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Abstract

Targeted protein degradation techniques, such as PROteolysis TArgeting Chimeras
(PROTACs), have emerged as powerful tools for selectively removing disease-
causing proteins. One challenging problem in this field is designing a linker to
connect different molecular fragments to form a stable drug-candidate molecule.
Existing models for linker design assume that the relative positions of the fragments
are known, which may not be the case in real scenarios. In this work, we address a
more general problem where the poses of the fragments are unknown in 3D space.
We develop a 3D equivariant diffusion model that jointly learns the generative
process of both fragment poses and the 3D structure of the linker. By viewing
fragments as rigid bodies, we design a fragment pose prediction module inspired by
the Newton-Euler equations in rigid body mechanics. Empirical studies on ZINC
and PROTAC-DB datasets demonstrate that our model can generate chemically
valid, synthetically-accessible, and low-energy molecules under both unconstrained
and constrained generation settings.

1 Introduction

Targeted Protein Degradation (TPD) techniques [27, 7], including PROteolysis TArgeting Chimeras
(PROTACs) [35], molecular glues [40], etc., are emerging powerful tools for selectively removing
disease-causing proteins. These techniques typically involve multiple molecular fragments connected
by a linker, with each fragment binding to a specific protein. For instance, a PROTAC consists of three
components: a ligand (warhead) that targets the protein of interest, another ligand that recruits an E3
ubiquitin ligase, and a linker that connects two ligands [38, 9]. PROTACs induce the ubiquitination
of target proteins, which is a fundamental biological process where small proteins called ubiquitins
are attached to target proteins, marking them for degradation by the proteasome. Unlike traditional
small molecule inhibitors that temporarily inhibit protein function by binding to their active sites,
PROTAC techniques result in complete protein elimination and offer several advantages, including
increased selectivity, reduced off-target effects, and the potential to target previously undruggable
proteins [27]. However, designing effective PROTACs remains a significant challenge, particularly in
optimizing the linker, which is crucial in maintaining the conformational stability and other important
biological properties of the entire molecule.
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(a) PROTAC-DB ID: 146 (BRD4, CRBN) (b) PROTAC-DB ID: 147 (BRD4, CRBN)

Figure 1: An example showing that the fragment poses are not fixed in PROTAC design. The above
sub-figures show two PROTACs, both of which have one fragment binding with the BRD4 target and
the other fragment binding with the CRBN E3 ligase. The linkers differ with a ‘COC’ motif.

(b) Fixed fragment design (3D)(a) Fixed fragment design (2D) (c) Free fragment design (3D)
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Figure 2: An overview of different linker design settings. (a)/(b): Previous work focuses on 2D/3D
linker design with fixed fragment poses. (c): We focus on co-designing fragment poses and linker.

In recent years, computational approaches, particularly deep learning methods, have been employed
for linker design to accelerate the drug discovery process [47, 22, 23, 20, 21]. Many of these
approaches utilize 3D structural information to enhance their performance. For example, Delinker
[22] incorporates the distance and angle between anchor atoms as additional structural information to
generate the 2D linker given the fragment molecular graphs. Going a step further, 3DLinker [20]
and DiffLinker [21] operate directly in 3D space to process fragments and generate linkers with a
conditional VAE and diffusion model, respectively. These models commonly assume that the relative
position between fragments is fixed. This assumption is reasonable in traditional fragment-based drug
design, where fragments are designed to bind to the same protein pocket and the binding poses are
largely deterministic [12]. However, in scenarios involving two proteins (drug target and E3 ligase in
the PROTAC case), the relative position between fragments may not be readily available due to the
flexibility of protein-protein binding pose, as shown in Figure 1. As a result, it becomes necessary to
adjust the fragment poses dynamically during the linker design process. One potential solution is to
randomly sample multiple fragment poses and design a 3D linker for each pose. The drawback of
this approach is that it limits the design space for the linker by immobilizing the relative positions
of the two molecular fragments. It may not be possible to find a stable linker that can connect the
two molecular fragments with fixed positions due to the narrow range in which a bond can form. To
the best of our knowledge, there is currently no existing computational approach that addresses this
challenging 3D linker design problem in the absence of fragment relative positions.

In this work, we first address the problem of co-designing fragment poses and the 3D linker. We
represent each fragment as a rigid body and its pose as the position of its center and the rotation. The
linker is represented as a 3D graph, consisting of atom positions, atom types, and bond types. To
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tackle this co-designing problem, we propose LinkerNet, a 3D equivariant diffusion model, leveraging
recent advancements in equivariant diffusion models [19] and diffusion models on Riemann manifolds
[8]. Our proposed model can jointly learn the generative process of both fragment poses and the
linker, which enables the model to find a stable linker and connect the fragments to form a low-energy
conformation of the whole molecule. Moreover, we design a fragment pose prediction module
inspired by the Newton-Euler equations in rigid body mechanics. This module employs neural
networks to predict atomic forces, which are then used to update the fragment center positions and
rotations through the aggregation of neural forces and torques. We introduce two guidance terms that
restrict fragment distances and potential anchors to incorporate real-world constraints into our model.
To evaluate our method, we perform comprehensive experiments on ZINC [43] and PROTAC-DB
[45] datasets and demonstrate that our model can generate chemically valid, synthetically-accessible,
and low-energy molecules under both unconstrained and constrained generation settings.

To summarize, our main contributions are:

• Our work presents the first computational model that abandons the unrealistic assumptions
in PROTAC drug design.

• We propose a 3D equivariant diffusion model which enables the co-design of fragment poses
and the 3D linker structure in a unified framework.

• We develop an effective fragment pose prediction module inspired by the Newton-Euler
equations in rigid body mechanics, allowing for the accurate adjustment of fragment center
positions and rotations.

• We conduct comprehensive experiments on ZINC and PROTAC-DB datasets, showcasing
the superiority of our proposed model over other baseline methods in both unconstrained
and constrained generation settings.

2 Related Work

Molecular Linker Design Molecular linker design is a critical step in the rational compound
design. SyntaLinker [47] operates on the SMILES representation of molecules and formulates the
linker design as a sentence completion problem. The lack of 3D structural information and the
drawbacks of the SMILES representation itself limits the performance of this method. DeLinker
[22] and Develop [23] overcome this limitation by operating on graphs and utilizing the distance
and angle between anchor atoms as the additional structural information. However, only limited
structural information is used and the generation is still in 2D space. More recently, 3DLinker [20],
DiffLinker[21] are proposed to directly generate linkers in 3D space with conditional VAE and
diffusion models, respectively. All of these models assume the fragment poses are known. However,
this is not always the case, especially in the emerging Targeted Protein Degradation (TPD) techniques.
Instead, our model focuses on a more general linker design problem where the fragment poses are
unknown.

PROTAC Linker Design PROteolysis TArgeting Chimeras (PROTAC) is a promising technique
with many advantages over traditional small molecule inhibitors. The first proof of concept study of
PROTAC was proposed in [38]. Most PROTAC linker design strategies rely on empirical optimization
of linker composition, which consists of only a few main chemical motifs [44, 32]. Currently, there
are no generally accepted rules for de novo PROTAC linker design. [48] uses deep reinforcement
learning to facilitate rational PROTAC design, but it is still generating SMILES representation instead
of molecules in 3D space.

Diffusion Generative Models Diffusion generative models [41, 42, 17] learn to denoise samples
from a prior noise distribution and have achieved remarkable progress in generating images [36, 37],
text [18, 2], etc. Recently, diffusion models are also applied in molecular data by considering the
rotation-translation equivariance, such as molecular conformation generation [46], 3D molecule
generation [19] and structure-based drug design [15, 39, 29]. In addition, diffusion models have
also been extended to Riemann manifolds [8, 28], and many applications in molecular data have
emerged, including conformation generation [25], molecular docking [6], antibody design [31] and
protein-ligand binding affinity prediction [24]. Leveraging these advances in equivariance diffusion
models and diffusion models in Riemann manifolds, we propose a diffusion model for the fragment
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Figure 3: Overview of one denoising step of LinkerNet. An equivariant GNN is applied to update
linker atom positions x, atom types v and bond types b. The updated embedding and positions are
then utilized by a pose prediction module to predict neural forces Fc and torques τc to further update
fragment poses R and p.

poses and linker co-design task. We inject task-specific network and sampling designs, including a
physics-inspired fragment poses prediction module and the constrained linker sampling approach.

3 Fragment Poses and Linker Co-Design

In this section, we present LinkerNet, which co-designs fragment poses and the linker with 3D
equivariant diffusion. We first define notations and this problem formally in Sec. 3.1. Then, we
decompose the joint distribution as the product of positions, rotations and atom / bond types in Sec.
3.2 and show how the diffusion processes are constructed for them. In Sec. 3.3, we illustrate the
equivariant network and physics-inspired prediction module for denoising fragment poses and the
linker. Finally, in Sec. 3.4, we describe how our model can be applied with guided sampling in the
constrained generation setting.

3.1 Notations and Problem Definition

In our formulation, each molecular fragment is represented as a 3D graph GF = {vF ,bF , x̃F }. We
denote the number of atom features, the number of bond types and the number of fragment atoms
as Na, Nb and NF , respectively, and then vF ∈ RNF×Na represents one-hot atom types (including
elements and atom charges), bF ∈ RNF×NF×Nb represents one-hot bond types (the absence of bond
is treated as a special bond type), and x̃F ∈ R3NF is the atom coordinates in the local coordinate
system (i.e., conformation). Since we assume fragments are rigid, x̃F is unchanged in our setting.
We use PCA to construct the local coordinate system [14] for robustness. However, we will see the
equivariance of our model is independent of the choice of the local coordinate system (Sec. 3.3). The
global pose of each fragment is determined by a rotation transformation R ∈ SO(3) and a translation
transformation p ∈ T(3) ∼= R3, i.e. xF = Rx̃F + p. The linker is represented as a set of atom types,
bond types and atom positions GL = {vL,bL,xL}, where vL ∈ RNL×Na denotes linker atom types,
bL ∈ RNL×N×Nb denotes linker bond types and xL ∈ R3NL denotes linker atom coordinates in
the global coordinate system. Here, N = NL + NF1 + NF2 is the total number of atoms of two
fragments and the linker.

Given two fragments (GF1
,GF2

) whose global poses are unknown, our goal is to design the linker GL

and recover the global poses of two fragments (R1,p1) and (R2,p2) to connect fragments with the
linker to form a conformationally stable molecule GM . Specifically, denoting the fragment rotations
and translations as R and p separately, we aim to learn the distribution pθ(R,p,GL|GF1

,GF2
) with

a neural network parameterized by θ.

3.2 Diffusion Processes

A diffusion probabilistic model involves two Markov chains: a forward diffusion process and a reverse
generative process. The diffusion process gradually injects noise into data, and the generative process
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learns to recover the data distribution from the noise distribution. According to the different types
of variables, the joint distribution pθ(R,p,GL|GF1 ,GF2) can be further decomposed as a product of
fragment / linker positions (xL, p), fragment rotations (R) and linker atom / bond types (vL, bL).
Next, we will describe how these diffusion processes are constructed in detail.

Diffusion on Positions Denote linker positions xL or fragment translations p as a random variable
x. The diffusion on x involves standard Gaussian diffusion kernels and has been well-studied in [17].
At each time step t, a small Gaussian noise is added according to a Markov chain with fixed variance
schedules β1, . . . , βT :

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

Under this formulation, we can efficiently draw samples from the noisy data distribution q(xt|x0)
and compute the posterior distribution q(xt−1|xt,x0) in closed-form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI), (2)

where αt = 1− βt, ᾱt = Πt
s=1αs and µ̃t(xt,x0) =

√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt, β̃t =

1−ᾱt−1

1−ᾱt
βt.

Diffusion on Fragment Rotations The diffusion kernel on fragment rotation R is IGSO(3)(µ, ϵ
2),

i.e. the isotropic Gaussian on SO(3) [34, 28] parameterized by a mean rotation µ and scalar variance
ϵ2. The standard IGSO(3)(I, ϵ

2) can be sampled in an axis-angle form, with uniformly sampled axes
ω̂ ∼ so(3) and rotation angle ω ∈ [0, π] with density

f(ω) =
1− cosω

π

∞∑
l=0

(2l + 1)e−l(l+1)ϵ2 sin((l + 1/2)ω)

sin(ω/2)
. (3)

To sample from IGSO(3)(µ, ϵ
2), we can first sample a rotation e = ωω̂ and apply it to µ to obtain the

desired sample. Similar to the Euclidean diffusion process, we can also draw samples and compute
the posterior distribution at any time step in closed-form:

q(Rt|R0) = IGSO(3)(λ(
√
ᾱt,R0), 1− ᾱt) q(Rt−1|Rt,R0) = IGSO(3)(µ̃t(Rt,R0), β̃t), (4)

where µ̃t(Rt,R0) = λ
(√

ᾱt−1βt

1−ᾱt
,R0

)
+ λ

(√
αt(1−ᾱt−1)

1−ᾱt
,Rt

)
and λ(γ,R) = exp(γ log(R))

denotes the rotation scaling operation, which scales rotation matrices R by converting them to values
in so(3), multiplying by a scalar γ, and converting them back to SO(3) [5].

Diffusion on Atom and Bond Types Following [18], we use categorical distributions to model
discrete linker atom types vL and bond types bL. Take atom types as an example (same for bond
types), a uniform noise across all K categories is added according to a Markov chain during the
diffusion process:

q(vt|vt−1) = C(vt|(1− βt)vt−1 + βt/K). (5)
Similarly, we can compute q(vt|v0) and q(vt−1|vt,v0) in closed-forms:

q(vt|v0) = C(vt|ᾱtv0 + (1− ᾱt)/K), q(vt−1|vt,v0) = C(vt−1|c̃t(vt,v0)), (6)

where c̃t(vt,v0) = c⋆/
∑K

k=1 c
⋆
k and c⋆(vt,v0) = [αtvt+(1−αt)/K]⊙[ᾱt−1v0+(1−ᾱt−1)/K].

3.3 Equivariant and Physics-Inspired Neural Network

The likelihood pθ(R,p,GL|GF1 ,GF2) should be invariant to the global SE(3)-transformation, which
can be achieved by composing an invariant initial distribution and an equivariant transition [46, 19].
Thus, we define the distribution on the subspace

∑2
i=1 pi = 0, i.e., the center of fragment positions

is zero. It is also consistent with the truth that the linker is around the center of fragments, and thus
we can set the prior distribution of xL as a standard normal distribution. For the equivariant transition,
we model the atomic interaction with a 3D Equivariant GNN ϕθ:

[x̂L,0, v̂L,0, b̂L,0, R̂0, p̂0] = ϕθ(GMt
, t) = ϕθ([xL,t,vL,t,bL,t,Rt,pt],GF1

,GF2
, t). (7)

To obtain GMt from [xt,vt,bt,Rt,pt] and {GF1 ,GF2}, we perform a local-to-global coordinate trans-
formation first and compose the atoms together, i.e., xF,t = Rtx̃F,t + pt and xM,t = {xF,t,xL,t}.
Next, we will elaborate on how the linker and fragment poses are denoised.
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Equivariant Linker Denoising Process ϕθ is a L-layer 3D equivariant GNN. The initial atom and
bond embedding h0

i and e0ij are obtained by two embedding layers that encode the atom and bond
information. At the l-th layer, the atom embedding hi, bond embedding eij and linker atom positions
xi are updated as follows:

ẽij = ϕd(e
l
ij , ∥xl

i − xl
j∥) (8)

hl+1
i = hl

i +
∑

j∈VM\{i}

ϕh(h
l
i,h

l
j , ẽij , t) (9)

el+1
ij = elij +

∑
k∈VM\{i}

ϕh(h
l
k,h

l
i, ẽki, t) +

∑
k∈VM\{j}

ϕh(h
l
j ,h

l
k, ẽjk, t) (10)

xl+1
i = xl

i +
∑

j∈VM\{i}

(xl
i − xl

j)ϕx(h
l+1
i ,hl+1

j , el+1
ij , t) · 1linker (11)

where VM is the set of all atoms in the molecule and 1linker is the linker atom mask. The final atom
embedding hL

i and bond embedding eLij will be fed into two multi-layer perceptrons and softmax
functions to obtain [v̂L,0, b̂L,0]. In addition, they will also be used to predict the fragment poses
[R̂, p̂] with a physics-inspired prediction module.

Physics-Inspired Fragment Pose Prediction A straightforward way to predict the global pose is
by predicting an invariant pose change (Rt→0,pt→0) in the local coordinate system and applying
it to the current pose (Rt,pt) in the global coordinate system, i.e. (Rt,pt) ◦ (Rt→0,pt→0) =
(RtRt→0,pt + Rtpt→0). This trick has been commonly applied in protein structure prediction
[26, 31]. By applying this trick in our setting, it will be applying the invariant pose change prediction
from hi, eij to the current noisy rotation Rt and translation pt to obtain the denoised ones R̂0 and
p̂0 , i.e.:

R̂0 = RtϕR(hi,hj , eij) p̂0 = pt +Rtϕp(hi,hj , eij) (12)

However, we argue that the invariant pose update limits the model’s capacity since it is regardless of
the geometric information of the system in the prediction phase. Considering we treat fragments as
rigid 3D graphs whose local coordinates will not be changed, it is natural to take inspiration from
rigid body mechanics to predict their poses.

The Newton-Euler equations describe a rigid body’s combined translational and rotational dynamics.
In the Center of Mass (CoM) frame, it can be expressed as the following matrix form:(

F
τ

)
=

(
mI 0
0 Ic

)(
dv/dt
dω/dt

)
+

(
0

ω × Icω

)
(13)

where F and τ are the total force and torque acting on CoM, v and ω are the velocity of CoM and
the angular velocity around CoM, m and Ic is the mass and inertia matrix of the rigid body, which
are constant for a given rigid body.

In our fragment pose prediction module, the outputs of the neural network act as the forces fi on
each fragment atom i, with which we can compute the total force F and torque τ for each fragment:

fi =
∑

j /∈VFc

(xi − xj)ϕf (hi,hj , eij∥xi − xj∥) (14)

Fc =
∑

i∈VFc

fi, τc =
∑

i∈VFc

(xi − pc)× fi (15)

where c = 1 or 2, corresponding to two fragments.

We assume the system is stationary at each discrete time step, i.e. ω = 0 and v = 0. Thus, the
Newton-Euler equations 13 can be simplified as τ = Ic

dω
dt and F = mdv

dt . For a short enough
time period ∆t, we have the velocity and angular velocity of the fragment as ω = I−1

c τc∆t and
v = 1

mF∆t. Assuming each atom in the fragment has the unit mass and absorbing the time period
∆t into Fc and τc, the fragment pose will be updated as follows:

p̂c,0 = pt +
1

|VFc
|
Fc R̂c,0 = Rω(I

−1
c τc)Rt (16)
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where |VFc | denotes the number of atoms in Fc and Rω denotes the operation of converting a vector
in so(3) to a rotation matrix in SO(3) (See Appendix for details).

It can be seen that the predicted force and torque take advantage of the geometric information and are
equivariant to the global rigid transformation. Moreover, we also show that the predicted fragment
poses are equivariant to the global rigid transformation and are independent of the choices of local
coordinate systems. The final training loss is the weighted sum of MSE loss of linker atom positions
and fragment center positions, a discrepancy loss of rotation matrix, and KL-divergence of linker
atom types and bond types. Please see the proof, more training and modeling details, and the complete
training/sampling algorithm in Appendix.

3.4 Constrained Generation with Guided Sampling

The LinkerNet we introduced so far is applicable in the case where the fragment poses are fully
unknown. However, in real scenarios, we have some prior knowledge, such as the fragment distance
should be in a reasonable range, the anchors (the atom on the fragment to connect with the linker)
should be selected from a candidate set, etc. To incorporate these constraints, we leverage the idea of
classifier guidance [10] to perform guided sampling. In our formulated problem, for a condition y,
the diffusion score can be modified as:

∇ log p(GMt |y) = ∇ log p(GMt) +∇ log p(y|GMt). (17)

For the fragment distance constraint, we assume the expected distance range is [dmin, dmax], then we
have the following guidance term:

−∇p max(∥p1 − p2∥ − dmax, 0) + max(dmin − ∥p1 − p2∥, 0). (18)

To generate a complete and valid molecule, at least one atom from the candidate anchor set should
form a bond with one linker atom, and the atoms outside the anchor set should not form bonds with
any linker atoms. These principles can be formulated as the following anchor proximity guidance:

−∇R max(da − rmax, 0) + max(rmin − da, 0) + max(rmax − dna, 0). (19)

where A is the candidate anchor set, da = mini∈VGL
,j∈A ∥xi − xj∥ and dna =

mini∈VGL
,j∈VGF

\A ∥xi − xj∥. rmin and rmax denote the minimum and maximum of a bond length,
which are set to 1.2Å and 1.9Å in practice. Besides the soft constraint on anchor proximity, we
can also set a hard constraint by applying a bond mask during the sampling phase, i.e. we adopt
bL ∈ RNL×|A|×Nb instead of RNL×N×Nb

4 Experiments

4.1 Setup

We mainly conduct experiments in two settings: unconstrained generation and constrained generation.
In the unconstrained generation setting, only 3D fragment graphs GF1 ,GF2 are known, and the goal
is to validate whether the model can co-design linker and fragment poses to generate molecules GM

with low-energy and other desired properties. In the constrained generation setting, the candidate
anchor set A on each fragment is also known besides GF1

,GF2
, and we set a fragment center distance

constraint. The goal is to validate whether the model can perform well in a more realistic scenario.
We describe the general setting about data, baselines, and evaluation metrics as follows and the
detailed task-specific settings in the corresponding subsections.

Data We use a subset of ZINC [43] for the unconstrained generation. Following [22, 20, 21], the
reference conformation for each molecule is obtained by running 20 times MMFF [16] optimization
using RDKit [1] and selecting the one with lowest energy. We use the same procedure as [21] to
create fragments-linker pairs and randomly split the dataset, which results in a training/validation/test
set with 438,610 / 400 / 400 examples. For the constrained generation, we use PROTAC-DB [45], a
database collecting PROTACs from the literature or calculated by programs. The same procedure is
applied to obtain reference conformations and create data pairs. We select 10 different warheads as
the test set (43 examples) and the remaining as the training set (992 examples).

7



Table 1: Unconstrained generation results on ZINC. (*) denotes additional anchor information is
utilized and thus scores are not directly comparable. (++) denotes a huge number (>100k in energy).
The mean and standard deviation values are reported by running the sampling procedure 3 times with
different random seeds.

Method Valid,% Unique,% Novel,% Rec,% QED (↑) SA (↓) Emin (↓) RMSD (↓) EL (↓) ∆EL (↓)

DeLinker 96.8 ± 0.2 43.5 ± 0.4 43.3 ± 0.2 55.8 ± 1.2 0.61 ± 0.0 3.13 ± 0.0 - - - -
3DLinker 40.3 ± 0.1 53.6 ± 0.6 47.4 ± 2.7 43.2 ± 0.9∗ 0.55 ± 0.00 3.08 ± 0.00 ++ 2.42 ± 0.01 5178.2 ± 108.5 ++
DiffLinker 48.7 ± 0.1 90.1 ± 3.5 99.5 ± 0.0 0.0 0.59 ± 0.00 7.25 ± 0.00 179.2 ± 6.7 1.92 ± 0.00 216.8 ± 1.0 93.3 ± 0.4

Ours 83.1 ± 0.0 14.8 ± 0.1 11.4 ± 0.1 24.4 ± 0.1 0.70 ± 0.00 3.01 ± 0.00 32.7 ± 1.2 1.44 ± 0.00 54.8 ± 10.5 67.9 ± 1.3

Baselines For benchmarking, we compare our model with three baselines: DeLinker [22], 3DLinker
[20] and DiffLinker [21]. DeLinker is a 2D graph generative model, while 3DLinker and DiffLinker
are 3D generative models with VAE and diffusion models, respectively. Since there is no existing
generative model to perform the fragment poses and linker co-design, we randomly sample fragment
rotations and add noise to fragment center positions. Then, the noisy fragments are fed to these
models to generate linkers.

Evaluation Metrics For ZINC and PROTAC-DB dataset, we generate 250 and 100 samples per
fragment pair respectively for further evaluation. We evaluate the generated molecules on both
2D graphs and 3D conformations. For 2D metrics, we report the standard ones including validity,
uniqueness and novelty [4], the recovery rate (the percentage of generated molecules that can
successfully recover the reference molecules), and property-related metrics drug-likeness (QED)
[3] and synthetic accessibility (SA) [13]. To evaluate 3D conformations, we first perform MMFF
[16] optimization, and report the average minimum energy of generated molecules per fragment
pair before optimization as Emin, and the average Root Mean Square Deviation (RMSD) of the
molecule coordinates before and after optimization as RMSD. Emin indicates the best quality of
the overall generated conformations and RMSD indicates the gap between generated conformations
and the best possible ones. To further investigate the model’s performance in generating linker and
fragment poses respectively, we perform another constrained MMFF optimization by fixing the atoms
in fragments. Then, we report the average median energy after optimization as EL and the average
median energy difference before and after optimization as ∆EL. Since fragment atoms are fixed, the
optimization will fix the unrealistic conformation inside the linker and thus a lower EL indicates the
better fragment poses, and a lower ∆EL means less adjustment on linker atoms and thus indicates
the better linker conformation.

4.2 Unconstrained Generation Results

For baseline models, we randomly sample fragment rotations and add a Gaussian noise on the
fragment distance (stddev = 0.1 distance). We filter out clashing initial fragments and feed each
baseline with 250 valid initial fragment poses per fragment pair. We fix the number of linker atoms to
be the same as the reference molecule. For DeLinker and 3DLinker baselines, anchor atoms are also
provided to utilize their published models while they are unavailable for DiffLinker and our model.

From Table 1, we can first see that our model can generate much more valid molecules compared to
other 3D linker generative models (3DLinker and DiffLinker). Although our model’s uniqueness and
novelty scores are lower than other baselines, we believe that is because the chemical linker design
space to form a low-energy molecule is limited. Our model achieves a recovery rate of 24.5%. In
contrast, DiffLinker achieves zero recovery rate since it can not co-design fragment poses, while
DeLinker / 3DLinker utilizes the anchor information and thus achieve a higher recovery rate. In terms
of QED and SA, our model clearly outperforms other models, which indicates our generated linkers
are more realistic. For 3D-related evaluation metrics, our model can achieve much lower energy and
RMSD compared to other baselines, which justifies the effectiveness of our modeling approach.

Since we argue that our physics-inspired fragment pose prediction module is more effective in
Sec. 3.3, we conduct an ablation study (See Table 2) on it to further investigate the role of each
part. We take equation 12 as the counterpart of the Newton-Euler equations-based update formula
(equation 16). Firstly, we find the fragment translation prediction based on Newton equation is more
effective than predicting the change of translation in the local frame. The latter approach will result
in severe drift (the fragments are far away from each other) during the sampling phase, as reflected in
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Table 2: Ablation study on the fragment pose prediction module.

Pose Pred
Valid, % Rec, % Emin (↓) RMSD (↓) EL (↓) ∆EL (↓)

Newton Euler

(a) 81.1 47.3 ++ ++ ++ ++
(b) ✓ 97.2 70.8 180.4 2.22 2052.2 ++
(c) ✓ 81.6 20.3 ++ ++ ++ ++
(d) ✓ ✓ 83.1 24.5 32.2 1.44 49.3 67.1 0 100 k 200 k 300 k 400 k

Steps

2.4

2.8

3.2

3.6

Ro
t L

os
s

Base
Euler Rot

Figure 4: Rotation loss.
Fragments LinkerNet DiffLinker

ZINC

PROTAC-DB

Reference

Figure 5: Visualization of reference molecules and molecules generated by LinkerNet and DiffLinker.

the huge energy and RMSD in (a) and (c), even though the model can learn to connect one linker
atom with each fragment to achieve reasonable scores in 2D metrics such as validity and recovery
rate. Secondly, we can see the fragment rotation prediction based on Euler equation (d) can achieve
lower energy and RMSD compared to its counterpart (b), indicating our design can boost the model’s
capacity and make more accurate rotation predictions. We further plot the rotation training loss in Fig.
4, which confirms our argument since the rotation loss decreases as expected with Euler-equation
rotation prediction while it almost remains unchanged with the counterpart design.

4.3 Constrained Generation Results

In the constrained generation setting, we mimic the real scenario in the PROTAC linker design. Since
two fragments also need to bind the protein of interest and E3 ligase separately, the possible anchor
can only be chosen from a subset of the fragment atoms. In addition, the linker length has a critical
effect on the PROTAC’s selectivity, and we usually need to restrict the range of fragment distance. To
include these constraints, we take the atoms within two hops of the real anchor atom as the imaginary
candidate anchor atom set for each fragment. We set the fragment center distance constraint as
[0.8d, 1.2d], where d is the fragment distance in the reference molecule.

We generate samples with guided sampling and hard bond mask as described in 3.4. For baselines,
the fragment distance is uniformly sampled within the constraint, and random anchors from candidate
anchor sets are provided. The number of linker atoms is sampled according to the approach proposed
in their original paper. Since the public pretrained 3DLinker model can not support the linker
generation to large molecular graphs such as PROTACs, we do not include it for comparison.

Table 3 shows the constrained generation results on PROTAC-DB. Our model achieves a higher
validity and recovery rate, and outperforms other baselines in three of 3D metrics (Emin, RMSD
and EL) with a clear margin. DiffLinker has a lower energy difference before and after linker force
filed optimization than ours, which indicates molecules generated by DiffLinker has better geometry
inside the linker. It makes sense since DiffLinker focuses on learning the linker distribution only,
while our model is trained on a more complex fragment poses and linker co-design task.
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Table 3: Constrained generation results on PROTAC-DB. The mean and standard deviation values are
reported by running the sampling procedure 3 times with different random seeds.

Method Valid,% Unique,% Novel,% Rec,% Emin (↓) RMSD (↓) EL (↓) ∆EL (↓)

DeLinker 42.8 ± 0.4 89.9 ± 2.8 99.0 ± 0.1 0.0 ± 0.0 - - - -
DiffLinker 24.0 ± 0.1 99.4 ± 0.0 98.9 ± 0.2 0.0 ± 0.0 416.2 ± 13.4 2.44 ± 0.05 501.0 ± 17.6 80.8 ± 4.6

Ours 55.5 ± 0.0 47.9 ± 11.6 41.4 ± 4.9 5.4 ± 1.4 113.7 ± 8.0 1.55 ± 0.02 29.9 ± 17.1 500.0 ± 99.1

Table 4: Ablation study on the guided sampling.
Guidance

Valid,% DistSucc,% Emin (↓) RMSD (↓) EL (↓) ∆EL (↓)
Anchor Distance

(a) 45.9 25.2 ++ 1.66 124.3 ++
(b) ✓ 53.2 25.4 1249.7 1.61 432.5 1495.0
(c) ✓ 49.3 53.7 208.4 1.56 45.4 4971.0
(d) ✓ ✓ 55.5 52.6 115.6 1.54 18.2 610.7

To justify the effect of each guidance term, we conduct another ablation study as shown in Tab. 4.
Without guided sampling, the model will generate unrealistic 3D linkers for some fragment pairs and
result in a very large average energy Emin and ∆EL. Anchor proximity guidance (b) and fragment
distance (c) are both of benefit for meeting the constraints and achieving lower energy and RMSD.
The combination of them (d) achieves the best result.

5 Conclusion

We introduce LinkerNet for 3D fragment poses and linker co-design, the first work which addresses
this more general and challenging linker design task. The limitation of our model is that it does
not directly incorporate fragment rotation constraints or explicitly consider the protein context in
modeling. These aspects could be valuable directions for future research.

Reproducibility Statements The model implementation, experimental data and model checkpoints
can be found here: https://github.com/guanjq/LinkerNet
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A Exponential and Logarithmic Mapping between so(3) and SO(3)

A rotation matrix has an associated axis-angle representation. The transformation between them
relies upon the exponential and logarithmic mapping between the Lie algebra so(3) and SO(3).

Following standard definitions [5], the logarithm of a rotation matrix R is:

log(R) =
θ

2 sin θ
(R−RT ) , (20)

where Tr(R) = 1 + 2 cos θ. It can be shown that the logarithm of R ∈ SO(3) is a skew-symmetric
matrix S ∈ so(3):

S := log(R) =

(
0 −vz vy
vz 0 −vx
−vy vx 0

)
, (21)

where v = [vx, vy, vz] is the rotation axis and θ = ∥v∥2 is the rotation angle.

Correspondingly, the exponential of a skew-symmetric matrix is a rotation matrix:

R := exp(S) = I +
sin ∥v∥2
∥v∥2

S +
1− cos ∥v∥2

∥v∥22
S2 . (22)

Following [28], we diffuse the rotation matrix by scaling the angle of rotation along the geodesic
from the identity, which can be done by logarithmic mapping the rotation matrix to values in
so(3), element-wise multiplying by a scalar, and exponentially mapping them back to SO(3), i.e.
λ(γ,R) = exp(γ log(R)). We follow the same way as [31] to pre-compute and cache discretized
angle distribution to draw samples efficiently.

B Proof of Equivariance

B.1 Equivariance w.r.t Global SE(3)-Transformation

We denote the global SE(3)-transformation as Tg, which can be written explicitly as x′ = Tg(x) =
Rgx+ b, where Rg ∈ R3×3 is the rotation matrix and b ∈ R3 is the translation vector. Applying Tg

will result in the same transformation on fragment poses, i.e. p′
c = Rpc, R′

c = RgRc.

First, considering the zero-CoM (Center of Mass) operation x̄i = xi − (p1 + p2)/2, the translation
vector in the global SE(3)-transformation will be cancelled out:

x̄′
i = Tg(x̄) = Rxi + b− (Rp1 + b+Rp2 + b)/2 = R(xi − (p1 + p2)/2) = Rx̄i . (23)

Thus, we only need to consider the rotation transformation. Next, we will prove the equivariance in
the linker denoising process and fragment pose prediction.

Linker Denoising Process It is easy to see the atomic distance ∥xi − xj∥ is Tg . Thus, ẽij ,hi, eij
are also invariant since the update of them (as shown in Eq. (8, 9, 10)) only involves invariant inputs.
For x̃i, the update formula is

ϕ(xl
i) = xl

i +
∑

j∈VM\{i}

(xl
i − xl

j)ϕx(h
l+1
i ,hl+1

j , el+1
ij , t) · 1linker . (24)

After applying Tg , we have

ϕ(T (xl
i)) = T (xl

i) +
∑

j∈VM\{i}

(T (xl
i)− T (xl

j))ϕx(h
l+1
i ,hl+1

j , el+1
ij , t) · 1linker

= Rxl
i +

∑
j∈VM\{i}

R(xl
i − xl

j)ϕx(h
l+1
i ,hl+1

j , el+1
ij , t) · 1linker

= R

xl
i +

∑
j∈VM\{i}

(xl
i − xl

j)ϕx(h
l+1
i ,hl+1

j , el+1
ij , t) · 1linker


= T (ϕ(xl

i)) ,

(25)

14



which implies that the linker atom position update is equivariant. By stacking multiple layers together,
we can draw the conclusion that the denoised linker atom positions are SE(3)-equivariant.

Fragment Poses Prediction We recap the fragment poses prediction as follows:

fi =
∑

j /∈VFc

(xi − xj)ϕf (hi,hj , eij∥xi − xj∥)

Fc =
∑

i∈VFc

fi, τc =
∑

i∈VFc

(xi − pc)× fi

p̂c,0 = pt +
1

|VFc
|
Fc, R̂c,0 = Rω(I

−1
c τc)Rt

(26)

where c = 1 or 2, corresponding to two fragments.

First, it is easy to see fi is equivariant w.r.t Tg following the similar proof about the equivariance of
linker atom positions. Thus, we can prove that the total force Fc and torque τc are equivariant:

F ′
c =

∑
i∈VFc

Rgfi = Rg

∑
i∈VFc

fi = RgFc ,

τ ′
c =

∑
i∈VFc

Rg(xi − pc)×Rgfi

= Rg

∑
i∈VFc

(xi − pc)× fi = Rgτc .

(27)

Second, we follow the same inertia matrix definition as [24]: Ic =
∑

i∈VFc
∥xi − pc∥2I − (xi −

pc)(xi − pc)
⊤. After applying Tg, we have I′c = RgIcR

−1
g , and thus the angular velocity is

equivariant:
ω′ = I′−1

c τ ′
c = RgI

−1
c ����R−1

g Rg τc = Rgω (28)

Third, we notice one nice property of Lie group is that the adjoint transformation is linear:

R exp(ω) = exp(AdjRω)R , for ω ∈ so(3),R ∈ SO(3) (29)

In the case of SO(3), the adjoint transformation for an element is exact the same rotation matrix used
to represent the element [11], i.e. AdjR = R. Thus, we have R exp(ω) = exp(Rω)R.

As a result, the predicted fragment center positions are equivariant:

p̂′
c,0 = Rgpt +

1

|VFc
|
RgFc = Rgp̂c,0 , (30)

and the predicted fragment rotations are also equivariant:

R̂′
c,0 = exp(Rgω)RgRt = Rg exp(ω)R−1

g RgRt = Rg exp(ω)Rt = RgR̂c,0 . (31)

B.2 Independence w.r.t Local Coordinate System

Since we always take the fragment center as the origin of the local coordinate system, we only need
to consider the effect of the orientation change. Suppose the global coordinates remain unchanged,
and the change of local coordinate system results in a rotation Rc applied on local coordinates, i.e.
x̃′ = Rsx̃. Thus, the transformation between local coordinates and global coordinates becomes
x = RR−1

s x̃′ + p, which implies the new rotation matrix representing the fragment pose is RR−1
s .

Recall that the fragment rotation update is R̂0 = Rω(I
−1
c τc)Rt. With the change of local coordinate

system, the predicted fragment rotation is R̂′
0 = Rω(I

−1
c τc)RtR

−1
s . Since our rotation loss is

defined as Lrot = ∥R0R̂
⊤
0 − I∥2F , we have

L′
rot = ∥R0R

−1
s (R̂0R

−1
s )⊤ − I∥2F = ∥R0����R−1

s Rs R̂
⊤
0 − I∥2F = Lrot , (32)

which means the training of our model is independent w.r.t the choice of local coordinate system.
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C Implementation Details

C.1 Featurization

The molecular graph is extended as a fully-connected graph. The atom features include a one-hot
element and charge indicator (H, C, N, N−, N+, O, O−, F, Cl, Br, I, S(2), S(4), S(6)) and a one-hot
fragment/linker indicator. Note that the fragment/linker can be predetermined. Thus, it will only
serve as the input feature without getting involved in the network’s prediction. The edge features
include a one-hot bond type indicator (None, Single, Double, Triple, Aromatic), and a 4-dim one-
hot vector indicating the edge is between fragment atoms, linker atoms, fragment-linker atoms or
linker-fragment atoms.

C.2 Model Details

Atom features and edge features are firstly fed to two embedding layers with node_emb_dim=256
and edge_emb_dim=64. The hidden embeddings get involved in three types of layers: atom update
layer, bond update layer, and position update layer as described in Eq. (9, 10, 11). In each layer,
we concatenate the input features and update the hidden embedding / positions with a 2-layer MLP
with LayerNorm and ReLU activation. The stack of these three layers is viewed as a block, and our
model consists of 6 blocks. For the force prediction layer, we apply graph attention to aggregate the
message of each node/edge. The key/value/query embedding is also obtained with a 2-layer MLP.

We set the number of diffusion steps as 500. For this diffusion noise schedule, we choose to use a
cosine β schedule suggested in [33] with s=0.01.

C.3 Loss Functions

For the linker atom positions and fragment center positions losses, we use the standard mean Squared
Error (MSE). For the rotation loss, we measure the discrepancy between the real and the predicted
rotation matrices by computing the Frobenius-norm of ∥R0R̂

⊤
0 − I∥. For the atom and bond

type losses, we compute the KL divergence between the real posterior and the predicted posterior.
Specifically, the loss functions can be summarized as follows:

Llinker = ∥xL − x̂L,0∥2 (33)

Ltr = Σ2
c=1∥pc − p̂c,0∥2 (34)

Lrot = Σ2
c=1∥Rc,0R̂

⊤
c,0 − I∥2F (35)

Latom =

Na∑
k=1

c̃(vL,t,vL,0)k log
c̃(vL,t,vL,0)k
c̃(vL,t, v̂L,0)k

(36)

Lbond =

Nb∑
k=1

c̃(bL,t,bL,0)k log
c̃(bL,t,bL,0)k

c̃(bL,t, b̂L,0)k
(37)

The final loss is a weighted sum of them:

L = λ1Llinker + λ2Ltr + λ3Lrot + λ4Latom + λ5Lbond (38)

C.4 Training Details

The model is trained via AdamW [30] with init_learning_rate=5e-4, betas=(0.99, 0.999),
batch_size=64 and clip_gradient_norm=50.0. To balance the scales of different losses, we
multiply a factor λ = 100 on the atom type loss and bond type loss. During the training phase,
we add a small Gaussian noise with a standard deviation of 0.05 to linker atom coordinates as data
augmentation. We also schedule to decay the learning rate exponentially with a factor of 0.6 and
a minimum learning rate of 1e-6. The learning rate is decayed if there is no improvement for the
validation loss in 10 consecutive evaluations. The evaluation is performed for every 2000 training
steps. We trained our model on one NVIDIA RTX A6000 GPU, and it could converge within 350k
steps.
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C.5 Overall Training and Sampling Procedures

In this section, we summarize the overall training and sampling procedures of LinkerNet as Algorithm
1 and Algorithm 2, respectively.

Algorithm 1 Training Procedure of LinkerNet

Input: Linker dataset {R,p,GL,GF1
,GF2

}Ni=1, where GL = {vL,bL,xL}, GF = {vF ,bF , x̃F }
and p1 + p2 = 0; Neural network ϕθ

1: while ϕθ not converge do
2: Sample diffusion time t ∈ U(0, . . . , T )
3: Add noise to (xL,p), R and (vL,bL) according to Eq. (2, 4, 6), respectively
4: Compose [xt,vt,bt,Rt,pt] to form GMt by performing xF,t = Rtx̃F,t + pt

5: Move the molecule to make p1,t + p2,t = 0

6: Predict [x̂L,0, v̂L,0, b̂L,0, R̂0, p̂0] from GMt
with ϕθ as described in Sec. 3.3

7: Compute the training loss L according to Eq. (38)
8: Update θ by minimizing L
9: end while

Algorithm 2 Sampling Procedure of LinkerNet

Input: The molecular fragments GF1
,GF2

, the learned model ϕθ. Optional: the fragment distance
constraint [dmin, dmax], the fragment candidate anchor sets A.

Output: Generated fragment poses (R,p) and linker GL

1: If the fragment distance constraint is provided, sample the number of atoms in GL based on a
prior distribution summarized from the training set.

2: Sample initial fragment poses (RT ,pT ) and linker GL,T

3: for t in T, T − 1, . . . , 1 do
4: Compose [xt,vt,bt,Rt,pt] to form GMt by performing xF,t = Rtx̃F,t + pt

5: Move the molecule to make p1,t + p2,t = 0

6: Predict [x̂L,0, v̂L,0, b̂L,0, R̂0, p̂0] from GMt
with ϕθ as described in Sec. 3.3

7: Sample [x̂L,t−1, v̂L,t−1, b̂L,t−1, R̂t−1, p̂t−1] from the posterior according to Eq. (2, 4, 6)
8: Optional: Compute the guidance according to Eq. (18, 19) if the corresponding constraint is

provided. Update the prediction with guidance according to Eq. (17).
9: end for

D Training and Sampling Efficiency

For the training efficiency, DiffLinker converges within 300 epochs and takes 76 hrs with one V100
GPU as the original paper reported. Our model converges within 50 epochs and takes 48 hrs with the
same type of GPU.

For the sampling complexity, DiffLinker finished sampling linkers for 43 PROTAC fragment pairs
(100 linkers for each pair) in 132 min while our model takes 761 min with the same NVIDIA 1080
GPU.
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