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Abstract

We consider a contextual bandit problem with S contexts and K actions. In each
round t = 1, 2, . . . the learner observes a random context and chooses an action
based on its past experience. The learner then observes a random reward whose
mean is a function of the context and the action for the round. Under the assumption
that the contexts can be lumped into r ≤ min{S,K} groups such that the mean
reward for the various actions is the same for any two contexts that are in the
same group, we give an algorithm that outputs an ε-optimal policy after using
at most Õ(r(S +K)/ε2) samples with high probability and provide a matching
Ω(r(S + K)/ε2) lower bound. In the regret minimization setting, we give an
algorithm whose cumulative regret up to time T is bounded by Õ(

√
r3(S +K)T ).

To the best of our knowledge, we are the first to show the near-optimal sample
complexity in the PAC setting and Õ(

√
poly(r)(S +K)T ) minimax regret in the

online setting for this problem. We also show our algorithms can be applied to
more general low-rank bandits and get improved regret bounds in some scenarios.

1 Introduction

Consider a recommendation platform that interacts with a finite set of users in an online fashion.
Users arrive at the platform and receive a recommendation. If they engage with the recommendation
(e.g., they “click”) then the platform receives a reward, otherwise no reward is obtained. Assume that
the users can be partitioned into a small number of groups such that users in the same group have the
same preferences.

We ask whether there exist algorithms that can take advantage of the lumpability of users into a few
groups, even when the identity of the group a user belongs to is unknown and only learnable because

they share preferences with other users in the group.

A slightly more general version of this problem can be formalized as follows: Viewing users as
“contexts” and recommendations as “actions” (or arms), assume that there are S contexts and K
actions. In round t = 1, 2, . . . the learner first receives a context it, sampled from an unknown
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distribution on the set [S] := {1, . . . , S} of possible contexts. The learner then chooses an action
jt ∈ [K] := {1, . . . ,K} and observes a reward yt = A(it, jt) + ηt, where given the past, ηt has
a subgaussian tail (precise definitions are postponed to Section 2) and A : [S] × [K] → R is an
unknown function of mean rewards (R denotes the set of reals). We consider two settings when the
goal of the learner is either to identify a near-optimal policy π : [S]→ [K], or to keep its regret small.
Policy π is called ε-optimal if

E[A(i1, π(i1))] ≥ max
π′

E[A(i1, π′(i1))]− ε, (1)

while the regret of the learner for a horizon of T is

RegT = E

[
T∑
t=1

max
j∈[K]

A(it, j)−
T∑
t=1

A(it, jt)

]
. (2)

The expectations are taken with respect to the randomness of both the learner and environment,
including contexts and rewards. It is well known (e.g., Lattimore and Szepesvári [2020]) that there
are algorithms such that an ε-optimal policy will be discovered after

Õ

(
SK

ε2

)
(3)

interactions, and there are also algorithms for which the regret satisfies

RegT = Õ(
√
SKT ) . (4)

Here, the notation Õ(·) hides polylogarithmic factors of the variables involved. We say that the
stochastic, finite, contextual bandit problem specified by A is r-lumpable (or, in short, the bandit
problem is context-lumpable) if there is a partitioning of [S] into r ≤ min{S,K} groups such that
A(i, ·) = A(i′, ·) holds whenever i, i′ ∈ [S] belong to the same group. It is not hard to see that any
algorithm needs at least Ω(r(S +K)/ε2) interactions to discover an ε-optimal policy (Theorem 3).
Indeed, if we view A as an S ×K matrix, the lumpability condition states that A = UV where U
is an S × r binary matrix where each row has a single nonzero element, and V is an r ×K matrix,
which gives the unique mean rewards given the group indices. Hence, crude parameter counting
suggests that there are r(S +K) parameters to be learned.

The question is whether SK in Eq. (3) and Eq. (4) can be replaced with (S +K)poly(r) without
knowing the grouping of the contexts.

More generally, we can ask the same questions for contextual bandits with the low-rank structure,
where the matrix A has rank r. Equivalently, the low-rank condition means that we have the same
decomposition A = UV as above but no more constraints on U . In the example of recommendation
platforms, this assumption is more versatile as the users are modeled as mixtures of r preference
types instead of belonging to one type only.

1.1 Related works

Our problem can be seen as an instance of contextual bandit problems introduced by Auer et al.
[2002]. For a good summary of the history of the contextual bandit problem, the reader is advised
to consult the article by Tewari and Murphy [2017]. Further review of prior works can also be
found in the books of Slivkins [2019], Lattimore and Szepesvári [2020]. Another way to approach
context-lumpable stochastic bandits is to model them as stochastic linear bandits with changing action
sets Auer [2002], Chu et al. [2011], Abbasi-Yadkori et al. [2011]. However, lumpablility does not
give improvements on the regret bound when running the standard algorithms in these settings (EXP4
and SupLinRel, respectively). We provide more details in the appendix.

We are not the first to study the r-context-lumpable stochastic bandit problem. The earliest work is
probably that of Maillard and Mannor [2014] who named this problem latent bandits: they consider
the group identity of the context as latent, or missing information. While the paper introduces this
problem, the main theoretical results are derived for the case when the reward distributions given
the group information are known to the learner. Further, the results derived are instance dependent.
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Altogether, while this paper makes interesting contributions, it does not help in answering our
questions.2

The earlier work of Gentile et al. [2014] considered another generalization of our problem where
in round t = 1, 2, . . . the learner gets an action set {xt,1, . . . , xt,Kt

} ⊂ Rd and the mean payoff of
choosing action 1 ≤ j ≤ Kt given the past and the current context it is x⊤t,jθg(it) with θ1, . . . , θr ∈
Rd unknown. When specializing this to our setting, their result depends on the minimum separation
mini,j:g(i) ̸=g(j) ∥A(i, ·)−A(j, ·)∥, which, according to the authors may be an artifact of their analysis.
An extra assumption, which the authors suggest could be removed, is that the distribution of the
contexts is uniform (as we shall see, removing this assumption is considerable work). Further, as the
authors note, the worst-case for their algorithm is when the contexts are equipartitioned, in which
case their bound reduces to the naive bound that one gets for non-lumpable problems. Li et al. [2016]
considers the variation of the problem when the set of arms (and their feature vectors) are fixed and is
known before learning begins and separation is defined with respect to this fixed set of arms (and
hence could be larger than before). From our perspective, their theoretical results have the same
weaknesses as the previous paper. Gentile et al. [2017] further generalizes these previous works to
the case when the set of contexts is not fixed a priori. However, the previously mentioned weaknesses
of the results remain.

Our problem is also a special case of learning in lumpable Markov Decision Processes. In such
Markov Decision Processes (MDPs) the states can be partitioned such that states within a group of a
partition behave identically, both in terms of the transitions and the rewards received [e.g., Ren and
Krogh, 2002].3 We put a survey of this line of work in Appendix A.6.

In summary, although the problem is extensively studied in the literature, we are not aware of any
previous results that have implications for the existence of the minimax regret bounds in terms of
Õ(
√

poly(r)(S +K)T ), which we believe is a fundamental question in this area.

2 Notation and problem definition

For an positive integer n, we use [n] to denote the set {1, . . . , n}. Further, for a finite set U , ∆(U)
denotes the set of probability distributions over U and unif(U) denotes the uniform distribution over
U . The set of real numbers is denoted by R.

As introduced earlier, we consider context-lumpable bandits with S contexts and K actions such that
the S contexts can be lumped into r groups so that the mean payoff A(i, j) given that action j ∈ [K]
is used while the context is i ∈ [S] depends only on the identity of the group that i belongs to and the
action j. That is, for some g : [S]→ [r] map

A(i, j) = A(i′, j) for any j ∈ [K], i, i′ ∈ [S] such that g(i) = g(i′) .

Neither A, nor g is known to the learner who interacts with the bandit instance in the following way:
In rounds t = 1, 2, . . . the learner first observes a context it ∈ [S] randomly chosen from a fixed,
context distribution ν ∈ ∆([S]), independently of the past. The distribution ν is also unknown to
the learner. Next, the learner chooses an action jt ∈ [K] to receive a reward of yt = A(it, jt) + ηt ,
where ηt is 1-subgaussian given the past: For any λ ∈ R,

E[exp(ληt) | i1, j1, . . . , it, jt] ≤ exp(λ2/2) almost surely (a.s.).

As described earlier, we are interested in two problem settings. In the PAC setting, the learner is given
a target suboptimality level ε > 0 and a target confidence δ The learner is then tasked to discover a
policy π : [S]→ [K] that is ε-optimal (cf. Eq. (1)), with probability δ. In this setting, in addition to
deciding what actions to choose, the learner also needs to decide when to stop collecting data and
when it stops it has to return a map π̂ : [S]→ [K]. If T is the (random) time when the learner stops,
then the efficiency of the learner is characterized by E[T ]. In the online setting, the goal of the learner
is to keep its regret (cf. Eq. (2)) low. In Section 3, we will consider the PAC setting, while the online
setting will be considered in Section 4.

2Somewhat confusingly, Hong et al. [2020] define latent bandit problems differently from the definition given
by Maillard and Mannor [2014]: They assume that in addition to the context, a latent (unobserved) variable,
influences the rewards, however, they also assume that the distributions of the reward given an action, context
and latent state are all known. Their results therefore can not help us in answering our question.

3Lumpability was first introduced first by Kemeny and Snell [1976] in the context of Markov chains.
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In the remainder of the paper, we will also need some further notation. The map g induces a
partitioning P⋆ = {B(1), . . . ,B(r)} of [S] in the natural way:

B(b) = {i : g(i) = b} .

We call each subset B ∈ P⋆ a block and call B(b) block b for every b ∈ [r]. We also define block
reward µ(b, j) = A(i, j) of block b for every context i ∈ B(b) and arm j ∈ [K]. Finally, we define
the block distribution ω ∈ ∆(r) so that ω(b) =

∑
i∈B(b) ν(i).

3 Near-optimal PAC Learning in Context-lumpable Bandits

In this section, we present an algorithm for PAC learning in context-lumpable bandits, and prove that
its sample complexity guarantee matches the minimax rate up to a logarithmic factor.

3.1 Special case: almost-uniform context distribution

To better illustrate the key ideas behind the algorithm design, we first consider a special case of
almost-uniform context distribution. Formally, we assume ν(i) ∈ [1/(8S), 8/S] for all i ∈ [S]
throughout this subsection. The pseudocode of our algorithm is provided in Algorithm 1, which
consists of three main modules. Below we elaborate on each of them separately.

Data collection (Line 3-4 and Algorithm 2). The high-level goal of this step is to collect a sufficient
amount of data for every block/action pair so that in later steps we have sufficient information to
select a near-optimal arm for each block. One naive approach is to try every action on every context
for a sufficient amount of time (e.g., Õ(1/ε2)). However, this will cause an undesired factor of SK
in the sample complexity. To address this issue, note that contexts from the same block share the
same reward function, which means that for every block/action pair (b, j) ∈ [r]× [K], we only need
to sufficiently try action j on a single context i from block b (i.e., i ∈ B(b)). However, the block
structure is unknown a priori. We circumvent this problem by assigning a random action ψ(i) to each
context i for them to explore (Line 4). And after action ψ(i) has been tried on context i sufficiently
many times, we update ψ(i) by reassigning context i with a new random action (Line 8-10).

However, there is still one key problem unresolved yet: how many samples to use for estimating
each A(i, ψ(i)) before reassigning context i with another random action, given a fixed budget of
total sample complexity. On one hand, if we only try each (i, ψ(i)) pair a very few numbers of times
before switching, then we can potentially explore a lot of different actions for each block but the
accuracy of the reward estimate could be too low to identify a near-optimal policy. On the other hand,
estimating each A(i, ψ(i)) with a huge number of samples resolves the poor accuracy issue but could
potentially cause the problem of under-exploration, especially for those blocks consisting of very few
contexts. In the extreme case, if a block only contains a single context, then our total budget may
only afford to test a single action on that context (block).

To address this issue, we choose different levels of accuracy for different blocks adaptively depending
on their block size. Specifically, contexts from larger blocks can afford to try each random action
before switching for a larger number of times to achieve higher estimate accuracy because larger
blocks consist of more contexts, which means that the average number of random actions in each
context inside a larger block needs to try is smaller. And for smaller blocks, the case is the opposite.
Finally, we remark that the above scheme of using adaptive estimate accuracy can be implemented
without any prior knowledge of the block structure. We only need to iterate over different accuracy
levels using an exponential schedule (Line 3), and each block will be sufficiently explored at its
appropriate accuracy level. Specifically, let N = ⌈log(1/ε2)⌉, and consider accuracy levels n ∈ [N ].
For accuracy level n, we collect a dataset Dn by adding a context-action pair after the pair is played
for 2n timesteps (Line 9).

Screening optimal action candidates (Line 5-11). Equipped with the dataset collected from Step
1, we want to identify a subsetW of [K] so that (i) for every block b ∈ [r],W contains a near-optimal
action of block b, and (ii) the size ofW is as small as possible. We construct suchW in an iterative
way. For each accuracy level n ∈ [N ], we first compute the context-action pair (i⋆, j⋆) with the
highest reward estimate in Dn (Line 7). Intuitively, as (i⋆, j⋆) has been tried for 2n timesteps in
constructing Dn, it is natural to guess that j⋆ could potentially be a Õ(2−n/2)-optimal action for
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certain blocks so we add it into optimal action candidate setW (Line 8). To identify the contexts
from those blocks, we sample new data to estimate the reward of j⋆ on each context i ∈ [S]. This can
be done by calling Algorithm 2 and setting the exploration set K to be j⋆ (Line 10). If a context i can
achieve reward close enough to Ân(i⋆, j⋆) at action j⋆, then we peel off every (i, j) ∈ Dn (Line 11).
This is because we have found j⋆ as an optimal action candidate for i at this accuracy level and don’t
need to consider other j. We repeat the above process, and add a new arm toW in each iteration,
until Dn becomes empty.

Solving the simplified context-lumpable bandit (Line 12). After obtaining the optimal action
candidate setW , we can discard all actions not inW and solve a simplified context-lumpable bandit
problem by replacing the original action set [K] withW . Note that Õ(S|W|/ε2) samples suffice for
learning an ε-optimal policy for this simplified problem. For example, we can directly try each action
j ∈ W on each context i ∈ [S] for Θ̃(1/ε2) times, and define πout(i) ∈ argmaxj∈W Ā(i, j) where
Ā(i, j) is the empirical estimate of A(i, j) based on Θ̃(1/ε2) samples.

Algorithm 1 Algorithm for Almost-uniform Context Distribution

1 Let t denote the current time and initialize N ← ⌈log(1/ε2)⌉,W ← ∅, l̃g← 16 log(rSK/δ)

2 Define K(i)← [K] for i ∈ [S], L← r(S +K)l̃g/ε2

Step 1. Data collection
3 for accuracy level n = 1, . . . , N do
4 Execute Algorithm 2 with input L, n, K, and receive Dn and Ân

Step 2. Screening optimal action candidates
5 for accuracy level n = 1, . . . , N do
6 while Dn ̸= ∅ do
7 Compute (i⋆, j⋆)← argmax(i,j)∈Dn

Ân(i, j)

8 Update optimal action candidatesW ←W
⋃
{j⋆}

9 Update K(i)← {j⋆} for i ∈ [S] and L′ ← 8l̃g2nS

10 Execute Algorithm 2 with input L′, n, K, and reassign output to D̃n and Ãn

11 Shrink Dn ← {(i, j) ∈ Dn : |Ãn(i, j⋆)− Ân(i⋆, j⋆)| ≥
√

l̃g
2n }

Step 3. Solving the simplified context-lumpable bandit
12 Use 4S|W|

ε2 log SK
δ samples to find πout s.t. A(i, πout(i)) ≥ maxj∈W A(i, j)− ε for all i ∈ [S]

13 Output πout

Algorithm 2 Data Collection
1 Input L, n, K
2 Let t denote the current time and initialize Dn ← ∅
3 for context i ∈ [S] do
4 Assign ψt(i) to be an arm drawn from unif(K(i))
5 for L timesteps do
6 Receive context it, play arm jt = ψ(it), and receive reward yt
7 Preset ψt+1(i) = ψt(i) for every i ∈ [S]

8 if (
∑t
τ=1 1(iτ = it))%2n = 0 then

9 Dn ← Dn
⋃
{(it, ψ(it))} and Ân(it, ψ(it))←

∑
τ≤t yτ1[iτ=it,jτ=ψ(it)]∑
τ≤t 1[iτ=it,jτ=ψ(it)]

10 Reassign ψt+1(it) ∼ unif(K(it));

11 Output Dn and Ân

Now we present the theoretical guarantee for Algorithm 1. The proof and exact constants in the
bound can be found in Appendix C.
Theorem 1. Let δ ∈ (0, 1) and assume ν(i) ∈ [1/(8S), 8/S] for all i ∈ [S]. Algorithm 1 outputs an
Õ(ε)-optimal policy within Õ(r(S +K) log(1/δ)/ε2) samples with probability at least 1− δ.
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3.2 Extension to general context distribution

Algorithm 3 Algorithm for General Context Distribution

1 Let J = 4S
ε log(S/δ), L = ⌈log(S/ε)⌉, N = 524

(
log rSK

δ

)
·
(
1 + 2 log 1

ε

)2 · r(S+K)
ε2

2 Estimate the context distribution by sampling J contexts, and denote the estimate by ν̂
3 Split the context set into L disjoint subsets {Xl}l∈[L] where

Xl ←
{
{i ∈ [S] : ν̂(i) ∈ (2−l−1, 2−l]}, l ∈ [0 : L− 1]

{i ∈ [S] : ν̂(i) ∈ [0, 2−l]}, l = L
4 for l ∈ [L− 1] do
5 Execute Algorithm 1 to learn policy πl for subset Xl from N time steps

6 Output πout such that πout equals to πl over Xl for l ∈ [0 : L− 1], and arbitrary over XL

In this subsection, we show how to generalize Algorithm 1 to handle general context distributions.
We present the pseudo-code in Algorithm 3. The algorithm consists of two key steps. In the first
step, we use J = Õ(S/ε) samples to obtain an empirical estimate of the context distribution, denoted
by ν̂. Then we divide the context set into many disjoint subsets {Xl}l∈[0:L] such that inside each
subset Xl, the conditional empirical context distribution is almost uniform. As a result, we can invoke
Algorithm 1 to find a near-optimal policy πl for each subset Xl (Line 5). It requires Õ(r(S +K)/ε2)
time steps for every ℓ but we only use samples where contexts are from Xl and ignore the rest. Finally,
we glue all πl together to get a policy πout that is near-optimal for the original problem. Formally,
we have the following theoretical guarantee for Algorithm 3. The proof and exact constants are in
Appendix C.

Theorem 2. Let δ ∈ (0, 1). Algorithm 3 outputs an Õ(ε)-optimal policy within Õ(r(S +
K) log(1/δ)/ε2) samples with probability at least 1− δ.

Note that we can always learn an ε-optimal policy for any context-lumpable bandit within Õ(SK/ε2)
samples by invoking any existing near-optimal algorithm for finite contextual bandits. As a result, by
combining Theorem 2 with the Õ(SK/ε2) upper bound, we obtain that Õ(min{r(S+K), SK}/ε2)
samples suffice for learning any context-lumpable bandit, which according to the following theorem
is minimax optimal up to a logarithmic factor.

Theorem 3. Learning an ε-optimal policy for a context-lumpable bandit with probability no smaller
than 1/2 requires at least Ω(min{r(S +K), SK}/ε2) samples in the worst case.

4 Regret Minimization in Context-lumpable Bandits

In this section, we extend the idea from the PAC setting to the online setting. To better introduce the
key ideas, we first consider a special case when both context and block distributions are uniform
(Section 4.1). Then we consider the most general case in Section 4.2.

4.1 Special Case: Uniform Context and Block Distribution

In this section, we assume that distributions ν and ω are uniform, and thus, g evenly splits the contexts
into r blocks so that there are S/r contexts in each block and every context appears with the same
probability at each timestep. We will relax these assumptions and consider the general case in the
next subsection.

For this case, we introduce Algorithm 4, which uses phased elimination in combination with a
clustering procedure. The algorithm runs in phases h = 1, 2, . . . that are specified by error tolerance
parameter εh = 2−h/2. Like phased elimination algorithms for multi-armed bandits, we need to
ensure at phase h actions the algorithms play are all Õ(εh)-optimal. Thus, at the end of each phase h,
we eliminate all actions that are not Õ(εh)-optimal. However, the set of Õ(εh)-optimal actions of
each block is different. Therefore, we also perform clustering on contexts and perform elimination
for each subset of the partition. Specifically, we maintain a partition of contexts Ph at each phase
h and initialize P1 = {[S]}. For each cluster C ∈ Ph, we maintain a set of good arms GOODh(C),
which we will prove is Õ(εh)-optimal for contexts in the cluster with high probability.
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We use Algorithm 2 to collect data similar to Algorithm 1 (Line 6). At phase h, we try to estimate
mean reward up to error Õ(εh) with probability 1 − δh. The difference is that we assume ω is
uniform, so we don’t need different accuracy levels n, which will be required for the algorithm that
handles the general case. Also, for every context i ∈ C, we only explore arms good for now, that is,
in GOODh(C) instead of exploring all the arms [K]. This reflects that in the online setting, we need
to minimize regret and cannot afford to explore bad arms too many times.

Based on the data we collect during the exploration stage, we then check if there is a large gap across
contexts in the same subset for any arms (Line 7). A large gap suggests that (i) the subset contains at
least two blocks (ii) the mean reward of the arm is significantly different in these blocks and we can
use this arm to partition the contexts by running Algorithm 5 (clustering stage). We repeatedly do
clustering (Line 9) and split heterogeneous subsets (Line 10) until we cannot find a large gap within
the same subset. If no large gap is detected, then each arm has similar mean rewards (up to error
Õ(εh)) across all blocks in the same subset. Then we eliminate arms that are significantly worse
than the empirical best arm (elimination stage) from GOODh(C) for every subset C and start a new
episode (Line 14).

Algorithm 5 plays j for each context i ∈ C for Õ(1/ε2) rounds and calculates empirical means of
arm j for each context in C. It then sorts the contexts by the empirical means and performs clustering
(Line 4). Specifically, the algorithm enumerates contexts in descending order of empirical means
and splits contexts until a large gap between consecutive values is detected (Line 7). As we call
Algorithm 5 only if a large gap is detected, we prove that in the appendix it correctly separates the
subset into at least two parts without putting any contexts in the same block into different parts by
setting ε′ = εh/r.

Algorithm 4 Algorithm for Uniform Block Distribution
1 Initialize P1 ← {[S]}, GOOD1(C)← [K] for C ∈ P1

2 Let t denote the current time
3 for phase h = 1, 2, . . . , do

4 Let εh ← 2−h/2, δh ← ε2h/(r
3SK), l̃gh ← 64 log(rSK/δh), ε̃h ←

√
l̃gh · εh

Step 1. Data collection

5 Define Lh ← r(S+K)l̃gh

ε2h
, nh ← log( 1

ε2h
), Kh(i)← GOODh(C), C ∈ Ph, C ∋ i, ∀i ∈ [S]

6 Execute Algorithm 2 with input Lh, nh, Kh, and receive Dh and Âh
Step 2. Test homogeneity and perform clustering on heterogeneous subsets

7 while ∃ C ∈ Ph, i, i ∈ C, j ∈ [K] such that Âh(i, j)− Âh(i, j) ≥ ε̃h do
8 Define ε′ ← εh

4r , δ′ ← δh
r , K(i)← {j} if i ∈ C else GOODh(C) for C ∈ Ph, C ∋ i

9 Execute Algorithm 5 with input ε′, δ′, K, C, and j, and get P , a partition of C
10 Initialize GOODh(C′)← GOODh(C), ∀C′ ∈ P and update Ph ← (P ∪ Ph)\{C}

Step 3. Eliminate suboptimal actions in each subset
11 Ph+1 ← Ph
12 for C ∈ Ph+1 do
13 Calculate µh(C, j)← maxi:i∈C,(i,j)∈Dh

Âh(i, j), ∀j ∈ GOODh(C)
14 Update GOODh+1(C)← {j : j ∈ GOODh(C), maxj′ µh(C, j′)− µh(C, j) ≤ 2ε̃h}

Similar to the analysis of other phased elimination algorithms, we have to show that in a phase
specified by error level εh, with high probability, (i) the optimal arm is not eliminated and (ii) all
ω̃(εh)-suboptimal arms are eliminated, that is, all arms in GOODh(C) for all C are Õ(εh)-optimal.
We show the final regret here and defer the details to Appendix D

Theorem 4. Under the assumption that context distribution ν and block distribution ω are uniform,
regret of Algorithm 6 is bounded as RegT = Õ(

√
r3(S +K)T ).
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Algorithm 5 Split Contexts Into Multiple Blocks
1 Input: error ε′, confidence δ′, exploration sets K, subset C, separating arm j

2 Initialize l̃g← 64 log(S/δ′), L′ ← S l̃g/ε′2, n′ ← ⌈1/ε′2⌉
3 Execute Algorithm 2 with input L′, n′, K, and reassign output to D and Â
4 Sort contexts in C and label them as i1, . . . , i|C| so that Â(i1, j) ≥ Â(i2, j) ≥ · · · ≥ Â(i|C|, j)
5 Initialize P1 ← {i1}, b← 1
6 for k = 2, 3, . . . , |C| do

7 if Â(ik−1, j)− Â(ik, j) ≥
√
l̃g · ε′ then

8 Update b← b+ 1 and initialize Pb ← {}
9 Pb ← Pb ∪ {ik}

10 Output {P1, . . . ,Pb}

Compared to our PAC result, we get an extra dependency on r. This is because we pay Õ(S/ε′2) =

Õ(r2S/ε2h) samples to do clustering instead of Õ(1/ε2h) in order to ensure a “perfect” partition,
that is, we never separate contexts in the same block with high probability. This is crucial for our
phase-elimination algorithm as we may call Algorithm 5 in different phases. We left getting better
than Õ(

√
r3(S +K)T ) regret upper bounds or better than Ω(

√
r(S +K)T ) regret lower bounds

(even for this uniform special case) as an important future direction.

4.2 Non-uniform Context and Block Distribution

Similar to the PAC learning setting, we can use Algorithm 3 to reduce general context distributions to
(nearly) uniform ones. We provide more details in Appendix F. As a result, without loss of generality,
we may assume ν is almost-uniform, and we focus on how to handle non-uniform block distribution
ω. In the extreme, there may only be one context for some blocks, which becomes challenging to
estimate their mean rewards.

For this case, we introduce Algorithm 6. Intuitively, based on Algorithm 4, we can further employ
different accuracy levels as Algorithm 1. However, as our goal becomes minimizing regret, it is
difficult to control regret for smaller n and larger blocks. Specifically, for smaller n, we explore more
actions (with fewer samples) for each context in a single phase. Since fewer samples are used, we
may unavoidably play suboptimal actions and suffer large regret. This becomes worse for a large
block as more contexts in the block suffer large regret. We note that this is not a problem in the PAC
setting because we only need to control sample complexity.

We fix the issue by setting different lengths L for different accuracy levels. Recall in Algorithm 1, we
use the same lengthL = Õ(r(S+K)/ε2) for every n. Intuitively, since we allow less accurate estima-
tions for smaller n, we may use fewer data. It turns out indeed we can set L = Õ(r(S +K)2(n+h)/2)
for level n at phase h, and with more refined analysis, it provides similar guarantees as before. More
importantly, since smaller n uses (exponentially) fewer samples, the overall regret is well controlled.

In addition to setting the lengths sophisticatedly, we also need to carefully maintain sets of good
actions GOODh,n not only at each phase h but also at each accuracy level n. The partition of
contexts Ph, however, only evolves with phases and is shared between different levels at the same
phase. Similar to Algorithm 4, we also do clustering (Step 2) and elimination (Step 3) but do
the procedures in parallel for every accuracy level n. In the clustering stage, we use different
thresholds to define a “large gap”. This reflects that n represents different accuracy levels and thus
has different widths of confidence intervals. For the elimination stage, we enforce the inclusion
relation GOODh(n, C) ⊆ GOODh(n′, C) for n′ ≤ n (Line 17), which will be useful in the regret
analysis. We now present the main theorem and put the complete proof in Appendix G.

Theorem 5. Regret of Algorithm 6 is bounded as RegT = Õ(
√
r3(S +K)T ) .

We remark that Algorithm 6 is anytime, that is, it doesn’t require the time horizon T as input.
However, it does require the number of blocks r as prior knowledge. Removing the knowledge of r
is an interesting future direction. One promising idea is to apply a doubling trick on r. Specifically,
we have an initial guess r = Õ(1) and run Algorithm 6; when |Ph| > r, we double r and restart
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Algorithm 6 Algorithm for Non-uniform Block Distribution
1 Initialize P1 ← {[S]}, GOOD1,1(C)← [K], C ∈ P1

2 Let t denote the current time
3 for phase h = 1, 2, . . . , do
4 Let εh ← 2−h/2, Nh ← h, δh ← ε2h/(r

3SK), l̃gh ← 128 log(rSKNh/δh)

Step 1. Data collection
5 for accuracy level n = 1, . . . , Nh do
6 Define Lh,n ← r(S +K)l̃gh2

(n+h)/2, Kh,n(i)← GOODh,n(C), C ∈ Ph, C ∋ i, ∀i ∈ [S]

7 Execute Algorithm 2 with input Lh, n, Kh,n, and receive Dh,n and Âh,n
Step 2. Test homogeneity and perform clustering on heterogeneous subsets

8 while ∃ C ∈ Ph, i, i ∈ C, j ∈ [K], n ∈ [Nh] such that Âh,n(i, j)− Âh,n(i, j) ≥
√

l̃gh

2n do
9 Define ε′ ← εh

4r , δ′ ← δh
r , K(i)← {j} if i ∈ C else GOODh,n(C) for C ∈ Ph, C ∋ i

10 Execute Algorithm 5 with input ε′, δ′, K, C, and j, and get P , a partition of C
11 Initialize GOODh,n(C′)← GOODh,n(C), ∀C′ ∈ P and update Ph ← (P ∪ Ph)\{C}

Step 3. Eliminate suboptimal actions in each subset
12 Ph+1 ← Ph, GOOD1,1(C)← [K], C ∈ Ph+1

13 for accuracy level n = 2, . . . , Nh do
14 for C ∈ Ph+1 do
15 Calculate µh,n(C, j)← maxi:i∈C,(i,j)∈Dh,n

Âh,n(i, j), ∀j ∈ GOODh,n(C)

16 Let Gh,n(C)←
{
j : j ∈ GOODh,n(C), maxj′ µh,n(C, j′)− µh,n(C, j) ≤ 2

√
l̃gh

2n

}
17 Update GOODh+1,n(C)← GOODh+1,n−1(C) ∩ Gh,n(C)

the algorithm. The analysis, though, may be much more complicated. Finally, we note that when
knowing r, one can calculate in advance if

√
SKT is less than

√
r3(S +K)T and switch to a

standard algorithm achieving Õ(
√
SKT ) in that case. This modification guarantees the regret is

never worse than the standard bound.

5 From Context-lumpable Bandits to Contextual Low-rank Bandits

Finally, we consider the more general contextual low-rank bandit problem. Specifically, we allow
A to have rank r, that is A = UV for some S × r matrix U and r ×K matrix V . Lumpability is a
special case in the sense that U is binary where each row has a single nonzero element.

To solve the problem, We show a reduction from contextual low-rank bandits to context-lumpable
bandits. Consider an α-covering of rows of U , and notice that the covering number,Rα, is 1/αr. The
context-lumpable bandits can be seen as α-approximate context-lumpable bandits withRα blocks,
where the reward of contexts on the same block differs at most α. Ignoring this misspecification, we
may run Algorithm 1 and Algorithm 6 for the PAC and online settings, respectively. Moreover, it
turns out that our algorithms are robust to this misspecification when α is sufficiently small (O(ε)
in the PAC setting, for example). Therefore, the sample complexity and the regret bounds of these
algorithms will be in terms of Rα despite having an exponential dependency on r. The resulting
bounds can still be smaller than the naive SK/ε2 and

√
SKT bounds in some scenarios, for example,

when S and K are super large. We put the details in Appendix H.

6 Conclusions and Future Directions

We consider a contextual bandit problem with S contexts and K actions. Under the assumption
that the context-action reward matrix has r ≤ min{S,K} unique rows, we show an algorithm that
outputs an ε-optimal policy and has the optimal sample complexity of Õ(r(S +K)/ε2) with high
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probability. In the regret minimization setting, we show an algorithm whose cumulative regret up to
time T is bounded as Õ(

√
r3(S +K)T ).

An immediate next question is whether a regret bound of order Õ(
√
r(S +K)T ) is achiev-

able in the regret minimization setting. A second open question is concerned with obtaining a
Õ(
√

poly(r)(S +K)T ) regret bound in contextual low-rank bandits. Our regret analysis heavily
relies on the assumption that contexts arrive in an I.I.D fashion. Extending our results to the setting
with adversarial contexts remains another important future direction.
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A More Related Works

A.1 From bilinear to low-rank bandits

The low-rank structure has been shown useful in other bandit problems. Katariya et al. [2017]
considered the case when the learner chooses both “context” and arm and the reward map A, when
viewed as a S ×K matrix, has rank one. This is a special case of a linear bandit setting with a fixed
action set where both the features underlying the actions and the parameter vectors are “shaped” as
matrices of matching dimensions, and both matrices are rank-one. Similarly to our problem, the
challenge is to make the regret depend on S +K rather than on S ×K (but note that S does not have
the interpretation of the number of contexts here). This paper demonstrates that this is possible when
considering gap-dependent bounds.

Trinh et al. [2020] improved the result of Katariya et al. [2017] and gave an asymptotically optimal
regret bound. Kveton et al. [2017] generalized the setting of Katariya et al. [2017] to the case when
the reward A (viewed as matrix) is of rank r ≤ min(S,K) and is a “hott topics matrix”, the learner in
each round can choose r row and column indices, observes the entries of A at the resulting submatrix
of A in noise and incurs the maximum reward in this submatrix. For this problem they show an
instance dependent bound that depends on S,K, r only through (S +K)poly(r).

Jun et al. [2019] dropped the extra conditions on the mean reward matrix besides assuming that it
has low rank. Jang et al. [2021] gave the first upper bound of the form Õ((S +K)r

√
T ), though

with inefficient algorithms, which was the first bound better than the naive bound Õ(SK
√
T ).4 Later,

Lu et al. [2021] dropped the condition on the action matrices and also extended the results to the
generalized linear setting (they assume that both the action matrices and the parameter matrix has a
constant Frobenius norm bound). The regret bound of Jun et al. [2019], Lu et al. [2021] takes the
form Õ((S +K)3/2

√
rT ), which is still worse than the earlier mentioned naive bound. Lattimore

and Hao [2021] prove that (up to logarithmic factors) when S = K and both the action and reward
matrices are rank one and symmetric, the minimax regret is of order S

√
T .

Recently, Kang et al. [2022] improved the previous state-of-the-art for the generalized linear setting.
The new regret bound, which they prove “under a mild” extra assumption, takes the form Õ((S +

K)r
√
T ) and is conjectured to match the order of the minimax regret. Noticing that the minimax

lower bounds developed for the finite-armed stochastic bandits (e.g., Exercise 15.2 of Lattimore and
Szepesvári 2020) is applicable to the rank-one setting (as the proofs use actions and rewards that
are rank one, one-hot matrices), we see that the regret is at least Ω(

√
SKT ) in these problems. As√

S +K ≈
√
max(S,K) ≪

√
SK ≤

√
max(S,K)2 = max(S,K) ≈ S +K, this lower bound

rules out upper bounds of the form O(
√
(S +K)poly(r)T ), though it is compatible with the upper

bound mentioned above.5

Jain and Pal [2022] study a related problem where the learner chooses one action per context in each
round and incurs a reward for each of the actions. They also propose an epsilon-greedy type algorithm
and show that its regret scales as T 2/3polylog(S +K) provided some technical conditions hold, one
of which is that the condition number of the reward A when viewed as a matrix is constant. The main
limitation of this work is that the technical conditions are restrictive and the problem is easier as in
each round an observation is available for each context, whereas in our setting the contexts arrive at
random from a distribution which may be very far from the uniform distribution, which, as we shall
see, will require extra care.

A.2 Bandit meta-learning

Bandit meta-learning is concerned with learning a lower dimensional subspace across bandit tasks
[Kveton et al., 2020, 2021, Cella et al., 2020], while we consider only a single task.

4To get this naive bound, following an argument of Jang et al. [2021], notice that the problem is an instance
of d-dimensional linear bandits with d = SK with actions and parameters belonging to the unit sphere, in which
case the minimax regret, up to logarithmic factors, is of order d

√
T (e.g., Theorem 24.2, Lattimore and Hao

2021). If the action set has one-hot matrices only, this bound improves to
√
dT , as discussed before.

5Here, f(S,K) ≈ g(S,K) means that f, g are within a constant factor of each other, while f(S,K) ≪
g(S,K) means that f(S,K) = o(g(S,K)) as S,K → ∞.
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A.3 Contextual bandit problems

Contextual bandit problems, introduced by Auer et al. [2002], can be seen as a special case of the
prediction with expert advice problem, which is an online problem. In a prediction with expert
advice problem, the learner is given access to the recommendations of N experts in the form of
distributions over the K actions. The learner still needs to choose an action in each round with the
goal of competing with the total reward collected by the best expert in hindsight. Auer et al. [2002]
consider the adversarial case when in each round, each action is assigned a reward in an arbitrary
way from a known, finite interval. The authors propose the EXP4 algorithm that is shown to achieve
O(
√
KT logN) regret in T rounds of interactions. Beygelzimer et al. [2011] extended this result

to control the regret with high probability, while Dudik et al. [2011] introduced a computationally
efficient variant assuming a computationally efficient cost-sensitive classification oracle.

To reduce an r-lumpable contextual bandit problem to prediction with expert advice, we need to
choose the experts. The obvious choice here is that an expert is a [S] → [K] map that is the
composition of an [S] → [r] map followed by an [r] → [K] map. Denoting by N the number of
such experts, we see that log(N) = S log(r) + r log(K), and hence the regret of EXP4 is of order
Ω(
√
SKT ), which is not better than not using the lumpability structure.

Another line of work focuses on oracle-based contextual bandits [Foster and Rakhlin, 2020, Simchi-
Levi and Xu, 2022]. In this setting, the learner has access to function class F and the optimal regret
is O(

√
KT log(|F|)), where |F| is the size of the function class. However, with the same argument,

we can conclude |F| = Ω(S) even under the lumpable assumption. Therefore, the results in this
direction also give no direct implication to the problem we consider.

A.4 Stochastic linear bandits with changing action sets

In this setting, in each round t = 1, 2, . . . the learner first receives K d-dimensional vectors,
xt,1, . . . , xt,K , each corresponding to an action. Choosing action j gives a reward whose mean
(given the past) is x⊤t,jθ for some unknown parameter vector θ ∈ Rd. For our case, one can choose
d = SK: θ can be the “flattening” of A and xt,j is a unit vector so that x⊤t,jθ = A(it, j). Applying
the SupLinRel algorithm from Section 4 of Auer [2002] to this setting, we get the regret bound

O(
√
dT log3(KT )), which shows no improvement compared to ignoring lumpability.

A.5 Matrix completion problems

The offline version of our problem is closely related to matrix completion problems, where the
goal is to reconstruct a matrix with missing values under the low-rank constraint [Arora et al.,
2012, Jain et al., 2013, Chen et al., 2020]. Based on these ideas, Sen et al. [2016] propose an
epsilon-greedy algorithm for the contextual low-rank bandit problem and show that its regret is
of order T 2/3(S poly(r, logK))1/3. This result holds under an assumption that the reward matrix
has a nonnegative decomposition A = UV where entries of U and V are all nonnegative. If
A is nonnegative valued itself, r-lumpability of the contexts implies that such a decomposition
exist. However, the main result of this work needs additional conditions. In particular, the context
distribution needs to be near-uniform, and due to their “restricted isometry property” assumptions,
the context groups need to be of approximately the same size. In particular, if all context groups
except one have a single member, their bound degrades to the trivial bound mentioned earlier.

A.6 Lumpable Markov decision processes

Lumpable MDPs in contemporary literature on machine learning are referred to as block MDPs
[Du et al., 2019]. Learning to act in a block MDPs has been the subject a numerous recent papers
[Dann et al., 2018, Du et al., 2019, Misra et al., 2020, Feng et al., 2020, Zhang et al., 2020, 2022].
Furthermore, learning to act in a block MDP is a special case of the so-called low-rank setting, which
was also heavily studied [Jiang et al., 2017, Uehara et al., 2022, Modi et al., 2021, Papini et al., 2021,
Zhang et al., 2021, Misra et al., 2020], both in the online and in the PAC settings. The learner in these
problems is given a set of feature maps with the promise that at least one of the feature maps will
allow a factored (low-rank) representation of the transition dynamics and the reward.
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Despite the significant effort that went into studying this problem, in our setting none of the existing
results improve upon the naive bound that one can get for non-lumpable problems. Duan et al.
[2019], Ni et al. [2021] study the offline setting, where the considerations are rather different. Finally,
Kwon et al. [2021] consider the problem when over multiple episodes, a learner interacts with a
finite-horizon MDP, which is chosen at random from one of r such unknown MDPs. The learner is
given no additional information about the hidden identity of the MDP that it faces. The challenge
here is that even if the MDPs were known, the problem of acting optimally is nontrivial, while in our
case this is not a problem. As such, while superficially, the problems may look similar, they are quite
different.

B Auxiliary Lemmas

In this section, we show some probabilistic lemmas that will be useful to prove our results. The
following lemma is a high-probability version of the classical “coupon collector’s problem”, which
says that the expected number of coupons required to draw with replacement is Θ(K logK) in order
to get each of K coupon at least once.

Lemma 6. Given a set K with |K| ≤ K and consider M i.i.d samples drawn from unif(K). Then
with probability 1 − δ′, every element in K appears at least once in these samples as long as
M ≥ K log(K/δ′).

Proof. Fix an element j ∈ K. The probability that j appears in none of the M samples can be
bounded by (

1− 1

|K|

)M
≤
(
1− 1

K

)M
≤ exp

(
−M
K

)
≤ δ′

K
.

A union bound on every j in K finishes the proof.

Lemma 7 (Concentration of Subgaussian random variables). LetX1−µ, . . . ,XM −µ be a sequence
of independent 1-subgaussian random variables and µ̂ = 1

M

∑M
m=1Xm. Then with probability

1− δ′, δ′ < 1
2 , we have

|µ̂− µ| ≤ 2

√
log(1/δ′)

M

Lemma 8 (Bernstein’s inequality). Let X1, . . . , XM be a sequence of independent random variables
with Xm −E[Xm] ≤ b almost surely for every m and v =

∑M
m=1 Var[Xm]. With probability 1− δ′,

we have

M∑
m=1

Xm ≤
M∑
m=1

E[Xm] +
√
2v log(1/δ′) +

2b

3
log(1/δ′)

The following lemma is a direct consequence of Bernstein’s inequality, which states, in terms of the
coupon collector’s problem, that after drawing M coupons, one can expect with a high probability a
particular coupon appears at least Mp/2 times if its probability of appearing is p.

Lemma 9. Let X1, . . . , XM be i.i.d Bernoulli random variables so that E[Xm] = p for all m. With
probability 1− δ′, we have

∑M
m=1Xm ≥Mp/2 as long as Mp ≥ 16 log(1/δ′).

Proof. Let Ym = 1−Xm We have E[Ym] = 1− p. By Lemma 8, with probability 1− δ′, we have

M −
M∑
m=1

Xm ≤M · (1− p) +
√
2Mp(1− p) log(1/δ′) + log(1/δ′).
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Rearranging terms and using Mp ≥ 16 log(1/δ′) gives
M∑
m=1

Xm ≥Mp−
√
2Mp(1− p) log(1/δ′)− log(1/δ′)

≥Mp− Mp√
8
− Mp

16

≥ Mp

2

C Proofs for Section 3

We first provide an outline of the proof in Appendix C.1 and show the complete proofs of the lemma
in the corresponding subsections.

C.1 Proof of Theorem 1

To begin with, we assign adaptive target optimality (accuracy) to each block according to their block
size:

εb = max

{
1,

1√
rω(b)

}
ε, for b ∈ [r].

The following lemma states that as long as W contains an Õ (εb)-optimal action for each block
b ∈ [r], then the output policy is Õ (ε)-optimal with high probability.
Lemma 10. For a positive constant C, suppose for any b ∈ [r] with ω(b) ≥ ε/r, W contains a
Cεb-optimal action, then πout is 2(C+1)ε-optimal for the original context-lumpable bandit problem.

As a result, if we can prove that the precondition of Lemma 10 holds with high probability, then
the correctness of Algorithm 1 follows immediately. To do so, we first argue that for every block
b ∈ [r], we have sufficiently explored the entire action set at accuracy level n = ⌈log(1/ε2b)⌉ in the
data collection step, as stated in the next lemma.
Lemma 11. With probability at least 1− 2δ, for any b ∈ [r] with ω(b) ≥ ε/r, we have that: for any
j ∈ [K], there exists (i, j) ∈ Dn satisfying g(i) = b where n = ⌈log(1/ε2b)⌉.

Intuitively, Lemma 11 says that we have tested all actions on each block b ∈ [r] at the corresponding
accuracy level n = ⌈log(1/ε2b)⌉. Based on Lemma 11, the following lemma states that in the second
step we are able to filter out an Õ (εb)-optimal action for block b by using the information contained
in Dn.
Lemma 12. With probability at least 1− 4δ, for any b ∈ [r] with ω(b) ≥ ε/r, a 10εb

√
log(rSK/δ)-

optimal action of block b is added intoW in the process of shrinking Dn where n = ⌈log(1/ε2b)⌉.

Now we have proved the correctness of Algorithm 1. However, to obtain the desired sample
complexity, it remains to show that the size of the optimal action candidate setW is relatively small,
which we prove next.
Lemma 13. With probability at least 1− 4δ, |W| ≤ Nr.

Now we are ready to prove Theorem 1 by combining all the above lemmas.

Proof of Theorem 1. The step of data collection uses

8

(
1 + log

1

ε2

)
·
(
2 + log

1

ε2

)
·
(
log

rSK

δ

)
· r(S +K)

ε2

samples. By Lemma 13, the step of screening optimal action candidates uses

2(162)

(
1 + log

1

ε2

)
·
(
log

rSK

δ

)
· rS
ε2
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samples and solving the simplified context-lumpable bandit problem uses

4

(
1 + log

1

ε2

)
·
(
log

SK

δ

)
· Sr
ε2

samples. Overall, the number of samples is bounded by

524

(
log

rSK

δ

)
·
(
1 + 2 log

1

ε

)2

· r(S +K)

ε2

By Lemma 10 and Lemma 12, πout is 2
(
10
√

log(rSK/δ) + 1
)
ε-optimal.

C.2 Proof of Lemma 10

Proof. We control the suboptimality of πout in the following way:∑
i∈[S]

ν(i)

(
max
j∈[K]

A(i, j)−A(i, πout(i))

)

≤
∑

b∈[r]: ω(b)≥ε/r

∑
i∈B(b)

ν(i)

(
max
j∈W

A(i, j)−A(i, πout(i)) + Cεb

)
+

∑
b∈[r]: ω(b)<ε/r

ω(b)

≤ε+ C
∑
b∈[r]

ω(b)εb + ε ≤ 2(C + 1)ε,

where the first inequality uses the precondition of the lemma, the second one uses the ε-optimality
of πout in the simplified context-lumpable bandit, and the final one follows from Cauchy-Schwarz
inequality.

C.3 Proof of Lemma 11

Proof. Fix a block b ∈ [r]. For each accuracy level, recall in the step of data collection, we sample
L = r(S +K)l̃g/ε2 contexts i.i.d. from ν. By Lemma 9, with probability 1− δ

r , at least Lω(b)/2 of
them are from block b as

Lω(b) ≥ Lε

r
≥ l̃g ≥ 16 log(r/δ).

Further, recall that we define accuracy level n = ⌈log(1/ε2b)⌉. We first show that this n is well
defined, that is, n ≥ 1. Indeed, we have

1

ε2b
=

1

ε2/(rω(b))
≥ ε

ε2
=

1

ε
≥ 2

as long as ε ≤ 1
2 . Since we add a context-action pair into Dn once we have collected

2n = 2⌈log(1/ε
2
b)⌉ < 2log(1/ε

2
b)+1 = 2/ε2b

samples for estimating its reward. Note that in the end there are at most |B(b)|(2n − 1) samples from
block b unused. Thus, with probability 1− δ

r , there are at least Lω(b)/2− |B(b)|(2n − 1) samples
used. Therefore, the number of context-action pairs, where the contexts are from block b, that are
added into Dn is at least

Lω(b)/2− |B(b)|(2n − 1)

2n
≥ Lω(b)/2

2/ε2b
− S (2n ≤ 2/ε2b and |B(b)| ≤ S)

≥ Lε2/(2rε2b)

2/ε2b
− S (by definition of εb)

=≥ 16(S +K) log(rSK/δ)− S (the value of L)
≥ K log(rSK/δ).

Conditioned on this event, with probability 1− δ
r , for any j ∈ [K], there exists (i, j) ∈ Dn satisfying

g(i) = b by Lemma 6. Therefore, the lemma holds for block b with probability at least 1− 2δ
r . We

complete the proof by a union bound on all blocks.
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C.4 Proof of Lemma 12

Proof. Denote by i the first context being removed from Dn, which satisfies g(i) = b. By the rule of
shrinking Dn, we have

|Ãn(i, j⋆)− Ân(i⋆, j⋆)| ≤ 4

√
log(rSK/δ)

2n
.

By Lemma 7 and a union bound on all pairs in Dn, with probability 1− 2δ/r, we have

|Ãn(i′′, j′′)−A(i′′, j′′)| ≤
1

2

√
log(rSK/δ)

2n
and |Â(i′′, j′′)−An(i′′, j′′)| ≤

1

2

√
log(rSK/δ)

2n
(5)

for every (i′′, j′′) ∈ Dn. Therefore, we have

|A(i, j⋆)−A(i⋆, j⋆)| ≤ 5

√
log(rSK/δ)

2n
, (6)

By Lemma 11, we know that for any j ∈ [K], there exists (i′, j) ∈ Dn satisfying (g(i′), j) = (b, j),
before we remove context i. Therefore, by the definition of (i⋆, j⋆), for any j ∈ [K], there exists
(i′, j) ∈ Dn satisfying g(i′) = b and

Ân(i
⋆, j⋆) ≥ Ân(i′, j),

which, again by Eq. (5) with probability 1− 2δ/r

A(i⋆, j⋆) ≥ max
j
µ(b, j)−

√
log(rSK/δ)

2n
. (7)

By combining Eq. (6) and Eq. (7), we conclude that j⋆ is a 10
√
log(rSK/δ)εb-optimal action for

block b because

5

√
log(rSK/δ)

2n
≥ 10

√
log(rSK/δ)

1/ε2b
= 10

√
log(rSK/δ)εb

This completes the proof by a union bound on all blocks.

C.5 Proof of Lemma 13

Proof. It suffices to show that for each accuracy level n, we will add at most r actions intoW before
shrinking Dn to ∅. Below we prove a stronger argument: each time we shrink Dn, we will remove all
the contexts from at least one block from Dn.

Denote by (i, j) an arbitrary context-action pair from Dn such that g(i) = g(i⋆), then by Eq. (5), we
have∣∣∣Ãn(i, j⋆)− Ân(i⋆, j⋆)∣∣∣ ≤ ∣∣∣Ãn(i, j⋆)−A(i, j⋆)∣∣∣+ ∣∣∣A(i⋆, j⋆)− Ân(i⋆, j⋆)∣∣∣ ≤ 4

√
log(rSK/δ)

2n
,

which implies all context-action pairs with context from block g(i⋆) will be removed from Dn.

C.6 Proof of Theorem 2

Proof. By Lemma 9 and a union bound over [S], we have that with probability 1− δ for all i ∈ [S]:

1

2

(
ν(i)− log(S/δ)

J

)
≤ ν̂(i) ≤ 2

(
ν(i) +

log(S/δ)

J

)
,

which implies that ν(i) ≥ ε/(4S) for ν̂(i) ≥ ε/S and ν(i) ≤ 3ε/S for ν̂(i) < ε/S. By definition,
for any l ∈ [L − 1], Xl consists of contexts such that ν̂(i) > 2−l−1 ≥ ε/S. As a result, for any
l ∈ [L− 1], by Lemma 9, we have that at least Nν(Xl)/2 out of N samples corresponds to Xl and
thus can be used in learning πl by executing Algorithm 1, where ν(Xl) :=

∑
i∈Xl

ν(i) ≥ ε/(4S).
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Moreover, notice that inside each Xl, the conditional context distribution is almost uniform, so we
can invoke Theorem 1 to obtain that πl is

Cε√
ν(Xl)

-optimal

over context Xl, where C = 2
√
2(10

√
log(rSK/δ) + 1). This means that,∑

i∈Xl

ν(i)

ν(Xl)

(
max
j
A(i, j)−A(i, πl(i))

)
=

Cε√
ν(Xl)

.

As a result, the total suboptimality of πout can be upper bounded as following∑
i∈[S]

ν(i)

(
max
j∈[K]

A(i, j)−A(i, πout(i))

)

≤
∑

l∈[L−1]

∑
i∈Xl

ν(i)

(
max
j
A(i, j)−A(i, πl(i))

)
+
∑
i∈XL

ν(i)

≤C
∑

l∈[L−1]

ν(Xl)×
ε√
ν(Xl)

+ ε = C
√
Lε,

where the final equality uses Cauchy-Schwartz inequality and L ≤ log(S/ε) + 1.

C.7 Proof of Theorem 3

Proof. Since r ≤ S, we have

Ω(min{r(S +K), SK}) =


Ω(SK), r ≥ K,
Ω(rS), r < K & S ≥ K,
Ω(rK), r < K & S < K.

Case (1) We construct the following hard instance:

• The reward after pulling action j ∈ [K] in block b ∈ [r] is sampled from distribution
Bernoulli(1/2 + ε1(b = j)).

• The context distribution is uniform over [S]. For each i ∈ [S], we sample g(i) uniformly at
random from [K].

The above instance is the standard one commonly used in proving lower bounds for contextual bandit
with S contexts and K arms [e.g., Lattimore and Szepesvári, 2020]. And learning an ε-optimal policy
for the above hard instance requires at least Ω(SK/ε2) samples.

Case (2) We only need to slightly modify the above hard instance:

• The reward after pulling action j ∈ [K] in block b ∈ [r] is sampled from distribution
Bernoulli(1/2 + ε1(b = j)).

• The context distribution is uniform over [S]. For each i ∈ [S], we sample g(i) uniformly at
random from [r].

The above modified problem is equivalent to the original one with S contexts but r arms. As a result,
a lower bound of form Ω(Sr/ε2) holds.
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Case (3) Similarly, we slightly modify the first hard instance:

• For each block b ∈ [r], sample j⋆b uniformly at random from [K]. The reward after pulling
action j ∈ [K] in block b ∈ [r] is sampled from distribution Bernoulli(1/2 + ε1(j = j⋆b )).

• The context distribution is uniform over [r] and g(i) = min{i, r}.

The above modified problem is equivalent to the original one with K arms but r contexts. As a result,
a lower bound of form Ω(Kr/ε2) holds.

D Proof of Theorem 4

In this section, we first show key lemmas to prove Theorem 4. The proofs of the lemmas are deferred
to Appendix E.

In the following discussion, we consider a single phase (i.e. fix an error εh). Similar to the analysis
of other phased elimination algorithms, we have to show that in a phase specified by error level εh,
with high probability, (i) the optimal arm is not eliminated and (ii) all ω(ε̃h)-suboptimal arms are
eliminated, that is, all arms in GOODh(C) for all C are O(ε̃h)-optimal.

The following lemma is the counterpart of Lemma 11, which ensures that every arm is played in
every block.
Lemma 14. With probability at least 1 − 2δh, for any cluster C ∈ Ph and any block b so that
B(b) ⊆ C, we have that: for any j ∈ GOODh(C) there exists (i, j) ∈ Dh satisfying g(i) = b.

The above lemma ensures that every block has a least one context i assigned to include (i, j) in Dh.
Thus, every arm is explored for every block.

Next, we define an event Eh under which the estimates Âh are good:

Eh =

{
|Âh(i, j)−A(i, j)| ≤

ε̃h
4
, ∀(i, j) ∈ Dh

}
.

The level of precision ε̃h
4 is more accurate than the elimination step and will be helpful in the analysis.

The following lemma states that Eh is a high probability event.
Lemma 15. Event Eh holds with probability 1− δh.

Next, let jb = argmaxj∈[K] µ(b, j) be the optimal arm in block b. The next lemma says that the
optimal arm jb is not eliminated during the execution of the algorithm.
Lemma 16. Assume action jb ∈ GOODh(C) for every block b ∈ [r], and its corresponding partition
Ph ∋ C ⊇ B(b). Then for every block b ∈ [r], jb is not eliminated from GOODh+1(C) with
probability at least 1− 3δh.

The high-level idea of the proof is that the error of the estimated mean is smaller than ε̃h, so Ât(i, jb)
will not be much worse than other arms, given that its true mean is largest. The next lemma shows
that arms in GOODh+1(C) are all O(εh)-optimal. Formally, we say an arm j in a block b is ε-
optimal if maxj′ µ(b, j

′)− µ(b, j) ≤ ε. Similarly, we say an arm j in a block b is ε-suboptimal if
maxj′ µ(b, j

′)− µ(b, j) ≥ ε.
Lemma 17. For any block b ∈ [r] and its corresponding cluster Ph ∋ C ⊇ B(b), all 3ε̃h-suboptimal
arms in block b are eliminated in GOODh+1(C) with probability at least 1− 3δh. Consequently, only
6ε̃h-optimal arms in block b are played in phase h+ 1 for every context in block b.

Finally, we need to argue that Algorithm 5 is not called too many times. To show this, we first provide
a general guarantee of Algorithm 5.
Lemma 18. Suppose we have context iu ∈ B(bu) ⊆ C in block bu and context il ∈ B(bl) ⊆ C in
block bl so that

A(iu, j)−A(il, j) = µ(bu, j)− µ(bl, j) >
3r

2

√
l̃g · ε′.
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Then Algorithm 5 separates B(bu) and B(bl) perfectly with probabilty at least 1 − 2δ′. In other
words, there exist indices cu and cl, cu ̸= cl, such that B(bu) ⊆ Pcu and B(bl) ⊆ Pcl .

Consequently, with a high probability, Algorithm 4 makes progress in terms of clustering contexts
every time calling Algorithm 5 and the number of calls is bounded by r, as shown in the following
lemma.

Lemma 19. When Algorithm 5 is called by Algorithm 4, it separates at least two blocks and never
separates contexts in the same block with probability at least 1− 5δh. Consequently, Algorithm 5 is
called at most r times.

We are now ready to bound regret.

Proof of Theorem 4. Since there are at most O(logT ) phases, it suffices to bound regret at a single
phase h. Conditioned on all the high probability good events in the previous lemmas, we first
bound the total number of timesteps spent in phase h. In the data collection stage, we use at most
Lh = r(S+K)l̃gh

ε2h
samples; as for the clustering stage, by Lemma 19, we know the total length of

executing Algorithm 5 is at most

rL′ = rS l̃g/ε′2 = 16Sr3 l̃g/ε2h = Õ

(
r3S

ε2h

)
.

Thus, the length of phase h is the minimum of T and Õ
(
r3(S+K)

ε2h

)
. Therefore, by Lemma 17, the

regret is at most (recall that ε̃h =
√
logh · εh = Õ(εh))

6ε̃h ·min

{
T, Õ

(
r3(S +K)

ε2h

)}
= min

{
6T ε̃h, Õ

(
r3(S +K)

εh

)}
= min

{
Õ (Tεh) , Õ

(
r3(S +K)

εh

)}
= Õ

(√
r3(S +K)T

)
.

On the other hand, the bad events happen with probability O(δh) = O(ε2h/(r
3SK)). In this case the

regret contributes at most Õ(1).

E Missing Proofs in Appendix D

E.1 Proof of Lemma 14

Proof. Note that under the uniform block assumption, we have ω(b) = 1
r ≥

εh
r . Thus, the proof

follows directly from the proof of Lemma 11 when εb = εh, δ = ε2h, and n = nh. The only difference
is when applying Lemma 6, Lemma 11 uses K = [K] but we need K = GOODh(C) here.

E.2 Proof of Lemma 15

Proof. Fix an (i, j) pair. Applying Lemma 7, we have with probability 1− δh
SK ,∣∣∣Âh(i, j)−A(i, j)∣∣∣ ≤ 2

√
log(SK/δh)

2(nh)
≤ ε̃h

4
.

We complete the proof by applying a union bound on all (i, j) pairs in Dh.

E.3 Proof of Lemma 16

Proof. We prove by contradiction. Assume that jb is removed from GOODh(C). Let

j′ = argmax
j∈GOODh(C)

µh(C, j)
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be the action achieving the highest empirical mean. By Lemma 14 there exists a context i′ ∈ B(b)
so that (i′, j′) ∈ Dh. Moreover, the assumption that jb is eliminated implies that the condition at
Line 7 of Algorithm 4 does not hold for the current partition Ph, which further implies that there
exists context i ∈ C so that

Âh(i, j
′)− Âh(i′, j′) = µh(C, j′)− Âh(i′, j′) < ε̃h .

On the other hand, by the assumption that jb is eliminated, again by Lemma 14 we have that there
exists a context i′′ ∈ B(b), (i′′, jb) ∈ Dh such that

µh(C, j′)− Âh(i′′, jb) ≥ µh(C, j′)− µh(C, jb) > 2ε̃h .

Combining two inequalities, we have

Âh(i
′′, jb) + ε̃h < µh(C, j′)− ε̃h < Âh(i

′, j′).

This means that µ(b, jb) + ε̃h
2 < µ(b, j′) under Eh, which contradicts the optimality of jb. Therefore,

we conclude that jb is not eliminated.

E.4 Proof of Lemma 17

Proof. By Lemma 16, jb is not eliminated for any block b ∈ [r] with probability at least 1 − 3δh.
Thus, for any block b ∈ [r] and arm j ∈ GOODh(C) so that µ(b, jb)− µ(b, j) > 3ε̃h, we have

max
j′

µh(C, j′)− µh(C, j) ≥ µh(C, jb)− µh(C, j) ≥ µ(b, jb)− µ(b, j)− 2 · ε̃h
4
> 2ε̃h .

Therefore, j is eliminated at Line 14.

E.5 Proof of Lemma 18

Proof. With probability 1− δh
S , context i receives at least 2/ε′2 ≥ 2n

′
samples by Lemma 9. Thus,

Â(i, j) is well defined for every i ∈ C with probability 1− δh. Moreover, by Lemma 7 and a union
bound, we have for every context i, with probability at least 1− δh,

∣∣∣A(i, j)− Â(i, j)∣∣∣ ≤
√
l̃g · ε′

4
(8)

Clearly, we have Â(iu) ≥ Â(il) under Eq. (8). Consequently, to simplify the notation, we do the
following modification on labels of contexts and blocks. First, we restrict the game to C, where there
are S′ contexts and r′ blocks; also, we relabel contexts so that iu = 1, il = S′, and

Â(iu) = Â(1) ≥ Â(2) ≥ · · · ≥ Â(S′ − 1) ≥ Â(S′) = Â(il).

Finally, given a context i ∈ [S′], we define

µ(b) = max
i′∈[S′],g(i′)=b

Â(i′, j) and µ(b) = min
i′∈[S′],g(i′)=b

Â(i′, j)

for its block b = g(i) and we relabel blocks so that bu = 1 ≤ g(i) ≤ r′ = bl and

µ(bu) = µ(1) ≥ µ(bu − 1) ≥ · · · ≥ µ(bl + 1) ≥ µ(r′) = µ(bl).

It is not hard to see that this modification is without loss of generality. We show next that there exists
a context i, iu < i ≤ il, such that Line 7 of Algorithm 5 holds, that is,

Â(i− 1, j)− Â(i, j) ≥
√

l̃g · ε′. (9)

We prove this by contradiction. Assume Eq. (9) doesn’t hold for any k.
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Then we have

A(iu, j)−A(il, j) ≤ |A(iu, j)− µ(bu)|+ |A(il, j)− µ(bl)|+ µ(bu)− µ(bl)

=

√
l̃g · ε
4

+

√
l̃g · ε
4

+

bl∑
b=bu+1

µ(ib−1)− µ(ib)

<

√
l̃g · ε
2

+

bl∑
b=bu+1

µ(ib−1)− µ(ib) +
√
l̃g · ε′

≤

√
l̃g · ε
2

+
3

2
· (r − 1)

√
l̃g · ε′

<
3

2
· r
√
l̃g · ε′,

which contradicts the condition that A(iu, j)−A(il, j) ≥ 3r
2

√
l̃g · ε. Therefore, we conclude that

Eq. (9) holds for some k.

E.6 Proof of Lemma 19

Proof. The proof follows directly from Lemma 18 and the fact that Algorithm 4 use ε′ = εh
4r and thus

A(i, j)−A(i, j) ≥ ε̃h
2
≥

√
l̃gh · εh
2

>
3

2
· r
√

l̃g · ε′,

which satisfies the condition of Lemma 18.

F Non-uniform Context Distribution

We show a reduction to problems with approximately uniform context distributions. The cost of
this reduction is an extra Õ(

√
ST ) additive regret and an extra O(log(ST )) multiplicative factor

in regret. The idea is to learn the context distribution in the first Õ(
√
ST ) timesteps. With high

probability, we can estimate ν(i) for any context i with a constant multiplicative error as long as
ν(i) = Ω̃(1/

√
ST ).Then we split the contexts into several buckets so that contexts within the same

bucket have the same probability up to a constant factor. For contexts i with ν(i) = o(1/
√
ST ), we

can not estimate the probability properly but we can simply ignore such contexts and suffer regret
at most O(T · S · 1/

√
ST ) = O(

√
ST ). We then run the algorithm that handles uniform context

distribution for each bucket separately. Since there are O(log(ST )) buckets, the overall regret is
O(log(ST )) times maximum regret over all subsets (or

√
log(ST ) with refined analysis using a

Cauchy–Schwarz inequality).

G Proof of Theorem 5

Define

εh,b = max

{
1,

1

rω(b)

}
εh, for b ∈ [r].

Also, for every phase h and every level n, we define

ε̃h,n =

√
l̃gh
2n
.

Next, we show the counterpart of Lemma 14 in the non-uniform case.
Lemma 20. With probability at least 1− 2δh, for any cluster C ∈ Ph, any block b with B(b) ⊆ C,
we have that: for any level n ≤ ⌈log(1/ε2h,b)⌉, action j ∈ GOODh,n(C), there exists (i, j) ∈ Dh
satisfying g(i) = b.
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Proof. Fix a block b ∈ [r]. For each accuracy level, recall in the step of data collection, we sample
L = r(S +K)l̃gh2

n contexts i.i.d. from ν. By Lemma 9, with probability 1− δh
r , at least Lω(b)/2

of them are from block b as

Lω(b) ≥ 8L

S
≥ l̃g ≥ 16 log(r/δh),

where the first inequality comes from the near-uniform context distribution assumption. Since we
add a context-action pair into Dn once we have collected

2n ≤ 2⌈log(1/ε
2
h,b)⌉ < 2log(1/ε

2
h,b)+1 = 2/ε2h,b

samples for estimating its reward. Note that in the end, there are at most |B(b)|(2n − 1) samples
from block b unused. Thus, with probability 1− δh

S , the number of the context-action pairs, where
the contexts are from block b, that are added into Dn is at least

Lω(b)/2− |B(b)|(2n − 1)

2n
≥ Lω(b)/2

2/ε2h,b
− S (2n ≤ 2/ε2h,b and |B(b)| ≤ S)

≥ Lεh/(2rεh,b)

2/ε2h,b
− S (by definition of εh,b)

= 16(S +K) log(rSK/δh)− S (the value of L)
≥ K log(rSK/δh).

Conditioned on this event, with probability 1− δh
r , for any j ∈ GOODh,n(C), there exists (i, j) ∈ Dn

satisfying g(i) = b by Lemma 6. Therefore, the lemma holds for block b with probability at least
1− 2δh

r We complete the proof by a union bound on all blocks.

Now define a good event Eh as

Eh =

{∣∣∣Âh,n(i, j)−A(i, j)∣∣∣ ≤ 1

4
ε̃h,n, ∀(i, j) ∈ Dh, n ∈ [Nh]

}
.

Lemma 21. Event Eh holds with probability 1− δh.

Proof. Fix an (i, j) pair and level n. Applying Lemma 7, we have with probability 1− δh
SKNh

,∣∣∣Âh,n(i, j)−A(i, j)∣∣∣ ≤ 2

√
log(SKNh/δh)

2n
≤ 1

4
ε̃h,n.

We complete the proof by applying a union bound on all (i, j) pairs inDh and all levels n ∈ [Nh].

In the following, we present and then prove the counterpart of Lemma 16 for Algorithm 6.
Lemma 22. Assume action jb ∈ GOODh,n(C) for b ∈ [r] with ω(b) ≥ 2εh

r , and its corresponding
cluster Ph ∋ C ⊇ B(b). Then jb is not eliminated from GOODh+1,n(C) with probability at least
1− 3δh for any level n ≤ ⌈log(1/ε2h,b)⌉.

Proof. We prove by induction on n. The base case is n = 1, which satisfies the condition of
Lemma 20 as

log

(
1

ε2h,b

)
≥ log

(
ω(b)2r2

ε2h

)
≥ log(4) ≥ 1 = n.

For the inductive step we prove by contradiction. Assume that jb is eliminated in GOODh,n+1(C)
but not eliminated in GOODh,n(C) for n ≥ 2. This means that the following inequality hold:

max
j′∈GOODh,n(C)

µh,n(C, j′)− µh,n(C, jb) > 2ε̃h,n

Let j′ = argmaxj∈GOOD(n,C) µh,n(C, j). By Lemma 20 there exists a context i′ ∈ B(b) so that
ψ(n, i′) ∋ j′ as n ≤ log(1/ε2h,b). Moreover, the assumption that jb is eliminated implies that the
condition at Line 8 does not hold for the current partition Ph, which further implies that

µh,n(C, j′)− Âh,n(i′, j′) < ε̃h,n
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On the other hand, by the assumption that jb is eliminated, again by Lemma 20 we have that there
exists a context i′′ ∈ B(b), ψ(n, i′′) ∋ jb such that

µh,n(C, j′)− Âh,n(i′′, jb) > 2ε̃h,n

Combining two inequalities, we have Âh,n(i′′, jb) + ε̃h,n < Âh,n(i
′, j′). This means that µ(b, jb) +

ε̃h,n

2 < µ(b, j′) by Lemma 21, which contradicts the optimality of jb. Therefore, we conclude that jb
is not eliminated.

Now we present a key lemma similar to Lemma 17.

Lemma 23. For any block b ∈ [r] with ω(b) ≥ 2εh
r and its corresponding cluster Ph ∋ C ⊇ B(b), all

3ε̃h,n-suboptimal arms in block b are eliminated in GOODh+1,n(C) for any level n ≤ ⌈log(1/ε2h,b)⌉
with probability at least 1 − 3δh. Consequently, only 6ε̃h,n-optimal arms in block b are played in
phase h+ 1 for every context in block b.

Proof. By Lemma 22, jb is not eliminated with high probability, so for every pair of block b ∈ [r]
with ω(b) ≥ 2εh

r and arm j ∈ GOODh,n(C) so that µ(b, jb)− µ(b, j) > 3ε̃h,n, we have

max
j′

µh,n(C, j′)− µh,n(C, j) ≥ µh,n(C, jb)− µh,n(C, j) ≥ µ(b, jb)− µ(b, j)−
ε̃h,n
2

≥ 2.5 · ε̃h,n > 2ε̃h,n

Therefore, j is eliminated in GOODh,n(C), and thus eliminated in GOODh+1,n′(C) for n′ > n.

G.1 Proof of Theorem 5

Proof. Fix a phase h and a level n. It suffices to bound regret within a single pair (h, n). For b ∈ [r],
let nb = ⌈log(1/ε2h,n)⌉. By Lemma 23, if n > nb, all 6ε̃h,nb

-suboptimal arms are eliminated from
GOODh,n(C) for any cluster C ∈ Ph. Therefore, regret of playing an action from GOODh,n(C) is
6ε̃h,nb

. In this case, regret is bounded by

∑
b∈[r]

r(S +K)2(n+h)/2 · ω(b) · 6ε̃h,nb
≤
∑
b∈[r]

r(S +K)2(n+h)/2 · ω(b) · 6

√
l̃gh
2nb

≤ 6

√
l̃gh

∑
b∈[r]

r(S +K)2(n+h)/2 · ω(b) · εh,b

≤ 6

√
l̃gh

∑
b∈[r]

r(S +K)2(n+h)/2 · ω(b) · εh
rω(b)

≤ 6

√
l̃ghr(S +K)2(n+h)/2 = Õ

(
r(S +K)2h/2

)
If n ≤ nb, a similar argument shows that regret of playing an action from GOODh,n(C) is 6ε̃h,n.
Therefore, regret is bounded by

∑
b∈[r]

r(S +K)2(n+h)/2·ω(b) · 6ε̃h,n ≤ 6
∑
b∈[r]

ω(b) · r(S +K)2(n+h)/2

√
l̃gh
2n

≤ 6

√
l̃ghr(S +K)2h = Õ

(
r(S +K)2h/2

)
We conclude the overall regret is Õ

(√
r(S +K)T

)
for the data collection stage by noting that

T ≥ r(S + K)2(h−1) as phase h − 1 is executed completely. The same argument holds for
analyzing the clustering stage when replacing r with r3, so we conclude the regret is bounded by
Õ
(√

r3(S +K)T
)

.
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H Omitted Details in Section 5

In this section we discuss how to solve the more general low-rank bandit problem. Note that
A has rank r if and only if there exist vectors w1, . . . , wS ∈ Rr and v1, . . . , vK ∈ Rr so that
A(i, j) = w⊤

i vj . We first consider r = 1 and assume that every wi is non-negative. In this case, we
have

argmax
j∈[K]

A(i, j) = argmax
j∈[K]

wivj = argmax
j∈[K]

vj . (10)

In other words, there exists an arm that is optimal for all contexts. The problem becomes simple as
we can run the EXP4 algorithm [Auer et al., 2002] using constant experts that recommend the same
arm for all contexts. Thus, we will have only K experts and have the following proposition:

Proposition 24. Consider the rank-1 bandit problem with r = 1 and wi ≥ 0 for every i ∈ [S]. The
regret of the EXP4 algorithm run with K constant experts is bounded by O(

√
KT logK).

However, the idea seems hard to generalize when wi ∈ R, as Eq. (10) does not hold anymore and we
need exponentially many experts for EXP4. Next we introduce a new idea based on a reduction to
context-lumpable bandits.

In the following we define constant B = maxi ∥wi∥∞. To better illustrate the idea we first assume
r = 1 and consider the PAC setting. We create an α-covering of [−B,B] and “cluster” each i into
one of the segment. Specifically, we have 2B

α intervals[
−B,−B +

1

α

]
,

(
−B +

1

α
,−B +

2

α

]
, . . . ,

(
B − 1

α
,B

]
and each wi is assigned to the interval that contains it. Given α, letRα denote the number of intervals
that have at least one context. Conceptually we can view contexts in the same interval as if they are
in the same block in context-lumpable bandits, and we have Rα blocks analogously. For contexts
i, i′ in the same interval, they are indeed similar in the sense that we have |A(i, j)−A(i, j)| = O(α)
for every arm j. Intuitively, if α is much smaller than ε, then Algorithm 1 can proceed normally as a
rank-Rα context-lumpable bandit problem. Consequently, we have the following theorem.

Theorem 25. For r = 1, by choosing α = Θ(ε), Algorithm 1 uses Õ
(
Rα(S +K)/ε2

)
samples and

outputs an Õ (ε)-optimal policy.

Clearly we have Rα ≤ min
{

1
α , S

}
, so the above theorem leads to a Õ

(
(S +K)/ε3

)
sample

complexity in the worst case. The idea can be generalized to regret minimization and r > 1.
Specifically, we construct an α-grid of [−B,B]r so thatRα = O( 1

αr ) and run Algorithm 6 for regret
minimization. Consequently, we have the following theorem:

Theorem 26. Let p = 1
3r+2 and choose α = (S +K)pT−p. Then regret of Algorithm 6 is bounded

as RegT = Õ
(
(S +K)pT 1−p).

Proof. Similar to previous analysis, the regret in a single phase h is

Õ (εh) ·min

{
T, Õ

(
R3
α(S +K)

ε2h

)}
= min

{
Õ (εhT ) , Õ

(
R3
α(S +K)

εh

)}
(11)

Recall thatRα = O(1/αr). Therefore, when α = Θ(εh), we have the above regret is bounded by

Õ

(
R3
α(S +K)

α
+ αT

)
= Õ

(
(S +K)

α3r+1
+ αT

)
= Õ

(
(S +K)pT 1−p)

when choosing α optimally as α = (S + K)pT−p. Otherwise, α = o(εh) and Eq. (11) can be
bounded by

Õ

(
R3
α(S +K)

εh

)
= Õ

(
R3
α(S +K)

α

)
= Õ

(
(S +K)pT 1−p) .

We finish the proof by noting that there are at most log T phases.
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The bound becomes non-trivial when S and K are large. For example, when S = K =
√
T , the

bound is T 1−p/2 = o(T ) for any r while the Õ
(√

SKT
)

bound given by EXP4 is vacuous. The

factor 3 comes from the r3 term in the regret bound of Theorem 5. It is a promising direction to first
improve the factor in context-lumpable bandits and extend it to low-rank bandits using the reduction
introduced here.
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