
Metis: Understanding and Enhancing In-Network
Regular Expressions

Zhengxin Zhang∗§‡, Yucheng Huang∗§‡, Gunaglin Duan∗§‡, Qing Li†‡, Dan Zhao‡
Yong Jiang♮, Lianbo Ma♭, Xi Xiao♮, Hengyang Xu♠

§Tsinghua University, ‡Peng Cheng Laboratory, ♭Northeastern University
♮Tsinghua Shenzhen International Graduate School, ♠Tencent

zhang-zx21@mails.tsinghua.edu.cn

Abstract

Regular expressions (REs) offer one-shot solutions for many networking tasks, e.g.,
network intrusion detection. However, REs purely rely on expert knowledge and
cannot learn from massive ubiquitous network data for automatic management.
Today, neural networks (NNs) have shown superior accuracy and flexibility, thanks
to their ability to learn from rich labeled data. Nevertheless, NNs are often incom-
petent in cold-start scenarios and too complex for deployment on network devices.
In this paper, we propose Metis, a general framework that converts REs to network
device affordable models for superior accuracy and throughput by taking advantage
of REs’ expert knowledge and NNs’ learning ability. In Metis, we convert REs
to byte-level recurrent neural networks (BRNNs) without training. The BRNNs
preserve expert knowledge from REs and offer adequate accuracy in cold-start
scenarios. When rich labeled data is available, the performance of BRNNs can
be improved by training. Furthermore, we design a semi-supervised knowledge
distillation to transform the BRNNs into pooling soft random forests (PSRFs) that
can be deployed on network devices. We collect network traffic data on a large data
center for three weeks and evaluate Metis on them. Experimental results show that
Metis is more accurate than original REs and other baselines, achieving superior
throughput when deployed on network devices.

1 Introduction

Symbolic rules are indispensable and widely used in network scenarios (Wang & Zhang, 2021). As
one of the most representative forms of symbolic rules, regular expressions (REs) are long-established
in natural language processing (NLP) and network tasks, e.g. pattern matching (Hosoya & Pierce,
2001; Zhang & He, 2018), network measurement and anomaly detection (Kumar & Dharmapurikar,
2006; Sherry & Lan, 2015; Hypolite et al., 2020). RE-based systems are constructed based on expert
knowledge and do not require labeled data for training. Therefore, RE-based systems are well-suited
for zero-shot scenarios. However, the disadvantages of RE-based systems are also obvious. First,
RE-based systems rely on experts to construct and update, making them hard to maintain. Second,
RE-based systems cannot learn from labeled data, which usually contains underlying implications of
the concerned problems beyond experts’ subjective perception. Meanwhile, by exploiting labeled
training data, many neural networks (NNs) models outperform RE-based systems on various tasks.
For example, NNs achieve higher accuracies than RE-based systems in network intrusion detection
(Fu et al., 2021) and application classification (Yu et al., 2020). However, in many network scenarios,

∗Equal contribution.
†Corresponding author: Qing Li (liq@pcl.ac.cn).

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

obtaining labeled data is challenging (Mirsky et al., 2018; Li et al., 2022), and the computational
capabilities of network devices are limited, making it difficult to deploy NNs.

Recently, Jiang & Zhao (2020) tries to combine the advantages of symbolic rules and neural networks.
They transform multi-string matching patterns into a trainable recurrent neural network (RNN),
which can benefit from the high accuracy of RNN while being deployable in cold-start scenarios.
However, multi-string matching patterns can only match simple strings, which is not sufficient to
represent complex text patterns. Regular expression matching is a more versatile tool than multi-string
matching for matching complex text patterns, thanks to the representation capacity offered by its
syntaxes such as Kleene star (e.g., ‘*’), counting constraint (e.g., “{N, M}”), character class (e.g.,
“[a-fA-F0-9]”), and hexadecimal numbers (e.g., “\xff”). As such, jointly exploiting the advantages of
REs and NNs offers new opportunities for network device affordable solutions with high accuracy
and throughput. Nevertheless, two challenges need to be addressed to achieve this high-level goal: 1)
how to preserve expert knowledge from REs and develop learning models with adequate accuracy
in cold-start scenarios; and 2) how to produce learning models that fit in the network devices while
retaining good performance. Since network devices have limited computation and memory resources,
deploying complex learning models transformed from regular expressions, e.g., NNs, in these devices
is often difficult or even impossible.

In this paper, we propose Metis1, an intelligent and general framework that converts RE-based
systems into learning models, which offer superior accuracy and throughput when deployed on
network devices. Our codes are available at Github2. Metis preserves expert knowledge in RE-based
systems for adequate cold-start performance and exploits NNs’ ability to further improve performance
using rich labeled data. First, we extract bytes from network packets as input features and construct
byte-level deterministic finite-state automata (DFAs) from network rules, i.e., REs. Second, the
DFAs are transformed into byte-level RNNs (BRNNs). Without training data, the BRNNs preserve
the accuracy of RE-based systems for adequate performance in cold-start scenarios. When enough
labeled data is collected, BRNNs’ performance can be further improved by training with data. Third,
we train pooling soft random forests (PSRFs) under the instruction of BRNNs using semi-supervised
knowledge distillation (SSKD). Through the SSKD, we transfer the superior learning capability of
BRNNs to PSRFs, which can be easily deployed on network devices for line-speed processing, i.e.,
100 Gbps. To the best of our knowledge, this is the first method to explore the use of model inference
as an alternative to RE matching in network scenarios. The key contributions of this paper are as
follows: 1) We propose Metis, an intelligent general framework that converts RE-based systems to
learning models deployable on network devices. 2) We develop a method for converting complex REs
into DFA and subsequently into trainable BRNNs. This method allows us to maintain the accuracy of
the RE-based system while leveraging the flexibility and capabilities of NNs. 3) We propose a novel
semi-supervised distillation algorithm SSKD, and a student model PSRF for RE matching to achieve
lightweight deployment of RE-based systems in network devices. 4) We collect network traffic data
from a large data center for three weeks that reflects real network conditions. Experiments on the
datasets demonstrate that Metis outperforms original RE-based systems and other baselines.

2 Related Work

In this section, we introduce the network rules and modern network devices, highlight the problems
of the state-of-the-art in these fields, and discuss the opportunities provided by knowledge distillation.

Network rules. Network rules serve as a fundamental building block for many network security
applications, e.g., network intrusion systems (Roesch, 1999; Project, 2022), application identification
systems (ntop, 2022), web firewalls (Trustwave, 2022) and some network censorship systems (Hoang
& Niaki, 2021). REs are one of the most representative and useful forms of network rules. In many
network security applications, such as Snort (Roesch, 1999) and Suricata (Foundation, 2022), REs
are used to inspect whether the payload of a packet matches any predefined network rules. With high
interpretability and no requirement for a training phase, RE-based systems can be quickly deployed
with decent performance in network scenarios. However, the matching speed of regular expressions
usually becomes a bottleneck since the pattern matching has to inspect every byte of a packet against

1Metis is a goddess of wisdom in Greek mythology.
2https://github.com/YouAreSpecialToMe/Metis.

2

https://github.com/YouAreSpecialToMe/Metis

a set of rules Wang & Zhang (2021). Moreover, RE-based systems cannot boost their accuracy by
training on labeled data and thus often underperform learning-based models in data-rich scenarios.

Machine learning in-network. Learning algorithms, especially deep learning ones, have been
employed in the network field to leverage their superior learning abilities, e.g., network traffic
classification (Barradas & Santos, 2021), malicious traffic detection (Fu & Li, 2021) and flow size
prediction (Poupart & Chen, 2016). As the network bandwidth grows dramatically, it has been
increasingly difficult for network applications to keep up with the high traffic volume (Cisco, 2021).
Unfortunately, existing model-based systems are unable to process high-throughput traffic, due to
their processing overhead. Although deploying more servers could achieve higher throughput, doing
so would increase the capital costs drastically, which is not symmetric to the rapid growth of network
bandwidth and network traffic nowadays.

Modern commodity network hardware devices, e.g., programmable switches (PS) (Barefoot Networks,
2021; Yang et al., 2022) and smart network interface card (NIC) (Lin et al., 2020)) provide hardware
programmability. They have comparable power consumption and capital costs as traditional fixed-
function network devices, which enables orders of magnitude cost reduction compared to commodity
CPU or other hardware alternatives (e.g., GPU and FPGA). However, as programmable network
devices only come with limited computational and memory resources, deploying learning models
directly on them is often infeasible.

Knowledge distillation. Knowledge distillation (KD) is widely adopted in model compression,
transferring the knowledge of an unwieldy teacher model, which is hard to deploy on resource-
constrained devices, into a lightweight student model (Gou et al., 2021). According to the definition
of knowledge, existing KD methods can be classified into three types: response-based KD (Hinton
et al., 2015; Chen et al., 2017), feature-based KD (Romero et al., 2014; Chen & Mei, 2021), and
relation-based KD (Yim et al., 2017). Response-based KD methods have been applied in network
scenarios since they support training a student model with a different structure from a teacher model
to adapt to network devices. The main idea of the response-based KD is to let the student model
mimic the prediction of the teacher model. Frosst & Hinton (2017) propose a soft decision tree that is
transformed from NNs using response-based KD. Xie et al. (2022) propose Mousika that leverages
the response-based KD methods to convert the deep learning models into decision trees, and extract
the flow table entries for direct deployment on programmable switches. This opens up new horizons
for bringing learning models into network devices. However, existing KD response-based methods
rely on abundant labeled data, which is not available in network scenarios.

3 Metis

Regular Expression
RE for chat
1: [0-1]*PO
2: |00 0F|

 ...

Rules Sets

...

wRE for tftp
1: \.(tx|do)
2: |02 4F|

 ...

Labeled
Dataset

BRNN (Trained)

X

S

Ut

Y
Vt

Wt

X

S

Ut

Y
Vt

Wt ...
0 1 0 1 6

Soft Label Hard Label

b'fffb23420'
b'fb101010125'
b'fffd03ff2234fb'

Network
Packets

Online

Offline

X

S

Ui

Y
Vi

Wi

X

S

Ui

Y
Vi

Wi ...

BRNN (Cold Start)

Rule2DFA DFA2BRNN BRNN2PSRF

S2

.
S1 S3 S3

30-31 50 4F

00 0F

PSRF

wRE for p2p
1: \s*a
2: |04 A0|

 ...

30-31

S2 S2

74

02

S1

.

S4

2e

S4

7864 6F

4F

S2

.
S1 S3

09-13 6109-13

04 A0

Num Label
1 chat
2 tftp
3 chat

Num Label
4 p2p
5 else
6 else

30 35 4F 2A 36 10

Pooling

DFA Extractor

SSKD

1
2

3

4

5

7Training

1

2

Figure 1: Metis framework.

3

In this section, we describe the Metis framework as shown in Figure 1. For the offline training, we
first process the network traffic and construct DFAs with bytes from network rules. Then, we convert
DFAs into BRNNs. Finally, we propose SSKD to train our PSRF under the instruction of BRNN. For
the online inference, we deploy the PSRF on network devices to process traffic in line-speed.

3.1 Rule to DFA

In the field of NLP, the input is usually natural language text. Often, the input text is naturally tok-
enized by word delimiters, e.g., spaces in English text. Then, by using pre-trained word embeddings,
dimension reduction can be easily conducted on features extracted from the tokenized text. However,
the inputs in network scenarios are bit streams extracted from packets of network traffic.

In Metis, we utilize byte-level tokenization for network bit streams and network rules. The benefits
of byte-level tokenization are two-fold. First, we can reduce the input vocabulary size to 28 = 256.
Second, byte-level tokenization facilitates the deployment of the final PSRF in network devices since
network devices typically process packets in bytes. For the incoming bit streams, we divide them into
bytes and then convert bytes to hexadecimal numbers.

Network security applications, e.g., Snort (Roesch, 1999) and Suricata (Foundation, 2022), usually
adopt Perl-compatible regular expression syntax (PCRE) (Philip Hazel, 2022) to construct network
rules. PCRE includes more representative features than REs, such as counting constraints, character
classes, and hexadecimal numbers. The syntaxes supported in this paper are shown in Appendix
A. Note that (Jiang & Zhao, 2020) only supports the first five syntaxes. Taking “\x26cvv\x3d[0−
9]{3, 4}”, a simple rule in Snort to identify policy, as an example. Hexadecimal numbers will only
appear after “\x”. Note that this rule can appear anywhere in a bit stream. So we first convert the
rule to “. ∗ \x26cvv\x3d[0− 9]{3, 4}.∗”, where ‘.’ is the wildcard that can match any character. ‘∗’
is the Kleene star operator to match the preceding subexpression zero or more times. Characters
inside the brackets (e.g., “[0− 9]”) form a character class module which ORs the characters included
in a character class. To make the rule consistent with the input data format (i.e., bytes), we convert
each character in the rule except character classes, wildcard, and counting constraint operators into
its corresponding ASCII code, using only one byte per character. So the final converted rule is
“. ∗ 0x26 0x63 0x76 0x76 0x3d [0− 9]{3, 4} .∗”.

Next, we construct deterministic finite-state automata (DFA) for the converted rules. Finite-state au-
tomata (FA) are mathematical models of computation characterizing transitions among a finite number
of states. An RE can be converted into an FA using Thompson’s construction algorithm (Thompson,
1968). We can construct a unique FA with a minimum number of states and deterministic transitions
(DFA) for an RE by the DFA construction algorithm (Rabin & Scott, 1959) and DFA minimization
algorithm (Hopcroft, 1971). Formally, a DFA is defined as a 5-tuple A = (Σ,S, T, α0, α∞), whose el-
ements are defined as: Σ: the input vocabulary. In the byte-level input process, |Σ| = V = 28 = 256;
S: a finite set of states. |S| = K; T ∈ RV×K×K : transition weights. T [σ, si, sj] is the weight of
transferring si to sj according to the input σ. In DFA, T [σ, si, sj] is 1 indicates si can transfer to
sj otherwise 0; α0 ∈ RK : initial weights of S. α0[i] is the initial weight of si when time t = 0;
α∞ ∈ RK : final weights of S . α∞[i] is the final weight of si after reading the whole input. Consider
an input sequence X = {x1, x2, ..., xN} and a path p = {u1, u2, ..., uN+1}, where ui is the index of
state considering xi. The score B(A, p) of path p is defined as

B(A, p) = α0 [u1] ·

(
N∏
i=1

T [xi, ui, ui+1]

)
· α∞ [uN+1] . (1)

Let π(X) be the set of all possible paths starting from S0 and ending at S∞, where S0 is the set of
start states and S∞ is the set of final states. The sum of path scores, Bfw(A,X), can be computed by
the Forward algorithm Baum & Petrie (1966):

Bfw (A,X) =
∑

p∈π(X)

B(A,p) = αT
0 ·

(
N∏
i=1

T [xi]

)
·α∞. (2)

As mentioned above, we can build a DFA using the converted rules. Note that transitions in our DFA
consist of bytes. To construct the DFA more concisely, when constructing the transformation matrix,
we treat wildcards and character classes as special words in the input vocabulary for quick processing.

4

3.2 DFA to BRNN

Our DFA is parameterized by Θ =< T,α0, α∞ >. Let ht ∈ RK be the forward score considering
the first t words {x1, x2, ..., xt} of X . We rewrite the forward score into a recurrent form:

h0 = αT
0 , (3)

ht = ht−1 · T [xt] , 1 ≤ t ≤ N, (4)
Bfw(A,X) = hN · α∞. (5)

Here, we treat matching on RE as a binary classification task, which can suit most network applica-
tions. To this end, we expand Bfw(A,X) to a vector [1, 0] when Bfw(A,X) is 0, and [0, 1] otherwise.
It can be easily generalized to multi-classification tasks as well. Recall that the calculation of the
hidden states in the forward propagation of the RNN is formulated by ht = σ

(
Uxt +Wht−1 + b

)
,

where σ is the activation function. When U = 0, b = 0, W = T , and σ is the identity function, the
forward score calculation of DFA (E.q. 4) is similar to the forward propagation of RNN. Therefore,
we convert the DFA with byte-format transitions into an RNN with Θ, called BRNN. In practice,
fine-grained classification may be desired, which considers the different combinations of final states,
i.e., different terminal state combinations correspond to different output categories. In this case, we
can use an MLP after BRNN as the aggregation layer. The BRNN converted from DFA can retain
the performance of the original RE and be put into production immediately without waiting for data
collection. When enough labeled data is collected, the performance of the BRNN can be further
improved through training.

3.3 BRNN to PSRF

The BRNN is often difficult to deploy on network devices directly. To promote easy deployment
on network devices, we further convert BRNN into pooling soft random forest (PSRF) using semi-
supervised knowledge distillation (SSKD).

Existing knowledge distillation approaches (e.g., Mousika) face two major problems when applied
in network scenarios. First, labeled data only accounts for a very small proportion of the massive
network traffic. It is challenging to distill a student model with high accuracy in such data-scarce
scenarios. Second, due to the limited computation resources, memory, and supported operations
of network devices, there are stringent restrictions on the selection of student models. Specifically,
only tree-based models (e.g., the decision tree and the random forest) can be deployed. However,
tree-based models are not suitable for unaligned and sequential features (payloads of network packets),
making network tasks challenging, such as RE matching.

In Metis, we propose SSKD and PSRF, which overcome the above-mentioned problems with two
key ideas. First, we introduce the semi-supervised learning strategy into the knowledge distillation.
Attributing to the cold-start characteristic of our BRNN, the BRNN can effectively preserve the
expert knowledge from the RE-based system and hence offers adequate accuracy without training
data. As a result, we jointly utilize the ground truth of labeled data and inference results of BRNN
on both labeled and unlabeled data to train the student model. Second, we select the PSRF as the
student model instead of the soft decision tree. To exploit the context information within the sequence
features, we introduce the pooling operation before training. Since the matched pattern in payloads
may shift, leveraging context information can alleviate overfitting and boost accuracy.

SSKD aims to train the PSRF, consisting of several pooling soft trees (PST). The training phase of
SSKD includes three steps. First, we perform t times of sampling with a replacement on all data
(including both labeled data and unlabeled data) to obtain a sample set U = {U1, U2, U3, . . . , Ut},
where Ui = {(x1, y1), (x2, y2), . . . , (xn, yn)}, i = 1, · · · , t, is the sample subset for the i-th tree, t
is the number of trees in the random forest. Note that for labeled samples, y = (1, 0) or y = (0, 1),
and for unlabeled samples y = (−1,−1). Although SSKD focuses on the binary classification task in
this paper, it can be easily generalized to multi-classification tasks. The input feature x is composed
of the decimal form of the bytes, i.e. integers ranging from 0 to 255. Second, we calculate the mixed
label ymix

i , and modify each item’s label in the sample subset Um, e.g., (xi, yi) to (xi, y
mix
i), where

0 ≤ m ≤ t and 0 ≤ i ≤ n. Specifically, the mixed label is calculated as

ymix = α · yhard + (1− α) · ysoft, (6)

where α is a hyperparameter ranging from 0 to 1, yhard is the hard label of a sample (a tuple including
true or false), and ysoft represents the soft label (a tuple composed of BRNN output probability). For

5

unlabeled data, ymix is effectively the output of the BRNN. For labeled data, ymix mixes the ground
truth and the output of the BRNN, which helps the student model learn the classification ability of
the teacher model. Finally, we use each sample subset Si to train a PST. Our PSRF consists of all
the trained PSTs and predicts output by majority vote. We can deploy PSRF on network devices by
converting rules to general match action table entries.

Before training, we introduce the max pooling operation to leverage the context information. We do
not apply mean pooling since mean pooling leads to an increase in feature complexity. We define the
window as w and the stride as s. For each incoming feature sequences x = [f1, f2, f3, ..., fmaxlen],
the feature sequence is transformed to [max(f1, ..., fw),max(f1+s, ..., fw+s), ...], where f repre-
sents the feature of x and maxlen is the maximum length of payload sequences. However, the
implementation of pooling operation is non-trivial in network devices due to their lack of support for
complex float computing. To implement Metis on network devices, we first extract the packet bytes
to the packet header vector through the parser. Then in the ingress pipeline, we use the match-action
unit to perform a pooling operation on the packet header vector based on the ALU in parallel. Details
of technical work can be referred to the technique report. The training process of each PST is similar
to the CART decision tree (Breiman et al., 2017) which utilizes purity to split nodes. The purity after
splitting the node via feature A is defined as

P (D,A) =
|DA

l |
D

Gini(DA
l) +

DA
r

D
Gini(DA

r), (7)

where D is the sample set of the parent node, and DA
l and DA

r are the sample sets of the left child
and right child split by feature A, respectively. The feature with the smallest P (D,A) will be used
for node split. Note that different from the calculation method of the Gini index for hard labels, we
calculate Gini(D) as

Gini(D) = 1− (

∑
(x,y)∈D y0

|D|
)2 − (

∑
(x,y)∈D y1

|D|
)2, (8)

where y = (y0, y1). The detailed training process and end conditions of the PST are consistent with
the CART decision tree. We mainly consider two hyperparameters: the number of features to consider
when looking for the best split (# split features) and the minimum number of samples required to be
at a leaf node (minimum samples). To deploy PSRF on network devices efficiently, we heuristically
aggregates table entries into clusters based on the similarity among features represented by table
entries so that each cluster only requires a more compact table.

4 Experiment

4.1 Experiment Setup

Dataset. Although there are several existing datasets collecting the real traces, e.g., CAIDA (Caida,
2019) and MAWI (Kenjiro Cho, 2000), most of them do not contain the payload of network traffic
to protect user privacy, which makes them unsuitable for evaluating Metis. To evaluate Metis in
realistic and diverse network scenarios, we collect packet-level traces at gateways of a large data
center, which belongs to one of the largest public cloud providers. The data center serves tens of
Tbps traffic for customers with diverse cloud access requirements. The collected traces are labeled
by the advanced attack detection system and application identification system deployed in the data
center. We use 10 minutes of traffic traces collected in different time periods of three weeks. We
construct 11 categories of the dataset based on Snort (Roesch, 1999) rules, including “chat", “ftp",
“games", “malware", “misc", “netbios", “p2p", “policy", “telnet", “tftp", and “client". Each category
of the dataset consists of a set of network rules and 200, 000 labeled data. We label the data as 0 if it
does not match any of the network rules in this category. Otherwise, we label it as 1. As such, our
task is a binary classification task. We split each category of the dataset into the training set, test set,
and validation set with a ratio of 7 : 2 : 1.

Baselines. For DFA2BRNN, we compare it with LSTM (Hochreiter & Schmidhuber, 1997), a 4-layer
CNN (Kim, 2014) and a 4-layer DAN (Iyyer & Manjunatha, 2015) which are widely applied in text
classification. For BRNN2PSRF, we compare it with a CART decision tree (DT) (Breiman et al.,
2017), a random forest (RF) (Breiman, 2001), a hard DT, a hard RF, and a soft random forest (SRF).
We use BRNN to tag unlabeled data and combine them with the ground truth to train models which

6

are called Hard DT and Hard RF. Compared to PSRF, SRF does not include the pooling operation to
verify the pooling effect.

Implementation. We conduct our experiments on a server with two 16-core CPUs (Intel(R) Xeon(R)
Gold 5218 CPU @ 2.30GHz), 64GB DRAM memory, and six GeForce RTX 2080 SUPER GPUs.
For DFA2BRNN, we set the learning rate to 10−4, batch size to 500, and hidden state to 200 for each
model. We use the cross-entropy loss as the objective function. We train each model for 200 epochs
and use early stopping to avoid overfitting. For BRNN2PSRF, we set t to 7, α to 0.3, # split features
to 7 and minimum samples to 15. We run each experiment under three different random seeds and
report the standard deviation. We implement our PSRF hardware prototype based on a Tofino switch
using the P4 language. The P4 code is compiled by Barefoot P4 Studio Software Development
Environment(SDE). We use the traffic generator KEYSIGHT XGS12-SDL to generate high-speed
traffic. We enable the Intel DPDK library on the server for high-performance traffic replay.

Ethical considerations. All data analysis had been approved by our cooperation units. We did not
investigate human behavior, surface or any individual flows or IP addresses, nor store any traffic or
individual records to disk. To protect user privacy, all packets in the collected traces are anonymized.
We restricted all analysis to network statistics directly output by Metis. We only collected the mirrored
traffic to avoid impacting network users.

4.2 Main Results

Table 1: DFA2BRNN main results on classification accuracy. Note that # TD is the number of
training data for simplicity.

Method # TD chat ftp games malware misc netbios p2p policy telnet tftp client average

RE - 85.3 83.2 91.7 87.1 81.8 84.9 86.6 87.2 84.1 84.6 83.1 85.4

0% 55.6±0.5 52.0±0.4 49.6±0.5 57.0±0.9 50.3±0.4 50.0±0.3 49.8±0.5 52.5±1.1 53.1±1.3 49.8±0.4 54.9±2.9 52.3
1% 88.3±0.4 51.6±13 88.1±0.3 92.0±0.2 90.5±0.5 89.8±0.3 84.0±0.7 86.2±0.4 90.2±0.3 89.0±0.5 82.8±0.5 84.8

10% 92.9±0.3 96.4±0.3 91.3±0.4 96.6±0.2 96.6±0.3 95.0±0.3 86.0±0.5 91.4±0.2 98.4±0.2 98.3±0.3 88.8±0.5 93.8LSTM

100% 98.8±0.2 98.6±0.2 98.7±0.3 98.6±0.2 98.7±0.3 98.5±0.4 97.9±0.1 98.3±0.2 98.7±0.3 98.7±0.2 97.5±0.2 98.5

0% 50.0±0.6 52.1±0.8 49.7±0.6 49.7±0.5 49.9±0.5 49.9±0.6 49.9±0.4 50.2±0.7 53.2±1.3 50.1±0.4 49.9±0.6 50.4
1% 88.7±0.5 96.6±0.3 92.8±0.3 95.9±0.2 94.7±0.1 80.5±0.7 91.8±0.5 92.7±0.4 98.7±0.2 95.6±0.5 94.1±0.5 93.0

10% 96.1±0.3 96.1±0.4 95.6±0.2 95.7±0.2 96.2±0.5 94.3±0.3 93.7±0.4 95.1±0.4 96.8±0.2 96.1±0.1 95.0±0.3 95.5CNN

100% 98.9±0.1 99.0±0.1 98.9±0.2 98.9±0.2 98.9±0.3 96.9±0.3 98.8±0.2 98.8±0.2 99.0±0.1 98.9±0.1 98.8±0.3 98.7

0% 50.4±0.7 49.8±0.6 48.7±2.3 49.6±0.9 50.9±1.1 50.2±0.5 51.0±0.3 49.9±0.7 51.2±1.8 50.5±0.6 50.1±0.4 50.2
1% 74.0±1.6 54.0±2.9 53.1±3.3 67.0±1.4 82.3±0.8 78.8±1.0 53.4±5.2 72.7±2.6 53.1±1.9 71.3±3.1 52.8±4.3 64.8

10% 72.7±6.6 76.5±5.7 53.3±11 72.2±2.5 87.0±0.9 80.2±1.2 80.3±0.9 80.4±1.2 88.1±0.6 77.7±2.4 64.0±6.7 75.7DAN

100% 88.2±0.6 79.6±3.3 83.7±0.7 81.9±0.6 86.3±0.5 81.6±0.9 80.7±1.2 84.5±0.9 90.6±0.3 78.9±3.8 73.7±4.0 82.7

0% 85.3±0.3 83.2±0.2 91.7±0.2 87.1±0.3 81.8±0.3 84.9±0.4 86.6±0.2 87.2±0.2 84.1±0.3 84.6±0.5 83.1±0.2 85.4
1% 95.0±0.2 97.7±0.1 96.8±0.2 95.3±0.3 94.2±0.2 94.5±0.3 91.1±0.5 92.4±0.2 98.8±0.1 90.7±0.1 93.4±0.2 94.6

10% 98.7±0.1 99.4±0.1 99.6±0.2 99.0±0.1 99.1±0.2 98.1±0.1 97.4±0.3 98.7±0.1 99.7±0.0 98.9±0.2 98.6±0.1 98.8BRNN

100% 99.8±0.1 99.9±0.1 99.9±0.1 99.7±0.2 99.8±0.1 99.8±0.0 99.8±0.1 99.8±0.0 99.9±0.0 99.8±0.1 99.9±0.1 99.8

As shown in Table 1, for DFA2RNN, we compare BRNN with baseline models trained with
0%, 1%, 10%, 100% training data, and the RE-based system. BRNN achieves the same accuracy of
83.1% ∼ 91.7% as REs in zero-shot scenarios (i.e., 0% training data). On the contrary, other baselines
literally perform random guesses, i.e., only having around 50% accuracies, in zero-shot scenarios.
In few-shot scenarios (i.e., 1% and 10% training data), BRNN also demonstrates superior accuracy
over baselines. With 1% and 10% training data, BRNN is already able to further boost the accuracies
over different categories to 90.7% ∼ 98.8% and 98.1% ∼ 99.7%, respectively. Among the baselines,
DAN performs the worst, only obtaining accuracies of 52.8% ∼ 82.3% and 53.3% ∼ 88.1% over
different categories, when given 1% and 10% training data, respectively. The best-performing one
among the baselines, i.e., CNN, also underperforms our BRNN in most categories, especially with
10% training data. For full training, LSTM and CNN achieve 98% accuracy. DAN only achieves
80% accuracy. BRNN achieves 99.8% accuracy over all categories. In a word, BRNN achieves
competitive accuracy both in data-scarce and data-rich scenarios, while the baseline models suffer
from poor accuracy in data-scarce scenarios. This lays a solid foundation for the following SSKD to
train better student models.

For BRNN2PSRF, we compare PSRF with baselines trained with 0%, 1%, 10%, 100% training data.
The results are shown in Table 2. Note that DT and RF can not be trained using SSKD when it comes
to zero-shot scenarios. In zero-shot scenarios, SRF degrades to Hard RF due to the lack of soft labels.
PSRF improves accuracy compared with SRF thanks to the pooling operation. In few-shot scenarios,
semi-supervised based models such as Hard DT, Hard RF, SRF, and PSRF demonstrate improved

7

Table 2: BRNN2PSRF main results on classification accuracy.

Method # TD chat ftp games malware misc netbios p2p policy telnet tftp client average

1% 70.3±1.8 75.0±0.8 75.7±1.0 74.0±1.1 73.8±0.7 77.5±0.8 72.7±0.8 64.5±1.5 74.3±0.7 73.7±0.9 67.9±3.0 72.7
10% 81.1±0.7 84.3±0.5 83.3±0.6 81.5±0.7 81.5±0.8 83.7±0.5 82.0±0.7 75.5±1.3 82.8±1.7 80.1±0.8 77.3±0.6 81.2DT

100% 88.6±0.6 91.7±0.3 89.4±0.3 90.3±0.4 89.3±0.8 90.0±0.7 88.7±0.6 84.8±0.5 91.4±0.3 88.3±0.7 86.5±0.6 89.0

1% 77.3±1.0 83.0±0.9 81.8±0.5 78.3±0.8 79.0±1.6 82.0±0.7 78.6±1.4 70.3±0.8 80.0±0.5 79.4±0.7 72.4±0.9 78.4
10% 86.8±0.5 89.8±0.6 86.8±0.4 87.7±0.4 87.0±0.7 87.5±0.5 87.2±0.6 81.3±0.4 88.2±0.7 86.3±0.6 82.2±0.8 86.4RF

100% 88.9±0.4 91.1±0.4 88.0±0.6 90.0±0.6 89.4±0.7 89.0±0.5 89.0±0.4 84.4±0.4 90.7±0.5 88.0±0.4 85.4±0.5 88.5

0% 78.8±0.7 77.1±0.9 84.7±0.6 79.8±0.8 81.0±0.7 75.6±1.0 81.2±0.6 79.0±1.3 73.9±1.0 79.4±0.8 78.0±0.9 79.0
1% 87.0±0.8 90.3±0.5 89.0±0.7 88.9±0.5 87.8±0.6 87.6±0.6 87.0±0.5 81.7±0.8 90.5±0.4 85.2±0.5 83.9±0.6 87.2

10% 88.6±0.5 91.4±0.3 89.9±0.4 89.8±0.4 89.0±0.5 89.9±0.3 88.6±0.5 84.9±0.6 91.2±0.2 88.32±0.5 86.4±0.7 88.9Hard DT

100% 88.1±0.6 91.7±0.3 89.6±0.5 90.6±0.2 89.3±0.4 89.9±0.4 89.0±0.5 85.0±0.6 91.7±0.4 88.6±0.7 86.5±0.6 89.1

0% 78.8±0.9 77.3±1.6 84.9±1.1 80.1±0.8 81.3±0.5 76.3±0.9 81.5±1.0 79.8±0.8 74.6±1.3 79.5±0.9 78.2±0.8 79.3
1% 86.7±0.6 90.0±0.4 86.9±0.5 88.6±0.5 87.8±0.7 86.4±0.6 87.2±0.6 81.7±0.8 89.2±0.4 84.8±0.5 82.5±0.5 86.5

10% 88.1±0.7 90.6±0.3 87.3±0.6 89.2±0.5 88.9±0.7 87.8±0.6 88.2±0.6 82.7±0.4 89.5±0.5 87.3±0.7 83.9±0.6 87.6Hard RF

100% 88.0±0.5 90.8±0.2 87.4±0.6 88.5±0.7 88.8±0.8 88.5±0.6 88.3±0.5 83.0±0.7 89.7±0.4 87.3±0.6 83.8±0.7 87.7

0% 78.8±0.8 77.3±0.7 84.9±0.9 80.1±0.6 81.3±0.6 76.3±0.5 81.5±0.6 79.8±0.7 74.6±0.7 79.5±0.8 78.2±0.6 79.3
1% 92.2±0.5 94.2±0.4 93.1±0.6 94.2±0.6 94.9±0.5 93.7±0.4 94.5±0.5 89.3±0.6 94.4±0.6 90.8±0.4 90.5±0.4 92.9

10% 94.3±0.4 94.3±0.5 94.0±0.4 95.3±0.3 96.3±0.4 94.6±0.4 95.5±0.4 92.5±0.6 95.1±0.5 94.8±0.5 92.5±0.3 94.5SRF

100% 94.9±0.4 94.8±0.4 94.2±0.5 95.7±0.3 96.4±0.2 94.7±0.4 96.0±0.3 92.7±0.4 95.1±0.2 95.2±0.2 92.6±0.3 94.7

0% 84.0±0.5 82.6±0.4 91.4±0.4 86.7±0.4 81.3±0.3 84.8±0.5 86.2±0.6 87.0±0.4 83.8±0.4 84.3±0.5 84.1±0.6 85.1
1% 95.6±0.3 96.4±0.3 96.6±0.4 94.8±0.2 96.4±0.2 94.9±0.3 97.0±0.1 93.7±0.2 94.2±0.3 95.5±0.3 92.6±0.2 95.2

10% 97.7±0.2 98.9±0.1 99.2±0.0 97.6±0.1 98.4±0.1 97.0±0.2 98.8±0.2 95.4±0.3 96.5±0.2 97.2±0.2 96.4±0.1 97.5PSRF

100% 98.6±0.1 99.3±0.1 99.5±0.0 98.1±0.2 99.0±0.3 97.3±0.2 99.1±0.1 96.8±0.2 98.4±0.3 98.7±0.3 98.3±015 98.5

accuracy compared to models trained on original labeled data, like DT and RF, highlighting the
significance of semi-supervised learning. Additionally, attributing to the pooling operation and soft
labels introduced by SSKD, PSRF demonstrates the most exceptional accuracy, with an improvement
of 9% ∼ 25% over other baselines. Furthermore, when compared to RE-based systems, PSRF shows
an improvement of around 8% ∼ 17% in accuracy. Even when provided with full training data,
PSRF maintains its superiority in terms of accuracy compared to other baselines. Our system can
easily identify normal traffic, which comprises over 99% of total traffic because it does not match RE
patterns. By analyzing the traffic, the PDF and CDF of matched abnormal packet segment lengths
are illustrated in Figure 5 in Appendix B. Although our traffic is collected from the real world and
sampled over different time periods, we find that the RE patterns in the traffic are relatively fixed,
and are only a subset of the Snort. This is why the accuracy of the baseline scheme increases rapidly
from 0% to 1% # training data, but not so much from 1% to 100% # training data. For abnormal
traffic, PSRF can effectively detect abnormal traffic containing short RE patterns (shorter than 50),
which takes up over 95% of abnormal traffic as shown in Figure 5 in Appendix B. Though PSRF may
struggle with long RE patterns due to both its inherent design logic and hardware limitation (e.g.,
the input length of PSRF cannot exceed 128 bytes, as restricted by the maximum width supported
by the switch matching table), such patterns rarely appear and thus has very limited impact: PSRF
can still achieve an accuracy higher than 99%. We also show average F1-Scores of DFA2BRNN
and BRNN2PSRF with normal/abnormal traffic ratios of 99%/1% and 50%/50% in Appendix C.
Besides, we conduct experiments on network intrusion detection using UNB ISCX IDS 2012 dataset
(Moustafa & Slay, 2015), and the results are shown in Appendix D.

4.3 Sensitivity Analysis

Effect of s and w. In Figure 2(a) and 2(b), the accuracy decreases when s increases, while the
accuracy is stable when w exceeds 2. The increase of s significantly reduces the number of features
and ignores partial context information, which impairs the accuracy. The change of w is related to the
contextual perspective of the feature and slightly affects accuracy. Note that when w = 1, the pooling
operation does not function effectively, resulting in a significant drop in accuracy. This highlights the
importance and effectiveness of the pooling operation. Therefore, we set s to 1 and w to 3.

Effect of # split features and minimum samples. As shown in Figure 2(c), when minimum
samples rise, the accuracy of PSRF decreases slightly. However, decreasing the minimum samples
will increase the depth of the tree, which will affect the speed of inference and may cause overfitting.
Therefore, we set the minimum samples to 15. As shown in 2(d), we find that the accuracy grows
slightly and then even decreases as # split features grows. The decrease results from overfitting. To
improve the training speed and accuracy, we set # split features to 8.

8

1 2 3 4 5 6
s

80

85

90

95

100

A
cc

ur
ac

y
(%

)

0% 1% 10% 100%

(a) Effect of s on accuracy

1 2 3 4 5 6
w

80

85

90

95

100

A
cc

ur
ac

y
(%

)

0% 1% 10% 100%

(b) Effect of w on accuracy

5 10 15 20 25 30
min samples

80

85

90

95

100

A
cc

ur
ac

y
(%

)

0% 1% 10% 100%

(c) Effect of min samples

2 4 6 8 10 12
split features

80

85

90

95

100

A
cc

ur
ac

y
(%

)

(d) Effect of # split features

1 5 9 13 17 21
t

80

85

90

95

100

A
cc

ur
ac

y
(%

)

(e) Effect of t on accuracy

1 5 9 13 17 21
t

0.0

0.5

1.0

1.5

2.0

en

tri
es

 (×
10

3)

(f) Effect of t on # entries

Figure 2: Sensitive analysis on PSRF.

Effect of t. As shown in Figure 2(e) and 2(f), with the increase of t, the accuracy and the # entries
of PSRF also increase. There exists a tradeoff between accuracy and efficiency. Therefore, in our
implementation, we set t to 9, which can maintain both high accuracy and high efficiency.

Effect of α. We conduct experiments on α using PSRF and the results are shown in Figure 3. In
the zero-shot scenario, the soft labels are the same as the hard labels, thus the accuracy remains the
same. For other scenarios, we find that PSRF performs well when α is in the range [0.2, 0.4]. This is
because PSRF considers both information inherited in the BRNN and the original label. When α is 0,
PSRF only considers the logits of the BRNN and when α is 1, PSRF mainly considers the original
label while ignoring the information in the logits of the BRNN. We found the PSRF performs best
when α is around 0.3, so we set α to 0.3 in our experiments.

4.4 Experiment on Network Devices

Method 0% 1% 10% 100%

DT - 410 407 411
RF - 2145 2162 2129

SRF 1973 1834 1756 1694
PSRF 1640 1513 1538 1474

Table 3: # entries consumed by different student
models on PS.

We first conduct experiments on # entries con-
sumed by different student models on pro-
grammable switches (PS). As shown in Table 3,
entries in PSRF are less than that in SRF and
RF, indicating the lightweightness of the PSRF.
Note that columns represent # TD. Although DT
achieves fewer # entries compared with SRF, it
suffers from poor accuracy as illustrated in Table 2.
Therefore, PSRF is the best choice for the student
model in terms of accuracy and resource efficiency.

Since network devices have limited computation and memory resources, it is difficult to deploy RE-
based systems on them directly. To demonstrate the superiority of Metis for processing network traffic
in practical deployment, we deploy PSRF on PS and compared it with common RE-based systems
deployed on CPUs. We use multi-core parallel processing to boost the throughput of RE-based
systems. We compare the number of (processed) packets per second (PPS) achieved by PSRF on
PS and by RE-based systems (with 1, 2, 4, 8, 16, and 32 cores) in Figure 4 to show the difference in
their throughputs. It is obvious that PSRF deployed on PS achieves a significantly higher throughput,
which is 74 times that of the RE-based system with 32 cores.

9

0.0 0.2 0.4 0.6 0.8 1.0
α

86

88

90

92

94

96

98

A
cc

ur
ac

y
(%

)

0% 1% 10% 100%

Figure 3: Effect of α on accuracy.

1 × 2 × 4 × 8 × 16 × 32 × PS

100

101

102

103

Th
ro

ug
hp

ut
 (P

PS
 ×

10
3)

0.69
1.31

2.50
4.35

6.34
9.45

697.11RE
PSRF

Figure 4: Experiment on Programmable Switches.

5 Disscussion

Limitations. 1) Due to the limitation of hardware resources (the maximum width supported by the
switch matching table is limited, e.g., 128 bytes), the input length of PSRF cannot exceed 128 bytes.
In future work, we will consider using feature compression (such as using an autoencoder) as an
attempt to support long REs. 2) Though we introduce the pooling operation into our device-friendly
model PSRF, its ability to model sequence features still has room for improvement (compared to
BRNN, PSRF after SSKD drops 2%-3% in accuracy). In future work, we will try to use other student
models, such as binary neural networks, to improve the accuracy. 3) We only test single-phrase
RE matching. In practice, some rules may be composed of multi-phrase REs. We can implement
multi-phase REs by adding aggregation operations on the results of single-phrase RE matching. This
will be part of our future work.

Societal impact on AI community. In the AI community, though many amazing NN works have
been proposed, NNs can only be deployed on powerful devices (CPU, GPU), which undoubtedly
limits the scope of their practical applications. In many domains, there exist a large number of
less-powerful devices, which cannot take advantage of the excellent performance of NNs, including
switches, network cards, intelligent gateways, and IoT devices. In mainstream large-scale data
centers, 80% of the switches have been replaced with programmable switches. However, NNs contain
complex floating-point and nonlinear operations, making it impossible to directly deploy them on
programmable switches. Therefore, our work endeavors to bring NNs into a wider community (e.g.,
network community, and security community), so that more devices can take advantage of NN’s
superior performance to improve the quantity of service (QoS), and facilitate people’s daily lives.

6 Conclusion

In this paper, we propose Metis, an intelligent and general framework to understand and enhance
regular expressions in-network by utilizing learning models. We utilize byte-level tokenization to
extract RE from network rules and process bit streams of network traffic. Then we design SSKD to
transform the BRNNs into PSRFs that can be deployed on network devices to process online network
traffic in line-speed. We collect network traffic on a large data center for the evaluation of Metis.
Experimental results show that Metis is more accurate than original REs and other baselines, while
also achieving superior throughput when deployed on network devices. We contribute Metis source
code and datasets to the AI community to stimulate the following research.

Acknowledgments and Disclosure of Funding

We would like to thank the anonymous NeurIPS reviewers for their thorough comments and feedback
that helped improve the paper. This work is supported by the National Key Research and Development
Program of China under grant No. 2022YFB3105000, the Major Key Project of PCL under grant
No. PCL2023AS5-1, and the Shenzhen Key Lab of Software Defined Networking under grant No.
ZDSYS20140509172959989.

10

References
Barefoot Networks. Tofino switch, 2021. URL https://www.barefootnetworks.com/
products/brief-tofino.

Barradas, D. and Santos, N. Flowlens: Enabling efficient flow classification for ml-based network
security applications. In 28th Annual Network and Distributed System Security Symposium, NDSS
2021, 2021.

Baum, L. E. and Petrie, T. Statistical Inference for Probabilistic Functions of Finite State Markov
Chains. The Annals of Mathematical Statistics, 37(6):1554 – 1563, 1966.

Breiman, L. Random forests. Machine learning, 45(1):5–32, 2001.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. Classification and regression trees.
Routledge, 2017.

Caida. Anonymized 2019 internet traces. http://www.caida.org/data/overview/, 2019.

Chen, D. and Mei, J.-P. Cross-layer distillation with semantic calibration. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 7028–7036, 2021.

Chen, G., Choi, W., Yu, X., Han, T., and Chandraker, M. Learning efficient object detection models
with knowledge distillation. Advances in neural information processing systems, 30, 2017.

Cisco. High capacity 400g data center networking, 2021. URL https://www.cisco.com/c/en/
us/solutions/data-center/high-capacity-400g-data-center-networking/index.
html.

Foundation, O. I. S. Suricata: Open source ids, 2022. URL https://suricata-ids.org/.

Frosst, N. and Hinton, G. E. Distilling a neural network into a soft decision tree. In Proceedings
of the First International Workshop on Comprehensibility and Explanation in AI and ML 2017
co-located with 16th International Conference of the Italian Association for Artificial Intelligence
(AI*IA 2017), volume 2071, 2017.

Fu, C. and Li, Q. Realtime robust malicious traffic detection via frequency domain analysis. In CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications Security, pp. 3431–3446.
ACM, 2021.

Fu, C., Li, Q., Shen, M., and Xu, K. Realtime robust malicious traffic detection via frequency domain
analysis. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3431–3446, 2021.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. Knowledge distillation: A survey. International Journal
of Computer Vision, 129(6):1789–1819, 2021.

Hinton, G. E., Vinyals, O., and Dean, J. Distilling the knowledge in a neural network. CoRR,
abs/1503.02531, 2015. URL http://arxiv.org/abs/1503.02531.

Hoang, N. P. and Niaki, A. A. How great is the great firewall? measuring china’s DNS censorship. In
Bailey, M. and Greenstadt, R. (eds.), 30th USENIX Security Symposium, USENIX Security 2021,
pp. 3381–3398, 2021.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural Comput., 9(8):1735–1780,
1997.

Hopcroft, J. An nlogn algorithm for minimizing states in a finite automaton. In Theory of Machines
and Computations, pp. 189–196. Academic Press, 1971.

Hosoya, H. and Pierce, B. C. Regular expression pattern matching for XML. In Conference Record
of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 67–80. ACM, 2001.

11

https://www.barefootnetworks.com/products/brief-tofino.
https://www.barefootnetworks.com/products/brief-tofino.
 http://www.caida.org/data/overview/
https://www.cisco.com/c/en/us/solutions/data-center/high-capacity-400g-data-center-networking/index.html.
https://www.cisco.com/c/en/us/solutions/data-center/high-capacity-400g-data-center-networking/index.html.
https://www.cisco.com/c/en/us/solutions/data-center/high-capacity-400g-data-center-networking/index.html.
https://suricata-ids.org/
http://arxiv.org/abs/1503.02531

Hypolite, J., Sonchack, J., and Hershkop, S. Deepmatch: practical deep packet inspection in the data
plane using network processors. In CoNEXT ’20: The 16th International Conference on emerging
Networking EXperiments and Technologies, pp. 336–350. ACM, 2020.

Iyyer, M. and Manjunatha, V. Deep unordered composition rivals syntactic methods for text clas-
sification. In Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing of the
Asian Federation of Natural Language Processing, pp. 1681–1691, 2015.

Jiang, C. and Zhao, Y. Cold-start and interpretability: Turning regular expressions into trainable
recurrent neural networks. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, pp. 3193–3207, 2020.

Kenjiro Cho, K. M. Traffic data repository at the wide project. In USENIX FREENIX Track, 2000.

Kim, Y. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882, 2014.

Kumar, S. and Dharmapurikar, S. Algorithms to accelerate multiple regular expressions matching
for deep packet inspection. In Proceedings of the ACM SIGCOMM 2006 Conference on Appli-
cations,Technologies, Architectures, and Protocols for Computer Communications, pp. 339–350.
ACM, 2006.

Li, R., Li, Q., Huang, Y., Zhang, W., Zhu, P., and Jiang, Y. Iotensemble: Detection of botnet attacks on
internet of things. In Computer Security–ESORICS 2022: 27th European Symposium on Research
in Computer Security, Copenhagen, Denmark, September 26–30, 2022, Proceedings, Part II, pp.
569–588. Springer, 2022.

Lin, J., Patel, K., and Stephens, B. E. PANIC: A high-performance programmable NIC for multi-
tenant networks. In 14th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2020, pp. 243–259, 2020.

Mirsky, Y., Doitshman, T., Elovici, Y., and Shabtai, A. Kitsune: an ensemble of autoencoders for
online network intrusion detection. arXiv preprint arXiv:1802.09089, 2018.

Moustafa, N. and Slay, J. Unsw-nb15: a comprehensive data set for network intrusion detection
systems (unsw-nb15 network data set). In 2015 military communications and information systems
conference (MilCIS), pp. 1–6. IEEE, 2015.

ntop. ndpi, 2022. URL https://www.ntop.org/.

Philip Hazel. Pcre - perl compatible regular expressions. http://www.pcre.org/, 2022.

Poupart, P. and Chen, Z. Online flow size prediction for improved network routing. In 24th IEEE
International Conference on Network Protocols, ICNP 2016, pp. 1–6, 2016.

Project, T. Z. Zeek, 2022. URL https://zeek.org/.

Rabin, M. O. and Scott, D. S. Finite automata and their decision problems. IBM J. Res. Dev., 3(2):
114–125, 1959.

Roesch, M. Snort: Lightweight intrusion detection for networks. In Proceedings of the 13th
Conference on Systems Administration (LISA-99), pp. 229–238. USENIX, 1999.

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. Fitnets: Hints for thin
deep nets. arXiv preprint arXiv:1412.6550, 2014.

Sherry, J. and Lan, C. Blindbox: Deep packet inspection over encrypted traffic. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication, SIGCOMM 2015, pp.
213–226. ACM, 2015.

Thompson, K. Programming techniques: Regular expression search algorithm. Commun. ACM, 11
(6):419–422, jun 1968.

Trustwave. Modsecurity, 2022. URL https://modsecurity.org/.

12

https://www.ntop.org/
 http://www.pcre.org/
https://zeek.org/
https://modsecurity.org/

Wang, S. and Zhang, M. Making multi-string pattern matching scalable and cost-efficient with pro-
grammable switching asics. In 40th IEEE Conference on Computer Communications, INFOCOM
2021, pp. 1–10. IEEE, 2021.

Xie, G., Li, Q., Dong, Y., and Duan, G. Mousika: Enable general in-network intelligence in
programmable switches by knowledge distillation. In IEEE INFOCOM 2022 - IEEE Conference
on Computer Communications, pp. 1938–1947. IEEE, 2022.

Yang, M., Baban, A., Kugel, V., Libby, J., Mackie, S., Kananda, S. S. R., Wu, C.-H., and Ghobadi, M.
Using trio–juniper networks’ programmable chipset–for emerging in-network applications. 2022.

Yim, J., Joo, D., Bae, J., and Kim, J. A gift from knowledge distillation: Fast optimization, network
minimization and transfer learning. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4133–4141, 2017.

Yu, L., Luo, B., Ma, J., Zhou, Z., and Liu, Q. You are what you broadcast: Identification of mobile
and iot devices from (public) wifi. In 29th USENIX Security Symposium, USENIX Security 2020,
pp. 55–72, 2020.

Zeng, Y., Gu, H., Wei, W., and Guo, Y. deep − full − range: a deep learning based network
encrypted traffic classification and intrusion detection framework. IEEE Access, 7:45182–45190,
2019.

Zhang, S. and He, L. Regular expression guided entity mention mining from noisy web data. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
1991–2000. Association for Computational Linguistics, 2018.

13

A PCRE syntaxes supported in our paper

Table 4: PCRE syntaxes supported in this paper.
Syntax Description

α Matches a single character.

αβ CONCAT operation. Matches αβ.

α|β OR (|) operation. Matches α or β.

α∗ Kleene (∗) star. Matches α zero or more times.

. Wildcard. Matches any character.

α+ PLUS (+) operation. Matches α one or more times.

α̂ Matches α only appears at the beginning of the string.

$α Matches α only appears at the ending of the string.

[α− β] Character class. The character class uses the OR operation to match a character included in the character class.

α{β, δ} Range Matching. Matches α subexpression β to δ times.

α{β, } AtLeast Matching. Matches α subexpression β or more times.

α{β} Exactly Matching. Matches α subexpression β times.

\d Matches any number, equivalent to [0− 9].

\D Matches any non-number.

\w Matches any letter, equivalent to [a− zA− Z].

\W Matches any non-letter.

\s Matches any non-whitespace character.

\S Matches any whitespace character.

B The PDF and CDF of matched abnormal packet segment lengths

0 50 100 150 200
Length

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

PD
F

(a) PDF

0 50 100 150 200
Length

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

(b) CDF

Figure 5: Matched abnormal packet segment lengths statistics.

C The average F1-Scores of DFA2BRNN and BRNN2PSRF

Table 5: The average F1-Scores of DFA2BRNN with a ratio of normal/abnormal traffic of 99%/1%.

Method 0% 1% 10% 100%

LSTM 51.04 83.29 91.95 96.84
CNN 48.50 91.81 94.19 97.47
DAN 49.92 63.24 75.06 82.30

BRNN 85.19 94.33 98.42 99.35

Table 5 and Table 6 show the average F1-Scores of DFA2BRNN and BRNN2PSRF with a ratio of
normal/abnormal traffic of 99%/1%, respectively. Note that columns represent # TD. Our BRNN and

14

Table 6: The average F1-Scores of BRNN2PSRF a ratio of normal/abnormal traffic of 99%/1%.

Method 0% 1% 10% 100%

DT - 69.32 78.59 86.10
RF - 77.20 84.93 87.41

Hard DT 76.74 85.88 86.30 87.15
Hard RF 77.46 85.79 86.58 87.00

SRF 77.46 90.94 91.12 92.28
PSRF 84.38 94.75 95.90 97.83

PSRF achieve 99.35 and 97.83 F1-Score, respectively. This is because only a very small portion of
real-world traffic contains long RE patterns. As such, BRNN and PSRF can detect most of the RE
patterns in real-world traffic.

Table 7: The average F1-Scores of DFA2BRNN with a ratio of normal/abnormal traffic of 50%/50%.

Method 0% 1% 10% 100%

LSTM 49.73 81.67 90.67 95.12
CNN 50.28 90.55 92.64 95.79
DAN 49.16 62.09 73.84 80.78

BRNN 84.47 94.01 98.30 98.26

Table 8: The average F1-Scores of BRNN2PSRF with a ratio of normal/abnormal traffic of 50%/50%.

Method 0% 1% 10% 100%

DT - 68.01 77.12 85.05
RF - 75.78 83.56 86.20

Hard DT 75.32 84.11 84.19 85.07
Hard RF 76.22 84.46 85.30 85.63

SRF 76.22 88.31 89.91 91.03
PSRF 83.94 93.22 94.55 97.37

Table 7 and Table 8 show the average F1-Scores of DFA2BRNN and BRNN2PSRF with a ratio of
normal/abnormal traffic of 50%/50%, respectively. Note that columns represent # TD. We find that
our BRNN and PSRF achieve similar F1-Score 98.26 and 97.37 compared with the results of former
experiments, respectively. The reason is that the RE patterns in the real-world traffic are relatively
fixed, and are only a subset of the Snort.

D Experiment results on network intrusion detection

Table 9: The accuracy of DFR and PSRF on network intrusion detection.

Method 0% 1% 10% 100%

RE 77.84 77.84 77.84 77.84
DFR 49.62 71.05 81.19 98.71
PSRF 75.96 78.41 83.55 98.37

Table 9 shows the accuracy of DFR (Zeng et al., 2019) and PSRF on network intrusion detection using
the UNB ISCX IDS 2012 dataset. Note that columns represent # TD. PSRF achieves 77.84% accuracy
while DFR only performs random guesses in the zero-shot scenario. In few-shot scenarios, PSRF
also demonstrates superior accuracy over DFR. For full training, PSRF achieves 98.37% accuracy
while DFR 98.71% accuracy.

15

	Introduction
	Related Work
	Metis
	Rule to DFA
	DFA to BRNN
	BRNN to PSRF

	Experiment
	Experiment Setup
	Main Results
	Sensitivity Analysis
	Experiment on Network Devices

	Disscussion
	Conclusion
	PCRE syntaxes supported in our paper
	The PDF and CDF of matched abnormal packet segment lengths
	The average F1-Scores of DFA2BRNN and BRNN2PSRF
	Experiment results on network intrusion detection

