
(a)

E embeddings

eloxoprofen =
[−0.5 0.3

]
eCOX2 =

[
0.1 −0.4

]
ephos-acid =

[−0.9 0.4
]

R embeddings
winhibits =

[
0.9 −0.6

]
winteracts =

[
0.8 0.2

]

ϕTUCKER(loxprofen, interacts,COX2)

-1.5 0.0 0.5 0.2 -0.1 0.8 0.9 1.2

winteracts eCOX2eloxoprofen

(b)

Figure A.1: Evaluation of circuit representations of score functions as in neural networks.
Feed-forward evaluation of the TUCKER score function as a circuit over 2-dimensional embed-
dings and parameterised by the core tensor T (see proof of Prop. 1 below) (a). Given a triple
(loxoprofen, interacts,COX2), the input units (Def. 1) map subject, predicate and object to their
embedding entries (in violet boxes). Then, the circuit is evaluated similarly to neural networks: the
products (in orange) are evaluated before the weighted sum (in blue), which is parameterised by the
core tensor values (in green) (b). The output of the circuit is the score of the input triple.

A Proofs

A.1 KGE Models as Circuits

Proposition 1 (Score functions of KGE models as circuits). The computational graphs of the score
functions ϕ of CP, RESCAL, TUCKER and COMPLEX are smooth and decomposable circuits over
X = {S,R,O}, whose evaluation cost is cost(ϕ) ∈ Θ(|ϕ|), where |ϕ| denotes the number of edges
in the circuit, also called its size. For example, the size of the circuit for CP is |ϕCP| ∈ O(d).

Proof. We present the proof by construction for TUCKER [3], as CP [40], RESCAL [47] and
COMPLEX [65] define score functions that are a specialisation of it [3] (see below). Given a triple
(s, r, o) ∈ E ×R× E , the TUCKER score function computes

ϕTUCKER(s, r, o) = T ×1 es ×2 wr ×3 eo =
∑de

i=1

∑dr

j=1

∑de

k=1
τijkesiwrjeok (4)

where T ∈ Rde×dr×de denotes the core tensor, ×n denotes the tensor product along the n-th mode,
and de, dr denote respectively the embedding sizes of entities and predicates (which might not be
equal). To see how this parametrization generalises that of CP, RESCAL and COMPLEX, consider
for example the score function of CP on d-dimensional embeddings. It can be obtained by (i) setting
the core tensor T to be a diagonal tensor having ones on the superdiagonal, and (ii) having two
distinct embedding instances for each entity that are used depending on their role (either subject
or object) in a triple. The embeddings es, eo ∈ Rde (resp. wr ∈ Rdr) are rows of the matrix
E ∈ R|E|×de (resp. W ∈ R|R|×dr), which associates an embedding to each entity (resp. predicate).

Constructing the circuit. For the construction of the equivalent circuit it suffices to (i) create an
input unit for each i-th entry of an embedding for subjects, predicates and objects, as to implement
a look-up table that computes the corresponding embedding value for an entity or predicate, and
(ii) transform the tensor multiplications into corresponding sum and product units. We start by
introducing the input units lSi , lRj and lOk for 1 ≤ i, k ≤ de and 1 ≤ j ≤ dr as parametric mappers
over variables S, R and O, respectively. The input units lSi and lOk (resp. lRj) are parameterised
by the matrix E (resp. W) such that lSi (s;E) = esi and lOi (o;E) = eoi for some s, o ∈ E (resp.
lRj (r;W) = wri for some r ∈ R). To encode the tensor products in Eq. (4) we introduce d2e · dr
product units ϕijk, each of them computing the product of a combination of the outputs of input units.

ϕijk(s, r, o) = lSi (s) · lRj (r) · lOk (o)
Finally, a sum unit ϕout parameterised by the core tensor T ∈ Rde×dr×dr computes a weighted
summation of the outputs given by the product units, i.e.,

ϕout(s, r, o) =
∑

(i,j,k)∈
[de]×[dr]×[de]

τijk · ϕijk(s, r, o)

16

Table A.1: Score functions as compact circuits. Asymptotic size of circuits encoding the score
functions of CP, RESCAL, COMPLEX and TUCKER, with respect to the embedding size. For
TUCKER, de and dr denote the embedding sizes for entities and predicates, respectively.

KGE Model Circuit Size KGE Model Circuit Size

CP O(d) RESCAL O(d2)
COMPLEX O(d) TUCKER O(d2e · dr)

where [d] denotes the set {1, . . . , d} and τijk is the (i, j, k)-th entry of T . We now observe that
the constructed circuit ϕout encodes the TUCKER score function (Eq. (4)), as ϕTUCKER(s, r, o) =
ϕout(s, r, o) for any input triple (s, r, o) ∈ E ×R× E .

Circuit evaluation and properties. Evaluating the score function of TUCKER corresponds to
performing a feed-forward pass of its circuit representation, where each computational unit is
evaluated once, as we illustrate in Fig. A.1. As such, the cost of evaluating the score function is
proportional to the size of its circuit representation, i.e., cost(ϕ) ∈ Θ(|ϕ|) where |ϕ| ∈ O(d2e · dr) is
the number of edges. In Table A.1 we show how the sizes of the circuit representation of the other
score functions increases with respect to the embedding size. Finally, since each product unit ϕijk
is defined on the same scope (see Def. 1) {S,R,O} and fully decompose it into its inputs (i.e., into
{S}, {R}, {O}), and the inputs of the sum unit ϕout are all defined over the same scope, we have that
the circuit satisfies smoothness and decomposability (Def. 2).

Furthermore, in Lem. A.1 we show that the circuit representations of CP, RESCAL, TUCKER
and COMPLEX and the proposed GeKCs (Section 4) satisfy a structural property known as omni-
compatibility (see Def. B.2). In a nutshell, the score functions of the aforementioned KGE models
and GeKCs are circuits that fully decompose their scope {S,R,O} into ({S}, {R}, {O}). The
satisfaction of this property will be useful to prove both Thm. 1 and Thm. 2 later in this appendix.

Lemma A.1 (KGE models and derived GeKCs are omni-compatible). The circuit representation of
the score functions of CP, RESCAL, TUCKER, COMPLEX and their GeKCs counterparts obtained
by non-negative restriction (Section 4.1) or squaring (Section 4.2) are omni-compatible (see Def. B.2).

Proof. To begin, we note that to comply with Def. B.2 every omni-compatible circuit shall contain
product units that fully factorise over their scope. In other words, for every product unit n with scope
sc(n) = X, its scope shall decompose as ({X1}, {X2}, . . . , {X|sc(n)|}). To see why, consider a
circuit ϕ with a product unit n whose scope is decomposed as sc(n) = (X,Y). It is easy to construct
another circuit ϕ′ that is not compatible with ϕ by having a product unit m with scope sc(m) = sc(n)
decomposed in a way that it cannot be rearranged by introducing additional decomposable product
units (Def. 2), e.g., sc(m) = (Z,W) with Z ∩ X ̸= ∅ and W ∩ X ̸= ∅. As such, every omni-
compatible circuit over X must be representable in the form

∑N
i=1 θi

∏|X|
k=1 lik(Xk) without any

increase in its size.

Now, it is easy to verify that the circuit representations of CP, RESCAL, TUCKER and COMPLEX
follow the above form, with a different number N of product units feeding the single sum unit, but
each one decomposing its scope {S,R,O} into ({S}, {R}, {O}) (see Fig. 2). From this it follows
that CP+, RESCAL+, TUCKER+ and COMPLEX+ are omni-compatible as well, as they share the
same structure of their energy-based counterpart, while just enforcing non-negative activations via
reparametrisation (see Section 4.1).

Finally, we note that CP2, RESCAL2, TUCKER2 and COMPLEX2 are still omni-
compatible because the square operation yields the following fully-factorised representation:
(
∑N

i=1 θi
∏|X|

k=1 lik(Xk))
2 =

∑N
i=1

∑N
j=1 θiθj

∏|X|
k=1 lik(Xk)

∏|X|
k=1 ljk(Xk) which can be easily

rewritten as
∑N2

h=1 ωh

∏|X|
k=1 lhk(Xk) where now h ranges over the Cartesian product of i ∈ [N] and

j ∈ [N], ωh is the product of θiθj and lhk is a new input unit that encodes lik(Xk)ljk(Xk) for a
certain variable index k.

17

A.2 Efficient Summations over Circuits

Proposition 2 (Efficient Summations). Let ϕ be a smooth and decomposable circuit over X =
{S,R,O} that encodes the score function of a KGE model. The sum

∑
s∈E

∑
r∈R

∑
o∈E ϕ(s, r, o) or

any other summation over subjects, predicates or objects can be computed in time O((|E|+ |R|) · |ϕ|).

Proof. A proof for the computation of marginal probabilities in smooth and decomposable probabilis-
tic circuits (PCs) defined over discrete variables in linear time with respect to their size can be found
in [13]. This proof also applies for computing summations in smooth and decomposable circuits that
do not necessarily corresponds to marginal probabilities [76]. The satisfaction of smoothness and
decomposability (Def. 2) in a circuit ϕ permits to push outer summations inside the computational
graph until input units are reached, where summations are actually performed independently and on
smaller sets of variables (i.e., {S}, {R}, {O} in our case), and then to evaluate the circuit only once.

Here we take into account the computational cost of summing over each input unit (see proof of
Prop. 1), which is O(|E|) (resp. O(|R|)) for those defined on variables S,O (resp. R). Since the size
of the circuit |ϕ| must be at least the number of input units, we retrieve that the overall complexity for
computing summations as stated in the proposition is O((|E|+ |R|) · |ϕ|).
As an example, consider the CP score function computing ϕCP(s, r, o) = ⟨es,wr, eo⟩ for some
triple (s, r, o) and embeddings es,wr, eo ∈ Rd. We can compute

∑
s∈E

∑
r∈R

∑
o∈E ϕCP(s, r, o)

by pushing the outer summations inside the trilinear product, i.e., by computing it as
⟨
∑

s∈E es,
∑

r∈R wr,
∑

o∈E eo⟩, which requires time O((|E|+ |R|) · d).

A.3 Efficient Summations over Squared Circuits

Theorem 1 (Efficient summations of squared GeKCs). Performing summations as stated in Prop. 2
on CP2, RESCAL2, TUCKER2 and COMPLEX2 can be done in time O((|E|+ |R|) · |ϕ|2).

Proof. In Lem. A.1 we showed that the circuit representations ϕ of CP, RESCAL, TUCKER and
COMPLEX are omni-compatible (see Def. B.2). As a consequence, ϕ is compatible (see Def. B.1)
with itself. Therefore, Prop. B.1 ensures that we can construct the product circuit ϕ · ϕ (i.e., ϕ2) as a
smooth and decomposable circuit having size O(|ϕ|2) in time O(|ϕ|2). Since ϕ2 is still smooth and
decomposable, Prop. 2 guarantees that we can perform summations in time O((|E|+ |R|) · |ϕ|2).

A.4 Circuits encoding Domain Constraints

In Def. A.1 we introduce the concepts of support and determinism, whose definition is useful to
describe constraint circuits in Def. A.2.

Definition A.1 (Support and Determinism [13, 76]). In a circuit the support of a computational unit
n over variables X computing ϕn(X) is defined as the set of value assignments to variables in X
such that the output of n is non-zero, i.e., supp(n) = {x ∈ val(X) | ϕn(X) ̸= 0}. A sum unit n is
deterministic if its inputs have disjoint supports, i.e., ∀i, j ∈ in(n), i ̸= j : supp(i) ∩ supp(j) = ∅.

Definition A.2 (Constraint Circuit [1]). Given a propositional logic formula K, a constraint circuit
cK is a smooth and decomposable PC over variables X with deterministic sum units (Def. A.1) and
indicator functions as input units, such that cK(x) = 1{x |= K} for any x ∈ val(X).

In general, we can compile any propositional logic formula into a constraint circuit (Def. A.2) by
leveraging knowledge compilation techniques [19, 18, 52]. For domain constraints (Def. 4) this
compilation process is straightforward, as we detail in the following proposition and proof.

Proposition A.1 (Circuit encoding domain constraints). LetK = Kr1∨. . .∨Krm be a disjunction of
domain constraints defined over a set of predicates R = {r1, . . . , rm} and a set of entities E (Def. 4).
We can compile K into a constraint circuit cK (Def. A.2) defined over variables X = {S,R,O}
having size O(|E| · |R|) in the worst case and O(|E|+ |R|) in the best case.

Proof. Let K = Kr1 ∨ . . . ∨Krm be a disjunction of domain constraints (Def. 4) where

Kr ≡ S ∈ κS(r) ∧R = r ∧O ∈ κO(r) ≡ (∨u∈κS(r)S = u) ∧R = r ∧ (∨v∈κO(r)O = v).

18

Note that the disjunctions in K are deterministic, i.e., only one of their argument can be true
at the same time. This enables us to construct the constraint circuit cK such that cK(s, r, o) =
1{(s, r, o) |= K} for any triple by simply replacing conjunctions and disjunctions with product and
sum units, respectively. Note that cK is indeed smooth and decomposable (Def. 2), as the inputs of
the sum units are product units having scope {S,R,O} that are fully factorised into ({S}, {R}, {O}).
Moreover, K is a disjunction of |R| conjunctive formulae having O(|E|) terms, and therefore
|cK | = O(|E| · |R|) in the worst case. In the best case of every predicate sharing the same subject and
object domains κS , κO ⊆ E , we can simplify K into a conjunction of three disjunctive expressions,
i.e.,

K ≡ (∨u∈κS
S = u) ∧ (∨r∈RR = r) ∧ (∨v∈κO

O = v)

that can be easily compiled into a constraint circuit cK having size O(|E|+ |R|), by again noticing
that disjunctions are deterministic. In real-world KGs like ogbl-biokg [32] several predicates share
the same subject and object domains, and this permits to have much smaller constraint circuits.

A.5 Efficient Integration of Domain Knowledge in GeKCs

Theorem 2 (Tractable integration of constraints in GeKCs). Let cK be a constraint circuit encoding
a logical constraint K over variables {S,R,O}. Then exactly computing the partition function ZK

of the product ϕpc(s, r, o) · cK(s, r, o) ∝ pK(s, r, o) for any GeKC ϕpc derived from CP, RESCAL,
TUCKER or COMPLEX (Section 4) can be done in time O((|E|+ |R|) · |ϕpc| · |cK |).

Proof. In Lem. A.1 we showed that the GeKCs ϕpc derived from CP, RESCAL, TUCKER and
COMPLEX via non-negative restriction (Section 4.1) or squaring (Section 4.2) are omni-compatible
(see Def. B.2). As a consequence, ϕpc is always compatible with cK regardless of the encoded
logical constraint K, since constraint circuits are by definition smooth and decomposable (Def. A.2).
By applying Prop. B.1, we retrieve that we can construct ϕpc · cK as a smooth and decomposable
circuit of size O(|ϕpc| · |cK |) and in time O(|ϕpc| · |cK |). As the resulting product circuit is
smooth and decomposable, Prop. 2 guarantees that we can compute its partition function ZK =∑

s∈E
∑

r∈R
∑

o∈E(ϕpc(s, r, o) · cK(s, r, o)) in time O((|E|+ |R|) · |ϕpc| · |cK |).

B Circuits

B.1 Tractable Product of Circuits

In this section, we provide the formal definition of compatibility (Def. B.1) and omni-compatibility
(Def. B.2), as stated by Vergari et al. [76]. Given two compatible circuits, Prop. B.1 guarantees that
we can represent their product as a smooth and decomposable circuit efficiently.

Definition B.1 (Compatibility). Two circuits ϕ, ϕ′ over variables X are compatible if (1) they are
smooth and decomposable, and (2) any pair of product units n ∈ ϕ,m ∈ ϕ′ having the same scope
can be rearranged into binary products that are mutually compatible and decompose their scope in
the same way, i.e., (sc(n) = sc(m)) =⇒ (sc(ni) = sc(mi), ni and mi are compatible) for some
rearrangements of the inputs of n (resp. m) into n1, n2 (resp. m1,m2).

Definition B.2 (Omni-compatibility). A circuit ϕ over variables X is omni-compatible if it is
compatible with any smooth and decomposable circuit over X.

Proposition B.1 (Tractable product of circuits). Let ϕ, ϕ′ be two compatible (Def. B.1) circuits. We
can represent the product circuit ϕ · ϕ′ computing the product of the outputs of ϕ and ϕ′ as a smooth
and decomposable circuit having size O(|ϕ| · |ϕ′|) in time O(|ϕ| · |ϕ′|). Moreover, if both ϕ and ϕ′
are omni-compatible (Def. B.2), then also the product circuit ϕ · ϕ′ is omni-compatible.

Prop. B.1 allows us to compute the partition function and any other marginal probability in GeKCs
obtained via squaring efficiently (see Section 4.2 and Thm. 1). In addition, Prop. B.1 is a crucial
theoretical result that allows us to inject logical constraints in GeKCs in a way that enable computing
the partition function exactly and efficiently (see Section 5 and Thm. 2).

19

C From KGE Models to PCs

C.1 Interpreting Non-negative Embedding Values

In Fig. C.1 we interpret the embedding values of GeKCs obtained via non-negative restriction – CP+,
RESCAL+, TUCKER+, COMPLEX+– (Section 4.1) as the parameters of unnormalised categorical
distributions over entities (elements in E) or predicates (elements in R).

e lo
xo
pr
of
en

eC
O
X2 . . .

e p
ho
s-a
ci
d

E embeddings

0.5

0.1 . . .

0.9

Cat1

(
pu = eu1/

∑
u∈E

eu1

)

0.3 0.4
. . .

0.4
Cat2

(
pu = eu2/

∑
u∈E

eu2

)

w
in
hi
bi
ts

w
in
te
ra
ct
s . . .

w
re
ac
ts

R embeddings

0.3 0.4

. . .

0.4
Cat1

(
pr = wr1/

∑
r∈R

wr1

)

0.6

0.2 . . .

0.3
Cat2

(
pr = wr2/

∑
r∈R

wr2

)

Figure C.1: Non-negative embeddings parameterise categorical distributions. 2-dimensional em-
beddings of GeKCs obtained via non-negative restrictions (Section 4.1) can be seen as the parameters
of two categorical distributions over entities (left) or predicates (right) up to renormalisation.

C.2 Realising the Non-negative Restriction of COMPLEX

As anticipated in Section 4.1, for the COMPLEX [65] score function restricting the real and imaginary
parts to be non-negative is not sufficient to obtain a PC due to the presence of a subtraction, as showed
in the following equation.

ϕCOMPLEX(s, r, o) = ⟨Re(es),Re(wr),Re(eo)⟩+ ⟨Im(es),Re(wr), Im(eo)⟩
+ ⟨Re(es), Im(wr), Im(eo)⟩ − ⟨Im(es), Im(wr),Re(eo)⟩

(5)

Here es,wr, eo ∈ Cd are the embeddings associated to the subject, predicate and object, respectively.
Under the restriction of embedding values to be non-negative, we ensure that ϕCOMPLEX(s, r, o) ≥ 0
for any input triple by enforcing the additional constraint

⟨Re(es),Re(wr),Re(eo)⟩ ≥ ⟨Im(es), Im(wr),Re(eo)⟩, (6)

which can be simplified into the two distinct inequalities

∀u ∈ E Re(eui) ≥ Im(eui) and ∀r ∈ R Re(wri) ≥ Im(wri).

In other words, we want the real part of each embedding value to be always greater or equal than the
corresponding imaginary part. We implement this constraint in practice by reparametrisation of the
imaginary part in function of the real part, i.e.,

∀u ∈ E Im(eui) = Re(eui) · σ(θui) (7)
∀r ∈ R Im(wri) = Re(wri) · σ(γri) (8)

where σ(x) = 1/(1+exp(−x)) ∈ [0, 1] denotes the logistic function and θui, γri ∈ R are additional
parameters associated to entities u ∈ E and predicates r ∈ R, respectively. The reparametrisation of
the imaginary parts using Eqs. (7) and (8) is a sufficient condition for the satisfaction of the constraint
showed in Eq. (6), and also maintains the same number of learnable parameters of COMPLEX.

C.3 Sampling from GeKCs with Non-negative Parameters

Parameters interpretation. Sum units with non-negative parameters in smooth and decomposable
PCs can be seen as marginalised discrete latent variables, similarly to the latent variable interpretation
in mixture models [55, 53]. That is, the non-negative parameters of a sum unit are the parameters
of a (possibly unnormalised) categorical distribution over assignments to a latent variable. For CP+

and RESCAL+ (Section 4.1), the non-negative parameters of the sum unit encode a uniform and

20

unnormalised categorical distribution, as they are all fixed to 1 (see Fig. 2). By contrast, in TUCKER+

these parameters are the vectorisation of the core tensor T (see the proof of Prop. 1), and hence they
are learned. The input units of CP+, RESCAL+ and TUCKER+ can be interpreted as unnormalised
categorical distribution over entities or predicates, as detailed in Appendix C.1.

Sampling from CP+, COMPLEX+, TUCKER+. Thanks to the latent variable interpretation, ances-
tral sampling in CP+, RESCAL+ and TUCKER+ can be performed by (1) sampling an assignment
to the latent variable associated to the single sum unit, i.e., one of its input branches, (2) selecting
the corresponding combination of subject-predicate-object input units, and (3) sampling a subject,
predicate and object respectively from each of the indexed unnormalized categorical distributions.

C.4 Learning Complexity of GeKCs

In Table C.1 we summarise the complexities of computing the PLL and MLE objectives (Eqs. (1)
and (2)) for KGE models and GeKCs. Asymptotically, GeKCs manifest better time and space
complexities with respect to the number of entities |E|, batch size |B| and embedding size. This
makes GeKCs more efficient than traditional KGE models during training, both in time and memory
(see Section 4.3 and Fig. 3).

Table C.1: Summary of complexities for exactly computing the PLL and MLE objectives. Time
and space complexity of computing log p(o | s, r) and the partition function Z. These complexities
are respectively lower bounds of the complexities of computing the PLL and MLE objectives, as we
have that |E| ≫ |R| for large real-world KGs. For CP, RESCAL and COMPLEX and GeKCs derived
from them, d denotes the size of both entity and predicate embeddings. For TUCKER and GeKCs
derived from it, de and dr denote the embedding sizes for entities and predicates, respectively.

Model Complexity of log p(o | s, r) Complexity of Z

Time Space Time Space

CP O(|E| · |B| · d) O(|E| · |B|) O(|E|2 · |R| · d) O(d)
RESCAL O(|E| · |B| · d+ |B| · d2) O(|E| · |B|) O(|E|2 · |R| · d2) O(d2)
TUCKER O(|E| · |B| · de + |B| · d2e · dr) O(|E| · |B|) O(|E|2 · |R| · d2e · dr) O(d2e · dr)
COMPLEX O(|E| · |B| · d) O(|E| · |B|) O(|E|2 · |R| · d) O(d)

CP+ O((|E|+ |B|) · d) O(|B| · d) O((|E|+ |R|) · d) O(d)
RESCAL+ O((|E|+ |B| · d) · d) O(|B| · d2) O((|E|+ |R| · d) · d) O(d2)
TUCKER+ O((|E|+ |B| · de · dr) · de) O(|B| · de · dr) O(|E| · de + |R| · dr + d2e · dr) O(d2e · dr)
COMPLEX+ O((|E|+ |B|) · d) O(|B| · d) O((|E|+ |R|) · d) O(d)

CP2 O((|E|+ |B|) · d2) O(|B| · d) O((|E|+ |R|) · d2) O(d2)
RESCAL2 O((|E|+ |B|) · d2) O(|B| · d2) O((|E|+ |R| · d) · d2) O(|R| · d2)
TUCKER2 O((|E|+ |B| · dr) · d2e) O(|B| · de · dr) O(|E| · d2e + |R| · d2r + d2e · dr) O(d2e · dr)
COMPLEX2 O((|E|+ |B|) · d2) O(|B| · d) O((|E|+ |R|) · d2) O(d2)

C.4.1 Computing the Partition Function

In this section we derive the computational complexity of computing the partition function for GeKCs
obtained via squaring (Section 4.2). For a summary of these complexities, see Table C.1.

CP2 and COMPLEX2. Here we derive the partition function of CP2. For COMPLEX2 the derivation
is similar, as the score function of COMPLEX can be written in terms of trilinear products just like
CP (see Eq. (5)). The score function ϕCP2 encoded by CP2 can be written as

ϕCP2(s, r, o) = ⟨es,wr, eo⟩2 =

d∑

i=1

d∑

j=1

esiesjwriwrjeoieoj

where es, eo ∈ Rd (resp. wr ∈ Rd) are rows of the matrices U,V ∈ R|E|×d (resp. W ∈ R|R|×d),
which associate to each entity (resp. predicate) a vector. By leveraging the einsum notation for

21

https://en.wikipedia.org/wiki/Einstein_notation

brevity, the partition function of ϕCP2 can be written as

Z =
∑

s∈E

∑

r∈R

∑

o∈E
ϕCP2(s, r, o) =

d∑

i=1

d∑

j=1

(∑

s∈E
esiesj

)(∑

r∈R
wriwrj

)(∑

o∈E
eoieoj

)

= U′
ijW

′
ijV

′
ij

where U′ = U⊤U, W′ = W⊤W and V′ = V⊤V are d× d matrices. With the simplest algorithm
for matrix multiplication, we recover that computing Z requires time O(|E| · d2 + |R| · d2) and
additional space O(d2).

RESCAL2. The score function ϕRESCAL2 encoded by RESCAL2 can be written as

ϕRESCAL2(s, r, o) =
(
e⊤s Wreo

)2
=

∑

(i,j,k,l)∈[d]4

esieskwrijwrkleojeol

where [d] denotes the set {1, . . . , d}, es, eo ∈ Rd are rows of the matrix E ∈ R|E|×d and Wr ∈ Rd×d

are slices along the first mode of the tensor W ∈ R|R|×d×d, which consists of stacked matrix
embeddings associated to predicates. The partition function of ϕRESCAL2 can be written as

Z =
∑

s∈E

∑

r∈R

∑

o∈E
ϕRESCAL2(s, r, o) =

∑

(i,j,k,l)∈[d]4

(∑

s∈E
esiesk

)(∑

r∈R
wrijwrkl

)(∑

o∈E
eojeol

)

= E′
ikWrijWrklE

′
jl (9)

where E′ = E⊤E ∈ Rd×d. The complexity of computing Z depends on the order of tensor
contractions in the einsum operation showed in Eq. (9). By optimising the order of tensor contractions
(e.g., by using software libraries like opt_einsum), we retrieve that computing Z requires time
O(|E| ·d2+ |R| ·d3) and additional space O(|R| ·d2). Notice that the time complexity here is slightly
lower than the theoretical upper bound given in Thm. 1, which would be O(|E| · d2 + |R| · d4).

TUCKER2. Lastly, we present the derivation of the partition function for TUCKER2. The score
function ϕTUCKER2 encoded by TUCKER2 can be written as

ϕTUCKER2(s, r, o) = (T ×1 es ×2 wr ×3 eo)
2

=
∑

(i,j,k)∈
[de]×[dr]×[de]

∑

(l,m,n)∈
[de]×[dr]×[de]

τijkτlmnesieslwrjwrmeokeon

where es, eo ∈ Rde are rows of the matrix E ∈ R|E|×de , wr is a row of the matrix W ∈ R|R|×dr ,
and T ∈ Rde×dr×de denotes the core tensor. The partition function of ϕTUCKER2 can be written as

Z =
∑

s∈E

∑

r∈R

∑

o∈E
ϕTUCKER2(s, r, o)

=
∑

(i,j,k)∈
[de]×[dr]×[de]

∑

(l,m,n)∈
[de]×[dr]×[de]

τijkτlmn

(∑

s∈E
esiesl

)(∑

r∈R
wrjwrm

)(∑

o∈E
eokeon

)

= TijkTlmnE
′
ilW

′
jmE′

kn (10)

where E′ = E⊤E ∈ Rde×de and W′ = W⊤W ∈ Rdr×dr . Similarly to RESCAL2, by optimising
the order of tensor contractions in the einsum operation showed in Eq. (10), we retrieve that computing
Z requires time O(|E|·d2e+|R|·d2r+d2e ·dr) and additional space O(d2e ·dr). Similarly to RESCAL2,
the time complexity is lower than the theoretical upper bound given in Thm. 1, which would be
O(|E| · d2e + |R| · d2r + d4e · d2r).

C.4.2 Complexity of Computing the PLL Objective

In this section, we show that GeKCs enable to better scale the computation of the PLL objective
(Eq. (1)) with respect to energy-based KGE models (see Section 2). We present this concept for CP
and GeKCs derived from it (Section 4), as for the other score functions it is similar.

22

https://optimized-einsum.readthedocs.io/en/stable/

Complexity of the PLL objective on CP. Let ϕCP(s, r, o) = ⟨es,wr, eo⟩ =
∑d

i=1 esiwrieoi be
the score function of CP [40], where es, eo ∈ Rd (resp. wr ∈ Rd) are rows of the matrices U,V ∈
R|E|×d (resp. W ∈ R|R|×d), which associate to each entity (resp. predicate) a vector. Given a training
triple (s, r, o), the computation of the term log p(o | s, r) = ϕ(s, r, o) − log

∑
o′∈E expϕ(s, r, o

′)
requires evaluating ϕCP(s, r, o

′) for all objects o′ ∈ E . In order to fully exploit GPU parallelism [36],
this is usually done with the matrix-vector multiplication V(es ⊙ wr) ∈ R|E|, where ⊙ denotes
the Hadamard product [40, 12]. Therefore, computing log p(o | s, r) for each triple (s, r, o) in a
mini-batch B ⊂ E ×R×E such that |E| ≫ |B| requires time O(|E| · |B| · d) and space O(|E| · |B|).
For the other terms of the PLL objective (i.e., log p(s | r, o) and log p(r | s, o)) the derivation is
similar. Moreover, for real-world large KGs it is reasonable to assume that |E| ≫ |R| and therefore
the cost of computing log p(r | s, o) is negligible.

Complexity of the PLL objective on GeKCs. GeKCs obtained from CP either by non-negative
restriction (Section 4.1) or by squaring (Section 4.2) encode ϕpc(s, r, o) ∝ p(s, r, o) for any input
triple. As such, the component log p(o | s, r) of the PLL objective can be written as

log p(o | s, r) = log ϕpc(s, r, o)− log
∑

o′∈E
ϕpc(s, r, o

′). (11)

The absence of the exponential function in the summed terms in Eq. (11) allows us to push the outer
summation inside the circuit computing ϕpc(s, r, o), and to sum over the input units relative to objects.
For instance, for CP+ we can write

∑

o′∈E
ϕCP+(s, r, o′) =

∑

o′∈E

d∑

i=1

esiwrieoi =

d∑

i=1

esiwri

(∑

o∈E
eo′i

)
= (es ⊙wr)

⊤(V⊤1E)

where es,wr, eo ∈ Rd
+, V ∈ R|E|×d

+ denotes the matrix whose rows are object embeddings, and
1E = [1 . . . 1]|E| is a vector of ones. Note that V⊤1E ∈ Rd

+ does not depend on the input triple.
Therefore, given a mini-batch of triples B, computing log p(o | s, r) requires time O((|E|+ |B|) · d)
and space O(|B| · d), which is much lower than the complexity on CP showed above, and we can
still leverage GPU parallelism. For CP2, the complexity is similar to the derivation of the partition
function complexity showed in Appendix C.4.1. That is, for CP2 we can write

∑

o′∈E
ϕCP2(s, r, o′) =

∑

o′∈E

(
d∑

i=1

esiwrieoi

)2

=

d∑

i=1

d∑

j=1

esiesjwriwrj

(∑

o′∈E
eo′ieo′j

)

= (es ⊙wr)
⊤(V⊤V)(es ⊙wr)

where es,wr, eo ∈ Rd, V ∈ R|E|×d. Note that the matrix V⊤V ∈ Rd×d does not depend on the
input triple. Therefore, given a mini-batch of triples B, computing log p(o | s, r) requires time
O((|E|+ |B|) · d2) and space O(|B| · d). While the time complexity is quadratic in the embedding
size d, it is still much lower than the time complexity on CP. A similar discussion can also be carried
out for the other KGE models and the corresponding GeKCs, which retrieves the complexities showed
in Table C.1.

C.4.3 Training Speed-up Benchmark Details

In this section we report the details about the training benchmark on COMPLEX, COMPLEX+ and
COMPLEX2, whose results are showed in Fig. 3. We measure time and peak GPU memory usage
required for computing the PLL objective (Eq. (1)) and to do an optimisation step for a single batch
on ogbl-wikikg2 [32], a large knowledge graph with millions of entities (see Table F.1). We fix the
embedding size to d = 100 for the three models. For the benchmark with increasing batch size, we
keep all the entities and increase the batch size from 100 to 5000. For the benchmark with increasing
number of entities, we keep the batch size fixed to 500 (the maximum allowed for COMPLEX by our
GPUs) and progressively increase the number of entities, from about 3 · 105 to 2.5 · 106. We report
the average time over 25 independent runs on a single Nvidia RTX A6000 with 48 GiB of memory.

23

D Distribution of Scores

−5 0 5 10 15

φ(s, r, o)

10−2

10−1

100

−5 0 5 10 15

φ(s, r, ô)

FB15K-237
WN18RR
ogbl-biokg

Figure D.1: Scores are mostly non-negative. Histograms of the scores assigned by COMPLEX to
existing validation triples (left) and their perturbation (right) on three data sets. The vast majority of
triple scores are non-negative, suggesting that squaring them has minimal effect on the rankings.

In Fig. D.1 we show the histograms of the scores assigned to the validation triples and their per-
turbations of three data sets (see Appendix F.1). Following Socher et al. [59], we generate triple
perturbations that are challenging for link prediction. That is, for each validation triple (s, r, o), the
corresponding perturbation (s, r, ô) is obtained by replacing the object with a random entity that
has appeared at least once as an object in a training triple with predicate r. The bottom line is that
scores are mostly non-negative, and hence can be used as a heuristic to effectively initialise GeKCs
or quickly distil them (e.g., on FB15K-237), as we further discuss in Appendix F.5.1.

E Reconciling Knowledge Graph Embeddings Interpretations

Triples as boolean variables. KGE models such as CP, RESCAL, TUCKER and COMPLEX
have been historically introduced as factorizations of a tensor-representation of a KG, which we
discuss next. In fact, a KG G can be represented as a 3-way binary tensor Y ∈ {0, 1}|E|×|R|×|E| in
which every entry Ysro is 1 if (s, r, o) ∈ G and 0 otherwise [48]. Under this light, a KGE model like
RESCAL factorises every slice Yr ∈ {0, 1}|E|×|E|, corresponding to the predicate r as EWrE

⊤

where E is an |E|×d matrix comprising the entity embeddings and Wr is an d×d matrix containing
the embeddings for the predicate r. To deal with uncertainty and incomplete KGs, Ysro can be
interpreted as a Bernoulli random variable. As such, its distribution becomes p(Ysro = 1 | s, r, o)
which is usually modelled as σ(ϕ(s, r, o)), where σ denotes the logistic function and ϕ is the score
function of a KGE model. Note that this distribution of triple introduces |E ×R×E| random variables,
one for each possible triple.

KGE models as estimators of a distribution over KGs. At the same time, the interpretation of
triples as boolean variables induces a distribution over possible KGs, q(G), which is the distribution
over all possible binary tensors p(Y). The probability of a KG G can therefore be computed as
the product of the likelihoods of all variables Ysro, i.e., q(G) =

∏
(s,r,o)∈G p(Ysro = 1 | s, r, o) ·∏

(s,r,o)̸∈G p(Ysro = 0 | s, r, o). Note that (re-)normalising this distribution is intractable in general,
as it would require summing over all possible 2|E×R×E| binary tensors. This is why historically KGE
models have been interpreted as energy-based models, by directly optimising for ϕ(s, r, o), interpreted
as the negated energy associated to every triple, and not p(Ysro = 1 | s, r, o) (see Section 2). This
has been done via negative sampling or other contrastive learning objectives [6, 7]. We point out that
this very same interpretation can be found in the literature of probabilistic logic programming [25],
probabilistic databases (PDBs) [14] and statistical relational learning (see Section 6) where the
distribution over possible “worlds” is over sets of boolean assignments to ground atoms or facts, or
tuples in a PDB, each interpreted as Bernoulli random variables.

Estimating a distribution over triples. In this work, instead, we interpret existing KGE models
and our GeKCs as models that encode a possibly unnormalised probability distribution over three
random variables, S,R,O, which induces a distribution over triples that is tractable to renormalise.7

7The polynomial cost of renormalising an energy-based KGE is unfortunately infeasible for real-world KGs,
see Section 2.

24

To reconcile these two perspectives, we interpret the probability of a triple p(s, r, o) to be proportional
to the probability of all KGs G where (s, r, o) holds, i.e., those G such that (s, r, o) ∈ G. Intuitively, a
triple will be more probable to exist if it does exist in highly probable KGs. More formally, given
q a probability distribution over KGs, we define p as an unnormalised probability distribution over
triples, i.e., µ(s, r, o) ∝ p(s, r, o), where

µ(s, r, o) =
∑

G∈H
(s,r,o)∈G

q(G) =
∑

G∈H
q(G) · 1{(s, r, o) ∈ G} = EG∼q[1{(s, r, o) ∈ G}] (12)

and H = 2E×R×E denotes the set of all possible KGs. Computing the expectation in Eq. (12)
exactly is equivalent to solving a weighted model counting (WMC) problem [10], where we sum
the probabilities of all possible KGs containing (s, r, o). Alternatively, it is equivalent to computing
the probability of the simplest possible query in a PDB (i.e., asking for a single tuple), where each
stored tuple is interpreted as an independent Bernoulli random variable Ysro. Therefore, we have
that µ(s, r, o) is simply the likelihood that Ysro is true, i.e., p(Ysro = 1 | s, r, o). Furthermore, the
normalisation constant of µ (Eq. (12)) can be written as

Z =
∑

(s,r,o)∈
E×R×E

µ(s, r, o) =
∑

G∈H
q(G) ·

∑

(s,r,o)∈
E×R×E

1{(s, r, o) ∈ G} =
∑

G∈H
q(G) · |G| = EG∼q[|G|]

which is the expected size of a KG according to the probability distribution q. Written in this way,
however, computing Z through q(G) is intractable. For this reason, we directly encode µ with GeKCs
and compute Z by summing over all triples, and therefore without modelling q(G).

Further interpretations in related works. Under the interpretation of a KG as a PDB, Friedman
and Van den Broeck [26] further decompose the likelihood that Ysro is true as

p(Ysro = 1 | s, r, o) = p(Es = 1 | s) · p(Tr = 1 | r) · p(Eo = 1 | o)

where Es, Eo, Tr are new Bernoulli variables that are assumed to be conditionally independent
given the parameters of the PDB. That is, instead of introducing one random variable per triple,
they introduce one random variable per entity and predicate. In this framework, they reinterpret
the score function of DISTMULT, a simplified variant of CP, as an implicit circuit that models an
unnormalized distribution over the collection of variables Z = {Eu}u∈E ∪ {Tr}r∈R, trained by
negative sampling. This decomposition permits to compute the probability of any database query
efficiently, which otherwise is known to be either a PTIME or a #P-hard problem, depending on the
query type [15]. If we were to interpret our distribution µ(S = s,R = r,O = o) as the unnormalized
marginal distribution p(Es = 1, Tr = 1, Eo = 1) =

∑
z′ p(Es = 1, Tr = 1, Eo = 1,Z′ = z′),

where Z′ = Z \ {Es, Tr, Eo}, we could equivalently compute any probabilistic query efficiently.
Note that under this interpretation, training our GeKCs by MLE over S,R,O would be equivalent to
maximise a composite marginal log-likelihood [70] over Z.

F Empirical Evaluation

F.1 Datasets Statistics

Table F.1 shows statistics of commonly-used datasets to benchmark KGE models for link prediction.
We employ standard benchmark datasets [62, 21, 32] whose number of entities (resp. predicates)
ranges from ≈14k to ≈2.5M (resp. from 11 to ≈500).

Table F.1: Dataset statistics. Statistics of multi-relational knowledge graphs: number of entities
(|E|), number of predicates (|R|), number of training/validation/test triples.

Dataset |E| |R| # Train # Valid # Test

FB15k-237 [62] 14,541 237 272,115 17,535 20,466
WN18RR [21] 40,943 11 86,835 3,034 3,134
ogbl-biokg [32] 93,773 51 4,763 ·103 163 ·103 163 ·103
ogbl-wikikg2 [32] 2.5 ·106 535 16,109 ·103 429 ·103 598 ·103

25

F.2 Metrics

Mean reciprocal rank and hits at k. Given a test triple (s, r, o), we rank the possible object o′
(resp. subject s′) completions to link prediction queries (s, r, ?) (resp. (?, r, o)) based on their scores
in descending order. The position of the test triple (s, r, o) in the ranking of object (resp. subject)
completed queries (s, r, o′) (resp. (s′, r, o)) is then used to compute the mean reciprocal rank (MRR)

MRR =
1

2|Gtest|
∑

(s,r,o)∈Gtest

(
1

rank(o | s, r)
+

1

rank(s | r, o)

)

where Gtest denotes the set of test triples, and rank(o | s, r), rank(s | r, o) denote respectively the
positions of the true completion (s, r, o) in the rankings of object and subject completed queries. The
fraction of hits at k (Hits@k) for k > 0 is computed as

Hits@ k =
1

2|Gtest|
∑

(s,r,o)∈Gtest

(1{rank(o | s, r) ≤ k}+ 1{rank(s | r, o) ≤ k}) .

Consistently with existing works on link prediction [56, 12], the MRRs and Hits@k metrics are
computed under the filtered setting, i.e., we rank true completed triples against potential ones that do
not appear in the union of training, validation and test splits.

Semantic consistency score. Let K be a logical constraint encoding some background knowledge
over variables S, R and O. Given a test triple (s, r, o), we first rank the possible completions to link
prediction queries in the same way as for computing the MRR. Then, the semantic consistency score
(Sem@k) [33] for some integer k > 0 is computed as

Sem@k =
1

2k|Gtest|
∑

(s,r,o)∈Gtest


 ∑

o′∈Ak
O(s,r,o)

1{(s, r, o′) |= K}+
∑

s′∈Ak
S(s,r,o)

1{(s′, r, o) |= K}




where Gtest denotes the set of test triples, Ak
O(s, r, o) (resp. Ak

S(s, r, o)) denotes the list of the top-k
candidate object (resp. subject) completions to the link prediction query (s, r, ?) (resp. (?, r, o)), and
(s, r, o) |= K if and only if (s, r, o) satisfies K.

F.3 Empirical KTD Score

Let F = {xi}mi=1, G = {yj}nj=1 two sets of triples that are drawn i.i.d. from two distributions P,Q
over triples. We compute the empirical KTD score with an unbiased estimator [28] KTDu(F ,G) as

1

m(m− 1)

m∑

i ̸=j

k(ψ(xi), ψ(xj)) +
1

n(n− 1)

n∑

i ̸=j

k(ψ(yi), ψ(yj))−
2

mn

m∑

i=1

n∑

j=1

k(ψ(xi), ψ(yj)).

For each data set, we compute the empirical KTD score between n = 25, 000 triples sampled from
GeKCs and m test triples. In case of m > n, we sample n triples randomly, uniformly and without
replacement from the set of test triples. The time complexity of computing the KTD score is O(nmh),
where h denotes the size of triple latent representations (h = 4000 in our case, see Section 7.3). For
efficiency reasons, we therefore follow Binkowski et al. [4] and randomly extract two batches of 1000
triples each from both the generated and the test triples sets and compute the empirical KTD score on
them. We repeat this process 100 times and report the average and standard deviation in Table F.6.

F.4 Experimental Setting

Hyperparameters. All models are trained by gradient descent with either the PLL or the MLE
objective (Eqs. (1) and (2)). We set the weights ωs, ωr, ωo of the PLL objective all to one, as to
retrieve a classical pseudo-log-likelihood [70]. Note that Chen et al. [12] set ωs, ωo to one and treat
ωr as an additional hyperparameter instead that is opportunely tuned. The models are trained until
the MRR computed on the validation set does not improve after three consecutive epochs. We fix the
embedding size d = 1000 for both CP and COMPLEX and use Adam [38] as optimiser with 10−3 as
learning rate. An exception is made for GeKCs obtained via non-negative restriction (Section 4.1),
for which a learning rate of 10−2 is needed, as we observed very slow convergence rates. We search
for the batch size in {5 ·102, 103, 2 ·103, 5 ·103} based on the validation MRR. Finally, we perform 5
repetitions with different seeds and report the average MRR and two standard deviations in Table F.2.

26

Parameters initialisation. Following [40, 12], the parameters of CP and COMPLEX are initialised
by sampling from a normal distribution N (0, σ2) with σ = 10−3. Since the embedding values in
CP+ and COMPLEX+ can be interpreted as parameters of categorical distributions over entities and
predicates (see Appendix C.1), we initialise them by sampling from a Dirichlet distribution with
concentration factors set to 103. To allow unconstrained optimisation for CP+ and COMPLEX+, we
represent the embedding values by their logarithm and perform computations directly in log-space,
i.e., summations and log-sum-exp operations instead of multiplications and summations, respectively.
Moreover, the parameters that ensure the non-negativity of COMPLEX+ (see Appendix C.2) are
initialised by sampling from a normal distribution N (0, σ2) with σ = 10−2. We initialise the
parameters of CP2 and COMPLEX2 such that the logarithm of the scores are approximately normally
distributed and centred in zero during the initial optimisation steps, since this applies for the scores
given by CP and COMPLEX. Such initialisation therefore permits a fairer comparison. To do so,
we initialise the embedding values by sampling from a log-normal distribution LN (µ, σ2), where
µ = − log(d)/3− σ2/2 for CP and µ = − log(2d)/3− σ2/2 for COMPLEX, both with σ = 10−3.
The mentioned values for µ can be derived via Fenton-Wilkinson approximation [24]. Even though
the parameters of GeKCs obtained via non-monotonic squaring are initialised to be non-negative,
they are free of becoming negative during training (as we also confirm in practice).

Hardware. Experiments on the smaller knowledge graphs FB15K-237 and WN18RR were run on a
single Nvidia GTX 1060 with 6 GiB of memory, while those on the larger ogbl-biokg and ogbl-wikikg2
were run on a single Nvidia RTX A6000 with 48 GiB of memory.

F.5 Additional Experimental Results

F.5.1 Link Prediction Results

In this section, we present the additional results regarding the link prediction experiments showed in
Section 7.1 and analyse different metrics and learning settings.

Statistical tests and hits at k. Table F.2 shows the best test average MRRs (see Appendix F.2) with
two standard deviation and average training time across 5 independent runs with different seeds. We
highlight the best results in bold according to a one-sided Mann–Whitney U test with a confidence
level of 99%. The showed results in terms of MRRs are also confirmed in Table F.3, which shows the
best average Hits@k (see Appendix F.2) with k ∈ {1, 3, 10}.

Average log-likelihood. For the best GeKCs for link prediction showed in Table F.2, we report
the average log-likelihood of test triples and two standard deviations (across 5 independent runs) in
Table F.4. We again highlight the best results in bold, according to a one-sided Mann–Whitney U test.

Quickly distilling parameters. As discussed in Section 4.2, since learned KGE models mostly
assign non-negative scores to triples (see Appendix D) we can initialise the parameters of GeKCs
obtained by squaring with the parameters of already-learned KGE models, without losing much in
terms of link prediction performances. Here, we test this hypothesis and fine-tune GeKCs initialised
in this way by using either the PLL or MLE objectives (Eqs. (1) and (2)). To do so, we first collect
the parameters of the best CP and COMPLEX found for link prediction (see Section 7.1). Then,
we initialise GeKCs derived by squaring with these parameters and fine-tune them until the MRR
computed on validation triples does not improve after three consecutive epochs. We employ Adam
[38] as optimiser, and we search for the batch size in {5 · 102, 103, 2 · 103, 5 · 103} and learning
rate in {10−3, 10−4}, as fine-tuning may require a lower learning rate than the one used in previous
experiments (see Appendix F.4). Table F.5 shows the MRRs achieved by CP, COMPLEX and the
corresponding GeKCs obtained via squaring that are initialised by distilling the parameters from the
already-trained CP and COMPLEX. On FB15K-237 and WN18RR, distilling parameters induces a
substantial improvement in terms of MRR with respect to CP2 and COMPLEX2 whose parameters
have been initialised randomly (see Appendix F.4). Furthermore, for COMPLEX2 and on WN18RR
and ogbl-biokg we achieved similar MRRs with respect to COMPLEX without the need of fine-tuning.

27

Table F.2: GeKCs are competitive with their energy-based counterparts. Best test MRRs (and
two standard deviations) of CP, COMPLEX and GeKCs trained with the PLL and MLE objectives
(Eqs. (1) and (2)). In parentheses we show the average training time (in minutes).

Model FB15k-237 WN18RR ogbl-biokg

PLL MLE PLL MLE PLL MLE

CP 0.310 ±0.001 (8) — 0.105 ±0.007 (11) — 0.831 ±0.001 (136) —
CP+ 0.237 ±0.003 (1) 0.230 ±0.003 (1) 0.027 ±0.002 (1) 0.026 ±0.001 (1) 0.496 ±0.013 (172) 0.501 ±0.010 (142)
CP2 0.315 ±0.003 (8) 0.282 ±0.004 (7) 0.104 ±0.001 (23) 0.091 ±0.004 (23) 0.848 ±0.001 (66) 0.829 ±0.001 (61)

COMPLEX 0.342 ±0.005 (36) — 0.471 ±0.002 (16) — 0.829 ±0.001 (180) —
COMPLEX+ 0.214 ±0.003 (10) 0.205 ±0.006 (5) 0.030 ±0.001 (6) 0.029 ±0.001 (3) 0.503 ±0.014 (245) 0.516 ±0.009 (212)
COMPLEX2 0.334 ±0.001 (10) 0.300 ±0.003 (16) 0.420 ±0.011 (37) 0.391 ±0.004 (19) 0.858 ±0.001 (71) 0.840 ±0.001 (59)

Table F.3: Hits@k results. Average test Hits@k for k ∈ {1, 3, 10} of CP, COMPLEX and CP2 and
COMPLEX2 trained with the PLL or MLE objectives.

FB15k-237 WN18RR ogbl-biokg

PLL MLE PLL MLE PLL MLE

Model k = 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10 1 3 10

CP 22.4 34.1 48.2 — — — 7.5 12.1 16.8 — — — 76.4 88.1 95.0 — — —
CP+ 17.0 25.8 36.7 16.7 24.9 35.4 1.7 2.7 4.5 1.6 2.5 4.4 38.0 54.4 73.4 38.4 55.0 74.4
CP2 23.1 34.8 48.2 20.5 30.8 43.5 6.7 12.1 17.6 5.9 10.7 15.3 78.6 89.5 95.7 76.1 88.1 95.0

COMPLEX 25.2 37.5 52.5 — — — 43.3 48.6 54.6 — — — 76.1 87.9 95.0 — — —
COMPLEX+ 15.7 23.1 31.7 15.0 22.1 30.4 1.5 2.7 4.5 1.6 2.5 4.4 38.8 55.1 74.1 40.0 56.7 75.9
COMPLEX2 24.5 36.9 51.1 21.6 33.0 46.7 36.0 45.6 52.4 34.5 42.3 46.9 80.0 90.1 95.8 77.5 88.8 95.4

Table F.4: Better distribution estimation with GeKCs obtained via squaring. Average log-
likelihood of test triples achieved by baselines and GeKCs trained with the PLL or MLE objectives.

Model FB15k-237 WN18RR ogbl-biokg

Uniform -24.638 -23.638 -26.829
NNMFAug -19.270 -22.938 -17.562

PLL MLE PLL MLE PLL MLE

CP+ -16.773 ±0.040 -16.592 ±0.059 -21.987 ±0.006 -22.103 ±0.010 -17.900 ±0.048 -17.416 ±0.049
CP2 -17.105 ±0.031 -15.982 ±0.028 -24.911 ±0.241 -26.352 ±0.077 -17.231 ±0.059 -16.533 ±0.013

COMPLEX+ -17.507 ±0.035 -17.592 ±0.039 -21.233 ±0.058 -21.432 ±0.008 -18.716 ±0.088 -17.749 ±0.019
COMPLEX2 -17.100 ±0.026 -15.744 ±0.041 -19.522 ±0.530 -19.739 ±0.214 -17.340 ±0.022 -16.518 ±0.003

Table F.5: Distilling parameters can improve performances. Test MRRs achieved by CP, COM-
PLEX and GeKCs obtained by squaring (Section 4.2). For CP2 and COMPLEX2 we report the best
MRRs achieved by distilling the parameters from the already-learned CP and COMPLEX (denoted
with ⋆), and with † we denote those results for which further fine-tuning with the PLL or MLE
objectives did not bring better results. We underline results for which distilling parameters increased
the MRR.

Model FB15k-237 WN18RR ogbl-biokg

PLL MLE PLL MLE PLL MLE

CP 0.311 — 0.108 — 0.831 —
COMPLEX 0.344 — 0.470 — 0.829 —

CP2 0.317 0.285 0.103 0.089 0.849 0.830
CP2 ⋆ 0.327 0.315 0.102 0.115 0.851 0.828 †

COMPLEX2 0.333 0.301 0.416 0.390 0.859 0.839
COMPLEX2 ⋆ 0.342 0.340 0.462 † 0.463 0.859 0.828 †

28

F.5.2 Quality of Sampled Triples Results

In this section, we provide additional results regarding the evaluation of the quality of triples sampled
by GeKCs (see Section 7.3). For these experiments, we search for the same hyperparameters as for the
experiments on link prediction (see Appendix F.4), and train GeKCs until the average log-likelihood
computed on validation triples does not improve after three consecutive epochs.

Table F.6 shows the mean empirical KTD score and one standard deviation (see Appendix F.3).
In addition, we visualise triple embeddings of sampled and test triples in Fig. F.1 by leveraging
t-SNE [69] as a method for visualising high-dimensional data. In particular, we apply the t-SNE
method implemented in scikit-learn with perplexity 50 and number of iterations 5 · 103, while other
parameters are fixed to their default value. As showed in Fig. F.1c, an empirical KTD score close to
zero translates to an high clusters similarity between embeddings of sampled and test triples.

Table F.6: GeKCs trained by MLE generate new likely triples. Empirical KTD scores between
test triples and triples generated by baselines and GeKCs trained with the PLL objective or by MLE
(Eqs. (1) and (2)). Lower is better.

Model FB15k-237 WN18RR ogbl-biokg

Training set 0.055 ±0.007 0.260 ±0.013 0.029 ±0.010
Uniform 0.589 ±0.012 0.766 ±0.036 1.822 ±0.044
NNMFAug 0.414 ±0.014 0.607 ±0.028 0.518 ±0.035

PLL MLE PLL MLE PLL MLE

CP+ 0.404 ±0.016 0.433 ±0.015 0.633 ±0.033 0.578 ±0.029 0.966 ±0.040 0.738 ±0.030
CP2 0.253 ±0.014 0.070 ±0.007 0.768 ±0.036 0.768 ±0.036 0.039 ±0.009 0.017 ±0.013

COMPLEX+ 0.336 ±0.016 0.323 ±0.015 0.456 ±0.018 0.478 ±0.019 0.175 ±0.019 0.097 ±0.013
COMPLEX2 0.326 ±0.016 0.102 ±0.010 0.338 ±0.020 0.278 ±0.017 0.104 ±0.010 0.034 ±0.007

(a) FB15k-237
KTD := 0.102± 0.010

(b) WN18RR
KTD := 0.278± 0.017

(c) ogbl-biokg
KTD := 0.034± 0.007

Figure F.1: Sampled triples are close to test triples. t-SNE [69] visualisations of the embeddings of
test triples (in blue) and triples sampled by COMPLEX2 (in orange). The distribution shift between
training and test triples on WN18RR mentioned in Section 7.3 is further confirmed in Fig. F.1b, as it
shows a region of test triples (at the bottom and in blue) that is not covered by many generated triples.

F.5.3 Calibration Diagrams

Existing works on studying the calibration of KGE models are based on interpreting each possible
triple (s, r, o) as an independent Bernoulli random variable Ysro whose likelihood is determined by
the score function ϕ, i.e., Pr(Ysro = 1 | s, r, o) = σ(ϕ(s, r, o)) [61, 54, 79], where σ denotes the
logistic function. While GeKCs encode a probability distribution over all possible triples, this does
not impede us to reinterpret them to model the likelihood of each Ysro by still considering scores
in log-space as negated energies (see Section 2). Therefore, to evaluate the calibration of GeKCs
encoding a non-negative score function ϕpc (see Section 4) we compute the probability of a triple
(s, r, o) being true as p(Ysro = 1 | s, r, o) := σ(log ϕpc(s, r, o)). However, the usage of the logistic

29

https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html

function might give misleading results in case of scores not being centred around zero on average.
Therefore, we also report calibration diagrams (see paragraph below) where the p(Ysro = 1 | s, r, o)
is obtained via min-max normalisation of the scores given by KGE models (the logarithm of the
scores given for GeKCs), where the minimum and maximum are computed on the training triples.
Note that several ex-post (re-)calibration techniques are available [61, 79], but they should benefit
GeKCs as they do with existing KGE models.

Setting and metrics. To plot calibration diagrams, we follow Socher et al. [59] and sample
challenging negative triples, i.e., for each test triple (s, r, o) we sample an unobserved perturbed
one (s, r, ô) by replacing the object with an entity that has appeared at least once with the predicate
r in the training data. We then compute the empirical calibration error (ECE) [79] as ECE :=
1
b

∑b
i=1 |pj − fj |, where b is the number of uniformly-chosen bins for the interval [0, 1] of triple

probabilities, and pj , fj are respectively the average probability and relative frequency of actually
existing triples in the j-th bin. The lower the ECE score, the better calibrated are the predictions, as
they are closer to the empirical frequency of triples that do exist in each bin. The calibration curves
are plotted by considering the relative frequency of existing triples in each bin, and curves closer to
the main diagonal indicate better calibrated predictions.

GeKCs are more calibrated out-of-the-box. Fig. F.2 (resp. Fig. F.3) show calibration diagrams
for GeKCs derived from CP and COMPLEX trained with the MLE objective (Eq. (2)) (resp. PLL
objective (Eq. (1))). In 19 cases over 24, GeKCs obtained via squaring (Section 4.2) achieve lower
ECE scores and better calibrated curves than CP and COMPLEX. While GeKCs obtained via
non-negative restriction (Section 4.1) are not well calibrated when using the logistic function, on
ogbl-biokg [32] they are still better calibrated than CP and COMPLEX when probabilities are obtained
via min-max normalisation. Furthermore, on WN18RR GeKCs achieved the highest ECE scores
(corresponding to poorly-calibrated predictions), which could be explained by the distribution shift
between training and test triples that was observed for this KG in Section 7.3 and further confirmed
in Appendix F.5.2.

30

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
of

Po
si

tiv
es

FB15K-237

CP - ECE: 0.307
CP+ - ECE: 0.498
CP2 - ECE: 0.235

0.0 0.2 0.4 0.6 0.8 1.0

WN18RR

CP - ECE: 0.272
CP+ - ECE: 0.500
CP2 - ECE: 0.698

0.0 0.2 0.4 0.6 0.8 1.0

ogbl-biokg

CP - ECE: 0.421
CP+ - ECE: 0.500
CP2 - ECE: 0.253

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
of

Po
si

tiv
es

CP - ECE: 0.151
CP+ - ECE: 0.274
CP2 - ECE: 0.055

0.0 0.2 0.4 0.6 0.8 1.0

CP - ECE: 0.500
CP+ - ECE: 0.401
CP2 - ECE: 0.351

0.0 0.2 0.4 0.6 0.8 1.0

CP - ECE: 0.464
CP+ - ECE: 0.116
CP2 - ECE: 0.161

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
of

Po
si

tiv
es

FB15K-237

CP - ECE: 0.307
CP+ - ECE: 0.498
CP2 - ECE: 0.217

0.0 0.2 0.4 0.6 0.8 1.0

WN18RR

CP - ECE: 0.272
CP+ - ECE: 0.500
CP2 - ECE: 0.665

0.0 0.2 0.4 0.6 0.8 1.0

ogbl-biokg

CP - ECE: 0.421
CP+ - ECE: 0.500
CP2 - ECE: 0.364

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
of

Po
si

tiv
es

CP - ECE: 0.151
CP+ - ECE: 0.310
CP2 - ECE: 0.158

0.0 0.2 0.4 0.6 0.8 1.0

CP - ECE: 0.500
CP+ - ECE: 0.401
CP2 - ECE: 0.357

0.0 0.2 0.4 0.6 0.8 1.0

CP - ECE: 0.464
CP+ - ECE: 0.169
CP2 - ECE: 0.167

Figure F.2: Better calibrated predictions with CP2. Calibration diagrams of CP, CP+ and CP2

trained with either the PLL (Fig. F.2a) or MLE (Fig. F.2b) objectives. The probability of triples are
obtained via the application of the logistic function (rows above) and min-max normalisation (rows
below). See Appendix F.5.3 for details. The calibration curves for CP+ where triple probabilities are
obtained with the logistic function do not provide any meaningful information, as the logarithm of
their scores are generally distributed over large negative values.

31

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
of

Po
si

tiv
es

FB15K-237

COMPLEX - ECE: 0.336
COMPLEX+ - ECE: 0.306
COMPLEX2 - ECE: 0.175

0.0 0.2 0.4 0.6 0.8 1.0

WN18RR

COMPLEX - ECE: 0.220
COMPLEX+ - ECE: 0.500
COMPLEX2 - ECE: 0.443

0.0 0.2 0.4 0.6 0.8 1.0

ogbl-biokg

COMPLEX - ECE: 0.425
COMPLEX+ - ECE: 0.500
COMPLEX2 - ECE: 0.249

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
of

Po
si

tiv
es

COMPLEX - ECE: 0.286
COMPLEX+ - ECE: 0.237
COMPLEX2 - ECE: 0.068

0.0 0.2 0.4 0.6 0.8 1.0

COMPLEX - ECE: 0.584
COMPLEX+ - ECE: 0.312
COMPLEX2 - ECE: 0.352

0.0 0.2 0.4 0.6 0.8 1.0

COMPLEX - ECE: 0.435
COMPLEX+ - ECE: 0.180
COMPLEX2 - ECE: 0.170

(b)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
of

Po
si

tiv
es

FB15K-237

COMPLEX - ECE: 0.336
COMPLEX+ - ECE: 0.499
COMPLEX2 - ECE: 0.155

0.0 0.2 0.4 0.6 0.8 1.0

WN18RR

COMPLEX - ECE: 0.220
COMPLEX+ - ECE: 0.500
COMPLEX2 - ECE: 0.455

0.0 0.2 0.4 0.6 0.8 1.0

ogbl-biokg

COMPLEX - ECE: 0.425
COMPLEX+ - ECE: 0.500
COMPLEX2 - ECE: 0.293

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io
of

Po
si

tiv
es

COMPLEX - ECE: 0.286
COMPLEX+ - ECE: 0.251
COMPLEX2 - ECE: 0.121

0.0 0.2 0.4 0.6 0.8 1.0

COMPLEX - ECE: 0.584
COMPLEX+ - ECE: 0.362
COMPLEX2 - ECE: 0.368

0.0 0.2 0.4 0.6 0.8 1.0

COMPLEX - ECE: 0.435
COMPLEX+ - ECE: 0.161
COMPLEX2 - ECE: 0.177

Figure F.3: Better calibrated predictions with COMPLEX2. Calibration diagrams of COMPLEX,
COMPLEX+ and COMPLEX2 trained with either the PLL (Fig. F.3a) or MLE (Fig. F.3b) objectives.
The probability of triples are obtained via the application of the logistic function (rows above) and
min-max normalisation (rows below). See Appendix F.5.3 for details. The calibration curves for
COMPLEX+ where triple probabilities are obtained with the logistic function do not provide any
meaningful information, as the logarithm of their scores are generally distributed over large negative
values.

32

