
A Application to the Capacitated Vehicle Routing Problem

Problem definition. The Capacitated Vehicle Routing Problem (CVRP) is a vehicle routing problem
in which a vehicle with limited capacity must deliver items from a depot location to various customer
locations. Each customer has an associated demand, and the goal is to compute a set of subtours for
the vehicle, starting and ending at the depot, such that all the customers are visited, the sum of the
demands per subtour of the vehicle does not exceed the capacity, and the total travelled distance is
minimized.

Solution space. Formally, a partial solution (in X ) for CVRP, just as for TSP, is a finite sequence
of nodes. Similarly, the ◦ operator is sequence concatenation and the neutral element ϵ is the empty
sequence. In a CVRP instance, as in TSP, each node is assigned a location, and the objective function
f for an arbitrary sequence of nodes is the total travelled distance for a vehicle visiting the nodes in
sequence:

f(x1:n) =
∑n

i=2
dist(xi−1, xi).

The feasible set X consists of the sequences x1:n of nodes which start and end at the depot, which
are pairwise distinct except for the depot, and such that the cumulated demand of any contiguous
subsequence xi:j not visiting the depot, i.e. a segment of a subtour, does not exceed the capacity of
the vehicle:

x1:n ∈ X iff


x1 = xn = depot,
∀i, j ∈ {1:n} xi = xj ̸= depot =⇒ i = j,

∀i, j ∈ {1:n} ∀k ∈ {i:j} xk ̸= depot =⇒
∑j
k=idemand(xk) ≤ capacity.

Just as with TSP, CVRP on its own does not satisfy the tail-recursion property of Sec. 3.3, but is a
particular case of a more general problem called path-CVRP (similar to path-TSP) which does satisfy
that property. In path-CVRP, instead of starting at the depot with its full capacity, the vehicle starts
at an origin node with a given initial capacity. A CVRP instance is a path-CVRP instance where
origin and depot are the same and the initial capacity is the full capacity. In path-CVRP, each tail
subproblem after selection of a node z updates both the origin (which becomes z) and the initial
capacity (which is decremented by the demand at z if z is a customer node or reset to the full capacity
if z is the depot), conditioned on the resulting capacity being non negative.

Bisimulation quotienting. Given the above solution space, we can directly apply the definitions of
Sec 3.2 to define the bisimulation and the resulting BQ-MDP for path-CVRP, illustrated below:

C=12

c=7

1
4

3

2

4

1

1

4

3Direct MDP state

C=12

c=2

1

4

3BQ-MDP state

Φ

The diagram on the left represents a direct MDP state, i.e. a path-CVRP instance together with a
partial solution. The depot is represented as a white disk with its full capacity (C=12), the origin as
green triangle with initial capacity (c=7), customer nodes as blue or black disks with their demands.
The partial solution is the sequence of black nodes represented by the (directed) red path. The diagram
on the right represents the corresponding BQ-MDP state, i.e. a path-CVRP instance. Note the new
origin (the end node of the partial solution), and its initial capacity c=2: it is the full capacity C=12
minus the cumulated demand served since the last visit to the depot (3+2+4+1)

Model architecture. The model architecture for the CVRP is almost the same as for the TSP, with
a slight difference in the input and output layers. In the TSP model, the input to the node embedding
layer for a N -node state is a 2×N matrix of coordinates. For CVRP, we use two additional channels:
one for the node’s demand, and one for the current vehicle capacity, repeated across all nodes. The
demand is set to zero for the origin and depot nodes. We obtain a 4×N matrix of features, which is

15



passed through a learned embedding layer. As for the TSP, a learned origin (resp. depot) encoding
vector is added to the corresponding node embeddings. The rest of the architecture, in the form of
attention layers, is identical to TSP, until after the action scores projection layer. In the case of TSP,
the projection layer returns a vector of N scores, where each score, after a softmax, represents the
probability of choosing that node as the next step in the construction. In the case of CVRP, the model
returns a matrix of scores of dimension N×2, corresponding to each possible actions and the softmax
scopes over this whole matrix. An action is here either the choice of the next node, as in TSP, or of
the next two nodes, the first one being the depot As usual, a mask is always applied to unfeasible
actions before the softmax operator: those which have higher demand than the remaining vehicle
capacity, as well as the origin and depot nodes.

B Application to the Orienteering Problem

Problem definition. The Orienteering Problem (OP) is a combinatorial optimization problem in
which we need to find the optimal route to visit a set of given locations within a given distance (or
time) limit. The route must start and end at a given location (usually called a depot), each location
is associated with a scalar prize, and the goal is to maximize the cumulated prize, respecting the
distance (time) constraint. This problem has applications in various fields, including logistics and
planning.

Solution space and bisimulation quotienting. After defining BQ-MDP for path-TSP and path-
CVRP, defining BQ-MDP for path-OP is straightforward. The partial solution is the sequence of
already visited nodes, together with remaining distance limit. An OP instance is a path-OP instance
where origin and destination are the same (depot) and distance limit equals the initial distance
constraint. Just as in path-TSP and path-CVRP, in path-OP, each tail subproblem, after selecting a
node z, updates both the origin (which becomes z) and the remaining distance constraint (the current
distance constraint is decreased by the distance from the previous origin to the selected node z).
However, in OP, unlike TSP and CVRP, the number of steps is not known in advance - for TSP and
CVRP, construction of solution ends when all locations are visited, whereas in OP, it ends when a
given distance budget is exceeded.

Model architecture. The model architecture for path-OP is the same as for path-TSP, with two
additional input channels for node prize and distance constraint (repeated across all nodes, as the
total capacity in CVRP). Thus, we obtain a 4×N matrix of features (two for coordinates, one for
prize and one for distance constraint), which is passed through a learned embedding layer. As usual,
a learned encoding for origin and depot nodes are added to the corresponding node embeddings. The
rest of the architecture, including output projection layer is the same as for TSP. Before applying the
softmax operator, we apply a mask to exclude origin and depot nodes, as well as nodes that cannot be
visited due to the distance constraint.

C Application to the Knapsack Problem

The knapsack problem and its solution space were described in Sec. 2.1; the associated bisimulation
in Sec 3.3. We provide below an illustration of the bisimulation on an example:

3 7 9 1 1 2 4 5 8 8 6weights

values 1 9 2 8 3 7 1 6 7 3 9
C = 20

3 9 1 4 5 8 8 6

1 2 3 1 6 7 3 9
C = 10

KP direct MDP state KP BQ-MDP state

Φ

Here, the knapsack capacity is C = 20 and each item is defined by its weight (bottom cell) and
value (top cell). Mapping Φ for KP is straightforward: it removes all picked items and updates the
remaining capacity by subtracting total weight of removed items from the previous capacity.

Model architecture. The model architecture for KP is again very similar to previously described
models for TSP, CVRP and OP. The input to the model is a 3×N tensor composed of items features
(values, weights) and the additional channel for the remaining knapsack’s capacity. By definition, the
solution has no order (the result is a set of items), so there is no need to add tokens for origin and

16



Optimal POMO (single traj.) POMO (all traj.) BQ ours (greedy)
value value optgap value optgap value optgap

N=200

C=10 36.073 34.062 5.565% 34.961 3.076% 35.961 0.311%
C=25 57.429 57.143 0.499% 57.420 0.016% 57.371 0.102%
C=50 81.100 79.766 1.617% 80.085 1.229% 80.564 0.668%
C=100 99.773 99.416 0.358% 99.483 0.291% 99.694 0.080%

N=500

C=10 57.456 51.829 9.769% 54.213 5.627% 56.853 1.054%
C=25 91.026 85.186 6.414% 86.482 4.992% 90.741 0.314%
C=50 128.999 128.646 0.273% 128.946 0.042% 128.906 0.072%
C=100 182.395 181.615 0.424% 181.870 0.285% 181.654 0.407%

N=1000

C=10 81.334 53.319 34.401% 58.072 28.565% 79.650 2.074%
C=25 128.993 122.112 5.340% 123.775 4.046% 128.240 0.584%
C=50 182.813 170.223 6.877% 171.789 6.021% 181.985 0.451%
C=100 257.411 252.701 1.831% 253.361 1.575% 257.224 0.072%

All - 6.131% 4.647% 0.516%

Table 3: Average values and optimality gaps for KP on various instance distributions

destination. Apart from excluding these tokens and different input dimensions, the rest of the model
is identical to the TSP model. The output is a vector of N probabilities over all items with a mask
over the unfeasible ones (with weights larger than remaining knapsack’s capacity). In the training, at
each construction step, any item of the ground-truth solution is a valid choice. Therefore we use a
multi-class cross-entropy loss.

Experimental results for KP. We generate the training dataset as described in [29]. We train our
model on 1M KP instances of size 200 and capacity 25, with values and weights randomly sampled
from the unit interval. We use the dynamic programming algorithm from ORTools to compute the
ground-truth optimal solutions. As hyperparameters, we use the same as for the TSP, except the
training is shorter - it converges in just 50 epochs. Then, we evaluate our model on test datasets with
200, 500 and 1000 items and capacity of 10, 25, 50 and 100, for each problem size. Table 3 shows
the performance of our model compared to POMO, one of the best performing NCO models on KP.
Although our model does not outperform it on all datasets, it achieves better overall performance
and significantly better performance on the out-of-distribution datasets (datasets of size 1000 and
datasets with a capacity of 10). It should be noted again that POMO builds N solutions per instance
and chooses the best one, while our model generates a single solution per instance but still achieves
better results.

D Impact of k-nearest-neighbor heuristic on model performance

As mentioned in the Sec. 6, inference time of our model can be reduced by using a k-nearest-neighbor
heuristic to restrict the search space. For both greedy rollouts and beam search strategies, at every
step, it is possible to reduce the remaining graph by considering only a certain number of neighboring
nodes. Table 4 presents the experiments on TSP and CVRP where we apply the model on different
number of nearest neighbors of the origin. This approach clearly reduces the execution time, but
also in some cases even improves the performance in terms of optimality gap. Note that the criteria
on which to select the nearest neighbors does not have to be the distance but the same metric as
some greedy heuristic for the problem. For example for the Knapsack problem, the items could be
restricted to the k items with highest values (or highest ratios of value/weight).

E Ablation study

E.1 PerceiverIO architecture

To construct a solution, our model needs to perform N steps, and compute N2 attention matrices at
each step, so total complexity is O(N3). Although our model outperforms current state-of-the-art
models in terms of both performance and inference time, this may become a limiting factor when
applying the model to large graph sizes. This is a well-known issue for all attention models, and

17



TSP CVRP
Greedy Beam size 16 Greedy Beam size 16

N=500 full graph 1.091% 2m 0.572% 28m 3.951% 2m 1.503% 28m
250 KNNs 1.186% 1m 0.550% 15m 3.645% 1m 1.040% 15m

N=1000 full graph 2.141% 14m 1.412% 3.5h 6.282% 15m 3.660% 5.4h
500 KNNs 2.086% 7m 1.348% 2.7h 6.330% 10m 3.382% 2.7h
250 KNNs 2.294% 2m 1.379% 38m 5.883% 2m 2.552% 38m

Table 4: Experimental results with different numbers N of nearest-neighbors during the inference.

there have been various proposals to reduce the complexity of attention. In this work, we propose
a compromise between model complexity and quality of the solution by replacing the standard
transformer model with the PerceiverIO architecture [19]. PerceiverIO computes cross-attention
between input data and latent variables and then compute self-attention between the latent variables,
resulting in all computations being done in the latent space. This approach allows the number of
operations to be linear (instead of quadratic) in the input’s length.

In our implementation, we use similar hyperparameters as for the transformer model: 9 attention
layers with 8 heads, an embedding size of 192, and a feed-forward layer dimension of 512. For the
latent space, we use a vector with dimensions of 64×48, while the output query array is the same as
the input array.

E.2 Approximated model

As mentioned in Section 5, existing works have also noted the importance of accounting for the
change of the state after each action: [47, 46] claimed that models should recompute the embeddings
after each action. However because of the additional training cost, they proposed the following
approximation: fixing lower encoder levels and recomputing just the top level with a mask of already
visited nodes. They hypothesis a kind of hierarchical feature extraction property that may make the
last layers more important for the fine-grained next decision. In contrast, we call our entire model
after each construction step; effectively recomputing the embeddings of each state. We hypothesis
that this property may explain the superior performance (Table 1) w.r.t MDAM model [46]. In order
to support this hypothesis, we have implemented an approximated version of our model as follows.
We fixed the bottom layers of our model and recomputed just the top layer, by masking already visited
nodes and adding the updated information (origin and destination tokens for TSP). As expected,
inference time is 1.6 times shorter, but performance is severely degraded: we obtained optimality gap
of 8.175% (vs 0.35% with original model) on TSP100.

E.3 On the impact of expert trajectories

Our datasets consist of pairs of a problem instance and a solution. For imitation learning, we need
pairs of a problem instance and an expert trajectory in the MDP. However multiple trajectories may
be obtained from the solution. For example, in the TSP, a solution is a loop in a graph, and one has
to decide at which node its construction started and in which direction it proceeded. In the CVRP,
the order in which the subtours are constructed needs also to be decided. Hence, all our datasets are
pre-processed to transform solutions into corresponding construction trajectories (a choice for each
or even all possible ones). Our experiments demonstrate that this transformation has a significant
impact on performance. Specifically, in the CVRP, we found that the best performance is achieved
by training the model on expert solutions that sort subtours by the remaining vehicle capacity at
the end of each subtour. More precisely, the last subtour in the expert trajectory has the biggest
remaining capacity (the subtour that visits remaining unvisited nodes), while the first subtour had
the smallest remaining capacity (usually 0). This simple data preprocessing step leads to an almost
twofold improvement in performance compared to training on expert trajectories with subtours in
arbitrary order. Intuitively, these trajectories encourage the model to create subtours that use the
whole vehicle capacity whenever possible.

18



F Proofs

F.1 Properties of the direct MDP

Proof. Let X be a solution space, (f,X)∈FX an instance and M(f,X) its direct MDP. X is normally
designed to accommodate all the instances of a CO problem, possibly even of multiple problems,
so we do not make the assumption that X or Z are finite, but only that the conditions of Def. 1 are
satisfied.

The empty partial solution ϵ is a valid state
By definition, (f,X)∈FX implies X ̸=∅, which is equivalent, by definition, to ϵ∈X̄ , i.e. ϵ is in the
state space of M(f,X).

Each state has a finite, non null number of allowed actions.
Let x∈X̄ be a state of M(f,X).

By definition x◦y∈X for some y∈X , and by (1), we have y=z1◦ · · · ◦zn for some z1:n∈Z . If n>0,
then, by associativity, (x◦z1)◦z2◦ · · · ◦zn=x◦y∈X , hence by definition x◦z1∈X̄ , hence step action
z1 is allowed from x. If n=0 then y=ϵ and x=x◦y∈X hence the null action ϵ is allowed from x. In
both cases, x is not a dead end state.

Since X is finite and, by (1), each of its elements has a finite number of step decompositions, the
set Z of steps occurring in at least one step decomposition of an element of X is itself finite, even if
Z is infinite. Now, assume z is an allowed step action from x, hence, by definition x◦z∈X̄ hence
x◦z◦y∈X for some y∈X . By (1), both x and y have step decompositions, hence z occurs in at least
one step decomposition of an element of X , i.e. z∈Z. Hence, all step actions allowed from a valid
state are in the finite set Z.

All but a finite number of transitions in a trajectory are null actions
By definition and (1), an element of X̄ is the composition of a prefix of a step decomposition of
an element of X . Since X is finite and, by (1), each of its elements has a finite number of step
decompositions, X̄ is finite.

Let x0a1x1a2x2 · · · be an infinite trajectory of M(f,X). By definition of the allowed transitions, it is
easy to show that xn=x0◦a1◦ · · · ◦an for all n∈N and furthermore xn∈X̄ . Let N={n∈N|an ̸=ϵ}.
Reason by contradiction and assume N is infinite, i.e. there exists an increasing sequence n1:∞ such
that N={ni}∞i=1. For all i≥1, we have xni

=x0◦z1◦ · · · ◦zi where zi=ani
∈Z and xni

∈X̄ . Since
X̄ is finite, there exist indices j>i such that xnj

=xni
. Hence xni

=xni
◦zi+1◦ · · · ◦zj . Hence, any

step decomposition of xni
can be expanded with the non empty sequence zi+1:j and remain a step

decomposition of xni
. Hence there are infinitely many step decompositions of xni

. Contradiction.
Therefore, N is finite.

F.2 Soundness of the direct MDP

Proof. We first show the following general lemma. Let Y
ψ→X

f→R∪{∞} be arbitrary mappings. If
ψ is surjective then

arg min
x∈X

f(x) = ψ(argmin
y∈Y

f(ψ(y))) (4)

This is shown by simple application of the definition of argmin (as a set). The subscript ∗ denotes
the steps where the assumption that ψ is a surjection is used:

x′ ∈ ψ(argminyf(ψ(y))) iff ∃y′ ∈ argminyf(ψ(y)) x
′ = ψ(y′)

iff ∃y′ x′ = ψ(y′) ∀y f(ψ(y′)) ≤ f(ψ(y)) iff ∃y′ x′ = ψ(y′) ∀y f(x′) ≤ f(ψ(y))
iff∗ ∀y f(x′) ≤ f(ψ(y)) iff∗ ∀x f(x′) ≤ f(x) iff x′ ∈ argminxf(x)

Now, let X be a solution space, (f,X)∈FX an instance and M(f,X) its direct MDP. Let Y be the set
of trajectories in M(f,X) starting at ϵ, and for each y∈Y , let ψ(y) denote its outcome.

Observe that ψ:Y 7→X . Indeed, it has been shown above that a valid trajectory y always ends with an
infinite (stationary) sequence of null transitions on a state x which is also its outcome when y starts
with ϵ, i.e. x=ψ(y). For the null transitions to be allowed, we must have x∈X .

Let’s show that ψ is surjective. Let x∈X . By (1), x=z1◦ · · · ◦zn for some z1:n∈Z . For each
m∈{0:n}, let xm=z1◦ · · · ◦zm and x′m=zm+1◦ · · · ◦zn. Hence xm◦x′m=x∈X hence xm∈X̄ is a

19



valid state. Hence, the sequence y=x0z1x1 · · · znxn(ϵxn)∗ is a valid trajectory of M(f,X), and it is
starting at x0=ϵ, hence y∈Y . Its stationary state is xn=x hence ψ(y)=x. Hence ψ is surjective.

Now, let y=x0a1x1 · · · anxn · · · be a trajectory in Y . By definition, x0=ϵ. Furthermore, by definition
of the direct MDP transitions, the reward for an (whether it is a step or null) is f(xn−1)−f(xn),
which is null when the trajectory becomes stationary on state ψ(y). By summation, the total reward
R(y) of trajectory y is f(ϵ)−f(ψ(y)). The objective is defined up to an additive constant, so we can
assume without loss of generality that f(ϵ)=0. Hence f(ψ(y))=−R(y).
Finally, since ψ is surjective, we can apply (4) proved above and get

argminx∈Xf(x) = ψ(argminy∈Y f(ψ(y))) = ψ(argminy∈Y−R(y)) = ψ(argmaxy∈YR(y))

In other words, an optimal solution to (f,X) is the outcome of an optimal trajectory of M(f,X)

starting at ϵ, i.e. one which can be obtained by application of an optimal policy.

F.3 Bisimulation between the direct MDP and the BQ-MDP

Let X be a solution space, (f,X)∈FX be an instance, x∈X̄ be a valid state for the direct MDP of
(f,X). We have to show that Φ(f,X) is a bisimulation M(f,X)↔M, i.e. the commutation of the
diagram (see Sec. G.2 for background):

x

(f ∗ x,X ∗ x)

x ◦ z

T

z

f(x)− f(x ◦ z)

z

(f ∗ x)(ϵ)− (f ∗ x)(z)

Φ(f,X) Φ(f,X)

i.e. the values of T (SE corner) obtained from x (NW corner) via the two paths (NW-SW-SE and
NW-NE-SE) are the same.

Proof. The value of T via NW-SW-SE is given by ((f∗x)∗z, (X∗x)∗z), while via NW-NE-SE it is
(f∗(x◦z), X∗(x◦z)). For any y∈X we have, by associativity

(f ∗ (x ◦ z))(y) = f((x ◦ z) ◦ y) = f(x ◦ (z ◦ y)) = (f ∗ x)(z ◦ y) = ((f ∗ x) ∗ z)(y)

Hence f∗(x◦z)=(f∗x)∗z. The proof that X∗(x◦z)=(X∗x)∗z is identical. Hence expression T has
the same value via the two paths.

There are two more things to verify. First that the reward of the N and S transitions are the same:
this is obvious since by definition (f∗x)(ϵ)=f(x◦ϵ)=f(x) and (f∗x)(z)=f(x◦z). Second, that the
conditions for action z to be allowed in the N and S transitions are the same: this is also obvious since
the condition in the N transition is x◦z∈X̄ while for the S transition, it is (X∗x)∗z ̸=∅ or equivalently
X∗(x◦z)̸=∅, and we have for any y∈X (a fortiori for y=x◦z)

X ∗ y ̸= ∅ iff ∃y′ y ◦ y′ ∈ X iff y ∈ X̄

The other commutation, for the null action, is obvious:

x

(f ∗ x,X ∗ x)

x

(f ∗ x,X ∗ x)

ϵ

0

ϵ

0

Φ(f,X) Φ(f,X)

since the condition for ϵ to be allowed in the N transition is x∈X and in the S transition is ϵ∈X∗x,
and the two conditions are equivalent by definition.

20



Observe that the core of the proof is that ∗ defines an action of monoid X on the right of FX , forming
a kind of flow (in the mathematical sense), where the continuous monoid (R,+, 0) in the usual
definition of flow is replaced by the discrete (X , ◦, ϵ). Using Prop. 3, the above result can be strictly
equivalently reformulated as:

Let Φ⊔=
⊔

(f,X)∈FX
Φ(f,X) and M⊔=

⊔
(f,X)∈FX

M(f,X) be the disjoint union of the bisimulation
mappings Φ(f,X) (on their domain side) and that of their corresponding direct MDPs M(f,X),
respectively. Then Φ⊔ is a bisimulation M⊔↔M where M is the reduced MDP of X .

Now, Φ⊔ is obviously surjective, since Φ⊔(((f,X), ϵ))=(f,X) for any (f,X)∈FX . Hence, by
Prop. 6, M is isomorphic to the quotient MDP M⊔/Φ⊔, hence the name BQ-MDP for Bisimulation
Quotiented MDP.

G Mathematical background

G.1 Monoids

Monoids are one of the simplest algebraic structure.
Definition 2 (Monoid). A monoid is a triple (M, ◦, ϵ) where ◦ is a binary operation on the set M
and ϵ is a distinguished element of M , such that

∀x, y, z ∈M x ◦ (y ◦ z) = (x ◦ y) ◦ z (associativity)
∀x ∈M x ◦ ϵ = ϵ ◦ x = x (neutral element)

For example the (finite) sequences of elements of an arbitrary set, equipped with concatenation and
the empty sequence, forms a monoid. Now, ifM is a monoid and x1:n is a sequence of elements ofM ,
then the expression x1◦ · · · ◦xn denotes an element of M , independent of the way it is parenthesised.
This extends to the case n=0 where the expression denotes ϵ. And the mapping x1:n 7→x1◦ · · · ◦xn
from the monoid of sequences of elements of M into M is a monoid homomorphism.

A sub-monoid of M is a subset of M which contains ϵ and is closed under operation ◦. Obviously, a
sub-monoid of M is itself a monoid. If S is a sub-monoid of M , a generator of S, if it exists, is a
subset So of M\{ϵ} such that S is the smallest sub-monoid of M containing So. It is easy to show
that in that case, S is exactly the set of elements of the form x1◦ · · · ◦xn where x1:n∈Sno .

G.2 Bisimulation

Bisimulation is a very broad concept which applies to arbitrary Labelled Transition Systems (LTS).
It has been declined in various flavours of LTS, such as Process Calculi, Finite State Automata,
Game theory, and of course MDPs (initially deterministic MDPs such as those used here, later
extended to stochastic MDPs which we are not concerned with here). We use the following notation
to indicate that the transition from state p to state p′ with label ℓ is valid in LTS L (L is omitted when
unambiguous).

p
ℓ−−−→

(L)
p′

Recall that the disjoint union of a family (Si)i∈I of sets is the set
⊔
i∈I Si=def

⋃
i∈I{i}×Si. We can

define the disjoint union of a family of LTSs as follows:
Definition 3 (Disjoint union). If (Li)i∈I is a family of LTSs sharing the same label space, each with
state space Si, then the disjoint union

⊔
i∈I Li is the LTS L with state space

⊔
i∈I Si and transitions

(i, p)
ℓ−−→

(L)
(i, p′) if p

ℓ−−−→
(Li)

p′

Definition 4 (Simulation, Bisimulation). Let L1,L2 be LTSs sharing the same label space and R a
bi-partite relation from the state space of L1 into that of L2. R is a simulation L1→L2 if

∀ℓ, p, q, p′ s.t. pRq, p ℓ−−−→
(L1)

p′ ∃q′ s.t. p′Rq′, q ℓ−−−→
(L2)

q′

R is a bisimulation L1↔L2 if R is a simulation L1→L2 and Rop is a simulation L2→L1.

21



Informally, a simulation (resp. bisimulation) is characterised by a commutation property in the
following diagram: if the pair of arrows connected to p (resp. to either p or q) is valid then so is the
“opposite” pair w.r.t. the centre of the diagram.

p

q

p′

q′

ℓ

ℓ
R R

A homogeneous simulation (resp. bisimulation) on an LTS L is a simulation L→L (resp. bisim-
ulation L↔L). Note that R is a simulation L1→L2 (resp. bisimulation L1↔L2) if and only if
{((1, p), (2, q))|(p, q)∈R} is a homogeneous simulation (resp. bisimulation) on L1⊔L2.
Proposition 3. Let L, (Li)i∈I be LTSs sharing the same label space. For each i∈I , let Ri be a
bi-partite relation from the state space of Li into that of L, and let R⊔=

⋃
i{((i, p), q)|(p, q)∈Ri}

be their disjoint union on the domain side. Then R⊔ is a bisimulation (
⊔
i∈I Li)↔L if and only if

Ri is a bisimulation Li↔L for each i∈I .

Proof. (outline) This is essentially shown by observing that the following two diagrams, where
L⊔=

⊔
i∈I Li, are, by definition, equivalent:

(i, p)

q

(i, p′)

q′

(L⊔)

ℓ

(L)

ℓ
R⊔ R⊔

p

q

p′

q′

(Li)

ℓ

(L)

ℓ
Ri Ri

If the commutation property holds for one it holds for the other.

Proposition 4. The identity on the state space of L is a bisimulation L↔L. The composition of a
bisimulation L1↔L2 and a bisimulation L2↔L3 is a bisimulation L1↔L3. The union of a family
of bisimulations L1↔L2 is a bisimulation L1↔L2. The inverse of a bisimulation L1↔L2 is a
bisimulation L2↔L1.

Hence, LTSs with bisimulation form a category in Category theory.

Proof. (outline) Let’s detail stability by composition, the other cases are similarly obvious. If R1,R2

are the two bisimulations being composed, apply the commutation property to each cell of the
following diagram (from top to bottom and vice versa).

p

r

q

p′

r′

q′

ℓ

ℓ

ℓ
R1

R2

R1

R2

As a corollary, observe that the set of homogeneous bisimulations on an LTS L is stable by reflexive-
symmetric-transitive closure. In particular, the union of all bisimulations, called the bisimilarity of L,
is itself a bisimulation, and it is an equivalence relation.
Definition 5 (Quotienting). Given an LTS L and an equivalence relation R on its state space, the
quotient LTS L/R is defined as follows: the label space is the same as that of L; the states are the
R-equivalence classes; and the transitions are defined, for any classes ṗ, ṗ′, by

ṗ
ℓ−−−−−−→

(L/R)
ṗ′ if ∀p ∈ ṗ ∃p′ ∈ ṗ′ p

ℓ−−−−→
(L)

p′

22



By extension, if F is a mapping from the state space of L to an arbitrary set, then L/F denotes
L/(F op◦F ).
Proposition 5. Let R be an equivalence on the state space of L. R is a (homogeneous) bisimulation
on L if and only if ∈ is a bisimulation L↔L/R.

Proof. We show both implications: first, assume R is a bisimulation on L.

1– Let p ∈ q̇ and p ℓ−→ p′. Let q ∈ q̇. Hence pRq and p ℓ−→ p′. Since R is a bisimulation, there exists
q′ such that q ℓ−→ q′ and p′Rq′. Hence for all q ∈ q̇, there exists q′ ∈ p̄′ such that q ℓ−→ q′. Hence by
definition q̇ ℓ−→ p̄′ while p′ ∈ p̄′.

2– Let p ∈ q̇ and q̇ ℓ−→ q̇′. Hence by definition, there exists p′ ∈ q̇′ such that p ℓ−→ p′.

Conversely, assume ∈ is a bisimulation L↔L/R.

1– Let pRq and p ℓ−→ p′. Hence p ∈ q̄ and p ℓ−→ p′. Since ∈ is a bisimulation, there exists q̇′ such that
p′ ∈ q̇′ and q̄ ℓ−→ q̇′. Now q ∈ q̄, hence, by definition, there exists q′ ∈ q̇′ such that q ℓ−→ q′. And
p′Rq′ since p′, q′ ∈ q̇′.

2– Let pRq and q ℓ−→ q′. Hence qRp and q ℓ−→ q′, and we are in the previous case up to a permutation
of variables.

Proposition 6 (Bisimulation Quotienting). Let F be a mapping from the state space of L1 to that
of L2. If F is a surjective bisimulation L1↔L2, then there exists a bijective (a.k.a. isomorphic)
bisimulation (L1/F )↔L2.

Proof. F is a bisimulation L1↔L2, hence, by Prop. 4, F op is a bisimulation L2↔L1 and R=F op◦F
is a bisimulation L1↔L1. Hence, by Prop. 5, ∈ is a bisimulation L1↔(L1/F ) and, by Prop. 4 again,
F̃=F◦∈op is a bisimulation (L1/F )↔L2. By construction, F̃ is an injective mapping between the
state space of L1/F and that of L2. Indeed

1– Consider a class ṗ modulo R and let p∈ṗ. Hence, by definition, ṗF̃ q where q=F (p). Furthermore,
suppose ṗF̃ q1 and ṗF̃ q2. Hence q1=F (p1) and q2=F (p2) for some p1, p2∈ṗ. Hence, by definition,
p1Rp2 hence F (p1)=F (p2), i.e. q1=q2. Hence F̃ is a mapping.

2– Suppose ṗ1F̃ q and ṗ2F̃ q. Hence F (p1)=F (p2)=q for some p1, p2∈ṗ1×ṗ2. Hence, by definition,
p1Rp2, i.e. ṗ1=ṗ2. Hence F̃ is injective.

Now, ∈op is obviously surjective between the state space of L1/F and that of L1, hence when F is
surjective, so is F̃ , which is then bijective.

Definition 6. Given an LTS L, its transitive closure is another LTS denoted L∗ on the same state
space, where the labels are the finite sequences of labels of L and the transitions are defined by

p
ℓ1:n−−−−→
(L∗)

p′ if ∃p0:n such that p = p0
ℓ1−−−→
(L)

p1 · · ·
ℓn−1−−−−→
(L)

pn−1
ℓn−−−→
(L)

pn = p′

Proposition 7. If R is a bisimulation L1↔L2, then it is also a bisimulation L∗
1↔L∗

2.

Proof. (outline) This is essentially shown by successively applying the commutation property to each
cell of the following diagram (from left to right):

p0

q0

p1

q1

pn−1

qn−1

pn

qn

ℓ1 ℓn

ℓ1 ℓn
R R R R

23



Proposition 8. Let R be an equivalence relation on the state space of L. If R is a bisimulation on L,
then (L/R)∗=L∗/R.

Proof. R is a bisimulation on L, hence ∈ is a bisimulation L↔L/R (Prop. 6), hence also a bisim-
ulation L∗↔(L/R)∗ (Prop. 7). Analogously, R is a bisimulation on L, hence also a bisimulation
on L∗ (Prop. 7), hence ∈ is a bisimulation L∗↔L∗/R (Prop. 5). By composition (Prop. 4) we have
∈◦∈op is a bisimulation L∗/R↔(L/R)∗. But ∈◦∈op is the identity. Hence L∗/R=(L/R)∗.

24



H Plots of some TSPLib and CVRPLib solutions

(a) Optimal solution (b) Our model (BS16), opt_gap 0.549%

(c) MDAM (BS50), opt_gap 11.501% (d) POMO (x8), opt_gap 18.614%

Instance pcb442

(a) Optimal solution (b) Our model (BS16), opt_gap 4.253%

(c) MDAM (BS50), opt_gap 20.916% (d) POMO (x8), opt_gap 44.664%

Instance pr1002

25



(a) Optimal solution (b) Our model (BS16), opt_gap 3.464%

(c) MDAM (BS50), opt_gap 45.669% (d) POMO (x8), opt_gap 11.416%

Instance X-n284-k15

(a) Best known solution (b) Our model (BS16), opt_gap 2.667%

(c) MDAM (BS50), opt_gap 19.739% (d) POMO (x8), opt_gap 46.603%

Instance X-n513-k21

26


	Application to the Capacitated Vehicle Routing Problem
	Application to the Orienteering Problem
	Application to the Knapsack Problem
	Impact of k-nearest-neighbor heuristic on model performance
	Ablation study
	PerceiverIO architecture
	Approximated model
	On the impact of expert trajectories

	Proofs
	Properties of the direct MDP
	Soundness of the direct MDP
	Bisimulation between the direct MDP and the BQ-MDP

	Mathematical background
	Monoids
	Bisimulation

	Plots of some TSPLib and CVRPLib solutions

