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Abstract

As extreme weather events become more frequent, understanding their impact
on human health becomes increasingly crucial. However, the utilization of Earth
Observation to effectively analyze the environmental context in relation to health
remains limited. This limitation is primarily due to the lack of fine-grained spatial
and temporal data in public and population health studies, hindering a compre-
hensive understanding of health outcomes. Additionally, obtaining appropriate
environmental indices across different geographical levels and timeframes poses
a challenge. For the years 2019 (pre-COVID) and 2020 (COVID), we collected
spatio-temporal indicators for all Lower Layer Super Output Areas in England.
These indicators included: i) 111 sociodemographic features linked to health in
existing literature, ii) 43 environmental point features (e.g., greenery and air pol-
lution levels), iii) 4 seasonal composite satellite images each with 11 bands, and
iv) prescription prevalence associated with five medical conditions (depression,
anxiety, diabetes, hypertension, and asthma), opioids and total prescriptions. We
combined these indicators into a single MEDSAT dataset, the availability of which
presents an opportunity for the machine learning community to develop new tech-
niques specific to public health. These techniques would address challenges such as
handling large and complex data volumes, performing effective feature engineering
on environmental and sociodemographic factors, capturing spatial and temporal
dependencies in the models, addressing imbalanced data distributions, developing
novel computer vision methods for health modeling based on satellite imagery,
ensuring model explainability, and achieving generalization beyond the specific
geographical region.

1 Introduction

The impact of environmental factors on human health has gained significant attention in recent
years, particularly in the face of increasing environmental pressures caused by extreme weather
events. Understanding these impacts is crucial for effective public and population health interventions.
However, existing studies often face challenges in obtaining appropriate health and environmental
data.

Fine-grained and comprehensive data on the prevalence of medical conditions is often scarce in public
health studies. Traditional approaches rely on infrequent surveys or cohort studies, such as NHANES
[23], HSE [46], BRFSS [52], The Swiss National Cohort [60], or the UK Biobank [61]. However,
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Figure 1: Structure of MEDSAT dataset (single year): This figure illustrates the four data compo-
nents constituting MEDSAT: i) sociodemographic features (111), ii) environmental point features
(43), iii) image features (4 seasonal Sentinel-2 composite tiles × 11 bands each), and iv) prescription
outcomes (prevalence scores for 7 medical prescription types). The distributions of example variables
are shown. Sociodemographic variables are presented as percentages ranging from 0 to 1, while
environmental variables have varying ranges (e.g., NO2: (0-3.1× 10−3) mol/m2, µ = 2.43× 10−6,
σ = 2.0×10−4). Outcome variables represent yearly prescription quantities per capita and are mostly
normally distributed (except opioids and total prescriptions). For instance, diabetes prescriptions
range from 0.02 to 104.84 (µ = 38.76, σ = 16.35). Each Sentinel-2 composite image consists of 11
spectral bands. MEDSAT offers two such yearly snapshots, for 2019 and 2020. A comprehensive
description can be found in the Appendix.

survey methods suffer from biases related to sampling, non-response, recall, and question wording.
Cohort studies, while aiming to mitigate these biases, are limited in size, expensive, time-consuming,
and prone to participant dropout. The All of Us Research Program [58] is an ambitious initiative
recruiting over 1 million participants, but its representativeness and long-term engagement remain to
be seen. In summary, existing health outcomes data are often limited in scope, granularity, and subject
to various biases. Furthermore, despite the increasing availability of finer-resolution measurements
for crucial environmental indicators relevant to public and population health, such as greenery, sun
radiation, and air pollution, challenges persist in obtaining comprehensive and suitable indices that
cover diverse geographical levels and timeframes. While the Earth Observation (EO) community has
made significant efforts in capturing detailed satellite imagery with improved resolutions, frequencies,
and accessibility, there remains a gap in transforming this vast amount of data into user-friendly
indices that can be effectively utilized by non-technical stakeholders and the wider community
unfamiliar with EO methods. Even when institutions provide data, such as air quality data from
DEFRA [20] in the UK, individuals interested in compiling various environmental information often
need to collect it from multiple sources, and there are spatial and temporal limitations to the available
data.

In this paper, we present the MEDSAT dataset (Figure 1) consisting of four complementary compo-
nents and covering two years (2019 and 2020), specifically designed for studying the effects of the
environment on population health in small administrative areas in England. Our approach involves
an open-source framework that utilizes National Health Services (NHS) practice-level prescription
data to extract medical prescription prevalences at fine spatial (i.e., Lower Layer Super Output
Area (LSOA)) and temporal (seasonal) scales for the entire population of 57 million. We derived
environmental indicators from satellite products, such as Sentinel-5 and OMI, using Google Earth
Engine [30]. Additionally, we created cloud-corrected seasonal composite images for 11 spectral
bands of multispectral instrument (MSI) Sentinel-2 images in the WASDI platform [67], covering
the whole of England, i.e., 130,279 km2. Our dataset also includes 111 socioeconomic indicators
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Table 1: A comparison of MEDSAT with similar datasets, some of which are not publicly available.
NHS corresponds to the UK health care system and DHS to the Dutch healthcare system.

dataset health indicator(s) indicator source imagery env. soc. spatial unit public
SustainBench [69] BMI, child mortality,

water quality,
sanitation

surveys Landsat
street view

✗ ✗ village (59km2) ✓

Landscape Aesthetics [39] environment scenicness crowdsourcing Sentinel-2 ✓ ✗ 1.6km2 ✓

COVID-19 [62] COVID-19 cases and deaths WHO ✗ ✓ ✓ city ✗

Greenery & mortality [7] mortality Eurostat ✗ ✓ ✓ city ✗

Greenery & prescribing [31] antidepressants prescriptions DHS ✗ ✓ ✓ municipality (up to 506km2) ✗

Nat. env. & prescribing [27] mortality,
prescriptions: cardiovascular
antidepressants

NHS ✗ ✓ ✓ LSOA (up to 18km2) ✗

MEDSAT prescriptions: respiratory (asthma)
metabolic (diabetes, hypertension)
mental (depression, anxiety),
opioids, & total

NHS Sentinel-2 ✓ ✓ LSOA (up to 18 km2) ✓

obtained mostly from the UK census. By integrating these diverse datasets for the years 2019 and
2020, we provide researchers with a comprehensive resource for studying spatial and temporal health
attributes and identifying regional health disparities.

2 Related Work

Environmental conditions such as air or noise pollution are relevant indicators for various health
issues like asthma or heart diseases [22]. However, the benefits of using EO data to monitor the impact
of environmental conditions on human health are still limited. This limitation stems from the existing
datasets in the literature listed in Table 1 that either focus on a narrow set of conditions derived from
surveys that might not be representative of the entire population or do not provide detailed medical
prevalence data on a fine-grained spatial level. Often these datasets are not publicly available and fail
to include environmental and sociodemographic features relevant to health studies. For example, the
SustainBench dataset [69] presents the problem of predicting 4 different health indicators derived
from surveys based on Landsat satellite imagery and street-view images. The spatial unit of this study
corresponds to a village or a local community covering an area of ≈58 km2 and this dataset does not
contain additional environmental and sociodemographic features. By considering a more abstract
health indicator, Levering et al. [39] introduced a dataset that associates Sentinel-2 images with
crowdsourced data for landscape scenicness used as a proxy for human health and well-being. By
analyzing fine-grained geographical regions of 1.6 km2, the authors discovered plausible associations
between a landscape’s beauty and its land cover distribution. Targeting a specific condition across
the population, Temenos et al. [62] assembles a dataset that relates COVID-19 cases with point
features describing environmental data for urban greenness, air quality, sociodemographic features,
and health factors. The authors reveal that temperature and mobility trends are among the most
important features for predicting COVID-19 cases. Yet, this dataset is not publicly available, does not
contain any imagery and the point features represent entire cities, thus describing very coarse spatial
units. Further, the impact of the natural environment on mortality rates and prescriptions for various
conditions is investigated in [7, 31, 27]. However, the datasets used in these studies are also not
publicly available, include only environmental variables related to greenery, and do not contain any
imagery. Moreover, the analyses in [7, 31] are performed on larger spatial units like municipalities
and cities.

In comparison to these works, our dataset, MEDSAT, enables comprehensive modeling of the popula-
tion health on a very-fine-grained spatial level as it jointly offers environmental and sociodemographic
features as well as EO imagery at LSOA level. Further, it covers prescriptions associated with 5
medical conditions, as well as opioids and total, which allow a detailed understanding of specific
condition-related factors, and shed light on the overall population health and well-being.

3 The MEDSAT Dataset

The MEDSAT dataset serves as a comprehensive resource for public and population health studies,
encompassing medical prescription quantity per capita as outcomes and a wide array of sociodemo-
graphic, environmental and image features across 33K LSOAs in England (Figure 1). In this release,
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we provide data snapshots for the years 2019 (pre-COVID) and 2020 (COVID). Sociodemographic
variables align with the latest UK census from 2021. Figure 2 visualizes examples of variables present
in MEDSAT.

Access the code at https://github.com/sanja7s/MedSat,
and the dataset at https://doi.org/10.14459/2023mp1714817.
The dataset is released under the CC BY-SA 4.0 license.

3.1 Sociodemographic Features

Our dataset comprises sociodemographic variables sourced from the latest UK Census in 2021 [1].
These variables encompass essential indicators employed in public and population health research,
such as gender (percentage of males), age distribution (percentage within 5-year age groups up to 85
and above), deprivation scores (percentage of deprived households in 1-4 dimensions), self-reported
health (percentage reporting health on a five-point scale), ethnicity (percentage of individuals with
White, Asian, Black, or Mixed backgrounds), and English proficiency (percentage reporting English
as their main language). Additional variables indirectly related to health outcomes were incorporated,
covering religion, commute means and distance to work, residence and housing, profession, and
marital status. Our sociodemographic data do not contain any personally identifiable information
because census implements stringent privacy protection measures, including targeted record swapping
and cell key perturbation, to ensure confidentiality without compromising aggregated statistics [1].

3.2 Environmental Features

We obtained environmental point features for the MEDSAT dataset using various satellite data
products on Google Earth Engine (GEE) [30]. For air quality, we used satellite data products such as
Sentinel-5P NRTI to derive nitrogen dioxide (NO2) [32], TOMS&OMI for ozone [4], and CAMS for
total aerosols and PM2.5 [25]. Greenery variables were derived from Sentinel-2 MSI for NDVI and
ERA5-ECMWF product for high/low vegetation greenery indices. Climate variables, including wind
components, air temperature, soil temperature, atmospheric pressure, and incoming solar radiation,
were obtained from ERA5-ECMWF. All land cover variables were sourced from Google Dynamics
World product [11]. Importantly, our open-source code can be easily adapted to extract other similar
indices, and at different spatial scales (e.g., wards or other countries) and temporal scales (e.g.,
monthly or different years). More information can be found in Appendix section D.2.

3.3 Image Features

In addition to the above-described approach for deriving preprocessed environmental point features,
in our dataset we also included the spectral bands provided by the Sentinel-2 mission [3], thus
resulting in a more comprehensive set of environmental image features. Concretely, we processed
Sentinel-2 images for the years 2019 and 2020 through the WASDI [67] platform by calculating
average values for each of the four meteorological seasons [49]. We focused on 11 specific bands
(Figure 1) capturing relevant environmental factors, excluding the band B10 that is primarily used for
cloud detection and water vapor mapping. To ensure data consistency and quality, we resampled the
bands to a uniform resolution of 10 m, applied cloud masks to exclude affected pixels, and computed
pixel-per-pixel averages over time under cloud-free conditions. The resulting composite images
represent the typical environmental characteristics for each season (over 500 GB per year in total).

To explore the potential of the high-resolution Sentinel-2 imagery for modeling population health on
a fine-grained spatiotemporal level, we extracted image features per LSOA for each meteorological
season with the procedure depicted in Figure 4 in Appendix. Concretely, we used the shapefiles that
describe LSOA’s geographical location to crop the LSOA pixels from a seasonal Sentinel-2 image.
Next, we extracted basic image features from the cropped LSOA pixels by performing the following
5 aggregations per Sentinel-2 band: mean, stdev, min, max, and median, thus resulting in 55 image
features per LSOA per season.

3.4 Prescription Outcomes

Extracting Prescriptions on an LSOA Level from NHS data. The monthly practice-level pre-
scribing data in England, provided by the National Health Services (NHS) since July 2010 [47],
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Figure 2: Visualization of the MEDSAT point features. The example distributions for the year 2020
of three health outcomes (diabetes, anxiety, and total prescriptions), three environmental variables
(NO2, north-south wind component, and incoming thermal radiation), and three sociodemographic
variables (percentage of White population, professional occupation, and work-from-home). The
missing values are highlighted in black. Depending on the specific analyses intended, the missing
value rate will be constrained by the outcomes, standing at 5.7%, and ranging up to 15.2% if all
the features are to be used. Notably, we possess sociodemographic and image features data for all
LSOAs. Please refer to Appendix for the details.

constitutes the foundation of our analysis. It offers anonymized information about monthly prescrip-
tions across General Practitioner (GP) practices and patient membership to GP practices on an LSOA
level. We parse this data to extract the prescribed drugs and summarize the total number of patients
per LSOA and compute the fraction of a GP practice’s patients associated with a specific LSOA.
Further details about the NHS prescriptions data and the applied procedure for calculating the number
of patients per LSOA can be found in the Appendix, Section D.4.

Associating Prescriptions with a Condition. To determine prescriptions related to specific medical
conditions, our framework utilizes curated lists of drugs, such as the one collated for opioids by
previous works [59, 18], or it leverages DrugBank [37] to automatically identify drugs associated
with a given condition (see the Appendix DrugBank section D.4.3). DrugBank is an online database
that provides comprehensive information on active pharmacological ingredients (APIs) and their
corresponding conditions. Each drug name is associated with one or more conditions (i.e., symptoms
and diseases), drug categories, and an Anatomical Therapeutic Chemical code assigned by the
World Health Organization (WHO) for unique identification purposes. For instance, the drug
name Citalopram (https://go.drugbank.com/drugs/DB00215) is linked to a range of diseases,
including Depression, Anorexia Nervosa, Generalized Anxiety Disorder, and Post Traumatic Stress
Disorder. During our crawl, we obtained data on 9,105 drug names from the website, and by filtering
out drug names that were not linked to any drug categories, symptoms, or conditions we were left
with 3,013 drug names. Next, we generated a curated list of drugs associated with a specific condition
by selecting drugs from DrugBank that were linked to that condition (e.g., we associated Citalopram
with depression, anxiety, and the other conditions mentioned above).
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Estimating the Prescription Prevalence. To estimate the number of prescriptions associated with
a specific condition c, we first matched the condition-specific drugs from DrugBank with their British
National Formulary (BNF) codes from the NHS prescribing dataset. Next, the number of prescriptions
for a specific condition c in area a is computed using the following formula:

Nc(a) =
∑

GP∈a

Nc(GP ) · f(GP, a), (1)

Here, Nc(GP ) represents the total number of prescriptions per GP for drugs associated with the
curated list for the condition, and f(GP, a) denotes the fraction of patients of the GP who reside in
the area a. To ensure comparability across areas with varying population densities, we computed the
metric of "prescriptions quantity per capita," commonly used in medical studies [19, 18], as follows:

Ñc(a) =
Nc(a)

npat(a)
, (2)

where npat(a) corresponds to the total number of patients residing in the area a.

For MEDSAT we calculated medical prescriptions associated with three classes of conditions: i)
metabolic (diabetes and hypertension), ii) mental (depression, and anxiety), and iii) respiratory
(asthma); as well as opioids prescriptions, (which are predominantly prescribed for pain management,
but they do have other applications, and have been associated with a consumption crisis in the UK
[53, 56]), and total prescriptions, as a proxy for general health and well-being. We highlight that,
for simplicity, we use condition names to refer to related prescriptions, however we cannot know for
each individual prescription what was the exact cause for which it was prescribed. E.g., "depression
prescriptions" means antidepressants and "anxiety prescriptions" means anxiolytics, regardless of
actual use. Co-prescriptions across conditions may arise from this method, as it does not ascertain
specific prescription reasons, as such details are absent in the NHS dataset. However, the multitude
of studies examining prescriptions [59, 18, 8, 41, 34, 33, 31, 44, 35, 63, 12, 66, 29], akin to our
approach, attests to its significance as a public health outcome.

Our prescription dataset does not contain any personally identifiable information, as it is derived from
publicly available monthly prescription data provided at the level of practices, each serving numerous
patients.

4 Results

4.1 Revealing Health Inequalities

In Figure 8 in Appendix, we present the healthcare accessibility disparities across regions. First,
interestingly, we find a prevailing pattern where the number of registered patients exceeds the
census population in most areas of the country. This aligns with previous investigations by UK
authorities [64]. Second, although the correlation (r = .87, p ≈ 0) is strong, certain LSOAs exhibit
disproportionate patient-to-population ratios.

Additionally, our analysis highlights broader factors contributing to healthcare inequalities. The
residual values, representing deviations from the linear fit of the patient to the population numbers,
correlate with deprivation levels (r = .16, p ≈ 0 for mid-deprived areas; r = .22, p ≈ 0 for highly-
deprived areas), suggesting a greater burden on healthcare access in socioeconomically disadvantaged
regions. Moreover, the residual values exhibit a negative correlation (r = −.40, p ≈ 0) with the
percentage of White population, indicating disparities associated with ethnic backgrounds. For more
details on this analysis, please refer to Section E.1 in Appendix.

4.2 Predicting Prescriptions

To evaluate the plausibility of our dataset for modeling population health, we applied a classical
geostatistical method called Spatial Lag Model (SLM) [5] as well as trained the LightGBM machine
learning model [36] to predict the medical prescriptions based on the point features, including
image-derived ones, in our dataset. Both models were applied separately for every condition and a
combination of the environmental, sociodemographic and image features, to better understand the
contribution of different input features in modeling population health.
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Table 6 in Appendix displays the SLM results. Collectively, the input features account for a variance
ranging from 38% (for diabetes and total prescriptions) up to 63% (for opioids). Individually,
sociodemographic features lead the way, explaining between 31% (total) and 52% (opioids) of the
variance. They are followed by environmental point features, which account for variances from 13%
(diabetes) to 49% (opioids). Image features, though least impactful, still cover a variance from 4%
(diabetes) to 28% (opioids).

While the models such as SLM account for the well-known spatial autocorrelation effects [5] present
in spatial analysis and modelling (referring to the process that creates clusters of values), machine
learning models, such as LightGBM, require a special type of cross-validation that is adapted to
account for these effects [55]. A block-buffered cross-validation is a common approach [38], and it is
implemented in an R package called blockCV [65]. We employed this package to calculate spatial
folds on the input of our LSOA shapefiles. For the details, please refer to Appendix E.2. The results
obtained through spatial cross-validation using LightGBM are detailed in Table 2. In the initial row,
it is evident that even fundamental image features exhibit predictive capability, albeit to a limited
extent. Conversely, the subsequent two rows highlight that environmental and sociodemographic
features offer improved explanatory power for the observed variances, outperforming image-based
features. Furthermore, these feature categories display varying degrees of importance across different
conditions. Environmental attributes notably enhance the predictive accuracy of depression, opioid
prescriptions, asthma, and total prescriptions. Conversely, sociodemographic features prove more
effective in accurately forecasting prescriptions for other medical conditions. Notably, the integration
of both environmental and sociodemographic characteristics becomes pivotal for a holistic model of
population health. This is exemplified by the last row, indicating that using both, the environmental
and the sociodemographic features results in the best R2 scores for all conditions under consideration.
Moreover, for both the SLM and the LightGBM model, we observe a consistent pattern that the
prescriptions for the mental conditions are predicted with higher accuracy than the ones for the other
conditions. In Appendix Section E.2, we present a detailed overview of this experiment’s setup and
provide a comparison of the LightGBM model with a Feed-Forward Neural Network (FNN), which
shows that the LightGBM model consistently outperforms the FNN.

Table 2: The average R2 scores resulting from the 5-fold spatial cross-validation of LightGBM.
These scores are computed across various prescription types and combinations of dataset features
specifically for the year 2020.

metabolic mental respiratory
input diabetes hypertension depression anxiety asthma opioids total

Image 0.02 ±0.07 0.15 ±0.12 0.15 ±0.15 0.14 ±0.15 0.14 ±0.13 0.19 ±0.14 0.07 ±0.1
Env. 0.19 ±0.08 0.33 ±0.13 0.42 ±0.15 0.41 ±0.13 0.37 ±0.11 0.52 ±0.12 0.26 ±0.1
Soc. 0.26 ±0.1 0.37 ±0.11 0.41 ±0.15 0.39 ±0.12 0.32 ±0.13 0.47 ±0.14 0.22 ±0.11

Env. + Soc. 0.35 ±0.08 0.44 ±0.1 0.50 ±0.13 0.48 ±0.12 0.43 ±0.1 0.6 ±0.1 0.31 ±0.1

Uncovering Health Factors Understanding the impact of the environment and sociodemographic
conditions on human health has been a focus of many studies [14, 2]. Our dataset offers new
perspectives on such studies, as it allows the investigation of these relationships on a fine-grained
spatial level, and for many conditions simultaneously. To shed light on these perspectives, we apply
the SHAP [42] approach on the LightGBM models trained for prescription prediction. In Figure 3
we show the 10 most important features estimated by the SHAP algorithm for the models used to
predict diabetes and total prescriptions. The left plot shows that the sociodemographic indicators
describing the occupation, commute habits, migration, and ethnicity are highly relevant for predicting
diabetes prescriptions. Specifically, the model establishes a linkage between lower prescription rates
and LSOAs characterized by a substantial prevalence of professional occupations, a high number of
people working from home, an active bicycle commuting trend, and a prominent student population.
Conversely, increased prescription levels are associated with LSOAs having a high proportion of
individuals of Asian ethnicity. When it comes to the environmental features, the east-west wind
component and PM2.5 appear to be relevant indicators as higher diabetes prescriptions align with
LSOAs characterized by an eastward wind pattern and heightened air pollution levels, as indicated by
the PM2.5 metric. Additionally, bare soil evaporation and ozone stand out as noteworthy contributors
to diabetes prescriptions even though these features exhibit no straightforward linear association with
their corresponding SHAP values. On the other hand, in the right plot, we note that the environmental
features describing canopy evaporation, NO2, east-west wind, and thermal radiation rank among the
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Figure 3: SHAP summary plots for diabetes (left) and total prescriptions (right). The SHAP
value for a feature indicates its contribution towards the difference between the prediction for an
instance and the average model prediction. These plots reveal the 10 most important features for both
conditions and the association between the feature values and their importance. In line with the results
shown in Table 2, the sociodemographic indicators appear to be more relevant for modeling diabetes
prescriptions than the environmental features while the opposite is observed for the total prescriptions.
Although a similar set of features are ranked among the most important for both conditions, some
features are particularly relevant for specific conditions, such as work from home and Asian ethnicity
for diabetes prescriptions and thermal radiation and Mixed ethnicity for the total prescriptions.

top-5 most relevant features for estimating total prescriptions. Concretely, high values for canopy
evaporation, NO2, and thermal radiation are negatively correlated with the total prescriptions while
east-west wind displays a similar association as for the diabetes prescriptions. With respect to
sociodemographic features, LSOAs characterized by mixed ethnicity are associated with a lower
number of total prescriptions compared to the ones where the majority of the people are born in
the UK. Moreover, we also see that low prescriptions are again associated with a high percentage
of students and professional occupations. Finally, for both conditions, we notice that the positive
self-assessment of health is linked to lower prescription values. Examples of SHAP values for the
other conditions as well as dependence plots describing the feature interactions are provided in
Sections E.2 in the Appendix.

Describing Health of Environment Using Visual Concepts. To shed light on the potential benefits
of using the Sentinel-2 imagery for modeling population health, we reveal the learned visual features
patterns in Figure 4 by visualizing examples of LSOA Sentinel-2 images for which the LightGBM
model trained on the simple image features closely approximates the actual opioids prescriptions.
The LSOAs were visualized with the band combination (B11, B06 and B01) as these bands appeared
among the most salient image bands according to the SHAP values for the LightGBM model shown
in Appendix, Figure 13. First, we note that although the simple image features do not encode the
size of an LSOA, they still enable the LightGBM model to associate higher opioid prescriptions with
LSOAs covering larger geographical areas. Larger-area LSOAs are rural (because these administrative
units are designed to have roughly equal populations), and it is known from previous research that
opioid consumption is higher in rural areas [16]. Equally important, we also note that the LSOAs
with high prescription values in the first row are characterized by a stronger presence of blue and
pink colors occurring near traffic roads than those LSOAs with low opioid prescriptions in the
bottom row. Due to the chosen band combination that displays the aerosols (B01) band in blue, this
finding points out that the model can relate increased opioid prescriptions for LSOAs exposed to air
pollutants. In conclusion, as observed in Table 2 and Table 6 in the Appendix, the environmental and
sociodemographic features explain a higher percentage of the variance for prescription predictions.
However, this analysis underscores that even basic image features can offer valuable insights into
the intricate task of population health modeling. This suggests that leveraging the deep learning
methodologies for processing the Sentinel-2 images at the LSOA level has great potential to improve
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Figure 4: Visualizing LSOA Instances in the (B11, B06, B01) band combination. The short-wave
infrared band (B11) is shown in red, the near-infrared band (B06) is shown in green and the aerosols
band (B01) is shown in blue. The LSOAs with high and low opioid prescriptions are shown in the
first and the second row, respectively. Remarkably, LSOAs with high opioid prescriptions cover a
larger geographical area than those with low prescriptions (notice the higher zoom-in level), and have
greater presence of aerosols (band B01) depicted in blue and purple colors.

prescription predictions by capturing the spatial dependencies inside an LSOA. Moreover, using the
recent works in eXplainable Artificial Intelligence (xAI) such as [26] can portray environmental
health through rich visual concepts, thus opening possibilities for novel insights about the relevant
urban and rural structures influencing population health.

4.3 Temporal Analyses

Using MEDSAT, we analyzed temporal differences in outcome and environmental features between
2019 and 2020. Appendix Figures 15 and 16 illustrate varied distributions for both prescription
quantities and environmental features. Notably, in the first COVID year (2020), there was a rise in
prescriptions for anxiety and depression (in line with reports that the pandemic presented enormous
challenges to mental health services in UK [13]) and diabetes medications in England, while asthma
and hypertension prescriptions decreased [13].

The environmental shifts during the initial COVID year are evident from altered air pollutant dis-
tributions. Satellite data showed decreased levels of NO2, ozone, and PM2.5 in England for 2020
(as reported erlier in [57]). Land cover changes saw increased built areas, likely due to heightened
construction activity in the latter half of the year [24, 21], and reduced trees cover. Furthermore, 2020
witnessed elevated temperatures, solar radiation, and both components of wind compared to 2019.

5 Impact, Limitations, and Perspectives

We introduced MEDSAT, a unique dataset providing a comprehensive view of medical prescriptions,
average yearly environmental indicators, image features, and sociodemographic factors across Eng-
land for 2019 (pre-COVID) and 2020 (COVID). This resource enables a thorough assessment of
health status for various conditions and exploration of their relationships with sociodemographic and
environmental factors.

MEDSAT has three significant impacts. First, it has the potential to empower the development of
novel machine learning (ML) approaches tailored for spatially-autocorrelated public health data [45],
that can augment still predominant traditional statistical models like spatial linear regression [6]
and BYM [9], as recent work indicates for xAI models [40]. MEDSAT enables ML research with
large and complex data, effective feature engineering, capturing temporal dependencies, addressing
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imbalanced data, ensuring interpretability, and achieving generalization across diverse regions.
Secondly, MEDSAT can facilitate novel discoveries in public health by revealing influential factors
that profoundly affect health outcomes. Through SHAP analyses, we confirmed the established link
between diabetes and ethnicity, with higher prevalence among people of Asian descent [15, 28], and
the preventive effects of biking and active commuting against diabetes and metabolic conditions
[54]. Notably, our data from the initial year of the COVID-19 pandemic highlights the impact of
socioeconomic factors. Higher percentages of professional occupations and individuals working
from home are associated with lower prevalence of diabetes and total prescriptions, underscoring the
influence of deprivation on health outcomes [10, 51, 68, 43]. Our findings not only confirm existing
knowledge but also expose less-explored connections between the environment and human health.
For instance, our SHAP results demonstrated associations between ozone exposure and mental health
prescriptions, as well as between total aerosols and metabolic condition prescriptions. Furthermore, a
north-sound wind is linked to a decrease in both types of prescriptions. Thirdly, MEDSAT enables
groundbreaking discoveries in population health, particularly regarding health inequalities. Our
preliminary analysis uncovers disparities in health accessibility among different economic and ethnic
groups. By examining deprivation dimensions such as income, education, and occupational factors,
across prescriptions of different types, we can gain a deeper understanding of their contributions to
health disparities.

Although MEDSAT is among the most comprehensive publicly-available public and population health
datasets to date, it is not without limitations. First, prescription prevalence may not always reflect
the true prevalence of the medical condition itself. That is because disparities in healthcare access,
privilege, knowledge, and stigmatization can influence prescription rates for certain conditions among
different populations [50, 48, 17]. However, it is crucial to note that despite this limitation, our
dataset offers a unique opportunity to disentangle these effects, especially when combined with
other types of health outcome indicators. Compared to surveys and population samples, which come
with their own set of biases, MEDSAT provides a more comprehensive health outcome perspective.
Moreover, our method of estimating prescriptions using a probabilistic framework, particularly for
the four conditions for which we associated drugs using DrugBank, is imperfect. There exists a
possibility that we missed certain drug names, or that medications designed for alternate conditions
could potentially be inaccurately included. This limitation of our study arises from our labeling
method for prescribed drugs. Drugs are labeled according to associated conditions as sourced from
the DrugBank database, without claiming any specific intent behind the prescription from the GP.
While we can ascertain that a drug is likely prescribed for a given condition, it is worth noting
that drugs can be associated with multiple conditions, both as per DrugBank, and in prescriptions
by a GP. This multi-condition association increases the chances of co-prescriptions in our dataset.
However, numerous studies on prescription patterns, from antihypertensive [34], to antidepressants
[44] to anxiolytics [35] highlight the importance of prescriptions as a health outcome per se and its
significance in the field of public health outcomes.We also emphasize that the initial drug list output
by DrugBank can be augmented with human expert knowledge in a mixed-method approach to ensure
the most accurate results. Our analyses show that the correlations between prescription prevalence
scores derived with the automatic and manual methods range from .94 (for anxiety) to .99 for diabetes
(see Appendix section D.4.3). Second, our dataset exclusively covers England, representing a single
developed country. It is noteworthy that England provides high-quality data on both prescriptions and
auxiliary census information, and the methods and insights derived from MEDSAT can serve as a
foundation for the development of ML approaches that can subsequently be applied to developing
countries once high-quality data becomes available, fostering progress towards tracking SDG about
health. Third, there is the risk of stigmatizing certain communities based on our dataset. We believe
that listed benefits and opportunities offered by MEDSAT outweigh this risk, and we invite ML and
health research communities to employing ethical considerations, fostering inclusivity, and ensuring
that the insights gained from MEDSAT are used to enact positive change, promote equity, and reduce
health disparities.
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Gražulevičienė, and Mark J Nieuwenhuijsen. Research note: Natural environments and pre-
scribing in england. Landscape and Urban Planning, 151:103–108, 2016.

[28] Louise M Goff. Ethnicity and type 2 diabetes in the uk. Diabetic Medicine, 36(8):927–938,
2019.

[29] Sherif Gonem, Andrew Cumella, and Matthew Richardson. Asthma admission rates and patterns
of salbutamol and inhaled corticosteroid prescribing in england from 2013 to 2017. Thorax,
74(7):705–706, 2019.

[30] Noel Gorelick, Matt Hancher, Mike Dixon, Simon Ilyushchenko, David Thau, and Rebecca
Moore. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sensing
of Environment, 2017.

[31] Marco Helbich, Nadja Klein, Hannah Roberts, Paulien Hagedoorn, and Peter P Groenewegen.
More green space is related to less antidepressant prescription rates in the netherlands: A
bayesian geoadditive quantile regression approach. Environmental research, 166:290–297,
2018.

[32] J Irizar, M Melf, P Bartsch, J Koehler, S Weiss, R Greinacher, M Erdmann, V Kirschner, A Perez
Albinana, and D Martin. Sentinel-5/uvns. In International Conference on Space Optics—ICSO
2018, volume 11180, pages 41–58. SPIE, 2019.

12



[33] Ruth H Jack, Chris Hollis, Carol Coupland, Richard Morriss, Roger David Knaggs, Debbie
Butler, Andrea Cipriani, Samuele Cortese, and Julia Hippisley-Cox. Incidence and prevalence
of primary care antidepressant prescribing in children and young people in england, 1998–2017:
A population-based cohort study. PLoS medicine, 17(7):e1003215, 2020.

[34] Noah Jarari, Narasinga Rao, Jagannadha Rao Peela, Khaled A Ellafi, Srikumar Shakila, Abdul R
Said, Nagaraja Kumari Nelapalli, Yupa Min, Kin Darli Tun, Syed Ibrahim Jamallulail, et al. A
review on prescribing patterns of antihypertensive drugs. Clinical hypertension, 22:1–8, 2015.

[35] A John, AL Marchant, JI McGregor, JOA Tan, HA Hutchings, V Kovess, S Choppin, J Macleod,
MS Dennis, and K Lloyd. Recent trends in the incidence of anxiety and prescription of
anxiolytics and hypnotics in children and young people: an e-cohort study. Journal of affective
disorders, 183:134–141, 2015.

[36] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and
Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural
information processing systems, 30, 2017.

[37] Craig Knox, Vivian Law, Timothy Jewison, Philip Liu, Son Ly, Alex Frolkis, Allison Pon, Kelly
Banco, Christine Mak, Vanessa Neveu, et al. Drugbank 3.0: a comprehensive resource for
‘omics’ research on drugs. Nucleic acids research, 39(suppl_1):D1035–D1041, 2010.

[38] Kévin Le Rest, David Pinaud, Pascal Monestiez, Joël Chadoeuf, and Vincent Bretagnolle. Spatial
leave-one-out cross-validation for variable selection in the presence of spatial autocorrelation.
Global ecology and biogeography, 23(7):811–820, 2014.

[39] Alex Levering, Diego Marcos, and Devis Tuia. On the relation between landscape beauty and
land cover: A case study in the uk at sentinel-2 resolution with interpretable ai. ISPRS journal
of Photogrammetry and Remote Sensing, 177:194–203, 2021.

[40] Ziqi Li. Extracting spatial effects from machine learning model using local interpretation
method: An example of shap and xgboost. Computers, Environment and Urban Systems,
96:101845, 2022.

[41] Kumiko M Lippold, Christopher M Jones, Emily O’Malley Olsen, and Brett P Giroir.
Racial/ethnic and age group differences in opioid and synthetic opioid–involved overdose
deaths among adults aged 18 years in metropolitan areas—united states, 2015–2017. Morbidity
and Mortality Weekly Report, 68(43):967, 2019.

[42] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
Advances in neural information processing systems, 30, 2017.

[43] Michael Marmot and Jessica Allen. Covid-19: exposing and amplifying inequalities. J
Epidemiol Community Health, 74(9):681–682, 2020.

[44] Becky Mars, Jon Heron, David Kessler, Neil M Davies, Richard M Martin, Kyla H Thomas, and
David Gunnell. Influences on antidepressant prescribing trends in the uk: 1995–2011. Social
psychiatry and psychiatric epidemiology, 52:193–200, 2017.

[45] Vishwali Mhasawade, Yuan Zhao, and Rumi Chunara. Machine learning and algorithmic
fairness in public and population health. Nature Machine Intelligence, 3(8):659–666, 2021.

[46] Jennifer Mindell, Jane P Biddulph, Vasant Hirani, Emanuel Stamatakis, Rachel Craig, Susan
Nunn, and Nicola Shelton. Cohort profile: the health survey for england. International journal
of epidemiology, 41(6):1585–1593, 2012.

[47] NHS. BNF Classifications. https://digital.nhs.uk/
data-and-information/areas-of-interest/prescribing/
practice-level-prescribing-in-england-a-summary/
practice-level-prescribing-glossary-of-terms, 2019. [Online; accessed 5-
October-2019].

13



[48] Barbara I Nicholl, Daniel J Smith, Breda Cullen, Daniel Mackay, Jonathan Evans, Jana Ander-
son, Donald M Lyall, Chloe Fawns-Ritchie, Andrew M McIntosh, Ian J Deary, et al. Ethnic
differences in the association between depression and chronic pain: cross sectional results from
uk biobank. BMC Family Practice, 16(1):1–10, 2015.

[49] Met Office. When does spring start? Meteorological spring. \url{https:
//www.metoffice.gov.uk/weather/learn-about/weather/seasons/spring/
when-does-spring-start}, 2023. [Online; accessed 3-June-2023].

[50] John R Pamplin II and Lisa M Bates. Evaluating hypothesized explanations for the black-white
depression paradox: A critical review of the extant evidence. Social Science & Medicine,
281:114085, 2021.

[51] Jay A Patel, FBH Nielsen, Ashni A Badiani, Sahar Assi, VA Unadkat, B Patel, Ramya Ravin-
drane, and Heather Wardle. Poverty, inequality and covid-19: the forgotten vulnerable. Public
health, 183:110, 2020.

[52] Carol Pierannunzi, Shaohua Sean Hu, and Lina Balluz. A systematic review of publications
assessing reliability and validity of the behavioral risk factor surveillance system (brfss), 2004–
2011. BMC medical research methodology, 13(1):1–14, 2013.

[53] Mimi Pierce, Jan van Amsterdam, Gerard A Kalkman, Arnt Schellekens, and Wim van den
Brink. Is europe facing an opioid crisis like the united states? an analysis of opioid use and
related adverse effects in 19 european countries between 2010 and 2018. European Psychiatry,
64(1):e47, 2021.

[54] John Pucher, Ralph Buehler, David R Bassett, and Andrew L Dannenberg. Walking and cycling
to health: a comparative analysis of city, state, and international data. American journal of
public health, 100(10):1986–1992, 2010.

[55] Aleksandar Radosavljevic and Robert P Anderson. Making better maxent models of species
distributions: complexity, overfitting and evaluation. Journal of biogeography, 41(4):629–643,
2014.

[56] Georgia C Richards, Sibtain Anwar, and Jane Quinlan. Averting a uk opioid crisis: getting
the public health messages ‘right’. Journal of the Royal Society of Medicine, 115(5):161–164,
2022.

[57] David Rojas-Rueda and Emily Morales-Zamora. Built environment, transport, and covid-19: a
review. Current environmental health reports, 8:138–145, 2021.

[58] Pamela L Sankar and Lisa S Parker. The precision medicine initiative’s all of us research
program: an agenda for research on its ethical, legal, and social issues. Genetics in Medicine,
19(7):743–750, 2017.

[59] Rossano Schifanella, Dario Delle Vedove, Alberto Salomone, Paolo Bajardi, and Daniela
Paolotti. Spatial heterogeneity and socioeconomic determinants of opioid prescribing in england
between 2015 and 2018. BMC medicine, 18:1–13, 2020.

[60] Adrian Spoerri, Marcel Zwahlen, Matthias Egger, and Matthias Bopp. The swiss national
cohort: a unique database for national and international researchers, 2010.

[61] Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul
Downey, Paul Elliott, Jane Green, Martin Landray, et al. Uk biobank: an open access resource
for identifying the causes of a wide range of complex diseases of middle and old age. PLoS
medicine, 12(3):e1001779, 2015.

[62] Anastasios Temenos, Ioannis N Tzortzis, Maria Kaselimi, Ioannis Rallis, Anastasios Doulamis,
and Nikolaos Doulamis. Novel insights in spatial epidemiology utilizing explainable ai (xai)
and remote sensing. Remote Sensing, 14(13):3074, 2022.

[63] Zoi Tsimtsiou, Mark Ashworth, and Roger Jones. Variations in anxiolytic and hypnotic
prescribing by gps: a cross-sectional analysis using data from the uk quality and outcomes
framework. British Journal of General Practice, 59(563):e191–e198, 2009.

14



[64] Parliament UK. Population estimates GP registers: why
the difference? https://commonslibrary.parliament.uk/
population-estimates-gp-registers-why-the-difference, 2016. [Online; ac-
cessed 3-June-2023].

[65] Roozbeh Valavi, Jane Elith, José J Lahoz-Monfort, and Gurutzeta Guillera-Arroita. block cv: An
r package for generating spatially or environmentally separated folds for k-fold cross-validation
of species distribution models. Methods in Ecology and Evolution, 10(2):225–232, 2019.

[66] Alex J Walker, Helen J Curtis, Richard Croker, Seb Bacon, and Ben Goldacre. Measuring the
impact of an open web-based prescribing data analysis service on clinical practice: cohort study
on nhs england data. Journal of Medical Internet Research, 21(1):e10929, 2019.

[67] WASDI platform. Earth Observation tech for everyone. https://www.wasdi.cloud, 2023.
[Online; accessed 3-June-2023].

[68] Liam Wright, Andrew Steptoe, and Daisy Fancourt. Are we all in this together? longitudinal
assessment of cumulative adversities by socioeconomic position in the first 3 weeks of lockdown
in the uk. J Epidemiol Community Health, 74(9):683–688, 2020.

[69] Christopher Yeh, Chenlin Meng, Sherrie Wang, Anne Driscoll, Erik Rozi, Patrick Liu, Ji-
hyeon Lee, Marshall Burke, David B Lobell, and Stefano Ermon. Sustainbench: Benchmarks
for monitoring the sustainable development goals with machine learning. arXiv preprint
arXiv:2111.04724, 2021.

15



Appendix
MEDSAT: A Public Health Dataset for England

Featuring Medical Prescriptions and Satellite Imagery
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A Dataset Licenses

The dataset is released under the CC BY-SA 4.0 license.

37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks.



B Dataset Storage and Maintenance Plans

The dataset is available and will be maintained on TUMMedia, a data sharing service from Technical
University Munich. It can be accessed via the following link: https://doi.org/10.14459/
2023mp1714817. The code for datasets creation and experiments can be accessed on https:
//github.com/sanja7s/MedSat.

C Datasheet

Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was
there a specific gap that needed to be filled? Please provide a description.

Understanding the impact of the environment on human health is crucial for informing policy-
making, promoting human well-being, and implementing timely health interventions, particularly in
the context of increasing climate change-induced extreme weather events. Earth Observation data
has emerged as a valuable resource for addressing critical challenges related to climate change, food
security, and poverty [6, 15]. However, current applications that monitor population health using
such data have limitations. Health indicators are often derived from surveys [46] and crowdsourcing
[24], which may not be representative of the entire population. Additionally, these applications
rely on a narrow set of environmental and sociodemographic indicators, hindering a comprehensive
understanding of the relevant health factors [5, 17, 13]. Moreover, many of these datasets are not
publicly available.

In this study, we aim to address these challenges by providing a publicly available dataset that
harnesses the potential of earth observation data to monitor and comprehend the environmental
influence on health outcomes. Our dataset combines four complementary data sources to enable com-
prehensive health modeling across the entire population of England. Specifically, for the years 2019
and 2020, we integrated medical prescription data at the practice level from the NHS, satellite-derived
environmental features, Sentinel-2 satellite imagery, and sociodemographic indicators obtained from
the latest UK census in 2021. These data sources were combined at the level of Lower Layer Super
Output Areas (Lower Layer Super Output Area (LSOA)), which represent small administrative units
ranging in size from 1km² to 18km². Our objectives are to:

• Conduct comprehensive health modeling by relating medical prescriptions to environmental,
image, and sociodemographic features at a fine-grained spatial level.

• Identify relevant indicators for population health and uncover regional health disparities.
• Understand trends and factors influencing population health over time, including the impact

of pandemic years on relevant health factors.

Who created this dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)?

The dataset was created by researchers from:

• Nokia Bell Labs, Cambridge, UK.
• Technical University of Munich, Munich, Germany.
• Wasdi platform (https://www.wasdi.cloud/).

Who funded the creation of the dataset? If there is an associated grant, please provide
the name of the grantor and the grant name and number.

The creation of the dataset was partly funded by the:

• Nokia Bell Labs,
• German Federal Ministry for Economic Affairs and Climate Action in the framework of the

"national center of excellence ML4Earth" (grant number: 50EE2201C),
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• Munich Center for Machine Learning,

• AI4EO Beyond Fellowship by The International AI for Earth Observation Future Lab at
TUM/DLR,

• ESA Network of Resources Initiative, and

• European Union’s Horizon 2020 research and innovation programme under grant agreement
No. 869764, awarded to the GoGreenRoutes project.

Composition

What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes and edges)? Please provide a description.

For the years covered (2019 and 2020), our dataset contains the following two types of instances:

• LSOA instance: Our dataset covers the entire of England by including an instance per every
LSOA in England. These instances are represented by point features describing the LSOAs
environmental and sociodemographic indicators.

• Sentinel-2 tile composite instance: For the benefits of using computer vision to extract rich
visual concepts that define environmental health, we provide a set of composite Sentinel-2
satellite image tiles per meteorological season covering the entire of England.

How many instances are there in total (of each type, if appropriate)?

In each year, there are 33755 LSOA instances (one per every LSOA in England) and 4 × 35
composite tile instances (one set of tiles per every meteorological season).

Does the dataset contain all possible instances or is it a sample (not necessarily
random) of instances from a larger set? If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so,
please describe how this representativeness was validated/verified. If it is not representative
of the larger set, please describe why not (e.g., to cover a more diverse range of instances,
because instances were withheld or unavailable).

Our dataset provides a comprehensive overview of the health landscape in England by incorporating
data from all LSOAs throughout the country. The prescription outcomes are derived from all
prescribed items by the NHS, encompassing all patients within the nation during the specified years.
Additionally, the census data covers the entire population. In terms of environmental variables, we
computed yearly average scores using either all non-cloudy observations or a substantial sample
of over 30% of images (e.g., for DynamicWorld) due to computational constraints. This extensive
coverage allows for a thorough investigation of health-related factors at a national level. However, it
is essential to acknowledge that the representativeness of our dataset diminishes when examining
larger geographical regions due to the absence of data from developing countries, and the inherent
specificity present even among developed countries.

What data does each instance consist of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please provide a description.

The LSOA instances are represented by feature vectors that contain environmental and sociodemo-
graphic indicators aggregated over the geographical area covered by an LSOA. In total, there are 43
environmental features describing air quality, greenery, climate, and land-cover distribution. Further,
we include 111 sociodemographic variables that represent population counts, age group distribution,
gender, ethnicity, religion, marital status, employment status, commuting habits, residence and
housing, self-reported health, language skills, deprivation and income (the only non-census variable)
levels. On the other hand, the Sentinel-2 tile composite instances contain 11 spectral bands that
include aerosols, RGB bands, vegetation red edge bands, near-infrared bands and short-wave infrared
bands. A detailed overview of the environmental and sociodemographic features and the Sentinel-2
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image bands are provided in Figure 1 in the main manuscript and in the "MedSat Variables.csv" file
in the public dataset directory.

Is there a label or target associated with each instance? If so, please provide a
description.

The target variables in our dataset represent medical prescription prevalences on a yearly level. We
included the following 7 target variables representing the quantity of:

• diabetes and hypertension prescriptions associated with metabolic conditions,
• depression and anxiety prescriptions associated with mental conditions,
• asthma prescriptions associated with respiratory conditions,
• opioids prescriptions which are predominantly prescribed for pain management, and
• total prescriptions as a proxy for general health and well-being.

Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information, but might include, e.g., redacted text.

In both years, 5,163 LSOA instances (∼15% of the available instances) have missing feature values.
The missing values for environmental features occur because some of the used satellite products do
not provide these features for every LSOA. For example, there are 1,479 (4%) LSOAs for which the
variables related to temperature, snow, or radiation derived from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis v5 product [37] are missing. We observed that this
product does not provide these features for LSOAs located near coastal regions. Next, there are 1,507
(4%) LSOAs for which information about the aerosol optical depth and PM2.5 particles is missing
from the Copernicus Atmosphere Monitoring Service (CAMS) product [9]. In the future work, we
aim to evaluate different satellite products that can provide the missing values for these features.
There are 1,956 (6%) LSOAs with missing outcome data. This absence doesn’t stem from a lack of
prescription data from the NHS. Instead, it arises from a discrepancy between the LSOA shapefiles
of the patient data used for outcome calculation from 2018 and the shapefiles from the 2021 census.
We opted to utilize the most recent 2021 shapefiles. We await forthcoming releases of NHS patient
data that align with these shapefiles, allowing us to incorporate the data for the missing LSOAs. For
the sociodemographic indicators, we found that the net annual income is missing for 537 LSOAs as
this data was not provided on an LSOA level in the UK census but we derived from the latest 2018
estimates of mean annual household income for Middle layer Super Output Areas (MSOAs) from the
Family Resources Survey (and there is a mismatch for a small number of LSOAs and MSOAs due to
the latest adjustments to the LSOAs boundaries in 2021).

Notably, we possess Census sociodemographic and image features data for all LSOAs. Depending on
the specific analyses intended, the maximum missing value rate could be constrained by the outcomes,
standing at 5.7%. For instance, this applies if a user does not require environmental variables from
ECMWF or CAMS products.

Are relationships between individual instances made explicit (e.g., users’ movie
ratings, social network links)? If so, please describe how these relationships are made
explicit.

To combine both types of instances, we provide shapefiles describing the LSOAs coordinates that
allow extraction of image features for individual LSOAs from the composite Sentinel-2 satellite
image. Based on these shapefiles, in our code repository we provide an implementation for the
extraction of LSOA-specific image features out of the Sentinel-2 images. Further, the region column
in the spatial data files determines the larger geographical area to which the LSOA belongs and can
be used to cluster the LSOAs based on their spatial proximity and to perform health analysis over a
larger geographical area.

Are there recommended data splits (e.g., training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.

We recommend the spatial data split described in Section E.2.2 where LSOAs are first clustered
into blocks of sizes 28km x 28km. Next, those blocks are randomly assigned to 5 folds, each fold
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containing an equal number of blocks. These procedure ensures that LSOAs belonging to a same
block do not appear within the training and the test set.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.

The environmental and image features utilized in our dataset are derived from high-level satellite
products, which undergo preprocessing to mitigate common errors associated with remote sensing
acquisition. However, it is important to note that our subsequent processing and spatial aggregation
of this data may introduce sources of noise. For instance, we employ a threshold of 0.2 for NDVI
values to calculate the fraction of greenery pixels per LSOA. Consequently, different threshold values
may yield varying results. Additionally, the prescription values are derived through probabilistic
associations between patients and nearby LSOAs, as well as drug names and corresponding conditions.
This process, while valuable, is not without imperfections and introduces some level of noise.

In terms of redundancies, our dataset contains many correlated features among the environmental and
sociodemographic indicators. A subset of correlated environmental features is presented in Figure 1
where it can be seen that the temperature feature is strongly positively correlated with surface soil
temperature, thermal radiation, and atmospheric features while being strongly negatively correlated
with snow density. These correlations represent a challenge for many machine learning models and
we encourage the researches to investigate approaches for feature selection that can lead to more
efficient and accurate health modeling.
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Figure 1: Example of correlated environmental features.

Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a)
are there guarantees that they will exist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e., including the external resources as they
existed at the time the dataset was created); c) are there any restrictions (e.g., licenses,
fees) associated with any of the external resources that might apply to a future user? Please
provide descriptions of all external resources and any restrictions associated with them, as
well as links or other access points, as appropriate.

The dataset is self-contained.

Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals non-public communications)? If so, please provide a description.
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Our four complementary dataset components are derived from public data sources. As such, they are
not confidential.

Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.

Our dataset does not contain any data that can be directly perceived as offensive or inappropriate. As
mentioned in the limitations section, the only potential concern is the possibility of stigmatization
at the level of LSOA. However, it is worth noting that such stigmatization can also be derived from
other publicly available data sources.

Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

Yes.

Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please
describe how these subpopulations are identified and provide a description of their respective
distributions within the dataset.

Our dataset identifies a percentage of subpopulations by age, ethnicity, and gender across LSOAs
derived from the UK census. However, these features do not point to any personally identifiable
information because the census implements stringent privacy protection measures, including targeted
record swapping and cell key perturbation, to ensure data confidentiality without compromising
aggregated statistics [1]. The age group and ethnicity distributions are visualized in Figure 2 which
shows that the age groups are balanced except for the age groups over 80 years which occur less
frequently compared to the age other groups. When it comes to ethnicity and gender, the White
ethnicity is dominant in the dataset while the gender distribution is balanced.
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Figure 2: Age group and ethnicity distributions

Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? If so, please
describe how.

No, for the reasons stated above.

Does the dataset contain data that might be considered sensitive in any way (e.g., data
that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? If so, please provide a description.
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Certainly, we have extracted sensitive information such as ethnicity, religious beliefs, and economic
deprivation per LSOA from the census data. However, it is important to note that this information is
publicly available through census records.

Collection Process

How was the data associated with each instance acquired? Was the data directly
observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or
indirectly inferred/derived from other data (e.g., part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.

The environmental variables were already preprocessed by the satellite products, and we didn’t
perform further validation. They have varying frequencies, from daily to monthly, depending on the
specific product. In our dataset, we created the environmental features by averaging the variables
derived from these products on a yearly level. The Sentinel-2 tiles were derived by aggregating
publicly available, cloud-free Sentinel-2 images per calendar season that were already preprocessed
by the Sentinel-2 mission. Further, the sociodemographic variables are obtained as single values
from the UK census data, and as such, do not require validation. The target variables include yearly
aggregates of prescription quantities issued by the NHS health authorities. While there is limited
condition prevalence data available at the LSOA level across England, our tests for London at the
ward level showed moderate to high correlations between our prescription prevalence scores and
condition prevalence, ranging from 0.76 for diabetes to 0.89 for depression. However, it is important
to note that prescription scores and condition prevalence may not correlate perfectly, as they capture
different health constructs.

What mechanisms or procedures were used to collect the data (e.g., hardware appa-
ratus or sensor, manual human curation, software program, software API)? How were
these mechanisms or procedures validated?

In our data collection process, we developed our own parser for extracting prescription data. Addi-
tionally, for gathering environmental variables, we utilized the Google Earth Engine platform [14]
for point data collection and the WASDI platform [44] for image data collection. The code for data
collection and preprocessing is available on our GitHub repository.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific sampling probabilities)?

NA

Who was involved in the data collection process (e.g., students, crowdworkers,
contractors) and how were they compensated (e.g., how much were crowdworkers
paid)?

The data collection process for this study was carried out solely by the co-authors, who were involved
in the research as part of their respective roles.

Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g., recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the
instances was created.

All the data were collected in 2022.

Were any ethical review processes conducted (e.g., by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as
well as a link or other access point to any supporting documentation.

As publicly available data was used, this was not needed.
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Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

No.

Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)?

NA

Were the individuals in question notified about the data collection? If so, please
describe (or show with screenshots or other information) how notice was provided, and
provide a link or other access point to, or otherwise reproduce, the exact language of the
notification itself.

NA

Did the individuals in question consent to the collection and use of their data? If so,
please describe (or show with screenshots or other information) how consent was requested
and provided, and provide a link or other access point to, or otherwise reproduce, the exact
language to which the individuals consented.

NA

If consent was obtained, were the consenting individuals provided with a mechanism
to revoke their consent in the future or for certain uses? If so, please provide a
description, as well as a link or other access point to the mechanism (if appropriate).

NA

Has an analysis of the potential impact of the dataset and its use on data subjects
(e.g., a data protection impact analysis) been conducted? If so, please provide a
description of this analysis, including the outcomes, as well as a link or other access point
to any supporting documentation.

NA

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of
instances, processing of missing values)? If so, please provide a description. If not, you
may skip the remainder of the questions in this section.

Yes. The environmental features were averaged on a yearly level, the prescription quantities were
normalized according to the number of patients residing in an LSOA, and the Sentinel-2 images were
averaged per calendar season.

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? If so, please provide a link or other access point
to the “raw” data.

No, but the used data sources are available publicly from the NHS and ONS wesbites, and GEE and
WASDI platforms.

Is the software used to preprocess/clean/label the instances available? If so, please
provide a link or other access point.

Yes, on the provided github repository.

Uses
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Has the dataset been used for any tasks already? If so, please provide a description.

In the main manuscript, we have presented the potential value of our dataset in the context of
prescription prediction, analysis of relevant health factors, and examination of health disparities.
However, there have been no published works utilizing this dataset to date.

Is there a repository that links to any or all papers or systems that use the dataset? If
so, please provide a link or other access point.

NA.

What (other) tasks could the dataset be used for?

The geographical division within our dataset presents a challenge in developing machine learning
models that can effectively generalize health findings across diverse regions. Additionally, the
inclusion of two years of data in our dataset offers the potential for predicting future health outcomes
based on historical health data.

Is there anything about the composition of the dataset or the way it was collected
and preprocessed/cleaned/labeled that might impact future uses? For example, is
there anything that a future user might need to know to avoid uses that could result in unfair
treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other
undesirable harms (e.g., financial harms, legal risks) If so, please provide a description. Is
there anything a future user could do to mitigate these undesirable harms?

We have meticulously collected and preprocessed the data in accordance with the highest ethical
standards to prevent any misuse of our dataset. We strongly urge fellow researchers to conduct
responsible analyses and utilize the dataset with integrity.

Are there tasks for which the dataset should not be used? If so, please provide a
description.

We caution against presenting the results from our dataset in any stigmatizing way, such as highlight-
ing the worst areas based on certain attributes, without a clear purpose or intention to address the
underlying issues. It is important to use the data responsibly and consider the potential implications
of how the results are presented and interpreted.

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.

The dataset will be publicly available.

How will the dataset will be distributed (e.g., tarball on website, API, GitHub) Does the
dataset have a digital object identifier (DOI)?

As stated in Section B, the dataset is publicly available on TUMMedia through the following DOI:
https://doi.org/10.14459/2023mp1714817

When will the dataset be distributed?

The dataset is publicly available.

Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.

No.
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Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.

No.

Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions, and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.

No.

Maintenance

Who will be supporting/hosting/maintaining the dataset?

TUMMedia will host and maintain the dataset which ensures the long-term accessibility and citability
of our dataset, facilitating its use and reference by the research community.

How can the owner/curator/manager of the dataset be contacted (e.g., email ad-
dress)?

The email addresses of the authors will be available on the GitHub page.

Is there an erratum? If so, please provide a link or other access point.

No.

Will the dataset be updated (e.g., to correct labeling errors, add new instances,
delete instances)? If so, please describe how often, by whom, and how updates will be
communicated to users (e.g., mailing list, GitHub)?

As part of our ongoing efforts, we are currently developing a prescription parser that enables
the calculation of prescription quantities on a monthly basis and going up to 10 years in the past.
Additionally, we are enhancing the drug matching module by leveraging state-of-the-art Large
Language Models (LLMs). Once these tasks are completed, we will be able to update the GitHub
with the updated parser so that interested researchers can calculated additional target variables and
enhance the temporal granularity of those features.

If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were individuals in question told that their data
would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.

No.

Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to
users.

No.

If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process
for communicating/distributing these contributions to other users? If so, please provide a
description.

Yes, the code for collecting the four complementary components of the MEDSAT datasets is publicly
available on our GitHub repository: https://github.com/sanja7s/MedSat.
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D Dataset Details

D.1 Sociodemographic Features

All the sociodemographic variables are collected from the UK 2021 Census using https:
//www.nomisweb.co.uk/sources/census_2021, except for income, which is collected
from Family Resources Survey 2018 https://www.gov.uk/government/collections/
family-resources-survey--2.

D.2 Environmental Features

For this release of the MEDSAT dataset, we used the sources listed in Table 1 to derive our envi-
ronmental features. We performed spatial reduction and averaging of yearly values at the LSOA
level. When reducing image data to our areas of interest, we employed specific spatial resolution
scaling values: 1000 m for Sentinel-5, CAMS, and TOMS&OMI, and 10 m for ESA-WorldCover
and Sentinel-2. These choices were guided by the original products’ resolutions and the processing
limitations within the GEE platform.

Table 1: Sources and Statistics about of Environmental Variables. The links below should all be
prepended with https://developers.google.com/earth-engine/datasets/catalog/

Type Satellite/Source Scale (m) Resolution (m) Link to data source
Air Q Sentinel-5 1000 1113.2 COPERNICUS_S5P_OFFL_L3_NO2
Air Q TOMS&OMI 1000 111000 TOMS_MERGED
Air Q CAMS 5000 44528 ECMWF_CAMS_NRT
greenery Sentinel-2 50 10 COPERNICUS_S2_SR
greenery ERA5-ECMWF 100 11132 ECMWF_ERA5_LAND_MONTHLY_AGGR
climate ERA5-ECMWF 100 11132 ECMWF_ERA5_LAND_MONTHLY_AGGR
land cover DynamicWorld 200 10 GOOGLE_DYNAMICWORLD_V1

D.3 Image Features

To generate composite images, we obtained raw Sentinel-2 satellite data and processed it using the
WASDI platform (https://www.wasdi.net), which allows access and online processing of both
public and commercial datasets. For our analysis, we processed Sentinel-2 images corresponding to
the years 2019 and 2020 by calculating the average values for each of the four meteorological seasons
in the both years, as defined by the Met Office [32]. Each Sentinel-2 image consists of 13 bands, with
four bands at a spatial resolution of 10 m, six bands at 20 m, and three bands at 60 m. We focused on
11 specific bands, as described in main manuscript, which capture environmental factors relevant to
health (e.g., B01 captures aerosols, representing air quality). We excluded bands B09 and B10, as the
former is primarily used for cirrus cloud detection and the latter is used to map water vapor.

To generate composite images for each season, we collected and parsed all images within the
corresponding three-month period (on average ∼ 1000 images per season). This amounted to parsing
around 2TB per season and around 8TB per year (see Table 2). For image processing, we conducted
several steps to ensure data consistency and quality. Firstly, we resampled the selected bands from
their original resolutions of 60 m and 20 m to a uniform resolution of 10 m. This resampling allowed
for a consistent analysis across all bands. Next, we applied the cloud mask provided with each
Sentinel-2 image to each of the 11 bands. This cloud mask effectively identified and excluded pixels
affected by cloud cover, ensuring the accuracy and reliability of the data. Then, we computed a
pixel-per-pixel average over time, considering only values observed in cloud-free conditions. This
averaging process ensured that the final composite images represented the typical environmental
characteristics for each season. Visualizations of a subset of composite bands for the summer of 2020
for LSOAs with the highest and lowest total prescriptions per capita are shown in Figure 3.

D.3.1 Extracting Image Features per LSOA

To extract per-LSOA features from Sentinel-2 composite images, we segmented each image into
LSOA-specific imagelets with the procedure depicted in Figure 4. For every imagelet, we computed
five descriptive statistics: min, max, mean, std, and median. Our examination of these statistics
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Figure 3: Visualization of the selected MEDSAT Sentinel-2 composite bands for the LSOAs with
highest/lowest total prescriptions quantity per capita.

revealed inter-correlations, leading to three distinct classes of correlated bands for each image (e.g.,
cross-correlation of mean values between summer and winter composite images for 2020 can be seen
in Figure 5). Further assessment of the statistics’ distributions showed skewness in some (like min)
and both skewness and extreme outliers in others (specifically max). Moreover, certain statistics, such
as mean and median, exhibited inherent correlations.

D.4 Prescription Outcomes

D.4.1 Existing Public and Population Health Datasets

Fine-grained spatial and temporal indices for prevalence of medical conditions are rarely available.
Public health agencies typically collect data infrequently through representative surveys (e.g., National
health and nutrition examination survey (NHANES) [11], Health Survey for England (HSE) [29],
or Behavioral Risk Factor Surveillance System (BRFSS) [33]) or on population samples with
cohort studies (e.g., Framingham Heart Study [26], The Swiss National Cohort (SNC) [38]), or
The UK Biobank [39]). Surveys come with well-known biases, such as sampling [7], non-response
[36], recall [19], or question wording [40] bias. While cohort studies aim at limiting these biases
by complementing participant questionnaire responses with their health records, or even genetic

Figure 4: Extracting Image Features: For each seasonal Sentinel-2 composite image, we extracted
a set of five metrics per LSOA from each band Bi ∈ {B01, . . . , B11}: mean, stdev, min, max,
and median. While we show only 3 representative bands for visualization purposes, features were
extracted from all 11 bands, resulting in a total of 55 features per seasonal image.
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Table 2: The size of the data processed on WASDI platform while producing the environmental image
features for each month.

date from date to GB
2018-12-01 2018-12-31 671.4277637
2019-01-01 2019-01-31 671.1432031
2019-02-01 2019-02-31 652.6567187
2019-03-01 2019-03-31 648.4059570
2019-04-01 2019-04-31 632.4159082
2019-05-01 2019-05-31 617.2984863
2019-06-01 2019-06-31 641.2775684
2019-07-01 2019-07-31 650.5995117
2019-08-01 2019-08-31 661.7470703
2019-09-01 2019-09-31 631.0063281
2019-10-01 2019-10-31 631.5184570
2019-11-01 2019-11-31 666.4724512
2019-12-01 2019-12-31 688.0771484
2020-01-01 2020-01-31 657.6159668
2020-02-01 2020-02-31 648.8922559
2020-03-01 2020-03-31 614.7591406
2020-04-01 2020-04-31 654.5712695
2020-05-01 2020-05-31 676.6889844
2020-06-01 2020-06-31 640.9450684
2020-07-01 2020-07-31 648.6113184
2020-08-01 2020-08-31 647.2279785
2020-09-01 2020-09-31 654.1471207
2020-10-01 2020-10-31 648.9410100
2020-11-01 2020-11-31 655.3504297
2020-12-01 2020-12-31 622.1216504
2021-01-01 2021-01-31 672.5485547

Figure 5: Cross-correlation matrix for mean band values extracted from summer (JJA) and
winter (DJF) Sentinel-2 composites for 2020. We see that bands B01−B05, and B06−B8A, as
well as B11−B12 form clusters of highly correlated features.

information, they are still limited in size, can be expensive and time-consuming to conduct, and
participants may drop out of the study. The All of US Research Program (AoURP) [34] is a unique
effort in the US recruiting over 1 million participants to study precision population health. However,
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despite its size, AoURP still might face limited representativeness, and the success of the program
will depend on long-term engagement and retention of participants. In summary, exhaustive health
outcomes data are often of limited scope and granularity, and are prone to a variety of biases.

D.4.2 NHS Medical Prescriptions

The practice-level prescribing data in England has been published monthly by the National Health
Services (NHS) Business Services Authority since 1998. This data provides information on the
quantity and cost of prescribed medications for each general practitioner (GP) practice in the country.
Although freely accessible, it is provided in individual files for each year, and is difficult to combine in
order to analyze spatial or temporal trends. The OpenPrescribing service [10] enables the exploration
of trends in items, cost, price per item, and quantity per item for each medical prescription and
GP practice from 1998. However, a single GP practice can cater to patients from multiple nearby
administrative areas (e.g., LSOAs). Consequently, this service does not directly provide insights
into the spatial prevalence of prescriptions across these areas. The PrAna R package [21] allows
the calculation of prescribed quantities of active pharmaceutical ingredients (APIs) by postcode.
However, a single API or medical drug can be used to treat various conditions (e.g., selective serotonin
reuptake inhibitors (SSRIs) are used for treating depression, anxiety disorders, and certain eating
disorders), and a specific medical condition is typically treated using multiple drugs or APIs (e.g.,
depression is treated with both SSRIs and tricyclic antidepressants (TCAs)). This limits the ability of
such a tool to understand the prevalence of prescriptions for specific conditions. As a result, previous
studies using prescribing data in England have mainly focused on a small number of drugs manually
aggregated for bespoke analyses, primarily examining temporal trends (e.g., [20, 30, 8, 45, 12]),
with a few studies investigating also spatial trends (e.g., [35, 18]). Despite the valuable insights
provided by previous studies using prescribing data, to the best of our knowledge, there is currently
no approach that generalizes across various medical conditions to calculate spatial and temporal
trends from this data.

Original NHS Practice-Level Prescribing Data The monthly practice-level prescribing data in
England, provided by the National Health Services (NHS) since July 2010 [31], constitutes the
foundation of our analysis. The dataset consists of four files visualized in Figure 6 containing the
following information:

1. GP monthly prescriptions – Anonymized prescriptions across General Practitioner (GP)
practices in England for a given month. Each prescription entry includes details such as
the drug name, British National Formulary (BNF) code [31], practice code, total number of
items, total cost, and individual item quantities.

2. Drugs – A comprehensive list of drugs with their unique BNF codes [31].

3. GPs – Information on GP practices, including practice codes, names, and full addresses. Our
dataset encompasses 6,924 GPs located across England, excluding closed or prison-hosted
practices.

4. Patients – Contains practice codes, census Lower-layer Super Output Area (LSOA) codes,
and the number of patients registered with each practice in a particular area. By aggregating
this data, we calculated the total number of primary care patients residing in a specific area
using the equation:

npat(a) =
∑

gp

npat(gp, a) (1)

Here, npat(gp, a) represents the number of patients registered with a particular GP residing
in area a. The strong correlation (r = .92) between the number of patients and residents in
an LSOA validates our probabilistic approach of assigning patients to areas. Additionally,
we computed the fraction of a GP practice’s patients associated with a specific area a using
the equation:

f(gp, a) =
npat(gp, a)
npat(gp)

(2)
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Practice Code Name Postcode

… … …

N81013 High Street 
Surgery

SK11 6JL

… … …

BNF Code Drug

… …

0103010T0 Ranitidine

… …

Practice Code BNF Code Drug Name Items Cost Pills

… … … … … …

N81013 0103010T0BBAAAA Zantac_Tab_150 mg 1.0 1.30 60

… … … … ...
…

Practice Code LSOA # Patients

… … …

N81013 E01012198 10

… … …

(a) NHS GP monthly prescriptions

(b) NHS drugs (c) NHS GPs (d) NHS GP patients

Figure 6: The four NHS Datasets: (a) GP (general practitioner) monthly prescriptions; (b) Drugs;
(c) GPs; and (d) Patients. Each monthly prescription in dataset (a) was translated into a drug name
based on the BNF code for which dataset (b) offered the corresponding drug (preparation name). The
prescription was also geographically mapped using the GP code for which dataset (c) provided the
location. To then map the prescription at the level of census LSOAs, we computed the fraction of the
GP’s patients who lived in each LSOA from dataset (d).

D.4.3 DrugBank Network

We show here the lists of drug names extracted automatically from DrugBank for two conditions, i.e.,
diabetes (Table 3) and anxiety (Table 5), and the pre-existing list from the literature [16] for depression
(Table 4). For anxiety, we also visualize the corresponding DrugBank network subset (Figure 7). For
the other lists of drugs, please refer to our GitHub repository: https://github.com/sanja7s/
MedSat/tree/master/code/collate_data/NHS_prescription_parser/drug_names.

The correlation between prevalence scores based on the list of drug names extracted automatically
from DrugBank and based on the pre-existing list from the literature are .94 for anxiety and .99 for
diabetes, attesting to the high quality of automatically generated output from DrugBank.

Table 3: List of drug names associated with diabetes.

BNF Code Drug name BNF Code Drug name
0601023A0 Acarbose 0601023AM Canagliflozin
0601023AS Albiglutide 0601023AP Canagliflozin/Metformin
0601023AK Alogliptin 0601021E0 Chlorpropamide
0601023AJ Alogliptin/Metformin 0212000AD Colesevelam Hydrochloride
0607010B0 Bromocriptine 0601023AG Dapagliflozin
0601023AL Dapagliflozin/Metformin 0605020E0 Desmopressin Acetate
0601023AQ Dulaglutide 0601023AN Empagliflozin
0601023AR Empagliflozin/Metformin 0601023AX Ertugliflozin
0601023Y0 Exenatide 0601021H0 Glibenclamide
0601021M0 Gliclazide 0601021A0 Glimepiride
0601021P0 Glipizide 0202010L0 Hydrochlorothiazide
0202080M0 Hydrochlorothiazide/Potassium 0601011A0 Insulin Aspart
0601012Z0 Insulin Degludec 0601012X0 Insulin Detemir
0601012V0 Insulin Glargine 0601012AB Insulin Glargine/Lixisenatide
0601011P0 Insulin Glulisine 0601011R0 Insulin Human
0601011L0 Insulin Lispro 0601012S0 Isophane Insulin
0601023AE Linagliptin 0601023AF Linagliptin/Metformin
0601023AB Liraglutide 0601023AI Lixisenatide
0601022B0 Metformin Hydrochloride 0601023W0 Metformin Hydrochloride/Pioglitazone
0601023V0 Metformin Hydrochloride/Rosiglitazone 0601023AD Metformin Hydrochloride/Sitagliptin
0601023Z0 Metformin Hydrochloride/Vildagliptin 0601023M0 Miglitol
0601023U0 Nateglinide 0601023B0 Pioglitazone Hydrochloride
0601023R0 Repaglinide 0601023S0 Rosiglitazone
0601023AC Saxagliptin 0601023AV Saxagliptin/Dapagliflozin
0601023AH Saxagliptin/Metformin 0601023AW Semaglutide
0601023X0 Sitagliptin 0601021V0 Tolazamide
0601021X0 Tolbutamide 0601023AA Vildagliptin
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Table 4: List of drug names associated with depression (source [16]).

BNF Code Drug name BNF Code Drug name
0403030Q0 Sertraline 0403040T0 Reboxetine
0403030D0 Citalopram 0403040Z0 Agomelatine
0403030E0 Fluoxetine 0402010S0 Flupentixol
0403030P0 Paroxetine 0403010T0 Tryptophan
0403030X0 Escitalopram 0403040N0 Nefazodone
0403030F0 Fluvoxamine 0403010U0 Oxitriptan
0403040M0 Mirtazapine 0403010B0 Amitriptyline
0403040W0 Venlafaxine 0403010V0 Trazodone
0403040Y0 Duloxetine 0403010H0 Dosulepin
0403040AB Vortioxetine 0403010L0 Lofepramine
0403010R0 Nortriptyline 0403010C0 Clomipramine
0403010J0 Imipramine 0403010W0 Trimipramine
0403010G0 Doxepin 0403010M0 Mianserin
0403010A0 Amoxapine 0403010P0 Moclobemide
0403010X0 Tranylcypromine 0403010S0 Phenelzine
0403010K0 Isocarboxazid

Table 5: List of drug names associated with anxiety.

BNF Code Drug name BNF Code Drug name
0401020A0 Alprazolam 0401020G0 Bromazepam
0403010B0 Amitriptyline Hydrochloride 0401020B0 Buspirone Hydrochloride
0401020D0 Chlordiazepoxide 0401020E0 Chlordiazepoxide Hydrochloride
0403030D0 Citalopram Hydrobromide 0401020V0 Clorazepate Dipotassium
0401020K0 Diazepam 0704020AA Duloxetine Hydrochloride
0403030X0 Escitalopram 0408010G0 Gabapentin
0304010J0 Hydroxyzine Hydrochloride 0401020P0 Lorazepam
0401020R0 Meprobamate 0403040X0 Mirtazapine
0401020T0 Oxazepam 0403030P0 Paroxetine Hydrochloride
0402010Q0 Perphenazine 0406000T0 Prochlorperazine Maleate
0204000R0 Propranolol Hydrochloride 0402010AB Quetiapine
0402010X0 Trifluoperazine 0403040W0 Venlafaxine

E Benchmarks Results

E.1 Detailed Health Inequalities

In Figure 8, we present the MEDSAT data, providing insights into healthcare accessibility disparities
across regions. Our analysis focuses on comparing the total number of registered patients with the
population at the LSOA level, revealing significant spatial deviations, indicative of inequalities.

First, interestingly, we find a prevailing pattern where the number of registered patients exceeds
the census population in most areas of the country. This aligns with previous investigations by UK
authorities [42]. Second, although the correlation (r = .87, p ≈ 0) is strong, certain LSOAs exhibit
disproportionate patient-to-population ratios. For instance, Forest of Dean and Shropshire, located
near the Welsh border, show lower patient numbers, likely due to residents being registered with
Welsh GPs. Similarly, Richmondshire, housing a military base in Catterick Garrison, and Forest
Heath in Suffolk, hosting RAF Mildenhall, exhibit lower patient-to-population ratios. Conversely,
Oxford and Cambridge have higher patient-to-population ratios, attributed to students registered with
local GPs but not counted as residents (the LSOA with highest residual is Oxford 006F, featuring
student housing for Oxford Brookes University, as well as an International Language Campus).

Additionally, our analysis highlights broader factors contributing to healthcare inequalities. The
residual values, representing deviations from the linear fit, correlate with deprivation levels (r = .16,
p ≈ 0 for mid-deprived areas; r = .22, p ≈ 0 for highly-deprived areas), suggesting a greater burden
on healthcare access in socioeconomically disadvantaged regions (e.g., one of the areas with the
highest patient-to-population ratio is near Bolton, a highly deprived region in Greater Manchester).
Moreover, the residual values exhibit a negative correlation (r = −.40, p ≈ 0) with the percentage
of White population, indicating disparities associated with ethnic backgrounds. These findings
underscore the presence of healthcare access inequalities across the country, as corroborated by prior
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Figure 7: Visualization of the Drugbank network: showcasing the comprehensive interconnections
between various drugs; the inset provides a zoom-in view to the subset specifically associated with
anxiety prescriptions.

Figure 8: Health access disparity analysis using MEDSAT. We present a quick analysis of
health access disparities by examining the relationship between the population and the number of
registered patients (log-transformed), revealing a strong correlation (r = 0.87, p ≈ 0). However, the
residual values from a linear fit between the two highlight a clear rural-urban pattern, with urban
areas showing a higher patient-to-population ratio, which correlates with the percentage of White
population (r = −0.40, p ≈ 0). Furthermore, the residuals show associations with mid- (r = 0.16,
p ≈ 0) and highly-deprived areas (r = 0.22, p ≈ 0), indicating a potentially greater health-access
burden in these areas. Details of the analysis are found in Appendix.

research examining various healthcare system aspects, including NHS data on waiting times, staffing,
hospital activity, outcomes, and the GP Patient Survey [41], or COVID-19 hospitalisations and deaths
[28].

E.2 Predicting Prescriptions

E.2.1 Spatial Lag Model (SLM)

The Spatial Lag Model (SLM) [3, 4], differs from the Ordinary Least Squares (OLS) model by the
inclusion of the spatial lag term (ρWy):

y = ρWy +Xβ + ϵ,
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where y is the outcome, X is the matrix of features, and ϵ is the error term. W is a matrix of the shape
N × N and it contains spatial weights capturing the spatial interaction among variables, and the
coefficient of spatial autocorrelation is captured by ρ. We fed in input to SLM the LSOA shapefiles
to calculate the spatial lag term.

Table 6: The spatial R2 scores resulting from the Spatial Lag Model (SLM). These scores are
computed across various prescription types and combinations of dataset features specifically for the
year 2020.

metabolic mental respiratory
input diabetes hypertension depression anxiety asthma opioids total

Image 0.04 0.23 0.23 0.19 0.25 0.28 0.11
Env. 0.13 0.34 0.41 0.37 0.34 0.49 0.25
Soc. 0.33 0.44 0.50 0.48 0.38 0.52 0.31
Env. + Soc. + Image 0.38 0.49 0.54 0.55 0.43 0.63 0.38

The SLM results are presented in Table 6.

E.2.2 Machine Learning Models
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Figure 9: Visualization of an example spatial fold created using blockCV spatial blocking: we
chose hexagonal blocks and randomly assigned those blocks to 5 folds consisting of an equal number
of blocks. The numbers specify the fold assignment of the blocks.

Spatial Cross-Validation In spatial data scenarios, traditional random cross-validation methods can
inadvertently undervalue prediction errors which can lead to suboptimal model choices. Recognizing
this challenge, specific validation techniques tailored for spatial modeling, such as spatial blocks
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and buffers, have been introduced [23, 43]. We utilized the R package blockCV, which facilitates
the creation of spatially or environmentally separated folds. We used cv_spatial function to create
spatial blocks (hexagons) and relied on the interactive tool rangeExplorer withing blockCV to
visualise the blocks and assess the impact of block size on the number and arrangement of blocks in
the landscape. For our experiments, we chose the block size of 28km x 28km.

Prescription Prediction To understand whether the prevalence scores for the different prescription
types can be reliably predicted based on the environmental, sociodemographic indicators and the
simple image features, we performed spatial cross-validation for the LightGBM [22] tree-based model
and a Feed-Forward Neural Network (FNN). For this experiment, we dropped the instances having
missing values. The hyperparameters used for LightGBM model and the FNN are provided in Tables 7
and 8, respectively. For both years in our dataset, we implemented the following evaluation procedure:
We randomly created 5 splits consisting of 5 folds where each fold contains an equal number of the
above-described spatial blocks. Figure 9 depicts one example of a spatial split consisting of 5 folds.
For each split, we performed the standard cross-validation procedure such that 80 % of the spatial
blocks are used in model training and the rest 20 % for model testing. This procedure ensures that the
test set does not contain LSOAs from the geographical blocks used for model training. Further, we
used half of the instances in the test fold as a validation set for early stopping to prevent overfitting,
and the other half was used as a test set to evaluate the model performance. Additionally, in each
split, we performed feature standardization such that each feature has zero mean and unit variance.
Figure 10 shows the average R2 scores over the test sets and the corresponding standard deviation per
prescription type and machine learning model. These results show that for both years, the LightGBM
model consistently outperforms the FNN. Moreover, we can also see that the R2 scores are similar
for the different prescription types for both years except for the total prescriptions which have lower
goodness-of-fit in 2019 compared to 2020.

Table 7: LightGBM hyperparameters.

parameter value

objective regression
metric rmse
boosting gdbt
data_sample_strategy bagging
num_iterations 100
learning_rate 0.1
tree_learner serial
early_stopping_rounds 10

Table 8: Feed-Forward Neural Network hyperparameters.

parameter value

hidden layers 3
embedding dimension 512
epochs 100
criterion mse
optimizer Adam
learning_rate 0.0001
weight_decay 0.001
early_stopping_rounds 10

Detailed SHAP results The 10 most important features as estimated by the SHAP approach
[25] and the relationship between feature values and their SHAP importance for the prediction of
LightGBM models for 2019, and 2020 are given in Figures 11 and 12, respectively. The LightGBM
models were trained on the proposed spatial split described in Section E.2. Although these plots
indicate that the majority of the relevant factors overlap for 2019 and 2020, we also see that the
important factors for a condition can change in the subsequent year. For instance, the aerosols feature
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Figure 10: Prescription prediction results on the spatial cross-validation splits of the LightGBM
model and the FNN model for the different medical conditions in 2019 (left plot) and 2020
(right plot). The error bars indicate the standard deviation per machine learning model and medical
condition and they show that the R2 scores deviate strongly for the FNN model.

that does not appear among the top-15 features for predicting opioids in 2019 is the most important
feature for the same condition in 2020. Also, we observe that the contribution of a feature can vary
over the years. For example, while low values of thermal radiation are related with an increase in
opioids prescriptions for 2019, such a relationship is not exhibited for 2020. These insights shed
light on the challenges introduced with our dataset for predicting future health outcomes based on
historical data.

SHAP Depedence Plots The SHAP dependence plots explain the effect of a feature on the model
predictions on the entire dataset while also revealing the interaction effects between the features [2].
In Figure 14, we show the SHAP dependence plots for the lightGBM models trained for predicting
anxiety and opioid prescriptions. For creating the plots, we used the SHAP python library with
the auto option for the interaction index that selects the feature which has the highest estimated
interaction with the most important feature (according to the SHAP values). The left plot shows
that LSOAs with a high number of White ethnicity population result in higher model predictions for
anxiety. Further, the interaction of White ethnicity with work from home feature reveals that among
the LSOAs with a large White population, lower prescriptions are predicted for those having a large
percentage of people working from home. Next, the right plot shows that the model tends to predict
lower prescription rates for LSOAs with high PM2.5 values while at the same time depicting no clear
relationship between the PM2.5 and the wind component.

E.3 Temporal Analyses

As Figures 15, and 16 show, both the prescription quantities for our observed outcomes, as well as
the environmental point features exhibit different distributions between 2019 and 2020. People in
England were prescribed more mental health-related medications, as well as diabetes-associated
medications, and less medications associated with asthma and hypertension. Satellite data measured
significantly less NO2, ozone, and PM2.5 across England during 2020. The changes in land cover
manifested by an increase in built environment, and a decrease in trees cover. Finally, temperatures
and the amount of solar radiation, as well as the amounts of wind, as expressed through its both
components, east-west and north-south, were higher in England in 2020 compared to 2019.
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Figure 13: SHAP values for the LightGBM model trained on prescription prediction based on
the mean and standard deviation simple image features.
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Figure 15: Differences in distributions of MEDSAT outcomes between 2019 and 2020. The
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