. For any such
’trivial’ point, the error of zero-function is equivalent to

E[(
k∑

j=1

σ(vj · x))2] = kh(1) + k(k − 1)h(0). (139)

We will next show that (−1/
√
k)kj=1 and (1/

√
k)kj=1 are the global minimum and the global maxi-

mum of the following loss function

k∑
j=1

h(uj), subject to
k∑

j=1

u2
j ≤ 1. (140)
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Due to the Lagrange condition, there is no other critical point, hence these are the only two critical
points of the constrained objective in Eq. 140. The objective then reduces to kh(u) which is minimized
at u = −1/

√
k and maximized at u = 1/

√
k.

Next, we will give the closed-form solution of the remaining order parameters. Plugging in the
correlation in the loss and using the factorization of the interaction in Eq. 14, we get

L = a2r2 · h(1)− 2kar · h(u) + C.

Let us set ã = ar. The loss is a second-order polynomial in ã

L = h(1)

(
ã2 − 2ãk

h(u)

h(1)
+ k + k(k − 1)

h(0)

h(1)

)
where we made the constant explicit. Since the coefficient of the leading term is positive, there is a
minimizer and it is the only critical point. Taking the derivative, the minimum is attained at

ã∗ = k
h(u)

h(1)
(141)

Finally, plugging in ã∗, we get

L(u) = −k2h(u)
2

h(1)
+ kh(1) + k(k − 1)h(0). (142)

For u = 1/
√
k and u = −1/

√
k, h(u) is non-zero; hence l(u) is smaller than the loss of the zero

function (trivial critical points). The smallest loss is attained at u = 1/
√
k which is, therefore, the

optimal solution. We conclude that the critical point at u = −1/
√
k is a saddle point since it is a

maximum in u and a minimum in ã.

G.5 Bounds on Incoming Vector Norm and Outgoing Weight for Softplus

Unlike ReLU and erf, the interaction function does not have a known analytic expression for softplus,
hence the proof involves some techniques to compare ratios of Gaussian integral terms.

FKG Inequality. We will use a special case of the FKG inequality repeatedly, that is,

E[f(x)g(x)] > E[f(x)]E[g(x)] (143)

if both f, g are increasing (or decreasing) implying that f and g are positively correlated. The
inequality changes direction if f is increasing and g is decreasing (or vice versa) implying that f and
g are negatively correlated.

We will rely on some specific properties of the softplus family that are developed in Section G.5.4.
Unfortunately, some of these properties do not apply to other activation functions. As a first example
of managing interactions that do not have an analytic formula, the proof may inspire generalizations
to other activation functions. Below we present the proof sketch for Theorem 5.3. In the following
Subsections G.5.1, G.5.2, G.5.3, and G.5.4, the components of the proof are presented in detail.

Proof Sketch. We want to characterize the zero(s) of f introduced in Section G.2.2 that is

f(r, u) = G(r)− G̃(u, r) =
E[σ′(rx)σ(rx)x]

E[σ(rx)2]
− E[σ′(rx)σ(y)x]

E[σ(rx)σ(y)]
. (144)

For r ∈ [0, 1], there is a unique correlation u ∈ [0, 1] such that f(r, u) = 0. Denoting this correlation
by h(r), we have a map h : [0, 1] → [0, 1] with boundary conditions h(0) = 0 and h(1) = 1. For
r > 1, there is no solution of f . As a consequence, no r ≥ 0 solves f(r, u) = 0 for negative u, hence
there is no non-trivial critical point at u = −1/

√
k.

In Section G.5.2, we prove the inequality h(r) ≥ r, which gives us the upper bound on the norm
since we have that the correlation at a non-trivial critical point is h(r) = 1/

√
k. Using this inequality

and Stein’s Lemma, we give a lower bound on the outgoing weight, that is a ≥ k, in Section G.5.3.
In summary, any non-trivial critical point of the loss has equal correlations that are u = 1/

√
k, the

norm satisfies r ≤ u, and the lower bound on the outgoing weight follows. End of Proof Sketch.
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G.5.1 Constraining the Zeros of f

In this subsection, we will describe all zero-crossings of f : [0,∞)× [−1, 1]→ R. We need to check
four cases (i) r = 0, (ii) r = 1, (iii) r > 1, and (iv) r ∈ (0, 1).

(i) r = 0: Note that G(0) = G̃(0, 0) = 0. Since G̃ is increasing in correlation for u ∈ [0, 1] and
G̃(u, 0) < G̃(0, 0) for u < 0 (Lemma G.6), the only solution is u = 0.

(ii) r = 1: Note that G(1) = G̃(1, 1) since y = x due to correlation one in Eq. 119. Since G̃ is
increasing in correlation for u ∈ [0, 1] and G̃(u, 1) < G̃(0, 1) for u < 0 (Lemma G.6), the only
solution is u = 1.

(iii) r > 1: We will show that there is no zero in this case. Let us first show that G(r) > G̃(1, r) for
r > 1, which is equivalent to

E[σ′(rx)σ(rx)x]E[σ(rx)σ(x)] > E[σ′(rx)σ(x)x]E[σ(rx)2]. (145)

Changing the measure of x from the standard Gaussian p(x) to p̃(x) = p(x)σ(rx)2/E[σ(rx)2], we
get the following equivalent inequality

Ex∼p̃

[
σ′(rx)x

σ(rx)

]
Ex∼p̃

[
σ(x)

σ(rx)

]
> Ex∼p̃

[
σ′(rx)x

σ(rx)

σ(x)

σ(rx)

]
. (146)

From the property (iv) of Lemma G.8, we have that σ′(rx)x/σ(rx) is increasing after a substitution
x← rx. We need to show σ(x)/σ(rx) is decreasing in x for r > 1. We take the derivative

d

dx

σ(x)

σ(rx)
=

σ′(x)σ(rx)− σ(x)σ′(rx)r

σ(rx)2
. (147)

Since σ′(x)x/σ(x) is increasing ∀x ∈ R, we have

σ′(x)x

σ(x)
<

σ′(rx)rx

σ(rx)
for x > 0, and

σ′(x)x

σ(x)
>

σ′(rx)rx

σ(rx)
for x < 0

which yields σ′(x)σ(rx) < σ(x)σ′(rx)r, hence we conclude that σ(x)/σ(rx) is decreasing. Thanks
to the FKG inequality, σ′(rx)x/σ(rx) and σ(x)/σ(rx) are negatively correlated which completes
the argument. Since from Lemma G.6, G̃ is increasing in correlation and G̃(0, r) > G̃(u, r) for
u < 0, we have G̃(1, r) > G̃(u, r) for all u ∈ [−1, 1), therefore there is no solution of f .

(iv) r ∈ (0, 1): We want to show that ∀r ∈ (0, 1), there is a unique u ∈ (0, 1) such that f(r, u) = 0.
It suffices to show

G̃(0, r) < G(r) < G̃(1, r),

since G̃ is continuous and increasing in correlation for u ∈ [0, 1] (Lemma G.6), it then crosses G(r)
at a unique u ∈ (0, 1).

First inequality; G̃(0, r) < G(r). In this case, x and y are Gaussians with zero correlation, hence
independent. We can expand G̃(0, r) by factorizing the integrals

G̃(0, r) =
E [σ′(rx)x]E [σ(y)]

E [σ(rx)]E [σ(y)]
=

E [σ′(rx)x]

E [σ(rx)]
.

We want to show

E [σ′(rx)x]E
[
σ(rx)2

]
< E [σ′(rx)σ(rx)x]E [σ(rx)] (148)

which is equivalent to the following inequality after changing the measure from standard Gaussian
p(x) to p̃(x) = p(x)σ(rx)/E[σ(rx)]

Ex∼p̃

[
σ′(rx)x

σ(rx)

]
Ex∼p̃[σ(rx)] < Ex∼p̃

[
σ′(rx)x

σ(rx)
σ(rx)

]
. (149)

This follows from the FKG inequality since we have that both σ′(x)x/σ(x) and σ(x) are increasing
from the properties (iv) and (i) of softplus (Lemma G.8).
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Second inequality; G(r) < G̃(1, r). This is equivalent to the Ineq. 145, but the direction is reversed
since in this case r < 1. We showed that σ(x)/σ(r′x) is decreasing in x for all r′ > 1, therefore its
reciprocal σ(r′x)/σ(x) is increasing in x. Substituting x ← rx where r = 1/r′ < 1, we get that
σ(x)/σ(rx) is increasing in x for r < 1. This yields a positive correlation between σ′(rx)x/σ(rx)
and σ(x)/σ(rx) from the FKG inequality and completes the argument.

Overall, we showed that there are no zeros of f for r > 1. For r ∈ [0, 1], there is a unique correlation
u, that we will denote by h(r), such that f(r, h(r)) = 0. Furthermore, h : [0, 1]→ [0, 1] satisfies the
following

i. h(0) = 0 and h(1) = 1,
ii. for r ∈ (0, 1), we have h(r) ∈ (0, 1).

G.5.2 Bound on the Norm

In this subsection, we will show that h(r) ≥ r for all r ∈ (0, 1). Let us assume the contrary, which
implies

G̃(h(r), r) < G̃(r, r)

due to Lemma G.6. It suffices to show that for all r ∈ (0, 1), we have

G̃(r, r) ≤ G(r), (150)

which yields a contradiction since G(r) = G̃(h(r), r). Showing this is equivalent to

E [σ′(rx)σ(rx+ r′z)x]E
[
σ(rx)2

]
≤ E [σ′(rx)σ(rx)x]E [σ(rx)σ(rx+ r′z)] (151)

where r′ =
√
1− r2. After a change of measure from standard Gaussian p(x) to

p̃(x) = p(x)
E[σ(rx+ r′z)|x]σ(rx)
E [σ(rx+ r′z)σ(rx)]

,

this is equivalent to the following inequality

Ex∼p̃

[
σ′(rx)x

σ(rx)

]
Ex∼p̃

[
σ(rx)

E[σ(rx+ r′z)|x]

]
≤ Ex∼p̃

[
σ′(rx)x

σ(rx)

σ(rx)

E[σ(rx+ r′z)|x]

]
. (152)

What remains to show is that
E[σ(rx+ r′z)|x]

σ(rx)

is non-increasing in x since then we can conclude by the FKG inequality. Since r > 0 we can drop it
up to a change in the standard deviation of x. We want to show that its derivative is non-positive:

σ(x)E[σ′(x+ r′z)|x] ≤ σ′(x)E[σ(x+ r′z)|x] ⇔ σ(x)

σ′(x)
≤ E[σ(x+ r′z)|x]

E[σ′(x+ r′z)|x]
. (153)

From the property (iii) of softplus (Lemma G.8), we have that R(x) = σ(x)/σ′(x) is convex.
Applying Jensen, we get

σ(x)

σ′(x)
≤ E

[
σ(x+ r′z)

σ′(x+ r′z)

∣∣∣x] .
What remains to show is that

E
[
σ(x+ r′z)

σ′(x+ r′z)

∣∣∣x]E [σ′(x+ r′z)|x] ≤ E [σ(x+ r′z)|x] . (154)

Note that E[σ′(x+ r′z)|x] is increasing in x since σ′ is increasing. Moreover, the function

E
[
σ(x+ r′z)

σ′(x+ r′z)

∣∣∣x]
is increasing in x since its integrand R is increasing from the property (ii) of softplus (Lemma G.8).
Then we conclude by the FKG inequality that Eq. 154 holds. Therefore, for a solution (r, u) of the
fixed point Eq. 117, we have r≤u = 1

k .
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G.5.3 Bounding the Outgoing Weight

To get a bound on a, let us analyze the ratio of interactions in Eq. 117

gσ(r, 1, u)

gσ(r, r, 1)
=

a

k
. (155)

Using the convexity of softplus (property (i) of Lemma G.8), we get

E[σ(rx)σ(ux+ u′z)]

E[σ(rx)2]
≥ E[σ(rx)σ(rx)] + E[σ(rx)((u− r)x+ u′z)σ′(rx)]

E[σ(rx)2]

= 1 + (u− r)
E[σ′(rx)σ(rx)x]

E[σ(rx)2]
. (156)

We can transform the numerator using Stein’s lemma with v(x) = σ(rx)σ′(rx)

E[σ(rx)σ′(rx)x] = rE[σ′(rx)2 + σ(rx)σ′′(rx)] (157)

which is positive since softplus is positive, increasing, and convex. Combining it with u ≥ r, we get
that the ratio is bounded below by 1 which yields a ≥ k.

G.5.4 Helper Lemmas

In this subsection, we provide helper lemmas used in the proof of Theorem 5.3. We present
Lemma G.6 which shows that G̃ is increasing in correlation and Lemma G.7 used in the proof of
the former. Finally, we present several properties of the softplus family in Lemma G.8 that are used
throughout the proof.
Lemma G.6. The following function is increasing in u ∈ [0, 1]

G̃(u, r) =
E[σ′(rx)σ(y)x]

E[σ(rx)σ(y)]
(158)

for any r ≥ 0, where x and y are standard Gaussians with correlation E[xy] = u. Moreover,
G̃(u, r) < G̃(0, r) for u < 0.

Proof. Let us assume 0 ≤ u1 < u2 ≤ 1. For the first part of the statement, we want to show

E[σ′(rx)σ(y1)x]

E[σ(rx)σ(y1)]
<

E[σ′(rx)σ(y2)x]

E[σ(rx)σ(y2)]
(159)

where E[xy1] = u1 and E[xy2] = u2. Changing the measure from the standard Gaussian p(x) to

p̃(x) = p(x)
σ(rx)E[σ(y2)|x]
E[σ(rx)σ(y2)]

,

we get the following equivalent inequality

E
[
σ′(rx)x

σ(rx)

E[σ(y1)|x]
E[σ(y2)|x]

]
< E

[
σ′(rx)x

σ(rx)

]
E
[
E[σ(y1)|x]
E[σ(y2)|x]

]
. (160)

Thanks to the property (iv) of softplus (Lemma G.8), we have that σ′(rx)x/σ(rx) is increasing in
x after a substitution x ← rx for r > 0. For r = 0, the function reduces to γx with some γ > 0,
hence increasing. We will next show that (all integrations are w.r.t z hereafter, hence we drop the
conditioning on x)

E[σ(y1)]
E[σ(y2)]

(161)

is decreasing in x. Computing the derivative w.r.t x, we want to show that it is negative

E[σ′(y1)]u1

E[σ(y2)]
− E[σ(y1)]E[σ′(y2)]u2

E[σ(y2)]2
< 0 ⇔ E[σ′(y1)]u1

E[σ(y1)]
<

E[σ′(y2)]u2

E[σ(y2)]
. (162)
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Note that this is equivalent to showing

d

du

E[σ′(y)]u

E[σ(y)]
=

d2

dudx
log(E[σ(y)]) > 0

for all u ∈ [0, 1) and x ∈ R. Changing the order of derivatives, it is sufficient to show

d

dx

(
E[σ′(y)]x

E[σ(y)]
−
( u

1− u2

)E[u′zσ′(y)]

E[σ(y)]

)
> 0. (163)

The first function

s1(x) =
E[σ′(y)]x

E[σ(y)]
(164)

is shown to be increasing in x in Lemma G.7 where we need to substitute x→ xu1 for u1 > 0, and
for u1 = 0, we have s1(x) = γx for some γ > 0 hence it is increasing. The remaining part is to
show that the second function

s2(x) =
E[u′zσ′(y)]

E[σ(y)]
(165)

is decreasing. We will consider z ← u′z and x← ux in what follows. We have

d

dx

E[zσ′(x+ z)]

E[σ(x+ z)]
< 0 ⇔ d

dx

E[σ(x+ z)]

E[σ′′(x+ z)]
> 0

due to first applying Stein’s Lemma to the numerator and then inverting the ratio. Using the chain
rule, it is sufficient to show that

f1(x) =
E[σ(x+ z)]

E[σ′(x+ z)]
, and f2(x) =

E[σ′(x+ z)]

E[σ′′(x+ z)]
(166)

are increasing, since both functions are positive.

Interestingly, f1 is increasing in x if σ is a log-concave function. Because its derivative is positive

d

dx
f1(x) = 1− E[σ(x+ z)]E[σ′′(x+ z)]

E[σ′(x+ z)]2
> 0

if E[σ(x + z)] is log-concave. This is the case since a centered Gaussian distribution p(z) is log-
concave, therefore σ(x+ z)p(z) is jointly log-concave, and marginalization preserves log-concavity.

Similarly, f2 is increasing since σ′ is also log-concave due to property (v) of softplus (Lemma G.8).
Hence we showed that

r(u) =
E[σ′(y)]x

E[σ(y)]
(167)

is increasing for u ∈ [0, 1). The derivative of r explodes at 1, however, we can conclude by
contradiction that r(1) > r(u) for u < 1: if r(u) ≥ r(1) for some 0 ≤ u < 1, then there exists
u0 ∈ (u, 1) where the function is decreasing. Therefore, r is increasing for u ∈ [0, 1]. We can
conclude the first part of the proof by the FKG inequality σ′(rx)x/σ(rx) and E[σ(y1)]/E[σ(y2)] are
negatively correlated.

For the second part of the statement, we need to show

E[σ′(rx)σ(ux+ u′z)x]E[σ(rx)] < E[σ′(rx)x]E[σ(rx)σ(ux+ u′z)] (168)

for u < 0. Changing the measure from standard Gaussian p(x) to

p̃(x) = p(x)
σ(rx)

E[σ(rx)]
, (169)

the above inequality is equivalent to

Ex∼p̃

[
σ′(rx)x

σ(rx)
σ(ux+ u′z)

]
< Ex∼p̃

[
σ′(rx)x

σ(rx)

]
Ex∼p̃[σ(ux+ u′z)]. (170)

This holds since σ′(rx)x/σ(rx) is increasing in x, however, σ(ux+ u′z) is decreasing in x since u
is negative which implies a negative correlation due to the FKG inequality.
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Lemma G.7. The following function

E[σ′(x+ z)|x]x
E[σ(x+ z)|x]

is increasing in x where the integrations are w.r.t a centered Gaussian z.

Proof. Since all integrals are w.r.t z, we drop the conditioning with respect to x in the proof. Taking
the derivative w.r.t x, and arranging the terms, it suffices to show(

E[σ′′(x+ z)]x

E[σ′(x+ z)]
+ 1

)
E[σ(x+ z)] > E[σ′(x+ z)]x (171)

which is equivalent to the following due to the property σ′′(z) = βσ′(z)(1− σ′(z))(
βx

(
1− E[σ′(x+ z)2]

E[σ′(x+ z)]

)
+ 1

)
E[σ(x+ z)] > E[σ′(x+ z)]x. (172)

In the case x ≥ 0, the LHS is bigger than E[σ(x+ z)] since σ′(·) is upper bounded by 1. Moreover,
since σ(x) > x and from the convexity of softplus, we get E[σ(x+ z)] > x. This yields the above
inequality by again noting that E[σ′(x+ z)] is upper bounded by 1.

In the case x < 0, we need another strategy. We have thanks to Cauchy-Schwartz

E[σ′(x+ z)2]

E[σ′(x+ z)]
≥ E[σ′(x+ z)], (173)

thus it suffices to show

(βx− βxE[σ′(x+ z)] + 1)E[σ(x+ z)] > E[σ′(x+ z)]x. (174)

We will now show the following

E[σ′(x+ z)] ≥ σ′(x) (175)

for which it suffices to show that v(z) := σ′(x+ z)+σ′(x− z) ≥ 2σ′(x) for all z since the centered
Gaussian measure p(z) is even and the integration can be done over the integrand v(z). We have

v′(z) = σ′′(x+ z)− σ′′(x− z) (176)

that is zero iff either x+ z = x− z or x+ z = −x+ z where the latter is not possible since x < 0.
Hence we get that a critical point of v(z) at z = 0 which is a minimizer since v′′(0) = 2σ′′′(x) > 0
for x < 0. Hence v(z) ≥ v(0) = 2σ′(x) for all z which completes the argument.

Finally, it remains to show(
βx

eβx + 1
+ 1

)
E[σ(x+ z)] > E[σ′(x+ z)]x. (177)

From the proof of Lemma G.8, we have that βσ(x) > σ′(x), which in combination with the following
trivial observation for all x < 0 (note that +1 is not needed for the following to hold)

βx

eβx + 1
+ 1 > βx (178)

shows that Eq. 177 holds, hence the proof is complete.

Lemma G.8. The softplus family has the following properties

i. σ(x) is increasing and convex,

ii. σ(x) is log-concave (equivalently, σ(x)/σ′(x) is increasing),

iii. σ(x)/σ′(x) is convex,

iv. σ′(x)x/σ(x) is increasing,

v. σ′(x) is log-concave.
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Proof. For the property (i), see the formulas of σ′ and σ′′ in the proof of Lemma F.2. We next prove
each one of the properties one after the other. Let us start with property (ii). First note that σ(x) is
log-concave if and only if σ(x)/σ′(x) is increasing since

d

dx

σ(x)

σ′(x)
= 1− σ(x)σ′′(x)

σ′(x)2
> 0 ⇔ σ′(x)2 > σ(x)σ′′(x) (179)

where the second inequality is a characterization of log-concavity. We will prove that R(x) :=
σ(x)/σ′(x) is increasing.

Let us write out the ratio explicitly

R(x) =
1

β

(
log(eβx + 1) +

log(eβx + 1)

eβx

)
. (180)

The first derivative of R is given by

R′(x) = σ′(x) +
σ′(x)− βσ(x)

eβx
=

eβx − βσ(x)

eβx
. (181)

Since log is concave, expanding it around 1 we get log(y + 1) < y for all y > 0. Substituting
y = eβx, we get that the numerator of R′ is positive, thus R is increasing. This completes the proof
of property (ii). Computing the second derivative of R, we get

R′′(x) =
σ′′(x)(eβx + 1)− 2βσ′(x) + β2σ(x)

eβx
= β

(
−σ′(x) + βσ(x)

eβx

)
. (182)

What remains to show is that βσ(x) > σ′(x). Using the fundamental theorem of calculus, we get

log(y + 1)

y
=

1

y

∫ y

0

1

t+ 1
dt >

1

y + 1
(183)

since 1/(y + 1) is a lower bound of the integrand which completes the proof of the property (iii). Let
us prove the property (iv) by taking the derivative of the function of interest

d

dx

σ′(x)x

σ(x)
=

(σ′′(x)x+ σ′(x))σ(x)− σ′(x)2x

σ(x)2
(184)

Using σ′′(x) = βσ′(x)(1 − σ′(x)) and dropping the positive term σ′(x), the numerator of the
derivative is

((1− σ′(x))βx+ 1)σ(x)− σ′(x)x =

(
βx

eβx + 1
+ 1

)
σ(x)− eβx

eβx + 1
x (185)

=
eβx

eβx + 1

(
1

eβx
(βx+ eβx + 1)σ(x)− x

)
(186)

For the case x ≥ 0, we have σ(x) > x and (βx+ 1)/eβx > 0, hence the derivative is positive. For
the case x < 0, we want to show(

eβx + βx+ 1
) log(eβx + 1)

eβx
> βx. (187)

If eβx + βx+ 1 > 0, it is done since the LHS is positive. If eβx + βx+ 1 ≤ 0, we have(
eβx + βx+ 1

) log(eβx + 1)

eβx
≥
(
eβx + βx+ 1

)
sup

log(eβx + 1)

eβx
(188)

since log(eβx+1)/eβx is positive. We will next show that log(eβx+1)/eβx is a decreasing function
therefore its supremum is achieved at x→−∞. From the integral expression in Eq. 183, we deduce
that log(y + 1)/y is a decreasing function since adding smaller terms in the average decreases it.
Thus the following limit gives us the supremum using L’Hôpital’s rule

lim
y→0

log(y + 1)

y
= lim

y→0

1

y + 1
= 1. (189)
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Combining it with the Eq. 188 after the substitution y = eβx, we get the desired Ineq. 187 which
implies that the derivative is positive in this case too. This completes the proof of property (iv).

For the property (v), we first give a formula for the third derivative of softplus

σ′′′(x) = βσ′′(x)(1− 2σ′(x)). (190)

σ′ is log-concave if and only if we have

σ′′′(x)σ(x) < σ′′(x)σ′(x)⇔
βσ′′(x)(1− 2σ′(x))σ(x) < σ′′(x)σ′(x) (191)

which is equivalent to

(1− eβx) log(eβx + 1) < eβx. (192)

This is equivalent to (1− y) log(y+1) < log(y+1) < y where y = eβx > 0; the second inequality
holds due to y + 1 < ey .
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